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Abstract 

Horizontal pleiotropy, where one variant has independent effects on multiple traits, is important 

for our understanding of the genetic architecture of human phenotypes. We develop a method 

to quantify horizontal pleiotropy using genome-wide association summary statistics and apply it 

to 372 heritable phenotypes measured in 361,194 UK Biobank individuals. Horizontal pleiotropy 

is pervasive throughout the human genome, prominent among highly polygenic phenotypes, 

and enriched in active regulatory regions. Our results highlight the central role horizontal 

pleiotropy plays in the genetic architecture of human phenotypes. The HOrizontal Pleiotropy 

Score (HOPS) method is available on Github at https://github.com/rondolab/HOPS. 
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Background 

The term “pleiotropy” refers to a single genetic variant having multiple distinct phenotypic 

effects. In general terms, the existence and extent of pleiotropy has far-reaching implications on 

our understanding of how genotypes map to phenotypes (1), of the genetic architectures of 

traits (2,3), of the biology underlying common diseases (4) and of the dynamics of natural 

selection (5). However, beyond this general idea of the importance of pleiotropy, it quickly 

becomes difficult to discuss in specifics, because of the difficulty in defining what counts as a 

direct causal effect and what counts as a separate phenotypic effect.  

One particularly important dividing line in these conflicting definitions is the distinction between 

vertical pleiotropy and horizontal pleiotropy (6,7). When a genetic variant has a phenotypic 

effect that then has its own downstream effects in turn, that variant exhibits “vertical” pleiotropy. 
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For example, a variant that increases low density lipoprotein (LDL) cholesterol might also have 

an additional corresponding effect on coronary artery disease risk due to the causal relationship 

between these two traits, thus exhibiting vertical pleiotropy. Vertical pleiotropy has been 

conceptualized and measured by explicit genetic methods like Mendelian randomization. 

In contrast, a genetic cause that directly influences multiple traits, without one trait being 

mediated by another, would exhibit “horizontal” pleiotropy. Horizontal pleiotropy contains some 

conceptual difficulties, and consequently can be difficult to measure. In principle, we might 

imagine selecting a variant and counting how many phenotypes are associated with it. Indeed, 

several versions of this analysis have been performed for different lists of traits (8,2,3,9). 

However, the results of these analyses are highly dependent on the exact list of traits used, and 

traits of interest to researchers previously tend to involve only a small number of phenotypes 

and/or be heavily biased towards a small set of disease-relevant biological systems and 

processes. Due to these limitations, it is unknown to what extent horizontal pleiotropy affects 

genetic variation in the human genome at the genome-wide level. 

The proliferation of data sources like large-scale biobanks and metabolomics data that include a 

wide array of phenotypes in one dataset, combined with the growing public availability of 

genome-wide association studies (GWASs) summary statistic data, especially for extremely 

large meta-analyses, has allowed the development of methods that use these summary 

statistics to gain insight into human biology, and particularly into the genetic architecture of 

complex traits and diseases (10).  

Here, we present the HOrizontal Pleiotropy Score (HOPS) method to measure horizontal 

pleiotropy using publicly available GWAS summary statistics. We focus on measuring horizontal 

pleiotropy of SNVs on observable traits, meaning a scenario where a single SNV affects 

multiple phenotypes without relying on a detectable causal relationship between those 
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phenotypes. Using this framework, we are able to score each SNV in the human genome for 

horizontal pleiotropy, giving us broad insight into the genetic architecture of pleiotropy. Because 

our framework explicitly removes correlations between the input phenotypes, and because 

these phenotypes represent a diverse array of traits and diseases, these insights are largely 

robust to the specific list of traits studied, and pertain to human biology overall rather than 

relationships between specific traits.  

Results 

Defining pleiotropy 

We narrowly define the scope of pleiotropy as applying only to genetic variants, and particularly 

variants investigated as part of GWASs. As effects, we are considering phenotypic outcomes 

measured by GWASs. By our definition, then, pleiotropy means that one variant shows 

significant associations across GWASs of multiple traits. We additionally restrict the scope of 

pleiotropy we are considering to include only horizontal pleiotropy, and to exclude vertical 

pleiotropy (Figure 1). To elaborate on this distinction, suppose we have identified a variant that 

influences two different traits, trait A and trait B. In vertical pleiotropy, the traits themselves are 

biologically related, so that the variant’s effect on trait A actually causes the effect on trait B. A 

key feature of vertical pleiotropy is that two traits that are biologically related should be related 

regardless of which specific gene or variant is causing the effect. This induces correlation 

between GWAS effect sizes on the two traits across an entire set of variants. For example, we 

expect that any variant that increases LDL cholesterol also increases risk of coronary artery 

disease, because we suspect that it is the increase in LDL cholesterol itself that causes 

increased disease risk. This results in a correlation between variant effect sizes for LDL 

cholesterol and coronary artery disease, which has been detected in multiple studies (11–13). 
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The methodology of Mendelian Randomization uses this predicted correlation within a given set 

of variants to formulate a statistical test for causal relationships among traits, which is now 

widely used for biological discovery (14,15). We extend this methodology to use the entire set of 

SNVs evaluated by GWAS, treating a GWAS-wide correlation between two traits as evidence of 

a vertical pleiotropic relationship between these traits. 

In the case of horizontal pleiotropy, an individual variant acts on traits A and B without mirroring 

any trait-level relationship between them. Unlike vertical pleiotropy, since we are not considering 

the variant-level effect as evidence of a relationship between the two traits, we cannot detect 

horizontal pleiotropy by detecting correlations between traits. Instead, each horizontally 

pleiotropic variant acts by its own unique mechanism. These particular pleiotropic variants, 

therefore, should show a relationship between the two traits that deviates from the relationship 

we would infer from the genome-wide correlation of effect sizes between them. This deviation 

from the correlation between traits is not a prediction of any kind of model of pleiotropy, but 

simply follows from our definition of the term “horizontal pleiotropy”: any pair of traits whose 

effect sizes are correlated across all variants is by definition related by vertical pleiotropy, while 

any variant whose effects on two traits substantially deviate from the trait-level relationship 

between those traits is by definition exhibiting horizontal pleiotropy. 

A quantitative score for pleiotropy 

We have developed a method to measure horizontal pleiotropy using summary statistics data 

from GWASs on multiple traits. Our method relies on applying a statistical whitening procedure 

to a set of input variant-trait associations, which removes correlations between traits caused by 

vertical pleiotropy and normalizes effect sizes across all traits. Using the decorrelated 

association Z-scores, we measure two related but distinct components of pleiotropy: the total 

magnitude of effect on whitened traits (“magnitude” score, denoted ��) and the total number of 
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whitened traits affected by a variant (“number of traits” score, denoted ���. Both scores are then 

scaled by the number of traits and multiplied by 100, so that the final score represents the value 

as it would be measured in a dataset of 100 traits. This two-component quantitative pleiotropy 

score allows us to measure both the magnitude (pleiotropy magnitude score ��) and quantity 

(pleiotropy number of traits score ��) of horizontal pleiotropy for all SNVs in the human genome. 

In principle these are distinct quantities: the magnitude score �� measures the total pleiotropic 

effect size of a variant across all traits, while the number of traits score �� measures the number 

of distinct pleiotropic effects a variant has. A variant with a high �� score and a low �� score has 

a large effect spread over a small number of traits; a variant with a low �� score and a high �� 

score has only a minor effect overall, but that effect is spread out across a large number of 

traits; and a variant with high scores on both components has a large effect that is spread 

across a large number of traits. Since we expect these scores to be heavily influenced by 

linkage disequilibrium (LD), we regress �� and �� against LD scores to produce an LD-

corrected score (��
�� and ��

��) (Figures 2, 3; Methods). 

Calculating significance of pleiotropy 

We compute P-values for the two components of our pleiotropy score using two different 

procedures, corresponding to two different null expectations. 

1. Theoretical P-values (Raw pleiotropy score [�� and ��] or LD-corrected pleiotropy score 

[��
�� and ��

���), calculated analogously to P-values for genetic association studies 

including GWAS, based on a null scenario where variants do not exhibit pleiotropic 

effects on observed traits.  

2. Empirical P-values (Polygenicity/LD-corrected pleiotropy score [��
� and ��

�]), calculated 

by permutation of the observed distributions of whitened traits. These P-values are 

based on a null scenario where variants may have significant effects on one or more 
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traits, but the effects of each variant on each trait are independent and the number of 

variants with effects on multiple traits is no more than would be expected by chance. 

This empirical correction for polygenicity is required because polygenicity is a major factor that 

can produce pleiotropy. For example, it has been estimated that approximately 100,000 

independent loci are causal for height in humans (16). If the total number of independent loci in 

the human genome is approximately 1 million, this corresponds to about 10% of the human 

genome having an effect on height. If we imagine multiple phenotypes with this same highly 

polygenic genetic architecture, we should expect substantial overlap between causal loci for 

multiple different traits, even in the absence of any true causal relationship between the traits, 

resulting in horizontal pleiotropy (Figure 2).  

Power to detect pleiotropy in simulations 

We conducted a simulation study to evaluate the performance of our two-component pleiotropy 

score. We simulated 800,000 variants controlling 100 traits, varying the per-trait liability scale 

heritability of all traits �� and the proportion of pleiotropic and non-pleiotropic causal variants. To 

introduce LD in the simulations, we used real LD architecture from 800000 SNVs from 1000 

Genomes European population. We simulated Z-scores independently for each SNV and then 

propagate LD for a given SNV by “contaminating” its Z-score according to the Z-scores of the 

SNVs in LD with it. Under the null model, all trait-variant associations were independent, and no 

horizontal pleiotropy was added. Under the added-pleiotropy models, we randomly chose a 

fraction of causal variants and forced them to have simultaneous associations with multiple 

traits. The simulation study showed that both components of the pleiotropy score were well-

powered to detect horizontal pleiotropy (Figure 4), and that the LD correction dramatically 

reduces the dependence of the pleiotropy score on LD (Additional File 1: Fig. S1). Under the 

null hypothesis of no added horizontal pleiotropy, the false positive rate was well controlled for 
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both scores when there was low heritability or few causal variants. However, when there are 

many causal variants and high per-variant heritability, the LD-corrected pleiotropy score (��
�	 

and �

�	) detects a large excess of pleiotropic variants, due to serendipitous overlap between 

causal variants without explicitly induced pleiotropy. The LD/polygenicity-corrected empirical P-

value (��
�  and �


�) does not detect this serendipitous pleiotropy at the same high rate. 

In the presence of added horizontal pleiotropy, our approach was powered to detect pleiotropy 

with per-variant heritability �� as small as 0.002 if there are no non-pleiotropic causal variants. 

In the presence of both pleiotropic and non-pleiotropic causal variants, detecting pleiotropy was 

more difficult, but our approach still had appreciable power to detect pleiotropic variants, which 

increased with increasing per-variant heritability and decreased with increasing numbers of non-

pleiotropic causal variants. Adding the correction for polygenic architecture (��
�  and �


�) 

reduced this power only slightly. The power of our method was not substantially reduced by 

increasing the number of traits affected by pleiotropic variants (Additional File 1: Fig. S2) or by 

adding a realistic correlation structure between the traits (Additional File 1: Fig. S3).  

Genome-Wide Pleiotropy Study (GWPS) reveals pervasive 

pleiotropy 

To apply our method to real human association data, we used GWAS association statistics for 

372 heritable medical traits measured in 337,119 individuals from the UK Biobank (17–19) . We 

successfully computed our two-component pleiotropy score for 767,057 variants genome-wide 

and conducted a genome-wide pleiotropy study (GWPS), by analogy to a standard GWAS 

(Figure 3; Methods). Additional File 1: Fig. S4 shows the resulting quantile-quantile plots (Q-

Q plots). We observed significant inflation for both the LD-corrected magnitude score ��
�� and 

number of traits score ��
�� (Mann-Whitney U test � � 10��� for both). Furthermore, we 
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observed across both scores that horizontal pleiotropy was widely distributed across the 

genome, rather than being localized to a few specific loci (Additional File 1: Fig. S5). Testing 

an alternative strategy for computing the phenotype-correlation matrix using all SNVs produced 

comparable results (Pearson � = 0.995 and 0.964 for ��
�� and ��

�� respectively) to our strategy 

of using a pruned set of SNVs to account for LD (�� < 0.1) (Additional File 1: Fig. S6).  

Pleiotropy is driven by polygenicity 

We applied the permutation-based empirical P-value calculation (Polygenicity/LD-corrected 

pleiotropy score: ��
�  and ��

�) to correct for the known polygenic architecture of traits and test 

whether any loci are pleiotropic to a greater extent than would be expected due to polygenicity. 

Additional File 1: Figs. S7 and S8 show the resulting Q-Q plots and Manhattan plots. In 

contrast to the results from the LD-corrected pleiotropy score (��
��  and ��

��), we do not find 

pleiotropy significantly in excess of what would be expected from the known polygenic 

architecture of traits: there are dramatically fewer loci with genome-wide significant levels of 

pleiotropy after correcting for polygenic architecture, and the genome-wide distribution of 

pleiotropy score shows less pleiotropy than expected (Mann-Whitney U test � � 10��� for both 

��
�  and ��

�). 

As an additional test of whether the pleiotropy we observe is driven by polygenicity, we 

calculated the polygenicity of the same 372 heritable traits from the UK Biobank. We measured 

polygenicity using a version of the genomic inflation factor corrected using LD score 
��
�  (20). 

We then stratified these traits by 
��
�  after controlling for heritability (Methods), and calculated 

the two-component LD-corrected pleiotropy score [��
��  and ��

���) and P-values for each 

component independently for every variant in the genome using each of these bins of traits. We 

observed that both scores are highly dependent on polygenicity, with the lowest-polygenicity 

bins in each heritability class showing very little inflation. (Figure 5; Additional File 1: Table 
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S1). Taken together, these results suggest that extreme polygenicity drives horizontal 

pleiotropy, and that this has an extremely large effect on the genetic architecture of human 

phenotypes.  

Genome-wide distribution of pleiotropy score gives insight into 
genetic architecture  

In addition to observing genome-wide inflation of the pleiotropy score, we can also gain insight 

from the distribution of the pleiotropy score on a more granular level.  

Figure 6a shows the distribution of pleiotropy score for independent SNVs (LD pruned to a 

threshold of �� < 0.1) compared to the expectation under the null hypothesis of no pleiotropic 

effect. We observe a large excess in the number of traits score ��
��, and a smaller but still highly 

significant excess in total magnitude of pleiotropic effect ��
��. This excess comes in part from a 

long tail of highly pleiotropic loci that pass the threshold of genome-wide significance (dashed 

line in Figure 6a), but is primarily driven by weak pleiotropy among loci that do not reach 

genome-wide significance.  

Pleiotropy score is correlated with molecular and biological 

function 

To further investigate the properties of pleiotropic variants, we examined the effects of various 

functional and biochemical annotations on our LD-corrected pleiotropy score (��
��  and ��

��) 

(Table 1; Methods). Using annotations from Ensembl Variant Effect Predictor (21), we 

observed that both components of the pleiotropy score are higher on average in transcribed 

regions (coding and UTR) than in intergenic noncoding regions. This result was confirmed and 

expanded by annotations from Roadmap Epigenomics (22), which showed that regions whose 

chromatin configurations were associated with actively transcribed regions, promoters, 

enhancers, and transcription factor binding sites had significantly higher levels of both 
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components of the pleiotropy score, while heterochromatin and quiescent chromatin states had 

significantly lower levels. Investigating individual histone marks, we found that both the 

repressive histone mark H3K27me3 and the activating histone mark H3K27ac were associated 

with elevated levels of pleiotropy, although the activating mark H3K27ac had a larger effect. 

This may indicate that being under active regulation at all produces higher levels of pleiotropy, 

whether that regulation is repressive or activating.  

We also used data from the Genotype-Tissue Expression (23) project to measure the 

connection between transcriptional effects and our pleiotropy score (Table 1). Consistent with 

the previous observation that functional regions had higher pleiotropy scores, we found that 

variants that were identified as cis-eQTLs for any gene in any tissue had higher pleiotropy 

scores on average. Within eQTLs, we also observed significant correlations between our 

pleiotropy score and the numbers of genes (��
��: � = 0.036, P < 2.2 × 10-16; ��

��: � = 0.035, P < 

2.2 × 10-16) and tissues (��
��: � = 0.062, P < 2.2 × 10-16; ��

��: � = 0.059, P < 2.2 × 10-16) where 

the variant was annotated as an eQTL, showing that our pleiotropy score is related to 

transcriptional measures of pleiotropy.  

Finally, we found that variants that are eQTLs for genes whose orthologs are associated with 

multiple measurable phenotypes in mice or yeast have higher pleiotropy scores, demonstrating 

that our pleiotropy score is also related to pleiotropy in model organisms.  

All these results are consistent when using the Polygenicity/LD-corrected pleiotropy score 

(��
�  and ��

��, indicating that the association of pleiotropy with molecular and biological function is 

not exclusively driven by highly polygenic architecture (Additional File 2).  

Genome-wide pleiotropy study identifies novel biological loci  
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By analogy to standard GWAS, our GWPS methodology can identify individual variants that 

have a genome-wide significant level of horizontal pleiotropy. Using the LD-corrected magnitude 

score ��
��, we identified 74,335 variants in 8,093 independent loci with a genome-wide 

significant level of horizontal pleiotropy, while using the LD-corrected number of traits score 

��
��  identified 18,393 variants in 2,859 independent loci with a genome-wide significant level of 

horizontal pleiotropy, all of which are also identified by the LD-corrected magnitude score ��
�� 

(Methods, Additional File 1: Table S2). Applying the same analysis to the Polygenicity/LD-

corrected pleiotropy score, using the Polygenicity/LD-corrected magnitude score ��
� identified 

no genome-wide significant loci, but using the Polygenicity/LD-corrected number of traits score 

��
� identified 2,674 variants in 432 loci. Strikingly, a majority of loci significant in ��

��  (1,519 of 

2,859) or ��
� (294 of 432), along with a sizeable minority of loci significant in ��

�� (2,934 of 

8,093), have no entry in the NHGRI-EBI GWAS catalog, meaning that they have never been 

reported as an associated locus in any published GWAS. These loci represent an under-

recognized class of genetic variation that has multiple weak to intermediate effects that are 

collectively significant, but no specific strong effect on any one particular trait. Functional 

enrichment analysis on genes near these genome-wide significant loci implicates a wide range 

of biological functions, including cell adhesion, post-translational modification of proteins, 

cytoskeleton, transcription factors, and intracellular signaling cascades (Additional File 3). Loci 

significant in ��
� show a more focused subset of functions, with a greater role for nuclear 

proteins regulating transcription and chromatin state, suggesting that these are the functions 

that exhibit horizontal pleiotropy beyond the baseline level induced by polygenicity. The role of 

these novel loci and these biological processes in human genetics and biology may be a fruitful 

area for future study, with the potential for biological discovery. 

Pleiotropic loci replicate in independent GWAS datasets 
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As replication datasets, we used two additional sources of GWAS summary statistics to 

calculate our LD-corrected pleiotropy score (��
��  and ��

��): previously published GWASs and 

meta-analyses for 73 human complex traits and diseases, which we collected and curated 

manually from the literature (Methods, Additional File 1: Table S3) (24); and a previously 

published study of 430 blood metabolites measured in 7,824 European adults (25). For all 

variants covered by the UK Biobank, we were able to compute our pleiotropy score 

independently using these two datasets (Figure 7). In the traits and diseases dataset, we 

observed that 57% of ��
�� loci and 38% of ��

�� loci replicated, while in the blood metabolites 

dataset, we observed that 17% of ��
�� loci and 12% of ��

�� loci replicated, compared to 5% of 

��
�� loci and 6% of ��

�� loci expected by chance according to a permutation-based null model. 

This high level of replication using independent sets of GWAS summary statistics suggests that 

our pleiotropy score is capturing an underlying biological property, rather than an artifact of the 

UK Biobank study. 

Pleiotropy is correlated with specific complex traits and diseases 

To characterize the phenotypic associations of these loci, we used our replication dataset of 

published GWAS summary statistics for 73 human quantitative traits and diseases, plus nine 

additional traits we excluded from our replication dataset for a total of 82 (Methods). We are not 

able to compute directly the degree of pleiotropy exhibited by these traits, since our definition of 

horizontal pleiotropy applies only to individual variants and does not apply to traits. However, we 

can identify traits whose GWAS variant associations are correlated to our pleiotropy score, 

which in some sense represents the traits that contribute most to our signal of pervasive 

horizontal pleiotropy. Figure 6c shows the correlations between our LD-corrected pleiotropy 

score (��
��  and ��

��) and the association statistics for these 82 traits and diseases. The most 

strongly correlated traits were anthropometric traits like body mass index, waist and hip 

circumference, and height; certain blood lipid levels, including total cholesterol and triglycerides; 
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and schizophrenia. These are all known to be highly polygenic and heterogeneous traits. The 

least correlated traits include several measurements of insulin sensitivity and glucose response, 

such as the insulin sensitivity index (ISI), certain features of brain morphology, and the 

inflammatory biomarker lipoprotein(a). This may be partly due to low sample size of the 

corresponding GWASs. However, these correlations do not appear to be driven exclusively by 

sample size: in cases where multiple GWASs for the same trait have been performed on 

subsamples of the population (for example, males only, female only, and combined), the sample 

size only marginally affects the correlation (Additional File 1: Table S4). Another contributing 

factor may be heritability: height, in particular, is among the most heritable traits we examined, 

while ISI and the brain morphology features are among the least.  

Discussion 

We have presented HOPS, a framework for scoring horizontal pleiotropy across human genetic 

variation. In contrast to previous analyses, our framework explicitly distinguishes between 

horizontal pleiotropy and vertical pleiotropy or biological causation. After applying HOPS to 372 

heritable medical traits from the UK Biobank, we made the following observations: 1) horizontal 

pleiotropy is pervasive and widely distributed across the genome; 2)) horizontal pleiotropy is 

driven by extreme polygenicity of traits; 3) horizontal pleiotropy is significantly enriched in 

actively transcribed regions and active regulatory regions, and is correlated with the number of 

genes and tissues for which the variant is an eQTL; 4) there are thousands of loci that exhibit 

extreme levels of horizontal pleiotropy, a majority of which have no previously reported 

associations; and 5) pleiotropic loci are enriched in specific complex traits including body mass 

index, height, and schizophrenia. These findings are largely consistent between the magnitude 

of pleiotropy score �� and the number of traits score ��, although we note some differences 

where some variants are primarily associated with ��
�� but not ��

��. This indicates that these 
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signals are driven by loci that both influence a large number of traits and have relatively large 

combined effects, and secondarily by loci that have large combined effects but only influence a 

handful of traits each, with minimal contribution from loci that influence a large number of traits 

but have small combined effects. Conversely, after applying the correction for polygenicity, we 

only observe variants that are significant for ��
�, but not for ��

�. This indicates that, while there 

do exist horizontal pleiotropic master control loci that affect more traits than we would expect 

from the random overlap of multiple highly polygenic traits, the overall effect of these loci is not 

noticeably larger than we would expect. 

This analysis is enabled by the technique of whitening trait associations to remove correlations 

between traits. This lets us count pleiotropic effects in a more objective and systematic way, as 

opposed to manually selecting putatively independent traits to count, or manually grouping traits 

into independent blocks. However, it does come with three major limitations compared to these 

approaches. First, it is somewhat more difficult to tell which specific traits are driving a signal of 

pleiotropy at a particular locus. Our whitened traits are combinations of real observed traits, and 

do not necessarily correspond to any specific biological traits of interest. However, it is relatively 

easy to inspect the input GWAS summary statistics for a particular variant of interest to see 

which traits it is associated with. Furthermore, since pleiotropic loci are by definition associated 

with a large cross-section of traits, this kind of inspection is not likely to be very informative 

about specific traits. Second, the whitening procedure has the counterintuitive property that a 

variant that has a narrow effect on a single trait without also affecting correlated traits can 

appear to be highly pleiotropic. For example, if a variant had a strong risk-increasing effect on 

coronary artery disease (CAD), but no effect on any of the known upstream risk factors of CAD 

(such as blood lipid levels or adiposity) or any of the known downstream consequences of CAD 

(such as inflammatory biomarkers or increased mortality), such a variant would appear as highly 

pleiotropic in our analysis. Our analysis would interpret the variant as increasing the risk of CAD 
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while suppressing these upstream and downstream factors. We believe this treatment is 

appropriate, however counterintuitive. Regardless, these kinds of isolated effects are fairly rare: 

in our dataset of 372 heritable traits from UK Biobank, only 6% of variants (42,684 of 767,057) 

reach genome-wide significance for only a single trait. Indeed, it is unlikely by definition that a 

variant is associated with only one trait from a set of correlated traits, since we compute our 

correlations from observed association statistics. Third, we assume all genetic effects are 

additive and independent, and we do not model epistasis or other more complex genetic 

architectures. 

Our findings are in keeping with several recent studies that have found abundant pleiotropy in 

the genome (26,27,8,2,9). HOPS goes a step further than many of these studies by explicitly 

removing vertical pleiotropy between traits, which are indicative of fundamental biological 

relationships between traits (8,24,28). Furthermore, the current study has evaluated horizontal 

pleiotropy in human genetic variation genome-wide, whereas previous studies have focused on 

only a small subset of disease-associated variants identified from GWAS. Our results therefore 

suggest that there is substantial complexity and heterogeneity in the genetic architecture of 

individual traits. 

Our findings have several important implications for the field of human genetics. First, our 

observation of ubiquitous horizontal pleiotropy is problematic for Mendelian Randomization 

(MR) methods, which assumes horizontal pleiotropy to be absent. Recent developments in the 

field of MR include methods that account for horizontal pleiotropy explicitly (24,28,29); our 

results reinforce the importance of these methods. The presence of widespread horizontal 

pleiotropy suggests that single-instrument methods that independently account for every variant, 

each of which presumably has pleiotropic effects on many different distinct traits, should be 

considered in addition to multi-instrument methods for MR, which collapse many variants into a 

single polygenic score for analysis, and therefore treat all variants equivalently. 
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Second, our results appear to support the “network pleiotropy” hypothesis of Boyle, Li, and 

Pritchard (16), which proposes widespread pleiotropy driven by small perturbations of densely 

connected functional networks, where any perturbation in a relevant cell type will have at least a 

small effect on all phenotypes affected by that cell type. A subsequent paper detailed a more 

specific mechanism, where causal effects are driven by many biological components that are 

only indirectly related to the phenotype itself (30). Many of the functional enrichments we 

observe, including transcription factors, cytoskeleton, and intracellular signaling cascades, 

represent components that can plausibly influence a wide variety of cell types and processes, 

providing evidence for this model over one where a specific biological component is largely 

responsible for pleiotropy. The fact that the magnitude of pleiotropy score �� and the number of 

traits score �� give largely consistent results also supports this model, where a larger biological 

effect in a given tissue will perturb a greater number of phenotypes relevant to that tissue, 

although we note that some variants have high magnitude of pleiotropy score �� and low 

number of traits score ��, which may represent a small class of variants that has large biological 

effects without perturbing a large number of phenotypes. 

While our results largely support this network pleiotropy hypothesis, we have also demonstrated 

an alternate view of horizontal pleiotropy in the context of highly polygenic causation. In our 

simulations, introducing extreme polygenicity at the levels suggested by these papers inherently 

results in high levels of horizontal pleiotropy detectable by our score, independent of any 

assumptions about the mechanism of pleiotropy or of polygenicity. Indeed, our null hypothesis 

of no horizontal pleiotropy, that 5% of the genome is independently causal to each trait with P < 

0.05, is trivially rejected when a single trait is influenced by an unexpectedly large fraction of the 

genome. This means that, on some level, widespread horizontal pleiotropy in human genetic 

variation is simply a logical consequence of widespread polygenicity of human traits, regardless 

of the specific mechanism of either. In simple terms, the more loci are associated with each trait, 
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the more chances there are for associations with multiple traits to overlap. Supporting this 

result, we find that controlling for the polygenic architecture of the input traits significantly 

attenuates our signal of pleiotropy, as does restricting to oligogenic traits. It may be the case 

that horizontal pleiotropy is only truly widespread among the most complex and polygenic 

subset of human traits. 

Conclusions 

In this study, we have presented HOPS, a quantitative score for horizontal pleiotropy in human 

genome variation. Using this score, we have identified a genome-wide trend of highly inflated 

levels of horizontal pleiotropy, an underappreciated relationship of horizontal pleiotropy with 

polygenicity and functional biology, and a large number of specific novel loci with high levels of 

horizontal pleiotropy. We expect further investigations using HOPS to yield deep insights into 

the genetic architecture of human traits and to uncover important novel biology.  

Methods 

We developed a statistical method to measure horizontal pleiotropy using a two-component 

pleiotropy score. For a given variant, we measured 1) the total magnitude of pleiotropic effect 

the variant has and 2) the number of whitened traits affected by the variant.  

Z-scores decorrelation strategy 

Observable traits and diseases can be highly correlated, which can lead to inflation of our 

pleiotropy score if the correlation is not properly accounted for. Therefore, we developed an 

efficient strategy to remove this correlation and obtain decorrelated traits. Let ���� denote the 

matrix of raw Z-scores, with variants in columns and traits in rows, and � denote the 
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corresponding correlation matrix between the Z-scores. Under the null hypothesis of no 

horizontal pleiotropy, Z-scores for each trait are assumed to follow a Gaussian distribution 

�0,1�, and the columns of ���� collectively follow a multivariate Gaussian distribution �0, ��. 

Our goal is to eliminate the extra-diagonal terms of the correlation matrix �. To achieve this, we 

use a Mahalanobis whitening transformation on the matrix ���� to obtain a whitened Z-score 

matrix �. The procedure to obtain � can be formally expressed as: 

� � ���

� ���� 

Under the null hypothesis of no horizontal pleiotropy, we expect � to follow a multivariate 

Gaussian distribution �0, ����, where ��� is the identity matrix of size �, � being the number of 

traits. 

In reality, the true correlation matrix � is unknown, and we must use an estimated correlation 

matrix �~ obtained by measuring the genome-wide correlation between actual Z-scores. We 

tested two approaches to obtain �~, either using all genotyped variants genome-wide or using a 

subset of variants pruned to �� < 0.1 in the 1000 Genomes European population to account for 

the effects of linkage disequilibrium (LD). Both approaches produced similar results (See 

Additional File 1: Fig. S6). In all subsequent analysis, we used covariance matrices estimated 

from pruned variants. 

Computation of the pleiotropy score 

We computed two different scores to capture both the magnitude and number of traits of 

pleiotropy. First, we quantify the total pleiotropic magnitude of effect a variant using the 

magnitude pleiotropy score ��: 
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�� � 100� �� ��
�

�

�

 

where ��  is the whitened Z-score for trait � for a given variant. Second, we quantify the number 

of whitened traits affected by a variant using the number of pleiotropic traits score ��: 

�� �  100� � ����  
�  2��

�

 

where z� is the whitened Z-score for trait � for the tested variant and ��� is the Heaviside step 

function which equals 1 if |z�| � 2 and 0 otherwise. 2 represents a standard value of the Z-score 

which represents the normal threshold for nominal significance (P < 0.05). 

LD-corrected pleiotropy score 

Similarly to LD score regression, each component of the pleiotropy score was regressed on the 

LD scores for all variants. Then, we regressed out the effect of LD on each component of the 

pleiotropy score independently to obtain an LD-corrected pleiotropy score. The LD-corrected 

pleiotropy score components ��
��and ��

��are given by:  

��
�� � �� � ��� 

��
�� � �� � ��� 

where � is the LD score of the variant site, and �� and �� are the regression coefficients for LD 

score on �� and ��, respectively. 

Computation of theoretical P-values for the pleiotropy score 

Based on the observation that � follows a multivariate standard Gaussian distribution �0, ���� 

under the null hypothesis of no pleiotropy, P-values can easily be computed for �� and ��. 
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Under the null hypothesis, the square of �� (or ��
�	) follows a chi-square distribution  ���� 

where � is the total number of traits. Likewise, �� (or �

�	) follows a binomial distribution !��, "� 

where � is the total number of traits and p the probability to get a Z-score greater than 2 under 

the standard Gaussian distribution (P # 0.045).  

Computation of empirical (polygenicity/LD-corrected) P-values for 

the pleiotropy score 

To correct for the known polygenic architecture of traits in addition to LD, we additionally 

computed empirical permutation-based P-values for both ��
�� and ��

��. We performed 25 

random permutations of the input Z-scores for each observable trait, producing millions of 

permuted variants. We calculated �� and �� for each of these permuted variants, and then rank 

ordered the resulting scores. The empirical P-value corresponding to a value of ��
�� or ��

�� is 

given by the fraction of permuted variants with higher scores than the given value. We 

converted these P-values into polygenicity/LD-corrected ��
� and ��

� scores by converting each 

P-value into the score it would correspond to under the expected (theoretical) distributions 

described above. 

Simulation framework 

We simulated a realistic matrix of Z-scores � with 100 traits and 800,000 genotyped variants. 

For non-causal variants, Z-scores for each trait were drawn from an independent Gaussian 

distribution �0,1�. A subset of variants was designated as causal, either pleiotropically or non-

pleiotropically. For these causal variants, Z-scores were drawn from a different Gaussian 

distribution �0, ���,where �� is a parameter representing the per-variant heritability of each 

trait. Non-pleiotropic variants were selected independently for each trait, while pleiotropic 

variants were selected globally and each forced to be causal for a specified number of traits $. 
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Simulations were run for all combinations of the following parameters: 1) correlation structure: 

absent or present; 2) proportion of pleiotropic causal variants: 0.1% (800/800,000 variants) or 

1% (8,000/800,000 variants); 3) proportion of non-pleiotropic causal variants: 0 (0/800,000 

variants), 0.1% (800/800,000 variants), or 1% (8,000/800,000 variants); 4) number of traits 

involved in horizontal pleiotropy $: 10 or 20; 5) per-variant heritability of traits ��: 0.0002, 0.002, 

0.02, or 0.2. Each scenario was replicated 10,000 times. 

Collection of genome-wide association (GWA) summary statistics 

datasets 

First, we retrieved GWA publicly available summary statistics from 545 continuous traits in 

361,194 samples from the UK Biobank (17), and 1,403 binary traits from the same dataset 

calculated using SAIGE (18,19). We used LD score regression to calculate heritability for each 

trait, using the liability scale for binary traits, and restricted the sample to only traits with a 

significant P-value for nonzero heritability after Bonferroni correction. For every pair of traits with 

correlation coefficient between Z-scores �� � 0.8, we additionally removed the member of the 

pair with lower heritability. This left a total of 372 traits. 

Second, we retrieved publicly available genome-wide association (GWA) summary statistics 

data for 82 complex traits and diseases (31–66) (Table S9). For each dataset, we retrieved the 

appropriate variant annotation (build, rsid, chromosome, position, reference and alternate 

alleles) and summary statistics (effect size, standard errors, P-values and sample size of the 

study). All variant coordinates (chr, pos) were lifted over to hg19 using the UCSC Genome 

Browser LiftOver Tool and aligned to the reference and alternate alleles retrieved from the 

Ensembl variation database. After performing the same pruning of highly correlated phenotypes, 

we were left with 73 traits and diseases. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 7, 2019. ; https://doi.org/10.1101/311332doi: bioRxiv preprint 

https://doi.org/10.1101/311332
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

Third, we retrieved GWA summary statistics datasets from a GWAS of 453 blood metabolites in 

7,824 individuals (67). After performing the same pruning of highly correlated phenotypes, we 

were left with 430 metabolites. 

Genome-wide pleiotropy study (GWPS) 

Using the two components of the pleiotropy score, we can run a genome-wide pleiotropy study 

(GWPS) which consists of computing two P-values for each component of the score (��
�� and 

��
��) and for all variants genome-wide. We computed the pleiotropy score separately for each of 

the three datasets described above (372 UK Biobank phenotypes, 73 traits and diseases, and 

430 blood metabolites). Additionally, we computed the pleiotropy score on a subset of 372 traits 

with genome-wide significant heritability as calculated by LD Score Regression (20) (univariate 

heritability significant after Bonferroni correction). The 372 UK Biobank heritable traits were 

used for discovery, and the 73 traits and diseases and 430 blood metabolites datasets were 

used for replication. There was a total of 768,756 variants genotyped across all three datasets. 

Study of polygenicity on horizontal pleiotropy 

To study the effect of polygenicity on horizontal pleiotropy, we first estimated the liability-scale 

heritability of all 372 traits in our UK Biobank dataset using LD score regression, and stratified 

all traits into four equally-sized classes of heritability, in order to control for the effect of high 

heritability separate from the effect of high polygenicity. Next, we estimated the polygenicity of 

the 372 traits using a corrected version of the genomic inflation factor 
��
�  (20). The intercept of 

LD score regression minus one is an estimator of the mean contribution of confounding bias to 

the inflation in the test statistics. Therefore, we computed a corrected version of the genomic 

inflation factor by subtracting the quantity (intercept of LD score regression - 1) from 
��. The 

372 phenotypes were then ranked according to 
��
�  within each heritability class, and grouped 

into 5 equal-sized bins of about 20 phenotypes each. We then recomputed the LD-corrected 
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pleiotropy score components (��
��and ��

��) for the subset of phenotypes in each bin. The 

inflation of the pleiotropy score was measured per bin to represent pleiotropy score inflation as a 

function of polygenicity. 

Characterization of the pleiotropic variants 

We performed various enrichment analyses for the pleiotropy score to characterize the 

pleiotropic variants using a variety of annotations that could be a direct consequence of 

horizontal pleiotropy. Each analysis uses the principle of assigning each variant an annotation 

category and selecting one category as the reference category. Then, for each category, we 

selected a set of variants from the corresponding reference category with minor allele 

frequencies matched to those in the query category, and performed a Student’s t-test to test 

whether the average LD-corrected pleiotropy score (��
��and ��

��) of the variants in each given 

category is different from the average LD-corrected pleiotropy score of the selected reference 

variants.  

First, we used Ensembl Variant Effect Predictor (21) to classify each variant as noncoding, UTR, 

nonsynonymous, or coding synonymous, treating noncoding as the reference class. These were 

complemented by annotations from Roadmap Epigenomics (22). We used the 25-state 

chromatin state model published by Roadmap Epigenomics to assign each variant 25 scores 

from 0 to 127, where each score represents the number of epigenomes for which that site is 

assigned to the corresponding category. We did the same for two specific chromatin marks: the 

activating mark H3K27ac and the repressive mark H3K27me3. For these annotations, we used 

a combination of all other categories as a reference set. In other words, the reference set for 

each category is all variants that are not in that category. 

In addition to these molecular annotations, we used expression-related annotations from the 

Genotype-Tissue Expression project (23). For each variant, we retrieved the number of genes 
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for which the variant is referenced as a cis eQTL (expression quantitative trait loci) in any tissue 

(eGenes), and the number of tissues where the variant is annotated as a cis eQTL for any gene 

(eTissues). We divided variants into bins by number of eGenes (below 10, between 10 and 15, 

between 15 and 20, and over 20) and eTissues (below 30, between 30 and 35, between 35 and 

40, and above 40). The reference set used for these analyses were variants that are not 

annotated as eQTLs in any gene or tissue.  

Finally, we used model organism phenotypes measured by the International Mouse 

Phenotyping Consortium (IMPC) (68) and the Saccharomyces Cerevisiae Morphological 

Database (SCMD) (69). To map ortholog genes from IMPC and SCMD to human variants, we 

used orthology annotations of gene orthologs, and eQTLs from GTEx. Thus, variants annotated 

as associated with a mouse or yeast phenotype are those that are annotated as cis eQTLs in 

any tissue for a gene whose ortholog in mouse or yeast is associated with that phenotype. The 

reference set for this analysis was variants annotated as cis eQTLs for genes that are not 

associated with mouse or yeast phenotypes. 

Genome-wide significant pleiotropy loci 

To detect loci with a genome-wide significant pleiotropy, we used the LD-corrected two-

component pleiotropy score (��
��and ��

��) computed on the dataset of 372 heritable traits from 

UK Biobank described above. We used LD clumping as implemented in PLINK to cluster linked 

variants, with an �� threshold of 0.1, a distance threshold of 100 kb, and P-value thresholds of 5 

x 10-8 for genome-wide significance and 0.05 for nominal significance. The resulting loci were 

assigned to genes using 1) localization of variants within a gene, as annotated by Ensembl 

Variant Effect predictor, and 2) annotation as a cis eQTL in any tissue, as annotated by GTEx. 

We submitted the resulting list of genome-wide significant genes to DAVID for enrichment 

analysis (70–72). 
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Permutation-based null model for replication analysis 

In general, we should expect only 5% of loci to replicate by chance in each replication dataset; 

however, it is possible that this number might increase because of polygenicity in the underlying 

GWAS statistics and the resulting inflation in our pleiotropy score, which may cause 

substantially more than 5% of the genome to be assigned P < 0.05. To correct for this, we 

performed random permutations of the whitened Z-scores independently for each trait and used 

these permuted Z-scores to compute our LD-corrected pleiotropy score components (��
��and 

��
��). This generates a null expectation that preserves the polygenicity and inflation within each 

dataset. For both datasets, our null model expected that 5% of loci for ��
�� loci and 6% of loci for 

��
�� should replicate. The fraction that replicated in the actual data was substantially higher 

(Figure 7). 
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An R package implementing the HOrizontal Pleiotropy Score (HOPS) method is available on 

GitHub under the GNU Public License (GPL), at https://github.com/rondolab/HOPS (73). The 

current version of this repository at the time of submission has been deposited in Zenodo, at 

https://dx.doi.org/10.5281/zenodo.3462163. The dataset of summary statistics for the 372 

medical traits from the UK Biobank and the pleiotropy scores computed from these summary 

statistics are also available in the same GitHub project at 
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https://github.com/rondolab/HOPS/tree/master/data. The summary statistics for 430 blood 

metabolites are available from the original publication where this dataset was reported (61), and 

the summary statistics for 73 human traits and diseases are available from the original 

publications where they were reported, as cited in Additional File 1: Table S3.
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Figure Titles and Legends 

Figure 1: Schematic of different types of pleiotropy. 

Previous studies distinguish between vertical pleiotropy, where effects on one trait are mediated 

through effects on another trait, and horizontal pleiotropy, where effects on multiple traits are 

independent.  

Figure 2: Contributions of linkage disequilibrium (LD) and polygenicity to horizontal 

pleiotropy. 

In addition to the normal sense of horizontal pleiotropy, both linkage disequilibrium (LD) and 

polygenicity are expected to contribute to horizontal pleiotropy. In the case of LD-induced 

horizontal pleiotropy, two linked SNVs have independent effects on different traits which appear 

pleiotropic because of the linkage between the SNVs. In the case of polygenicity-induced 

horizontal pleiotropy, two highly polygenic traits have an overlap in their polygenic footprint.  

Figure 3: Two component pleiotropy score method. 

We (i) collect association statistics from the UK Biobank, (ii) process them using Mahalanobis 

whitening, (iii) compute the two components of our pleiotropy score (�� and ��) based on the 

whitened association statistics, (iv) use LD scores to correct for LD-induced pleiotropy (��
��and 

��
��), and (v) use permutation-based P-values to correct for polygenic architecture (��

�  and ��
�). 

Figure 4: Simulation study showing false positive rate (a,b,c,d) and power (e,f,g,h) of two-

component pleiotropy score. 

Top row shows performance on non-pleiotropic simulated variants (black line shows 5% false 

positive rate); bottom row shows performance on pleiotropic variants (black line shows 80% 

power). Simulations were run for both ��
�	 (left) and �


�	 (right), and both without correction for 
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polygenicity (a,c,e,g) and with the correction (b,f,d,h), with per-variant heritability ranging from 

0.0002 to 0.2, proportion of non-pleiotropic causal loci ranging from 0 to 1%, and proportion of 

pleiotropic causal loci ranging from 0.1% to 1%. Our method has good power to detect 

pleiotropy for highly heritable traits, though its power is reduced by extreme polygenicity. 

Extreme polygenicity also increases the false positive rate, though this effect is corrected by our 

polygenicity correction. 

Figure 5: Quantile-quantile (Q-Q) plots showing the inflation of the pleiotropy score as a 

function of polygenicity. 

Variants are stratified into 4 batches of about 80 traits each by heritability, and then subdivided 

into 5 batches of about 20 traits each by polygenicity, as measured by corrected genomic 

inflation factor 
��
� . Darker shades represent low polygenicity and lighter shades represent high 

polygenicity. All panels show -log10 transformed P-values. The black lines show the expected 

value under the null hypothesis. 

Figure 6: Distribution of the pleiotropy score among variants (a), genes (b), and traits (c). 

Panel a shows the global distribution of ��
�� (left) and ��

�� (right) for the 767,057 tested variants. 

The expected distribution under the null hypothesis of no pleiotropy is shown in red and the 

observed distribution is shown in blue. The vertical line represents the value of the pleiotropy 

score corresponding to genome-wide significance (P < 5 × 10-8). 1,769 (��
��) and 643 (��

��) 

variants are not represented for the sake of clarity, because they have extreme values for the 

pleiotropy score. Panel b shows the distribution of the average pleiotropy score for coding 

variants in each gene for ��
�� (left) and ��

�� (right). The top ten genes are represented on the 

right side of the plots, whereas genes with a pleiotropy score of 0 are represented on the left 

side of the plots. Panel c shows the contribution of pleiotropic variants to 82 complex traits and 

diseases. Contribution of pleiotropic variants is calculated as the correlation coefficient between 
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the absolute value of Z-scores and the pleiotropy score among variants that are genome-wide 

significant for the pleiotropy score (P < 5 × 10-8 for ��
�� and ��

�� respectively).  

Figure 7: Replication analysis for the genome-wide pleiotropy study.  

We used 372 UK Biobank heritable medical traits as our discovery dataset, and independent 

datasets of 73 complex traits and diseases and 430 blood metabolites as replication datasets. In 

each case, expected fraction of replication was empirically determined using a permutation 

analysis.
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Tables 

Table 1: Functional enrichment analysis of pleiotropy score. 

��
�� ��

�� 

Variant effect 
predictor 

 UTR +0.24 (±0.01); P = 1.72x10
-234

 +0.69 (±0.02); P = 2.16x10
-236

 

 coding synonymous +0.24 (±0.01); P = 2.49x10
-99

 +0.61 (±0.03); P = 1.92x10
-76

 

 non synonymous +0.19 (±0.01); P = 3.82x10
-82

 +0.48 (±0.03); P = 3.62x10
-62

 

Roadmap 
Epigenomics 

 H327ac +0.20 (±0.01); P < 10
-308

 +0.54 (±0.01); P < 10
-308

 

 H3K27me3 +0.02 (±0.01); P = 1.40x10
-18

 +0.01 (±0.01); P = 0.4 

 Active TSS +0.20 (±0.02); P = 1.42x10
-36

 +0.54 (±0.04); P = 8.56x10
-34

 

Promoter 

Promoter Upstream 
TSS 

+0.16 (±0.01); P = 4.44x10
-130

 +0.43 (±0.02); P = 4.33x10
-103

 

Promoter 
Downstream TSS 1 

+0.35 (±0.01); P = 1.87x10
-220

 +0.92 (±0.03); P = 3.59x10
-197

 

Promoter 
Downstream TSS 2 

+0.30 (±0.01); P = 2.70x10
-203

 +0.86 (±0.03); P = 3.44x10
-210

 

Transcription 

Transcribed - 5' 
preferential +0.29 (±0.01); P < 10

-308
 +0.88 (±0.01); P < 10

-308
 

Strong transcription +0.38 (±0.01); P < 10
-308

 +1.10 (±0.01); P < 10
-308

 

Transcribed - 3' 
preferential +0.29 (±0.01); P < 10

-308
 +0.82 (±0.01); P < 10

-308
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Weak transcription +0.21 (±0.01); P < 10
-308

 +0.60 (±0.01); P < 10
-308

 

Transcription & 
regulation 

Transcribed & 
regulatory (Prom/Enh) +0.36 (±0.01); P < 10

-308
 +1.00 (±0.02); P < 10

-308
 

Transcribed 5' 
preferential and Enh 

+0.35 (±0.01); P < 10
-308

 +1.00 (±0.01); P < 10
-308

 

Transcribed 3' 
preferential and Enh 

+0.33 (±0.01); P < 10
-308

 +0.92 (±0.02); P < 10
-308

 

Transcribed and 
Weak Enhancer 

+0.32 (±0.01); P < 10
-308

 +0.97 (±0.01); P < 10
-308

 

Active 
enhancer 

Active Enhancer 1 +0.13 (±0.01); P = 4.54x10
-295

 +0.32 (±0.01); P = 5.1x10
-216

 

Active Enhancer 2 +0.11 (±0.01); P = 2.64x10
-294

 +0.28 (±0.01); P = 5.63x10
-238

 

Active Enhancer 
Flank +0.11 (±0.01); P < 10

-308
 +0.29 (±0.01); P = 6.06x10

-270
 

Weak 
enhancer 

Weak Enhancer 1 +0.07 (±0.01); P = 2.79x10
-89

 +0.16 (±0.01); P = 6.89x10
-60

 

Weak Enhancer 2 +0.08 (±0.01); P < 10
-308

 +0.23 (±0.01); P = 6.52x10
-291

 

Primary H3K27ac 
possible Enhancer 

+0.09 (±0.01); P = 2.72x10
-259

 +0.24 (±0.01); P = 1.53x10
-187

 

 Primary DNase +0.03 (±0.01); P = 3.83x10
-21

 +0.05 (±0.01); P = 1.11x10
-7

 

 ZNF genes & repeats +0.08 (±0.01); P = 1.29x10
-7

 +0.20 (±0.04); P = 6.9x10
-7

 

 Heterochromatin -0. 20 (±0.01); P < 10
-308

 -0.61 (±0.01); P < 10
-308

 

 Poised Promoter +0.05 (±0.01); P = 1.03x10
-35

 +0.09 (±0.01); P = 2.27x10
-16

 

 Bivalent Promoter +0.17 (±0.01); P = 1.28x10
-93

 +0.51 (±0.03); P = 6.29x10
-88
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 Repressed Polycomb +0.04 (±0.01); P = 5.77x10
-42

 +0.06 (±0.01); P = 1.48x10
-11

 

 Quiescent/Low -0.41 (±0.01); P < 10
-308

 -1.20 (±0.01); P < 10
-308

 

GTEx - number 
of genes the 
variant is an 

eQTL for 

 eGenes<10 +0.11 (±0.01); P = 6.78x10
-186

 +0.28 (±0.01); P = 1.04x10
-140

 

 eGenes>10 & <15 +0.19 (±0.01); P = 4.72x10
-114

 +0.52 (±0.02); P = 6.84x10
-99

 

 eGenes>15 & <20 +0.31 (±0.02); P = 7.98x10
-52

 +0.88 (±0.06); P = 5.38x10
-47

 

 eGenes>20 +0.66 (±0.06); P = 3.40x10
-27

 +2.07 (±0.18); P = 1.35x10
-30

 

GTEx - number 
of tissues the 
variant is an 

eQTL for 

 eTissue<30 +0.10 (±0.01); P = 1.84x10
-151

 +0.26 (±0.01); P = 1.26x10
-114

 

 eTissue>30 & <35 +0.21 (±0.01); P = 3.70x10
-187

 +0.54 (±0.02); P = 6.80x10
-147

 

 eTissue>35 & <40 +0.36 (±0.02); P = 1.11x10
-82

 +1.13 (±0.06); P = 4.24x10
-92

 

 eTissue>40 +0.35 (±0.05); P = 2,42x10
-13

 +0.97 (±0.14); P = 7.08x10
-12

 

International 
Mouse 

Phenotyping 
Consortium 

 Phenotypes > 1 +0.06 (±0.01); P = 1.91x10
-6

 +0.19 (±0.04); P = 2.70x10
-7

 

Saccharomyces 
cerevisiae 

Morphological 
Database 

 Phenotypes > 1 +0.09 (±0.01); P = 4.48x10
-17

 +0.26 (±0.03); P = 1.53x10
-18

 

 

We grouped variants by (i) molecular function as annotated by Ensembl, (ii) predicted chromatin state as annotated by the NIH 

Roadmap Epigenomics Project, (iii) transcriptional effects as annotated by the NIH Genotype-Tissue Expression (GTex) Project, and 

(iv) effects on model organism phenotypes as annotated by the International Mouse Phenotyping Consortium (IMPC) and 
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Saccharomyces Cerevisiae Morphological Database (SCMD). For each grouping, we computed the mean LD-corrected pleiotropy 

score and used a two-sample Student’s t-test to determine whether the mean was significantly different from the baseline. We found 

(i) that coding regions have higher pleiotropy scores than noncoding regions, (ii) that active promoters and enhancers have the 

highest pleiotropy scores and quiescent and heterochromatin have the lowest, (iii) that variants that control expression of more genes 

in more tissues have higher pleiotropy scores, and (iv) that genes associated with more than one model organism phenotype have 

higher pleiotropy scores. 
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Additional Files 

Additional File 1. Supplementary tables and figures. 

Word document (.docx) containing supplementary figures S1-S8, and supplementary tables S1-
S4. 

Additional File 2. Functional enrichment analysis of pleiotropy score after applying 
polygenicity correction. 

Excel spreadsheet (.xlsx) showing the equivalent of Table 1 using the LD/polygenicity-corrected 

scores (��
�  and ��

�) instead of the LD-corrected scores (��
�� and ��

��) 

Additional File 3. DAVID enrichment analysis of high-pleiotropy genes. 

Excel spreadsheet (.xlsx) showing the results of the DAVID enrichment analysis described in 
the text. 
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