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SUMMARY 49 

Intra-tumor heterogeneity (ITH) is a mechanism of therapeutic resistance and therefore an 50 

important clinical challenge. However, the extent, origin and drivers of ITH across cancer 51 

types are poorly understood. To address this question, we extensively characterize ITH 52 

across whole-genome sequences of 2,658 cancer samples, spanning 38 cancer types. Nearly 53 

all informative samples (95.1%) contain evidence of distinct subclonal expansions, with 54 

frequent branching relationships between subclones. We observe positive selection of 55 

subclonal driver mutations across most cancer types, and identify cancer type specific 56 

subclonal patterns of driver gene mutations, fusions, structural variants and copy-number 57 

alterations, as well as dynamic changes in mutational processes between subclonal 58 

expansions. Our results underline the importance of ITH and its drivers in tumor evolution, 59 

and provide an unprecedented pan-cancer resource of comprehensively annotated 60 

subclonal events from whole-genome sequencing data.  61 
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INTRODUCTION 62 

Cancers accumulate somatic mutations as they evolve (Nowell, 1976; Tabin et al., 1982). 63 

Some of these mutations are drivers that confer fitness advantages to their host cells and 64 

can lead to clonal expansions (Garraway and Lander, 2013; Greaves and Maley, 2012; 65 

Stratton et al., 2009; Vogelstein et al., 2013). Late clonal expansions, spatial segregation, 66 

and incomplete selective sweeps result in genetically distinct cellular populations that 67 

manifest as intra-tumor heterogeneity (ITH) (Nowell, 1976). Clonal mutations are shared 68 

by all cancer cells, whereas subclonal mutations are present only in a fraction of cancer 69 

cells. 70 

ITH represents an important clinical challenge, as it provides genetic variation that may 71 

drive cancer progression and lead to the emergence of drug resistance (Maley et al., 2006; 72 

McGranahan and Swanton, 2017; Mroz et al., 2013). Subclonal drug resistance and 73 

associated driver mutations are common (Gerlinger et al., 2012; Gundem et al., 2015; 74 

Landau et al., 2013; McGranahan et al., 2015; Shaw et al., 2016; Yates et al., 2015). ITH 75 

can impact clinical trial design (Hiley et al., 2014), predict progression (Maley et al., 2004), 76 

and can be directly prognostic (Espiritu et al., 2018). For example, ITH at the level of copy 77 

number aberrations (CNAs) is associated with increased risk of relapse in non-small cell 78 

lung cancer (Jamal-Hanjani et al., 2017), head and neck cancer (Mroz and Rocco, 2013; 79 

Rocco, 2015) and glioblastoma multiforme (Brastianos et al., 2017).  80 

ITH can be characterized from massively parallel sequencing data (Campbell et al., 2008; 81 

Landau et al., 2013; McGranahan et al., 2015; Nik-Zainal et al., 2012; Sottoriva et al., 82 

2013), as the cells comprising a clonal expansion share a unique set of driver and passenger 83 

mutations derived from the expansion-initiating cell. Each mutation within this shared set 84 

is present in the same proportion of tumor cells (known as cancer cell fraction, CCF), which 85 

may be estimated by adjusting mutation allele frequencies for local copy number and 86 

sample purity. Subsequent clustering of mutations based on their CCF yields the ‘subclonal 87 

architecture’ of a sample (Dentro et al., 2017): estimates of the number of tumor cell 88 

populations in the sequenced sample, the CCF of each population, and assignments of 89 

mutations to each population. 90 
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To date, ITH remains poorly characterized across cancer types, and there is substantial 91 

uncertainty concerning the selective pressures operating on subclonal populations. 92 

Previous pan-cancer efforts used the principles above to characterize subclonal events, but 93 

have been limited to exomes, which restricts the number and resolution of somatic mutation 94 

calls and ignores structural variation (Andor et al., 2016). Two recent studies using pan-95 

cancer data from The Cancer Genome Atlas found that actionable driver mutations are 96 

often subclonal (McGranahan et al., 2015), and that ITH has broad prognostic value (Andor 97 

et al., 2016).  98 

Recent studies have relied on multi-region whole-genome, exome or targeted sequencing 99 

to characterize ITH in detail in specific cancer types (Jamal-Hanjani et al., 2017; 100 

McPherson et al., 2016; Turajlic et al., 2018b; Yates et al., 2015). Due to the ‘illusion of 101 

clonality’ (de Bruin et al., 2014), variants found as clonal in one sample may be subclonal 102 

in other samples from the same tumor, and therefore single-sample analyses can 103 

underestimate the extent of ITH. The converse is also true: any mutations detected as 104 

subclonal in any single sample, will by definition be subclonal no matter how many 105 

samples have been assayed. Therefore, through analyzing single cancer samples, a 106 

conservative lower limit of ITH can be established. 107 

Here, we develop a robust consensus strategy that maintains conservative inferences to call 108 

copy number and cluster mutations in order to assess ITH, its origin, its drivers, and its role 109 

in tumor development. We apply these approaches to 2,658 tumors from 38 histologically 110 

distinct cancer types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) 111 

initiative (The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, 2020). 112 

In comparison to exome sequencing, whole-genome sequencing data provides orders of 113 

magnitude more point mutations, greater resolution to detect CNAs and the ability to call 114 

structural variants (SVs). Collectively, these substantially increase the breadth and depth 115 

of our ITH analyses permitting us to find pervasive ITH across all cancer types. We are 116 

further able to observe frequent branching patterns of subclonal evolution and clear signs 117 

of positive selection in subclones. We identify subclonal driver mutations in known cancer 118 

genes and unanticipated changes in mutation signature activity across many cancer types. 119 

In total, these analyses provide detailed insight into tumor evolutionary dynamics.  120 
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RESULTS 121 

Consensus-based characterization of intra-tumor heterogeneity in 2,658 cancers 122 

We set out to characterize ITH across cancer types, including single-nucleotide variants 123 

(SNVs), indels, SVs and CNAs, as well as subclonal drivers, subclonal selection, and 124 

mutation signatures. We leveraged the PCAWG dataset, encompassing 2,778 whole-125 

genome sequences from 2,658 human tumors across 38 distinct histological cancer types 126 

(Alexandrov et al., 2020; Gerstung et al., 2020; Rheinbay et al., 2020; The ICGC/TCGA 127 

Pan-Cancer Analysis of Whole Genomes Consortium, 2020). 128 

First, to generate high-confidence calls, we developed ensemble approaches for variant 129 

calling, copy number calling and subclonal reconstruction (Figure 1A, STAR Methods). 130 

Specifically, to maximize sensitivity and specificity of calling clonal and subclonal 131 

mutations, the PCAWG consortium developed and extensively validated a robust 132 

consensus approach integrating the output of four SNV calling algorithms (The 133 

ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, 2020). Similar 134 

consensus approaches were employed for indels and SVs.  135 

As previous studies report that the quality of copy number calls has a large effect on the 136 

robustness of subclonal reconstruction (Andor et al., 2016; Salcedo et al., 2020), we 137 

devised a systematic approach to consensus copy number calling, integrating results from 138 

six state-of-the-art copy number callers (Figure 1A, STAR Methods). Each algorithm was 139 

run twice, first to identify all copy number breakpoints and construct a consensus 140 

segmentation. To improve sensitivity and obtain breakpoints at base-pair resolution, SV 141 

breakpoints were also inserted into these first runs (STAR Methods). In a second run, this 142 

consensus segmentation was enforced on all CNA callers, resulting in copy number calls 143 

with identical breakpoints across algorithms.  144 

Purity and ploidy assessment of cancer samples can be challenging, as for some samples 145 

multiple purity/ploidy combinations can be theoretically possible and these may be difficult 146 

to distinguish (Carter et al., 2012; Van Loo et al., 2010). Consensus purity and ploidy were 147 

determined by establishing agreement between the six CNA callers (STAR Methods). An 148 

expert panel reviewed and resolved cases where the callers disagreed. We found that the 149 
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purity values correlate strongly with a recent cross-omics analysis of tumor purity (Aran et 150 

al., 2015) (Figure S1). After establishing agreement on the purity and ploidy, we defined 151 

samples that had undergone whole-genome duplication in an objective and automated way, 152 

based on tumor ploidy and the extent of loss of heterozygosity (Figure 1B, STAR 153 

Methods). This classification shows 98.7% agreement with an alternative approach 154 

leveraging the mode of the major allele (Carter et al., 2012). However, our classification 155 

correctly classifies difficult tumors with many large chromosome gains, such as 156 

medulloblastomas or pancreatic endocrine tumors, whereas the alternative approach is less 157 

suitable for these tumors and occasionally makes errors. In addition, samples with whole-158 

genome duplications showed synchronous chromosomal gains (Gerstung et al., 2020), 159 

further validating our approach. To further support high-quality subclonal reconstruction, 160 

the whole genome of each tumor was annotated for the confidence in the consensus copy 161 

number calls, which were assigned ‘tiers’ based on the level of agreement between different 162 

callers. On average, we reached a high confidence consensus on 93% of the genome 163 

(median: 95%, standard deviation: 13%) (Figure 1C, STAR Methods). 164 

Consensus copy number profiles, SNVs, and purity estimates served as input to 11 165 

subclonal architecture reconstructing methods, and the results of these methods were 166 

combined into a single consensus reconstruction for each tumor (Figure 1A, STAR 167 

Methods). Due to the probabilistic nature of subclonal reconstruction, we developed three 168 

consensus approaches using different summary outputs of individual methods. We 169 

validated the results of the consensus strategies on two independently simulated datasets 170 

and assessed their robustness on the real data. The consensus methods performed 171 

comparably to the best individual methods on both simulated datasets, with the top-172 

performing individual methods also displaying high similarity scores (Figure 1D, STAR 173 

Methods). Whereas true mutations and CNAs were used in the analysis of simulated data, 174 

in the real data the true subclonal mutations and CNAs are unknown. On the real data, the 175 

highest similarities were observed for the consensus approaches, and not among individual 176 

methods (Figure 1D), confirming that our consensus approaches yield the most robust 177 

subclonal reconstruction outcome. Furthermore, using one simulated dataset with 965 178 

samples, we evaluated the performances of our consensus methods over all 2,035 possible 179 
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combinations of 11 individual methods. We observed that the most robust performance, 180 

when the best callers are not known a priori, was achieved when all 11 callers were 181 

combined (STAR Methods). Hence, we used the output of one of our consensus methods, 182 

combining all 11 individual callers, as the basis for our global assignment strategy (STAR 183 

Methods). Through this approach, we obtained the number of detectable subclonal 184 

expansions, the fraction of subclonal SNVs, indels, SVs and CNAs, as well as the 185 

assignment of SNVs, indels and SVs to subclones for each tumor. 186 

To obtain unbiased estimates of the number of mutations in the detected subclones and 187 

their CCFs, we accounted for a detection bias introduced by somatic variant calling. 188 

Specifically, as the CCF of a subclone decreases, so does the power to detect the SNVs 189 

associated with that subclone. This leads to biases in the estimates of subclone parameters, 190 

such as an overestimation of the subclone’s CCF, akin to the “winner’s curse” (Nik-Zainal 191 

et al., 2012). In addition, an increasing number of uncalled SNVs in the subclone leads to 192 

an underestimation of the number of associated mutations. The larger number of SNVs 193 

revealed by WGS (compared to whole-exome sequencing) facilitates quantitation and 194 

correction of these biases. We developed two methods to do this, validated them on 195 

simulated data (STAR Methods, Figure 2A), and combined them to correct the estimated 196 

number of SNVs and the CCF of each subclone. We estimate that, on average, 14% of 197 

SNVs in detectable subclones are below the somatic caller detection limits (Figures 2B-198 

C). In particular, in subclones with CCF < 30%, on average 21% of SNVs are missed. Due 199 

to the complexity in modelling sensitivity of indel and SV calling as a function of the 200 

number of variant reads, similar models could not be developed for these mutation types. 201 

However, we anticipate that higher fractions of SVs and indels are likely missed because 202 

of the lower sensitivity of existing algorithms (The ICGC/TCGA Pan-Cancer Analysis of 203 

Whole Genomes Consortium, 2020). In addition, these values only include SNVs missed 204 

in detected subclones, not SNVs in subclones that remain undetected due to limited 205 

sequencing depth. 206 

 207 

 208 
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Pervasive intra-tumor heterogeneity across cancer types 209 

We first evaluated the number of subclones identified by our consensus approach. We 210 

noted a strong correlation between the average effective read depth along the genome 211 

(sequencing coverage per haploid genome copy, i.e. the amount of sequencing signal) and 212 

the number of identified subclones (Figure S2), and therefore focused on 1,705 cancer 213 

genomes where our approach is powered to detect subclones encompassing >30% of tumor 214 

cells (STAR Methods). One or more subclonal expansions were evident in 1,621 tumors 215 

(95.1%), while only 84 tumors (4.9%) were clonal at the resolution of our methods (Figure 216 

3A). Importantly, these estimates, based on single-sample reconstruction and a median 217 

~46X read coverage, provide only a conservative lower bound for the number of subclones, 218 

as this study is not powered to detect rare subclonal populations. 219 

Looking across cancer types (Figure 3A), our consensus approach finds a high proportion 220 

of samples with at least one subclone (>75%) in all cancer types, except cutaneous 221 

melanoma, where subclones were detectable by our approach in only half of the samples 222 

(31/62). In contrast, acral melanomas followed the pattern observed in other cancer types 223 

with higher frequencies of subclonal expansions (14/16 samples, 87.5%). Twenty-five out 224 

of 30 cancer types with more than 10 cases comprised >90% of samples with at least one 225 

detectable subclone, indicating pervasive ITH across cancer types. 226 

The fraction of subclonal SNVs identified after winner’s curse correction varies widely 227 

across cancer types (Figure 3B). Squamous cell carcinomas typically show low fractions 228 

of subclonal SNVs (head-and-neck, 9.7% ± 11.9; lung, 6.1% ± 6.7; cervix, 20.6% ± 19.6; 229 

mean ± standard deviation), while prostate adenocarcinoma (41.2% ± 21.8), thyroid 230 

adenocarcinoma (42.8% ± 19.6), chromophobe renal cell carcinomas (45.2% ± 22.7), 231 

pancreatic neuroendocrine tumors (46% ± 24.7) and pilocytic astrocytomas (61.3% ± 14.8) 232 

showed the highest fractions of subclonal SNVs.  233 

Indels, SVs and CNAs also revealed similarly large differences between cancer types. For 234 

indels, the subclonal fraction ranged from 6.2% ± 11.7 in lung squamous carcinomas to 235 

43.4% ± 23.7 in pancreatic neuroendocrine tumors (Figure 3C). For SVs, liposarcomas 236 

and cutaneous melanomas showed the lowest subclonal fraction (8.0% ± 14.1 and 8.9% ± 237 
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15.5 respectively) and chromophobe renal cell cancers the highest (56.8% ± 31.6) (Figure 238 

3D). The fraction of subclonal copy number changes was lowest in chromophobe renal cell 239 

cancers (13.3% ± 16.8) and highest in prostate adenocarcinoma (53.8% ± 32.0) (Figure 240 

3E). Comparing these values to the SNV burden (Figure 3F), the fraction of the genome 241 

affected by CNAs (Figure 3G), the frequency of WGD per cancer type (Figure 3H), and 242 

the power to identify subclones per cancer type (Figure 3I) showed that none of these 243 

metrics explain this wide variation. While we observed that cancer types with higher 244 

mutation burden showed lower fractions of subclonal SNVs (Figures 3B and 3F), we did 245 

not see a similar relationship when evaluating individual tumors (STAR Methods). The 246 

proportions of subclonal indels and SNVs are strongly correlated (R2 = 0.73). SVs follow 247 

a similar trend (R2 = 0.62 with indels, R2 = 0.51 with SNVs), except for liver, colorectal 248 

and ovarian tumors, which show higher fractions of subclonal SVs than SNVs (Figures 249 

3B-E and S3). In contrast, the average proportions of subclonal large-scale CNAs and 250 

SNVs are only weakly correlated (R2 = 0.24), indicating these could be driven by 251 

independent mutational processes.  252 

Some cancer types had limited ITH across all mutation types (e.g. biliary cancers, 253 

squamous cell carcinomas and stomach cancers), while other cancer types showed an 254 

abundance of ITH in specific somatic variant categories. For example, chromophobe 255 

kidney cancers and pancreatic neuroendocrine tumors have few subclonal CNAs but a high 256 

subclonal burden across all other variant categories (Figures 3B-E). Finally, among the 257 

tumors of each cancer type, we find substantial diversity in the fraction of subclonal 258 

variants (Figures 3B-E). 259 

These findings highlight the high prevalence of ITH across cancer types. Nearly all tumors 260 

assayed here, irrespective of cancer type, show evidence of subclonal expansions giving 261 

rise to detectable subclonal populations, even at a limited read depth. In addition, we find 262 

that the average proportions of subclonal SNVs, indels, SVs and CNAs are highly variable 263 

across cancer types. These analyses paint characteristic portraits of the nature of ITH, 264 

suggesting distinct evolutionary narratives for each histological cancer type.  265 

 266 
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Complex phylogenies among subclones revealed by whole genome sequencing  267 

Whole-genome sequencing provides an opportunity to explore and reconstruct additional 268 

patterns of subclonal structure by performing phasing of pairs of mutations in the same 269 

read pair, to assess evolutionary relationships of subclonal lineages (Figures 4A-B). Two 270 

subclones can be either linearly related to each other (parent-child relationship), or have a 271 

common ancestor, but develop on branching lineages (sibling subclones). Establishing 272 

evolutionary relationships between subclones is challenging on single-sample sequencing 273 

data due to the limited resolution to separate subclones and the uncertainties on their CCF 274 

estimates. We can, however, examine pairs of SNVs in WGS data that are covered by the 275 

same read pairs (i.e. phaseable SNV pairs), to reconstruct this relationship. Specifically, 276 

evidence for a parent-child relationship between two clones is given by a SNV pattern in a 277 

region without copy number gains, where the SNV attributed to the child clone is only 278 

found on a subset of the reads that carry the SNV attributed to the parent clone (Figure 4A, 279 

STAR Methods). Similarly, evidence for a sibling relationship between two clones is 280 

given by an SNV pattern in a haploid region where overlapping read pairs carry either the 281 

SNV attributed to one clone or the other (but not both) (Figure 4B, STAR methods). As 282 

the number of read pairs carrying two variants depends strongly on mutation burden and 283 

specific copy number context, they are generally extremely rare. Our large, curated dataset, 284 

however, enables us to identify a sizeable total of these and explore their phylogenetic 285 

information content in detail. 286 

We find that of 1,537 tumors with sufficient power and at least one phaseable pair in the 287 

correct context, 245 show discordant in-cis SNVs pairs, indicating parent-child 288 

relationships (Figure 4A). Annotating SNVs with their clone or subclone assignment from 289 

CCF clustering, the vast majority of these samples (233, 95.1%) show pairs supporting the 290 

expected clone-subclone relationship. In addition, there are 8 samples with pairs assigned 291 

to different subclones and 16 samples with pairs assigned to the same subclone, 292 

highlighting collinear evolution among subclones. Of 995 tumors, 51 carry discordant in-293 

trans SNVs pairs, with 32 and 27 of these samples having pairs assigned to the same or 294 

different subclones, respectively (8 have both), confirming the occurrence of two sibling 295 

subclones having expanded in parallel (Figure 4B).  296 
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The identification of subclones from phaseable SNV pairs can be considered largely 297 

independent of the consensus subclonal reconstruction. One can therefore use phasing 298 

results to assess the performance of subclonal reconstruction and vice versa. Indeed, tumors 299 

identified to contain higher numbers of subclones according to the consensus 300 

reconstruction are enriched for linear and branching pairs (p-value = 3.9x10-15, Figure 4C). 301 

Nevertheless, our identification of 16 and 32 samples with SNV pairs assigned to the same 302 

subclone but showing in-cis and in-trans discordance, respectively, confirms that our 303 

consensus approach identifies only a lower limit on the number of subclonal expansions. 304 

Interestingly, 8 of the 13 cutaneous melanomas showing linear or branching pairs had been 305 

deemed clonal by CCF clustering but had phasing evidence for 1–2 subclones (3 had linear, 306 

7 had branching, and 3 had both linear and branching SNV pairs). This analysis suggests 307 

that, similarly to other cancer types, the large majority of cutaneous melanomas contain 308 

subclonal expansions. However, these might be obscured by the large numbers of clonal 309 

mutations in these extremely highly mutated tumors.  310 

The frequency of branching versus linear evolution can be assessed directly by subsetting 311 

the phasing analysis to haploid regions and to pairs where both SNVs have been assigned 312 

to subclones, as both linear and branching relationships may be detected with similar power 313 

in this subset. Our results indicate that, in the pan-cancer setting, two subclones are 3.11 314 

times more likely to be siblings than to have a parent-child relationship (bootstrapped 95% 315 

confidence interval [1.71; 7.50], Figure 4D). This result is consistent with the complex 316 

phylogenies obtained from multi-region sequencing efforts such as the TRACERx 100 317 

non-small-cell lung cancer cohort (Jamal-Hanjani et al., 2017), where the odds of 318 

branching vs. linear evolution are 2.86 (bootstrapped 95% confidence interval [1.93; 5.07], 319 

Figure 4E, STAR Methods). These results are also in line with observations of mutual 320 

exclusivity of subclonal drivers and extensive parallel evolution (Turajlic et al., 2018a; 321 

Turajlic et al., 2018b). 322 

 323 

Patterns of subclonal mutation signature activity changes across cancers 324 

Mutation processes can differ in their activity between clonal and subclonal lineages 325 
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(McGranahan et al., 2015). To explore the subclonal dynamics of mutation signatures in 326 

detail, we examined subclonal mutations for changes in signature activity. We reasoned 327 

that if a mutation process is activated during a specific subclonal expansion, only the post-328 

expansion mutations will carry the corresponding mutation signature. Signature activity 329 

change points can therefore be identified in SNVs that are rank-ordered by their CCFs 330 

estimates (Rubanova et al., 2020) (STAR Methods). Of the 2,552 samples with sufficient 331 

SNVs to perform this analysis, 1,944 (76%) have an activity change of at least 5% in at 332 

least one signature (a conservative threshold established via permutation and bootstrapping 333 

analyses, STAR Methods). We detect an average of 1.77 mutation signature activity 334 

clusters per sample.  335 

Overall, mutation signature activity is remarkably stable. The most frequently changing 336 

signature (Signature SBS12, etiology unknown (Alexandrov et al., 2020), active in 198 of 337 

326 (61%) liver cancers), is variable in approximately 60% of the cases in which it is active 338 

(Figure 5A). In addition, we find that the activity of Signature SBS9 (Pol η activity on 339 

AID lesions) decreases as a function of decreasing CCF in over half the tumors in which 340 

this signature is active (CLL and B-cell non-Hodgkin lymphoma). When only considering 341 

pairs of signatures that change in the same tumor, we see that 6 out of the top 10 pairs 342 

involve SBS5 (etiology unknown but hypothesized to reflect lower-fidelity DNA repair 343 

pathways (Kim et al., 2016)). Such changes in proportions are often anti-correlated, as the 344 

activity of one mutation process may be changing at the proportional expense of the activity 345 

of another.  346 

We next evaluated signature trajectories per cancer type (Figure 5A). In CLL, SBS9 347 

always decreases and SBS5 nearly always increases. In contrast, in ovarian cancers, most 348 

signature activity changes go both up and down in similar, relatively low proportions of 349 

tumors. On average, signature activity changes are modest in size, with the maximum 350 

average activity change recorded in CLL (33%, SBS9). Some changes are observed across 351 

many cancer types - e.g., SBS5 and SBS40, of unknown etiology - while others are found 352 

in only one or a few cancer types. For example, in hepatocellular carcinomas, we observe 353 

an increase in SBS35 and a decrease in SBS12 (both etiology unknown), and in esophageal 354 

adenocarcinomas, we see an increase in SBS3 (double-strand break-repair) and a decrease 355 
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in SBS17 (etiology unknown). 356 

The average signature activity change across cancers of the same type is most often 357 

monotonic as a function of CCF. In other words, the activities of mutation processes 358 

consistently either decrease or increase (Figures 5B and S4). CLLs and lung 359 

adenocarcinomas initially exhibit a sharp change in signature activity when transitioning 360 

from clonal to subclonal mutations, but activity of the signatures appears to remain stable 361 

across multiple subclonal expansions (Figure 5B). In contrast, esophageal 362 

adenocarcinomas show a steady decrease in SBS17 activity, while thyroid 363 

adenocarcinomas often display a continuing increase in SBS2 and SBS13 (APOBEC) 364 

activity. These patterns observed across samples are also consistent at the single-sample 365 

level, for example in individual CLL samples (Figure 5C). 366 

Interestingly, the SBS9 activity changes in CLL and B-cell non-Hodgkin lymphoma reflect 367 

the anatomical journey B cells have undergone in their evolution to cancers. Tumors 368 

showing SBS9 (pol η associated with AID activity) activity originate from post-germinal 369 

center B cells (Seifert et al., 2012). In these cases, SBS9 contributes to clonal but not 370 

subclonal mutations, because only the tumor-founding cell was exposed to somatic 371 

hypermutation in the germinal center. Later cells in this lineage have left the germinal 372 

center and are no longer exposed to AID. Similarly, the strong decrease of SBS7 (UV light) 373 

activity in cutaneous melanoma cases suggests these tumors have progressed to invade 374 

inner layers of the skin (Breslow, 1970), out of reach of damaging UVB exposure (Dupont 375 

et al., 2013). Finally, the co-occurring decrease of SBS4 (smoking) and increase of 376 

SBS2/13 (APOBEC) activity suggests that in lung cancers, cell-intrinsic mutation 377 

processes take over after early tumor evolution is fueled by external mutagens (Jamal-378 

Hanjani et al., 2017). 379 

 380 

Mutation signature activity changes mark subclonal boundaries 381 

We next compared the mutation signature change points (shifts in activity) with the CCF 382 

of detected subclones, reasoning that these would correspond well if the emergence of 383 

subclones is associated with changes in mutation process activity. In such a scenario, we 384 
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expect that the signature change points coincide with the CCF boundaries between 385 

subclones, assuming that clustering partitioned the SNVs accurately. In accordance with 386 

previous studies that highlight changes in signature activity between clonal and subclonal 387 

mutations (Jamal-Hanjani et al., 2017; McGranahan et al., 2015), we find that 34.5-54.7% 388 

of clone–subclone boundaries and 34.5%-57.3% of subclone-subclone boundaries coincide 389 

with a signature change point (Figure 5D, STAR Methods). This not only validates our 390 

clustering approach, but also demonstrates that subclonal expansions are often associated 391 

with changes in signature activity. It further suggests that increased ITH would correspond 392 

to greater activity change. Indeed, the samples with the largest changes in activity tend to 393 

be the most heterogeneous (Figure 5E). Conversely, an average of 0.49 changes per sample 394 

are not within a window of subclonal boundaries (Figures 5F-G), suggesting that some 395 

detected CCF clusters represent multiple subclonal lineages (STAR Methods), consistent 396 

with our mutation phasing results above. 397 

 398 

The landscape of subclonal driver mutations 399 

We leveraged the comprehensive whole-genome view of driver events across these cancer 400 

genomes (Rheinbay et al., 2020) to gain insight into clonal vs. subclonal driver SNVs, 401 

indels and SVs. Out of 5,414 high-confidence SNV and indel driver mutations in 389 402 

genes, we found 385 (7.1%) subclonal driver mutations across 147 distinct genes (Figure 403 

6A). In total, 86% of samples with at least one subclone (1,576/1,831) contain no identified 404 

subclonal driver SNVs or indels, and only 11% of all detected subclones (280/2,542) were 405 

associated with acquisition of a clear subclonal driver SNV or indel. In contrast, clonal 406 

driver SNVs or indels were detected in 77% of samples (1,812/2,367). 407 

As our whole-genome sequencing approach also allowed us to assess the clonality of SVs 408 

(Cmero et al., 2020), we next sought to examine the clonality of SV drivers. We considered 409 

an SV to be a driver if it was associated with a region of significantly recurrent breakpoints 410 

(Rheinbay et al., 2020) at non-fragile sites. By this analysis, 56.9% of samples analyzed 411 

(825/1,450) have a clonal SV driver, 14.7% (213/1,450) have at least one subclonal SV 412 

driver (Figure 6A), and 6.1% (89/1,450) have exclusively subclonal SV drivers. Pilocytic 413 
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astrocytomas, non-Hodgkin's lymphomas, biliary adenocarcinomas, and thyroid 414 

adenocarcinomas showed no evidence of subclonal SV drivers, while the remaining 26 of 415 

30 cancer types analyzed all contained at least one subclonal SV driver in this cohort.  416 

One explanation for the relative dearth of subclonal driver mutations is that subclonal 417 

driver mutations have a lower population prevalence than clonal ones. Specifically, driver 418 

identification depends on prevalence of the mutation within the cancer cohort. Our previous 419 

analysis demonstrated that the most prevalent drivers are also those that occur earliest in 420 

tumor development (Gerstung et al., 2020). This suggests that methods to annotate 421 

mutations (or genes) as drivers would be particularly prone to missing subclonal driver 422 

mutations. As such, we adapted a strategy from population genetics, to assess whether there 423 

was subclonal selection, even in the absence of discernible subclonal drivers. Selective 424 

pressures acting on the coding regions of cancer genomes can be quantified using the dN/dS 425 

ratio, which compares the rates of non-synonymous and synonymous mutations 426 

(Martincorena et al., 2017). A dN/dS ratio larger than 1 indicates positive selection, while 427 

smaller ratios characterize negative selection, and dN/dS ≈ 1 points towards neutral 428 

evolutionary dynamics. Previously, dN/dS > 1, evidence of positive selection, has been 429 

shown for cancer driver genes in all somatic mutations (Martincorena et al., 2017). When 430 

analyzing clonal mutations separately in our dataset, we confirm this signature of selection 431 

within a set of 566 well-established driver genes (STAR Methods). When specifically 432 

assaying our consensus subclonal mutations for the same set of drivers, we observe 433 

dN/dS > 1 for nonsense, missense and splice-site SNVs (Figure 6B). This indicates that 434 

selection for driver mutations, rather than neutral evolutionary dynamics (Williams et al., 435 

2016), frequently shapes subclonal expansions, in agreement with our earlier study 436 

(Tarabichi et al., 2018). However, when considering dN/dS ratios for individual cancer 437 

types, we observe that in only a subset, the 95% confidence intervals exceed the threshold 438 

of positive selection (Figure 6C). The cancer types with evidence for selection had a 439 

significantly higher number of tumors sequenced (P = 1.6×10-3, Mann-Whitney U test), 440 

suggesting that the absence of conclusive signal in the remaining cancer types may be due 441 

to statistical power limitations. 442 

The driver SNV and indel landscape indicates that specific genes recurrently harbor 443 
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subclonal driver mutations across cancer types (Figure 6A). For example, the SETD2 444 

tumor suppressor is frequently subclonally mutated in clear cell renal cell carcinomas, as 445 

previously observed in multi-region sequencing experiments (Gerlinger et al., 2012), and 446 

in pancreatic neuroendocrine cancers. Interestingly, mutations in some driver genes that 447 

are exclusively clonal in most cancer types, are observed subclonally in others. For 448 

example, we find subclonal driver mutations in MEN1 in pancreatic neuroendocrine tumors 449 

(6/30); TP53 in prostate and breast cancers (4/12 and 5/59 respectively); and CDKN2A in 450 

pancreatic adenocarcinomas (5/42). Gene set analysis (STAR Methods) revealed an 451 

enrichment of subclonal mutations in genes responsible for chromatin remodeling, 452 

suggesting an important role of these processes in subclonal variegation. Indeed, we find 453 

that e.g. ARID1A, PBRM1, KMT2C/D and SETD2 are enriched for subclonal driver 454 

mutations. Other genes often mutated in subclones are splicing factor SF3B1 and, in breast 455 

and pancreatic adenocarcinomas, tumor suppressor SMAD4. 456 

We similarly observed substantial variation in SV driver clonality across cancer types, 457 

implying cancer type-specific roles for SVs during tumor evolution (Figure 6A). Ten 458 

cancer types have a significant clonal bias for SV drivers (Figure 6A), when matched for 459 

power, suggesting that these cancers are driven by early SV events. These include SVs in 460 

the genomic region around KIAA1549 in pilocytic astrocytomas, which likely result in the 461 

BRAF-KIAA1549 fusion gene (Faulkner et al., 2015). Ovarian adenocarcinoma and soft-462 

tissue leiomyosarcoma show the highest rates of SV driver subclonality (33.7% and 40.0% 463 

respectively). 464 

No significant subclonal enrichment was observed for SV drivers within a tumor type. 465 

However, enrichment was observed for specific SV drivers across cancer types (Figures 466 

6A and S5). Clonally enriched SV drivers (Figure 6A, q-value < 0.05, rank-based 467 

permutation test) include those involving the IGH locus (97% of which occurred in 468 

lymphomas), or targeting CDK12, TERT, MDM2, CDKN2A, LRP5/PPP6R3, MYC, EGFR 469 

and gene poor region 8p11.21. In contrast, subclonally enriched SV drivers include those 470 

targeting RB1, AKR1C1/2/3, KLF5, PTEN and the gene poor 5p12 region. Interestingly, 471 

previous studies have linked RB1 loss to tumor progression in liver (Bollard et al., 2017), 472 

liposarcoma (Schneider-Stock et al., 2002; Takahira et al., 2005), and breast cancer 473 
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(Condorelli et al., 2017).  474 

To further understand the clonality of gain-of-function driver SVs across cancer types, we 475 

specifically focused on previously known and curated oncogenic driver fusion SVs (STAR 476 

Methods). We found that known driver fusions are more likely to be clonal compared to 477 

other SVs (p = 0.0284, Fisher's exact test, Figure 6D), with some recurrent fusions 478 

appearing exclusively clonal or highly enriched for clonal events (CCDC6-RET, BRAF-479 

KIAA1549, TMPRSS2-ERG), pointing to a model where gain-of-function SVs tend to 480 

appear early rather than late during tumor development. 481 

Finally, to assess the potential impact of ITH on clinical decisions, we evaluated the 482 

clonality of actionable subclonal driver mutations, reasoning that targeting mutations that 483 

are not present in all tumor cells will likely result in ineffective treatment (Schmitt et al., 484 

2016). Restricting our analysis to genes and mutations for which inhibitors are available, 485 

we find that 60.1% of tumors have at least one clinically actionable event (Figure 6E). Of 486 

these, 9.7% contain at least one subclonal actionable driver, and 4.7% show only subclonal 487 

actionable events. As our results represent conservative lower bound estimates of the 488 

subclonality at the level of the whole tumor, these results reinforce the importance of 489 

assessing the clonality of actionable mutations.  490 
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DISCUSSION 491 

We have developed consensus approaches to characterize genome-wide ITH for 38 cancer 492 

types, building on high quality SNVs, indels, SVs, CNAs, and curated driver mutations and 493 

mutation signatures, leveraging the largest set of whole-genome sequenced tumor samples 494 

compiled and analyzed to date. Remarkably, although these single region-based results are 495 

conservative and place a lower bound estimate on ITH, we detect subclonal tumor cell 496 

populations in 95.1% of 1,705 tumors. Individual subclones in the same tumor frequently 497 

exhibit differential activity of mutation signatures, implying that subclonal expansions can 498 

act as witnesses of temporally and spatially changing mutation processes. We extensively 499 

characterized the clonality of SNVs, indels, SVs, and CNAs. For SNVs and indels, we 500 

identified patterns of subclonal driver mutations in known cancer genes and average rates 501 

of subclonal driver events per tumor (Jamal-Hanjani et al., 2017; Landau et al., 2013; 502 

McGranahan et al., 2015; Yates et al., 2015). For SVs, we analyzed both candidate driver 503 

and passenger events, revealing how SVs influence tumor initiation and progression. 504 

Clonality estimates from CNAs suggest a complementary role of chromosomal instability 505 

and mutagenic processes in driving subclonal expansions. Finally, our results show rich 506 

subclonal architectures, with both linear and branching evolution in many cancers.  507 

Analysis of dN/dS ratios in subclonal SNVs falling in exons of known cancer genes 508 

revealed clear signs of positive selection across the detected subclones and across cancer 509 

types. Although our analyses do not exclude the possibility that a small fraction of tumors 510 

evolve under weak or no selection, they show that selection is widespread across cancer 511 

types. Recent methodological advances to quantify selection in individual tumors from 512 

explicit tumor growth models have emerged and could shed further light on the 513 

evolutionary dynamics of individual tumors through single (Williams et al., 2018) and 514 

multiple (Sun et al., 2017) tumor biopsies. Our findings extend Peter Nowell's model of 515 

clonal evolution (Nowell, 1976): as neoplastic cells proliferate under chromosomal and 516 

genetic instability, some of their daughter cells acquire mutations that convey further 517 

selective advantages, allowing them to become precursors for new subclonal lineages. 518 

Here, we have demonstrated that selection is ongoing up to and beyond diagnosis, in 519 

virtually all tumors and cancer types. The ubiquiotous presence of subclones provides 520 
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evidence for ongoing selective sweeps, and akin to results of multi-region-based studies, 521 

we also detect widespread branching evolution, implying co-existence and competition of 522 

subclones. 523 

Our observations highlight a considerable gap in knowledge about the drivers of subclonal 524 

expansions. Specifically, only 11% of the 2,542 detected subclones have a currently known 525 

SNV or indel driver mutation. Thus, late tumor development is either driven largely by 526 

different mechanisms (copy number alterations, genomic rearrangements (Jamal-Hanjani 527 

et al., 2017; Mamlouk et al., 2017), or epigenetic alterations), or most late driver mutations 528 

remain to be discovered. In support of the latter, our recent study (Gerstung et al., 2020) 529 

finds that late driver mutations occur in a more diverse set of genes than early drivers. For 530 

now, the landscape of subclonal driver mutations in localized cancer remains largely 531 

unexplored, in part due to limited resolution and statistical power to detect recurrence of 532 

subclonal drivers. Nonetheless, each tumor type has its own characteristic patterns of 533 

subclonal SNVs, indels, SVs and CNAs, revealing distinct evolutionary narratives. Tumor 534 

evolution does not end with the last complete clonal expansion, and it is therefore important 535 

to account for ITH and its drivers in clinical studies.  536 

We show that regions of recurrent genomic rearrangements, harboring likely driver SVs, 537 

also exhibit subclonal rearrangements. This suggests that improved annotations must be 538 

sought for both SVs and SNVs, in order to comprehensively catalogue the drivers of 539 

subclonal expansion. By combining analysis of SV clonality with improved annotations of 540 

candidate SV drivers (Rheinbay et al., 2020), we highlight tumor types that would benefit 541 

from further characterization of subclonal SV drivers, such as pancreatic neuroendocrine 542 

cancers and leiomyosarcomas.           543 

These observations have a number of promising clinical implications. For example, there 544 

is subclonal enrichment for SVs causing RB1 loss across multiple cancer types, expanding 545 

on the known behavior of RB1 mutations in breast cancer (Condorelli et al., 2017). These 546 

SVs may be linked to known resistance mechanisms to emerging treatments (e.g. CDK4/6 547 

inhibitors in breast (Condorelli et al., 2017) and bladder (Pan et al., 2017) cancer). If 548 

profiled in a resistance setting, they may provide a pathway to second-line administration 549 

of cytotoxic therapies such as cisplatin or ionizing radiation, which show improved efficacy 550 
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in tumors harboring RB1 loss (Knudsen and Knudsen, 2008).  551 

Our study builds upon a wealth of data of cancer whole-genome sequences generated under 552 

the auspices of the International Cancer Genome Consortium and The Cancer Genome 553 

Atlas, allowing detailed characterization of ITH from single tumor samples across 38 554 

cancer types. It builds a consensus reconstruction of CNAs from 6 methods and consensus 555 

subclonal reconstruction from 11 methods. In establishing this reconstruction, we found 556 

that each individual method makes errors that are corrected by the consensus. Our 557 

consensus-building tools and techniques thus provide a set of best practices for future 558 

analyses of tumor whole-genome sequencing data. In addition, our high-quality curated 559 

consensus subclonal reconstructions on 2,658 tumor whole genomes spanning 38 cancer 560 

types constitute a rich resource for future studies.  561 
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STAR METHODS SUMMARY 562 

Consensus copy number analysis 563 

As the basis for our subclonal architecture reconstruction, we needed a confident copy 564 

number profile for each sample. To this end, we applied six copy number analysis methods 565 

(ABSOLUTE, ACEseq, Battenberg, cloneHD, JaBbA and Sclust) and combined their 566 

results into a robust consensus (see STAR Methods for details). In brief, each individual 567 

method segments the genome into regions with constant copy number, then calculates the 568 

copy number of both alleles for the genomic location. Some of the methods further 569 

distinguish between clonal and subclonal copy number states, i.e. a mixture of two or more 570 

copy number states within a genomic region. Disagreement between methods mostly stems 571 

from either difference in the segmentation step, or uncertainty on whole genome 572 

duplication (WGD) status. Both issues were resolved using our consensus strategy. 573 

To identify a set of consensus breakpoints, we combined the breakpoints reported by the 574 

CNA methods with the consensus structural variants (SVs). If a hotspot of copy number 575 

breakpoints could be explained by an SV, we removed the copy number breakpoints in 576 

favor of the base-pair resolution SV. The remaining hotspots were merged into consensus 577 

calls to complement the SV-based breakpoints. This combined breakpoint set was then 578 

used as input to all methods in a second pass, where methods were required to strictly 579 

adhere to the provided breakpoints. 580 

Allele-specific copy number states were resolved by assessing agreement between outputs 581 

of the individual callers. A consensus purity for each sample was obtained by combining 582 

the estimates of the copy number methods with the results of the subclonal architecture 583 

reconstruction methods that infer purity using only SNVs.  584 

Each copy number segment of the consensus output was rated with a star-ranking 585 

representing confidence. 586 

To create a subclonal copy number consensus, we used three of the copy number methods 587 

that predicted subclonal states for segments and flagged the segment as subclonal when at 588 

least two methods agreed the segment represented subclonal copy number. 589 
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Consensus subclonal architecture clustering 590 

We applied 11 subclonal reconstruction methods (BayClone-C, Ccube, CliP, cloneHD, 591 

CTPsingle, DPClust, PhylogicNDT, PhyloWGS, PyClone, Sclust, SVclone). Most were 592 

developed or further optimized during this study. Their outputs were combined into a 593 

robust consensus subclonal architecture (see STAR Methods for details). During this 594 

procedure, we used the PCAWG consensus SNVs and indels [Synapse ID syn7118450] 595 

and SVs [syn7596712]. 596 

The procedure to create consensus architectures consisted of three phases: a run of the 11 597 

callers on a subset of SNVs that reside on copy number calls of high-confidence, merging 598 

of the output of the callers into a consensus and finally assignment of all SNVs, indels and 599 

SVs. 600 

Each of the 11 subclonal reconstruction callers outputs the number of mutation clusters per 601 

tumor, the number of mutations in each cluster, and the clusters’ proportion of (tumor) cells 602 

(cancer cell fraction, CCF). These data were used as input to three orthogonal approaches 603 

to create a consensus: WeMe, CSR and CICC. The results reported in this paper are from 604 

the WeMe consensus method, but all three developed methods lead to similar results, and 605 

were used to validate each other (STAR Methods). 606 

The consensus subclonal architecture was compared to the individual methods on two 607 

independent simulation sets, one 500-sample for training and one 965-sample for 608 

validation, and on the real PCAWG samples to evaluate robustness. The metrics by which 609 

methods were scored account for the fraction of clonal mutations, number of mutation 610 

clusters and the root mean square error (RMSE) of mutation assignments. To calculate the 611 

overall performance of a method, ranks of the three metrics were averaged per sample. 612 

Across the two simulated datasets, the scores of the individual methods were variable, 613 

whereas the consensus methods were consistently among the best across the range of 614 

simulated number of subclones, tumor purity, tumor ploidy and sequencing depth. The 615 

highest similarities were observed among the consensus and the best individual methods in 616 

the simulation sets, and among the consensus methods in real data, suggesting stability of 617 

the consensus in the real set. Increasing the number of individual methods input to the 618 
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consensus consistently improved performance and the highest performance was obtained 619 

for the consensus run on the full 11 individual methods, suggesting that each individual 620 

method has its own strengths that are successfully integrated by the consensus approaches 621 

(STAR Methods). 622 

All SNVs, indels and SVs were assigned to the clusters that were determined by the 623 

consensus subclonal architecture using MutationTimer (Gerstung et al., 2020). Each 624 

mutation cluster is modelled by a beta-binomial distribution and probabilities for each 625 

mutation belonging to each cluster are calculated. This results in the final consensus 626 

subclonal architecture, and in addition, it also timed mutations relative to copy number 627 

gains (STAR Methods).  628 

 629 

SV clonality analysis 630 

Due to the difficulty in determining SV VAFs from short-read sequence data, and 631 

subsequent CCF point estimation (Cmero et al., 2020), we elected to explore patterns of 632 

putative driver SV clonality using subclonal probabilities, allowing us to account for 633 

uncertainty in our observations of SV clonality (STAR Methods). After excluding 634 

unpowered samples, highly mutated samples, and cancer types with less than ten powered 635 

samples (STAR Methods), we analyzed 125,920 consensus SVs from 1,517 samples, 636 

across 28 cancer types. SVs were divided into candidate driver SVs and candidate 637 

passenger SVs using annotations from a companion paper (Rheinbay et al., 2020). SVs 638 

were considered candidate drivers if they were annotated as having significantly recurrent 639 

breakpoints (SRBs) at non-fragile sites, and candidate passenger SVs otherwise (STAR 640 

Methods).  641 

Subclonal probabilities of driver and passenger SVs across tumor types were observed 642 

using weighted median and interquartile ranges (STAR Methods). Any tumor types with 643 

interquartile ranges exceeding subclonal probabilities of 0.5 were considered as having 644 

evidence of subclonal SVs. Permutation testing was used to determine significant 645 

differences in the weighted medians between driver and passenger SVs (STAR Methods). 646 

To test if any genomic loci were enriched for clonal or subclonal SVs across cancer types, 647 
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we employed a GSEA-like (Subramanian et al., 2005) rank-based permutation test (STAR 648 

Methods).  649 

 650 

“Winner’s curse” correction 651 

Because somatic mutation callers require a minimum coverage of supporting reads, in 652 

samples with low purity and/or small subclones, the reported CCF values and cluster sizes 653 

will be biased. As variants observed in a lower number of reads have a higher probability 654 

to be missed by somatic mutation callers, rare subclones will show lower apparent mutation 655 

numbers and higher apparent CCF values. We refer to this effect as the “Winner’s curse”. 656 

To adjust mutation clusters both in size and in CCF, we developed two methods, 657 

PhylogicCorrectBias and SpoilSport. Results from both methods were integrated to 658 

produce a consensus correction, and our correction approach was validated on simulated 659 

data (STAR Methods). 660 

 661 

Mutation signatures trajectory analysis 662 

Given the mutation signatures obtained from PCAWG [syn8366024], we used TrackSig 663 

(Rubanova et al., 2020) to fit the evolutionary trajectories of signature activities. Mutations 664 

were ordered by their approximate relative temporal order in the tumor, by calculating a 665 

pseudo-time ordering using CCF and copy number. Time-ordered mutations were 666 

subsequently binned to create time points on a pseudo-timeline to which signature 667 

trajectories can be mapped. 668 

At each time point, mutations were classified into 96 classes based on their trinucleotide 669 

context and a mixture of multinomial distributions was fitted, each component describing 670 

the distribution of one active signature. Derived mixture component coefficients 671 

correspond to mutation signature activity values, reflecting the proportion of mutations in 672 

a sample that were generated by a mutation process. By applying this approach to every 673 

time point along the evolutionary timeline of a sample, a trajectory of the activity of 674 

signatures over time was obtained. 675 
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We applied likelihood maximization and the Bayesian Information Criterion to simulations 676 

to establish the optimal threshold at which signature activity changes can be detected. This 677 

threshold was determined to be 6%. Subsequently, a pair of adjacent mutation bins was 678 

marked as constituting a change in activity if the absolute difference in activity between 679 

the bins of a at least one signature was greater than the threshold. 680 

Signature trajectories were mapped to our subclonal reconstruction architectures by 681 

dividing the CCF space according to the proportion of mutations per time point belonging 682 

to a mutation cluster determined by the consensus reconstruction. By comparing distances 683 

in pseudo-time between trajectory change points and cluster boundaries, change points 684 

were classified as “supporting” a boundary if they are no more than three bins apart.  685 
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FIGURE LEGENDS 862 

Figure 1. Consensus-based characterization of intra-tumor heterogeneity.  863 

(A) Schematic representation of our consensus-based intra-tumor heterogeneity (ITH) 864 

reconstruction from sequencing data. (B) Samples with and without whole-genome 865 

duplications separate in two clusters according to their consensus ploidy and the fraction 866 

of the genome showing loss of heterozygosity. (C) Agreement between the six copy 867 

number callers using a multi-tier consensus copy number calling approach. The three lines 868 

denote the fraction of the genome at which agreement is reached at different levels of 869 

confidence: (near-)complete agreement on both alleles of clonal copy number, a strict 870 

majority agreement on both alleles of clonal copy number and (near-)complete or strict 871 

majority agreement on both alleles of rounded subclonal copy number (see STAR 872 

Methods). At the third level, agreement is reached on an average 93% of the genome. (D) 873 

Heatmap of the normalized average pairwise similarities of subclonal architectures 874 

identified by 11 individual, 3 consensus, and 3 control reconstruction methods. Each 875 

method is represented by one colored square on the diagonal. On rows and columns, each 876 

method is compared to all other methods. The upper triangle shows the average pairwise 877 

similarities on the 2,778 PCAWG samples, the lower triangle shows the same on a 878 

validation set of 965 simulated samples. In the leftmost column similarities are computed 879 

against the truth of the simulated set. Color intensities scale with the similarities and were 880 

normalized separately for PCAWG, simulations and truth. 881 

 882 

Figure 2. Winner’s curse correction.  883 

(A) Validation of our approach to adjust for the “winner’s curse-like effect, and (B-C) the 884 

estimated cluster-CCF and mutation adjustment in all mutation clusters identified in the 885 

study. Subclonal clusters show a shift to larger CCF values after correction (B) and the 886 

majority of clusters are estimated to contain additional missed SNVs (C). 887 

 888 

 889 
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Figure 3. Overview and characterization of ITH across cancer types.  890 

Evidence of ITH is shown for 1,705 samples with sufficient power to detect subclones at 891 

CCF > 30% (see STAR Methods). Samples have been limited to those with less than 2% 892 

tumor contamination in the matched normal sample and no activity of any of the identified 893 

artefact signatures (Alexandrov et al., 2020). Only representative samples (The 894 

ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, 2020) from multi-895 

sample cases are shown. (A) Bar plot showing the fraction of samples with given number 896 

of subclones; (B-E) Scatter plots showing the fractions of subclonal SNVs, indels, SVs and 897 

subclonal arm-level CNAs (the latter two mutation types are only plotted for samples that 898 

have at least 5 events, sample order is determined by increasing fraction of subclonal SNVs 899 

and conserved in the other three panels); Violin plots showing the total mutation burden 900 

(F) and overall fraction of the genome that does not have a copy number state of 1+1, or 901 

2+2 in WGD samples (G); Heatmaps showing the fraction of tumor samples with whole 902 

genome duplications (H) and the mean power to identify subclones per cancer types 903 

(number of reads per clonal copy – nrpcc, see STAR Methods) (I). 904 

 905 

Figure 4. Further characterization of ITH using mutation phasing.  906 

(A-B) Proportion of powered tumors with evidence of linear and branching phylogenies, 907 

through analysis of phased reads of variants in-cis (A) or in-trans (B) among tumors with 908 

at least one phaseable pair in the appropriate context. (C) Fraction of powered samples, 909 

stratified by number of consensus subclones, with at least one linear or branching pair ("#-910 

test for independence). (D) Number of samples with linear or branching pairs when sets 911 

are filtered to be comparable. Error bars indicate the 95% bootstrap interval. Samples are 912 

colored by tumor type and boxed (orange) when they present with pairs of both types. (E) 913 

Probabilities of observing a linear vs. branching relationship when picking two random 914 

subclones from TRACERx 100 trees (Jamal-Hanjani et al., 2017). Error bars indicate the 915 

95% bootstrap interval. 916 

 917 
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Figure 5. Subclonal boundaries are associated with changes in mutation signature 918 

activity.  919 

(A) Mutation signature changes across cancer types. Bar graphs show the proportion of 920 

tumors in which signature (pairs) change and radial plots provide a view per cancer type. 921 

Each radial plot contains the signatures that are active in at least 5 tumors and change (≥ 922 

6%) in at least 3 tumors. The left and right side of the radial plot represent signatures that 923 

become less and more active, respectively. The height of a wedge represents the average 924 

activity change (log scale), the color denotes the signature and the transparency shows the 925 

fraction of tumors in which the signature changes (as a proportion of the tumors in which 926 

the signature is active). Signatures are sorted around the radial plot (top-to-bottom) by 927 

maximum average activity change. (B) Average signature trajectories for selected cancer 928 

types. Each line is colored by signature and corresponds to the average activity across 929 

tumors of this cancer type in which the signature is active. The width of the line represents 930 

the number of tumors that are represented. Mutations are split into clonal and subclonal, 931 

visually divided by a red vertical line. (C) Signature trajectories for selected individual 932 

CLL tumors. Each line corresponds to an activity trajectory derived from a bootstrap 933 

sample of SNVs. The grey vertical grid represents the mutation bins. These are colored 934 

grey when a significant change in signature activity is detected. Red vertical lines represent 935 

consensus subclonal mutation clusters. (D) The fraction of signature change points that 936 

coincide with boundaries between mutation clusters, as compared to what is expected when 937 

randomly placing change points. (E) The number of subclones detected in tumors grouped 938 

by the maximum detected signature activity change. (F) An overview of coinciding SNV 939 

cluster boundaries and signature activity change points. (G) The average number of 940 

additional signature change points detected per tumor.   941 

 942 

Figure 6. Driver mutations and subclonal selection.  943 

(A) Heatmap of the fraction of samples of the different cancer types with clonal (orange) 944 

and subclonal (blue) driver substitutions and indels (left panel) and structural variants (right 945 

panel). Marginal bar plots represent the fraction of clonal and subclonal driver mutations 946 
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in each cancer type (side) and each driver gene or candidate region (top). Only genes with 947 

at least 4 subclonal driver mutations are shown. For SNVs and indel drivers (top left panel), 948 

gene set and pathway annotations highlight an enrichment of subclonally mutated drivers 949 

in chromatin remodeling.  (B) dN/dS values for clonal and subclonal SNVs in 566 950 

established cancer genes across all primary tumors. Values for missense, nonsense, splice 951 

site, and all mutations are shown, along with the 95% confidence intervals. (C) Cancer and 952 

mutation types for which dN/dS is significantly greater than 1 (95% confidence 953 

intervals>1) for clonal and subclonal mutations. Cancer types are ordered by the total 954 

number of samples. (D) Proportions of (sub)clonal driver gene fusions versus non-driver 955 

fusions. (E) Survey of targetable driver mutations across cancer types, stratified by clonal 956 

status.   957 
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Supplementary Figure Legends 958 

Figure S1. Validation of consensus purity values.  959 

The lower triangle shows pairwise scatterplots of the purities obtained through expression 960 

profiles of a panel of immune and stromal genes (ESTIMATE), somatic copy number data 961 

(ABSOLUTE), leukocyte unmethylation (LUMP), image analysis by hematoxylin and 962 

eosin staining (H&E staining), and consensus purity as derived by Aran et al. (Aran et al., 963 

2015) (CPE). The top triangle shows the respective Pearson correlation coefficients and 964 

the number of samples that have both purity estimates available. 965 

 966 

Figure S2. Power analysis of the consensus subclonal architecture approach.  967 

(A) Our ability to detect subclones depends, not on the number of detected SNVs, but on 968 

the number of reads per clonal copy (nrpcc) available. This metric takes tumor purity, 969 

ploidy and sequencing coverage into account (see STAR Methods). We control for this 970 

effect by including only tumors with nrpcc ≥ 10. In these tumors, we should be sufficiently 971 

powered to detect a subclone at a CCF as low as 30% (see STAR Methods). This becomes 972 

clear from (B) which shows the minimum CCF of the detected clusters in each tumor 973 

against the number of reads per chromosome copy.  974 

 975 

Figure S3. Correlation in ITH between SNVs, indels, CNAs and SVs by cancer type.  976 

Evidence of ITH is shown for 1,705 samples with sufficient power to detect subclones 977 

above 30% CCF (see STAR Methods), as in Figure 3. Pairwise scatter plots in the upper 978 

triangle show the fractions of subclonal SNVs, indels, CNAs and SVs per tumor sample. 979 

Pearson’s correlation coefficient, R, is separately computed for each panel across all 980 

samples. Panels on the diagonal show the kernel density estimate of the distribution of 981 

subclonal fractions. In the lower triangle, each point shows the median subclonal fraction 982 

per cancer type and intervals indicate the interquartile range. Panels only include samples 983 

with at least 5 arm-level CNAs (1,238 / 1,705) and at least 5 SVs (1,609 / 1,705).  984 

 985 
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Figure S4. Summary signature trajectories per cancer type.  986 

The average trajectories for mutation signatures were calculated across tumors of the same 987 

cancer type. The color of the line denotes the signature and its width reflects the number 988 

of contributing tumors. The trajectories have been centered around the activity at the 989 

boundary between clonal and subclonal mutations in order to highlight relative changes in 990 

signature activity. 991 

 992 

Figure S5. Clonality analysis of significantly recurrent breakpoints.  993 

(A) Number and clonality of SVs observed at 52 loci with significantly recurrent 994 

breakpoints (SRBs) (Rheinbay et al., 2020). SVs with a subclonal probability larger than 995 

50% were considered subclonal and clonal otherwise. (B) Proportion of cancer types 996 

contributing to the enrichment of clonal or subclonal SVs in a locus (see Figure 6A). The 997 

genes on the y-axis represent the most likely driver gene for each locus (Rheinbay et al., 998 

2020).  999 
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Figure 1. Consensus-based characterization of intra-tumor heterogeneity.  

 

(A) Schematic representation of our consensus-based intra-tumor heterogeneity (ITH) 
reconstruction from sequencing data. (B) Samples with and without whole-genome 
duplications separate in two clusters according to their consensus ploidy and the fraction 
of the genome showing loss of heterozygosity. (C) Agreement between the six copy 
number callers using a multi-tier consensus copy number calling approach. The three lines 
denote the fraction of the genome at which agreement is reached at different levels of 
confidence: (near-)complete agreement on both alleles of clonal copy number, a strict 
majority agreement on both alleles of clonal copy number and (near-)complete or strict 
majority agreement on both alleles of rounded subclonal copy number (see STAR 
Methods). At the third level, agreement is reached on an average 93% of the genome. (D) 
Heatmap of the normalized average pairwise similarities of subclonal architectures 
identified by 11 individual, 3 consensus, and 3 control reconstruction methods. Each 
method is represented by one colored square on the diagonal. On rows and columns, each 
method is compared to all other methods. The upper triangle shows the average pairwise 
similarities on the 2,778 PCAWG samples, the lower triangle shows the same on a 
validation set of 965 simulated samples. In the leftmost column similarities are computed 
against the truth of the simulated set. Color intensities scale with the similarities and were 
normalized separately for PCAWG, simulations and truth.
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Figure 2. Winner’s curse correction.  

 

(A) Validation of our approach to adjust for the “winner’s curse-like effect, and (B-C) the estimated cluster-CCF and mutation 
adjustment in all mutation clusters identified in the study. Subclonal clusters show a shift to larger CCF values after correction (B) and 
the majority of clusters are estimated to contain additional missed SNVs (C).
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Figure 3. Overview and characterization of ITH across cancer types.  

 
Evidence of ITH is shown for 1,705 samples with sufficient power to detect subclones at 
CCF > 30% (see STAR Methods). Samples have been limited to those with less than 2% 
tumor contamination in the matched normal sample and no activity of any of the identified 
artefact signatures (Alexandrov et al., 2020). Only representative samples (The 
ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, 2020) from multi-
sample cases are shown. (A) Bar plot showing the fraction of samples with given number 
of subclones; (B-E) Scatter plots showing the fractions of subclonal SNVs, indels, SVs and 
subclonal arm-level CNAs (the latter two mutation types are only plotted for samples that 
have at least 5 events, sample order is determined by increasing fraction of subclonal SNVs 
and conserved in the other three panels); Violin plots showing the total mutation burden 
(F) and overall fraction of the genome that does not have a copy number state of 1+1, or 
2+2 in WGD samples (G); Heatmaps showing the fraction of tumor samples with whole 
genome duplications (H) and the mean power to identify subclones per cancer types 
(number of reads per clonal copy – nrpcc, see STAR Methods) (I).
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Figure 4. Further characterization of ITH using mutation phasing.  

 
(A-B) Proportion of powered tumors with evidence of linear and branching phylogenies, through analysis of phased reads of variants 
in-cis (A) or in-trans (B) among tumors with at least one phaseable pair in the appropriate context. (C) Fraction of powered samples, 
stratified by number of consensus subclones, with at least one linear or branching pair (!"-test for independence). (D) Number of 
samples with linear or branching pairs when sets are filtered to be comparable. Error bars indicate the 95% bootstrap interval. Samples 
are colored by tumor type and boxed (orange) when they present with pairs of both types. (E) Probabilities of observing a linear vs. 
branching relationship when picking two random subclones from TRACERx 100 trees (Jamal-Hanjani et al., 2017). Error bars indicate 
the 95% bootstrap interval.
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Figure 5. Subclonal boundaries are associated with changes in mutation signature 
activity.  

 
(A) Mutation signature changes across cancer types. Bar graphs show the proportion of 
tumors in which signature (pairs) change and radial plots provide a view per cancer type. 
Each radial plot contains the signatures that are active in at least 5 tumors and change (≥ 
6%) in at least 3 tumors. The left and right side of the radial plot represent signatures that 
become less and more active, respectively. The height of a wedge represents the average 
activity change (log scale), the color denotes the signature and the transparency shows the 
fraction of tumors in which the signature changes (as a proportion of the tumors in which 
the signature is active). Signatures are sorted around the radial plot (top-to-bottom) by 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 22, 2020. ; https://doi.org/10.1101/312041doi: bioRxiv preprint 

https://doi.org/10.1101/312041
http://creativecommons.org/licenses/by-nd/4.0/


 

 48 

maximum average activity change. (B) Average signature trajectories for selected cancer 
types. Each line is colored by signature and corresponds to the average activity across 
tumors of this cancer type in which the signature is active. The width of the line represents 
the number of tumors that are represented. Mutations are split into clonal and subclonal, 
visually divided by a red vertical line. (C) Signature trajectories for selected individual 
CLL tumors. Each line corresponds to an activity trajectory derived from a bootstrap 
sample of SNVs. The grey vertical grid represents the mutation bins. These are colored 
grey when a significant change in signature activity is detected. Red vertical lines represent 
consensus subclonal mutation clusters. (D) The fraction of signature change points that 
coincide with boundaries between mutation clusters, as compared to what is expected when 
randomly placing change points. (E) The number of subclones detected in tumors grouped 
by the maximum detected signature activity change. (F) An overview of coinciding SNV 
cluster boundaries and signature activity change points. (G) The average number of 
additional signature change points detected per tumor. 
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Figure 6. Driver mutations and subclonal selection.  
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(A) Heatmap of the fraction of samples of the different cancer types with clonal (orange) and subclonal (blue) driver substitutions and 
indels (left panel) and structural variants (right panel). Marginal bar plots represent the fraction of clonal and subclonal driver mutations 
in each cancer type (side) and each driver gene or candidate region (top). Only genes with at least 4 subclonal driver mutations are 
shown. For SNVs and indel drivers (top left panel), gene set and pathway annotations highlight an enrichment of subclonally mutated 
drivers in chromatin remodeling.  (B) dN/dS values for clonal and subclonal SNVs in 566 established cancer genes across all primary 
tumors. Values for missense, nonsense, splice site, and all mutations are shown, along with the 95% confidence intervals. (C) Cancer 
and mutation types for which dN/dS is significantly greater than 1 (95% confidence intervals>1) for clonal and subclonal mutations. 
Cancer types are ordered by the total number of samples. (D) Proportions of (sub)clonal driver gene fusions versus non-driver fusions. 
(E) Survey of targetable driver mutations across cancer types, stratified by clonal status.
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Figure S1. Validation of consensus purity values.  

 
The lower triangle shows pairwise scatterplots of the purities obtained through expression 
profiles of a panel of immune and stromal genes (ESTIMATE), somatic copy number data 
(ABSOLUTE), leukocyte unmethylation (LUMP), image analysis by hematoxylin and 
eosin staining (H&E staining), and consensus purity as derived by Aran et al. (Aran et al., 
2015) (CPE). The top triangle shows the respective Pearson correlation coefficients and 
the number of samples that have both purity estimates available.
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Figure S2. Power analysis of the consensus subclonal architecture approach.  

 
(A) Our ability to detect subclones depends, not on the number of detected SNVs, but on the number of reads per clonal copy (nrpcc) 
available. This metric takes tumor purity, ploidy and sequencing coverage into account (see STAR Methods). We control for this effect 
by including only tumors with nrpcc ≥ 10. In these tumors, we should be sufficiently powered to detect a subclone at a CCF as low as 
30% (see STAR Methods). This becomes clear from (B) which shows the minimum CCF of the detected clusters in each tumor against 
the number of reads per chromosome copy.
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Figure S3. Correlation in ITH between SNVs, indels, CNAs and SVs by cancer type.  

 
Evidence of ITH is shown for 1,705 samples with sufficient power to detect subclones 
above 30% CCF (see STAR Methods), as in Figure 3. Pairwise scatter plots in the upper 
triangle show the fractions of subclonal SNVs, indels, CNAs and SVs per tumor sample. 
Pearson’s correlation coefficient, R, is separately computed for each panel across all 
samples. Panels on the diagonal show the kernel density estimate of the distribution of 
subclonal fractions. In the lower triangle, each point shows the median subclonal fraction 
per cancer type and intervals indicate the interquartile range. Panels only include samples 
with at least 5 arm-level CNAs (1,238 / 1,705) and at least 5 SVs (1,609 / 1,705). 
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Figure S4. Summary signature trajectories per cancer type.  
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The average trajectories for mutation signatures were calculated across tumors of the same 
cancer type. The color of the line denotes the signature and its width reflects the number 
of contributing tumors. The trajectories have been centered around the activity at the 
boundary between clonal and subclonal mutations in order to highlight relative changes in 
signature activity.
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Figure S5. Clonality analysis of significantly recurrent breakpoints.  

 
(A) Number and clonality of SVs observed at 52 loci with significantly recurrent breakpoints (SRBs) (Rheinbay et al., 2020). SVs with 
a subclonal probability larger than 50% were considered subclonal and clonal otherwise. (B) Proportion of cancer types contributing to 
the enrichment of clonal or subclonal SVs in a locus (see Figure 6A). The genes on the y-axis represent the most likely driver gene for 
each locus (Rheinbay et al., 2020). 
 

RB1

UNKNOWN

KCNU1

RUNX1

CCND1

RC3H1

MAP3K11

CDK4

TERT

CDKN2A+B

KIAA0125

PTPRB

0.00 0.25 0.50 0.75 1.00

Proportion of histotype

Ca
nd

id
at

e 
dr

iv
er

 g
en

e

Cancer
Biliary-AdenoCA

Bone-Osteosarc

Breast-AdenoCA

Cervix-SCC

CNS-GBM

CNS-Medullo

CNS-Oligo

ColoRect-AdenoCA

Eso-AdenoCA

Head-SCC

Kidney-ChRCC

Kidney-RCC

Liver-HCC

Lung-AdenoCA

Lung-SCC

Lymph-BNHL

Lymph-CLL

Ovary-AdenoCA

Panc-AdenoCA

Panc-Endocrine

Prost-AdenoCA

Skin-Melanoma

SoftTissue-Leiomyo

SoftTissue-Liposarc

Stomach-AdenoCA

Uterus-AdenoCA

A

chr1:159349501-159800500
chr5:43699501-44150500

chr7:138299501-138750500
chr7:140249501-140700500

chr10:4799501-5250500
chr7:54699501-55250500

chr11:80349501-80800500
chr10:77099501-77550500
chr11:78149501-78600500

chr4:181849501-182300500
chr1:173949501-174400500

chr18:60549501-61000500
chr3:168699501-169150500

chr18:48349501-48800500
chr8:130549501-131050500

chr11:73999501-74500500
chr1:246299501-246750500
chr1:205399501-205850500

chr6:25899501-26350500
chr18:20149501-20600500
chr21:35949501-36450500
chr22:46249501-46700500

chr7:109849501-110300500
chr17:7349501-7800500

chr2:43199501-43700500
chr19:15149501-15650500

chr8:41749501-42200500
chr13:48699501-49250500
chr17:57699501-58150500

chr8:39399501-39950500
chr11:64949501-65450500

chr6:1599501-2400500
chr5:1049501-1550500

chr8:36649501-37550500
chr4:91699501-92150500
chr8:90049501-90900500

chr21:39599501-40100500
chr16:6299501-7200500

chr10:89349501-89950500
chr12:57799501-59050500
chr17:37449501-38350500

chr9:8949501-9950500
chr21:42599501-43100500

chr3:115999501-117000500
chr2:141549501-142200500
chr8:127899501-129050500

chr14:106099501-106550500
chr9:21149501-22400500

chr16:78299501-79100500
chr3:59999501-60900500

chr12:66149501-71800500
chr11:68049501-70900500

0 250 500 750

Number of SVs

Re
cu

rr
en

tly
 h

it 
lo

ci

clonal

subclonal

B

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 22, 2020. ; https://doi.org/10.1101/312041doi: bioRxiv preprint 

https://doi.org/10.1101/312041
http://creativecommons.org/licenses/by-nd/4.0/

