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Abstract

Understanding the movement patterns of animals across different spatio-temporal scales,
conditions, habitats and contexts is becoming increasingly important for addressing
a series of questions in animal behaviour studies, such as mapping migration routes,
evaluating resource use, modelling epidemic spreading in a population, developing
strategies for animal conservation as well as understanding several emerging patterns
related to feeding, growth and reproduction. In recent times, information theory has
been successfully applied in several fields of science, in particular for understanding
the dynamics of complex systems and characterizing adaptive social systems, such as
dynamics of entities as individuals and as part of groups.

In this paper, we describe a series of non-parametric information-theoretic measures
that can be used to derive new insights about animal behaviour with a specific focus
on movement patterns namely Shannon entropy, Mutual information, Kullback-Leibler
divergence and Kolmogorov complexity. In particular, we believe that the metrics
presented in this paper can be used to formulate new hypotheses that can be verified
potentially through a set of different observations. We show how these measures
can be used to characterize the movement patterns of several animals across different
habitats and scales. Specifically, we show the effectiveness in using Shannon entropy to
characterize the movement of sheep with Batten disease, mutual information to measure
association in pigeons, Kullback Leibler divergence to study the flights of Turkey vulture,
and Kolmogorov complexity to find similarities in the movement patterns of animals
across different scales and habitats. Finally, we discuss the limitations of these methods
and we outline the challenges in this research area.

Introduction

Information theory has always played an important role in biology [24] [41]. It is a
field that is devoted to studying the storage, communication and quantification of
information founded by Claude E. Shannon in his influential paper [55] and lies at
the interface of mathematics, statistics, computer science and electrical engineering.
While initial research in this field was mainly theoretical, we have witnessed a plethora
of practical applications in the past decades. For example, concepts and techniques
from this field have been used in several fields such as neurobiology [51], pattern
recognition [16], cryptology [61], bioinformatics [46], quantum computing [39] and
complex systems [37] [42] with significant success.

Recently, due to technological advances, low cost miniaturized sensors have been
increasingly adopted for tracking the behaviour of animals across different scales and
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habitats. These sensors include, but are not limited to, Global Positioning System
(GPS) receivers, accelerometers and radio-frequency identification (RFID) tags. This
has led to an explosion in the deployment of these sensors in different habitats, across
scales by animal behaviour researchers. A natural consequence of this development is
that it is now possible to try to quantify and understand a variety of aspects related
to animal behaviour such as migration patterns and routes, feeding, reproduction and
mating patterns, conservation, monitoring of endangered species, epidemic spreading,
resource use, social behaviour and association. In the field of animal behaviour, GPS,
accelerometers and cameras are the predominant sensors deployed to measure several
behavioural properties of animals. We limit our discussion here to GPS sensors due
to their ease of deployment and the apparent simplicity of interpreting the data they
produce as well as their consequent popularity relative to other sensors. For example,
GPS sensors have been used to study selfish herd behaviour of sheep under threat [33],
the hierarchical structures of group dynamics in flocks of pigeons [44], migration patterns
in vultures [40], productivity in cows [11], and social relationships in birds [48] just to
name a few.

We believe that information-theoretic approaches can provide complementary insights
in the study of animal behaviour. In other words, these approaches do not replace
the existing ones, but they are able to provide additional information about animal
behaviour patterns, especially in terms of movement, which are not apparent using other
types of analysis. Probabilistic approaches are also usually more robust in presence of
noise, a common feature of sensor data. The number of applications of concepts and
techniques from information theory to analysis of animal movement in the literature is
limited. However, information-theoretic metrics have been used in the past for example
to study information flow in animal-robot interactions [13] as well as predator-prey
relationships [45] [29] in animals.

In this paper, we discuss how four classic information theoretic metrics, namely
entropy, mutual information, Kullback-Leibler divergence and Kolmogorov complexity
(normalized compression distance) can be effectively applied to the study of animal
movement. In other words, we explore how they can be used as tools for studying
animal movement data. Indeed, the goal of this work is not to introduce new metrics,
but to demonstrate the potential in using information theoretic concepts to understand
animal behaviour. We introduce each metric separately and then we discuss how each
metric can be applied to a practical problem, by discussing a case study in detail. More
specifically, we demonstrate how these metrics can be used to characterize the movement
patterns of animals across different scales and habitats. It is worth noting that these
methods do not provide new ground-truth information, but they allow for identifying
emergent patterns and formulating hypotheses that can be verified for example by means
of further experimental observations in the field. The case studies are mostly based on
datasets from the Movebank database [66].

The rest of the paper is organized as follows. In Section 1, we describe the Shannon
entropy and demonstrate how it can be used to characterize the movement patterns of
sheep with neurodegenerative disease. In Section 2, we describe the notion of mutual
information and show how it can be used to measure association as well as reconstruct
the flight dynamics in pigeons. We describe the Kullback-Leibler divergence in Section 3
and show how it can be used to characterize the annual movement patterns of the Turkey
Vulture. In Section 4, we describe the Kolmogorov complexity (normalized compression
distance) and demonstrate how it can be applied to extract the relationships in animal
movement patterns across scales and habitats. We conclude our work by highlighting
the challenges and a summary of the methods described in this work.
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1 Shannon Entropy

1.1 Overview

The information content of a random variable is defined by the Shannon entropy as a
measure that quantifies the level of uncertainty embedded in such variable. In the case
of animal movement, Shannon entropy provides a useful quantification of the level of
regularity and predictability of the movement of an animal.

More formally, it can be defined as the uncertainty associated to a random variable
X with realization x, which can be described by the following equation:

H(x) = −
∑
x

p(x) log p(x) (1)

where p(x) is the probability density function and the summation is taken over all
possible realizations of X. The base of the logarithm is not important and can take any
value, provided the same base is used throughout the analysis.

Most of the information theoretic measures that exist today, some of which we will
discuss below, are derived from Shannon entropy. However, there are other several
definitions of entropy such as Renyi entropy [49] and Tsallis entropy [60]. The discussion
of these metrics is outside the scope of the present article.

Due to the noisy nature of most datasets, probabilistic metrics are becoming increas-
ingly useful for modelling not only animal movement data but in general real world
datasets to account for any form of uncertainty inherent in datasets of this nature such
as missing data. Therefore, entropy can be used for assessing the overall welfare and
well-being of animals instead of a metric like distance travelled. Most animals are known
to have a regular activity-rest pattern except under highly unfavourable conditions or
when they have some sort of impairment in their general well-being. This implies that
animals are supposed to have a relatively high entropy except for the period of harsh
conditions when they are either aestivating or hibernating. For this reason, entropy can
be used to characterize the movement patterns of animals so as to assess the state of
their health. In addition, it can also be used in lieu of tortuosity to describe how tortuous
an animal’s path is using the turn angle as the input. The conditional entropy is an
important element of the conditional mutual information and can be used for example
in understanding swarm behaviour [38].

In the following subsection, we will consider a case study illustrating a possible
application of Shannon entropy to the study of animal behaviour and, more specifically,
to the characterization of the movement patterns of sheep with neurodegenerative
diseases.

1.2 Case study: Shannon entropy as a tool for characterizing
movement patterns of sheep with neurodegenerative disease

The detection of abnormal locomotion patterns is essential for the early diagnosis of
a number of neurodegenerative diseases such as Batten disease in animals. Sheep
with neurodegenerative diseases such as Batten disease are known to exhibit repetitive
behaviours [47] over time due to gradual loss of motor skills [50] and social awareness [35].
Here, we use Shannon entropy to characterize the movement patterns of a flock of sheep
comprising sheep with a natural mutation for Batten disease and their age matched
control (mean age of 2 years) group using the dataset of [23]. We use the trajectory of
each sheep sampled every second and compute the distance covered every ten minutes
over eleven hours (20:00-7:00) each day for a total period of six days. This time window is
chosen in order to minimize the influence of external environmental noise in the dataset.
We further bin the resulting distance calculated in order to assign to each sub-intervals
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symbols. To bin the data, given the fact that we are working with skewed distributions,
we use the head/tail classification rule introduced in [30] resulting in 12 bins. First we
evaluate this approach on synthetic data where we create two synthetic sheep sampling
their distance covered from some random generalized pareto distributions. We create
ten of these distributions with different parameters. The abnormal sheep is allowed to
sample from just two of these distributions while the normal sheep is allowed to sample
from all. Details of this can be found in supplementary material. We compute the
entropy and results Figure 1a) show the normal sheep have a higher entropy compared
to the abnormal sheep. We further compute the entropy for each sheep (see Table 1 in
supplementary material) as well as the mean entropy (Figure 1b) for the two groups
of sheep. Our results show that the Batten sheep on the average have a lower entropy
than the normal sheep with p-values (0.0076, 0.1042, 0.2628, 0.0065, 0.0234, 0.0205)
across the six days respectively. The potential impact of uncontrollable environmental
variables such as unfavourable weather conditions is significant and may influence the
behaviour of the sheep especially because the experiment was carried out in an open
field. Therefore, the result should be interpreted with caution. We compare the entropy
of the two groups of sheep with their respective average distance covered in (Figure 1c)
and its mean variance (Figure 1d). The Batten sheep can be seen to have covered, on
average, a longer distance over the period of observation.

2 Mutual Information

2.1 Overview

We now describe another classic information theoretic measure intimately linked to
entropy, called mutual information [54]. The mutual information of two random variables
X and Y defines the mutual influence one variable has over the other. Specifically, it
quantifies the amount of information in one variable embedded in the other. For this
reason, mutual information can be used as a measure of association or social-grouping,
for example in the characterization of leader-follower relationship, group coordination
and, more generally, collective behaviour [59]. This can be further used to derive a social
network [34] and its complementary to the gambit of the group approach [22]. Mutual
information can be used to measure non-linear relationships between two variables.
More formally, the mutual information of two discrete random variables X and Y , with
realizations x and y respectively, is given by:

I(X;Y ) =
∑
y

∑
x

p(x, y) log
p(x, y)

p(x)p(y)
(2)

In this, p(x) and p(y) are the marginal probability distribution functions of X and
Y respectively and p(x, y) is the joint probability distribution function of X and Y .

In the case of continuous random variables we have:

I(X;Y ) =

∫
Y

∫
X

p(x, y) log
p(x, y)

p(x)p(y)
(3)

Here the summation for the case of discrete distribution functions has been replaced
by a double integral. Mutual information is non-negative, i.e., I(X;Y ) ≥ 0 and only
zero only when X and Y are completely independent, making p(x, y) = p(x)p(y) and

thus log
p(x, y)

p(x)p(y)
= log(1) = 0. It is also symmetric: I(X;Y ) = I(Y ;X). As mentioned

earlier, other information theoretic measures are derived from entropy. The mutual
information can be written as a function of entropy as follows:
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I(X;Y ) ≡ H(X)−H(X|Y )

≡ H(Y )−H(Y |X)
(4)

H(X|Y ) and H(Y |X) represent conditional entropies and H(X) and H(Y ) the
marginal entropies.

We now consider a potential application of mutual information, in its application to
the study of association in pigeons.

2.2 Case study: Mutual information for measuring association
and leadership in pigeons

As mentioned earlier, the de-facto method used in the animal behaviour community for
measuring association is the gambit of the group otherwise known as co-location [22]. To
detect significant associations and minimize co-location by chance, a permutation test
(random shuffling of associations) is often carried out [21]. However, there is no method
for choosing the appropriate radius to define co-location. Also, the directional correlation
delay time method (measures how long it takes for one bird to change direction relative
to another) used by [44] in reconstructing pigeon flight network structure can only detect
linear relationships leaving the non-linear relationships undetected. Previously in [14],
the authors used transfer entropy (measured directed transfer of information) to infer
leadership in Zebrafish. We state here that its our aim to detect association using a
bidirectional graph and not a directed graph where information flow and its direction is
of utmost importance. In addition, transfer entropy may be of limited use in instances
where the agents are constantly changing positions relative to one another [53]. For a
review of other methods that have been used for measuring leadership and influence,
please refer to [58].

We demonstrate how Mutual Information can be used to overcome the limitations
associated with the methods above by using it to measure association between pigeons in
flight. We use the dataset of [53] [62] and selected flight 8 as the result was discussed in
the literature in detail. We compute the time-series of the turn angle of each bird followed
by the pairwise mutual information of these time series of the nine birds involved in the
flight to obtain a distance matrix (see Table 2 in supplementary material). As expected,
there will always be a certain degree of association between all the birds in the flight,
we use a randomization test to determine a threshold for significant pairwise mutual
information (see supplementary material). We further build a social network (Figure 2a)
to visualize the flight formation. Our result is consistent with two previous studies on
pigeon flight. First, we observe that pigeons do show a hierarchical formation when in
flight as seen in (Figure 2a). This is a result consistent with the observations in [44]. Also,
we were also able to detect the leader as node M during the flight which is the node M
with one edge. This result is also consistent with the ground truth in the literature [53].
We compare this approach with three other methods: correlation coefficient, transfer
entropy and Granger causality (Figure 2). While it is not straightforward to compare
the performance of the four methods, one basis for comparison concerns leadership.
Mutual information shows the best performance in terms of leader identification accuracy
followed by the correlation coefficient. It is not possible to identify the leader using
the transfer entropy and Granger causality. We attribute the poor performance of the
transfer entropy and Granger causality to the continuous change in positions of the birds
when flying.

5/21

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 30, 2018. ; https://doi.org/10.1101/311241doi: bioRxiv preprint 

https://doi.org/10.1101/311241


3 Kullback-Leibler divergence

3.1 Overview

Kullback-Leibler divergence (KLD) also known as relative entropy measures the distance
between two probability distributions. In animal movement modelling, KLD can be used
to quantify changes in behaviour of an individual animal or discrepancies in behaviour
in a group. For discrete probability distributions P and Q, KLD is defined as follows:

DKullback−Leibler(P ||Q) =
∑

P (x) log
P (x)

Q(x)

=
∑

P (x) log P (x)−
∑

P (x) log Q(x)

= H(P )−H(P,Q)

(5)

where H(P,Q) is the joint entropy between P and Q and H(P ) the entropy of P .
For continuous probability distributions P and Q, KLD is given by:

DKullback−Leibler(P ||Q) =

∫ +∞

−∞
P (x) log

P (x)

Q(x)
dx (6)

KLD is asymmetric, i.e.:

DKullback−Leibler(P ||Q) 6= DKullback−Leibler(Q||P ) (7)

However, there is a symmetric version which is given by:

DKullback−Leibler(P ||Q) +DKullback−Leibler(Q||P ) (8)

There are several potential applications of KLD. For example, it can be used for
detecting behavioural change points and modes such as foraging, resting and travelling in
animals by constructing a sliding window that moves across a time series while computing
the KLD of the probability distributions of contiguous windows. This has implications
for example in determining regime shifts, most especially for animals that move in
non-homogeneous ways. In addition, it can also be used to identify points of change in
landscape for animals who travel long distances over a heterogeneous landscape that
affect their behavioural states. KLD has also applications in determining activity-rest
patterns in animals.

Another potential application is the use of KLD for monitoring the health of animals
that co-exist in groups. This can be achieved by computing the pairwise KLD between
the probability distributions of movement data of all animals in the group while seeking
animals with a significant divergence from the remaining members of the group. This
approach, when integrated with appropriate machine learning tools such as hierarchical
clustering, can be used potentially to classify animals into healthy and non-healthy or
automatic classification of animals into species.

3.2 Case study: Kullback-Leibler divergence reveals Turkey Vul-
ture has predictable annual movement patterns

Previously, KLD has been used by [31] to measure the divergence from the equilibrium
behaviour of the blue tuna fish after a telemetry device was attached to it. In this case
study, we use KLD to describe the movement patterns of the Turkey Vulture. The
Turkey Vulture, according to [19], is the world’s most abundant and widely distributed
avian scavenger with a population in excess of five million individuals. We characterize
the movement patterns of the Turkey Vulture (Cathartes aura) [19] [8] across several
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years by comparing how the movement patterns at the beginning of the year (January)
vary relative to the remaining months of the year across the next three years. The
bird by name Leo was chosen since we have movement dataset for several years. We
compute the Kullback-Leibler divergence (symmetric version) across several years and
our results (Figure 3) show that the movement strategy of this bird is highly predictable.
We observe from Figure 3 that the Kullback-Leibler divergence across the three years is
characterized by the presence of several peaks and troughs. The peaks represent the
movement back to the breeding sites as well as the breeding season when there is little
movement in the temperate regions of America. The troughs represent the migrating
period when the birds migrate to tropical regions in search of food. These species of
birds start breeding in the temperate regions such as North and South America where
they have an abundance of food during the spring and this breeding continues until the
onset of fall [19] [9]. Once fall starts and winter starts to set in, these birds migrate to
tropical regions where it is warmer and there is abundance of rain and food throughout
the year. However, at the onset of spring around March, these birds migrate back to the
temperate regions of America, where they are guaranteed abundant food and resources.
We compare the KL divergence with the mean difference as well as the Earth Mover’s
Distance (EMD) of the monthly movement data of interest (Figure 3). We also compare
how the movement patterns in other months of the year (February to December) vary
relative to the remainder of the dataset over three years. The results in Figure 4 show
the bird have different movement patterns in the months between June and September
relative to other months of the year, which is essentially its breeding season. 1

4 Kolmogorov Complexity

4.1 Overview

Finally, we describe a similarity metric influenced by Kolmogorov complexity (KC), a
metric with foundations in the field of algorithmic information theory. The Kolmogorov
complexity of an object represents the shortest computer program that produces the
object as output [26]. More formally, the KC of a string x with respect to a reference
machine U is defined as:

min
z
{{l(z) : U(z) = x, z ∈ {0, 1}∗} (9)

where z is a program that prints string x and then halts and l is the length. The
concept of Kolmogorov complexity can be used as an inference tool to find the shortest
description of behavioural data. The smaller the KC of a sequence the regular or simple
it is and vice-versa. We describe the Normalized Information Distance (NID) [64], a
similarity measure inspired by Kolmogorov complexity and defined as:

NID(x, y) =
max {K(x|y),K(y|x)}
max {K(x),K(y)}

(10)

Due to the non-computability of the NID, the NID has been re-written [17] as
the normalized compression distance (NCD) by simply approximating the Kolmogorov
complexity K, using a compressor Z. The NCD between two strings x and y can be
defined as:

NCD(x, y) =
Z(xy)−min {Z(x), Z(y)}

max {Z(x), Z(y)}
(11)

1http://eol.org/pages/1049010/details.
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Here xy is the concatenation of x and y. These strings can be documents, software,
genomes or even images. TheNCD takes on non-negative values in the range 0 ≤ r ≤ 1+ε
with ε defined to take into account imperfections in the compression methods. Please
refer to [17] for more details.

The NCD has been used in a variety of disciplines for different purposes, such
as anomaly detection [32], gene expression dynamics [46], classification of music [15],
detection and classification of computer worms and viruses as well as detecting the
origin of new ones [65]. Since the NCD has been shown to work well with sequences
and strings, it can be used, for example, in monitoring the behaviour of animals to know
when they deviate from a previously or commonly known sequence of states, for example
because of climate change [28]. It can also be used to quantify similarity in movement
patterns of conspecifics across different habitats.

4.2 Case study: Kolmogorov complexity as tool for classifying
animal movement patterns across scales

Animals across different habitats, scales, and species are known to have different move-
ment patterns. However, little or no study has been carried out to find out which groups of
animals possess similar movement strategies across different habitats and scales. Recently
in [2], the authors discussed a classification of several animals across different species
into similar groups using principal component analysis on some movement metrics with
hierarchical clustering. Their result suggests that all animals organizes into four distinct
groups of movement syndromes namely migratory, central place, nomadic and territorial.
In this case study, we analyse the movement patterns of eleven animals (Table 1) across
different spatio-temporal scales and habitats. For our analysis, we obtain the datasets
of the Galapagos tortoise (Geochelone nigra) [10] [1], Springbok (Antidorcas marsupi-
alis) [3] [1], African buffalo (Syncerus caffer) [4] [18] [25] [1], African elephant (Loxodonta
africana)(original unpublished data contributed by Miriam Tsalyuk and Wayne M.
Getz) [1], Black-backed jackal (Canis mesomelas) [7] [1], California sea lion (Zalophus
californianus) (original unpublished data contributed by Dan Costa) [2] [1], Galapa-
gos albatross (Phoebastria irrorata) [20], Sheep (Ovies aries) and Sheepdog [63] [62],
Northern elephant seal (Mirounga angustirostris) [52] [1], White-backed vulture (Gyps
africanus) [56] [57] [1] and Burchell’s Zebra (Equus burchellii) [5] [6]. All these datasets
use the same 1 hour sampling period [2]. First, we evaluate our approach on synthetic
data details of which can be found in the supplementary material. Results, with both
short and long movement data shows we can separate distinctly the synthetic animals
into groups based on the distribution from which they sample their velocities. Then, we
compare the monthly movement patterns of all the 85 animals to find similarities by
computing their pairwise NCD with the gzip compressor [43] followed by hierarchical
clustering of the resulting distance matrix (see supplementary material for details). The
only metric used here is distance covered every hour, which we further processed to its
binary equivalent (strings of zeroes and ones). We refrained from using the turn-angle
here as it is an unreliable metric considering the noisy nature of most sensors. Our
results (Figure 5) show that animals organize into three groups of those that live on land
(zebra, elephant, springbok, jackal, sheep and buffalo), those that live in water (tortoise,
sea lion and elephant seal) and those that fly (albatross and Turkey Vulture). Amongst
the animals that live on land, we notice there appears to be some similarity between the
movement patterns of the elephant and zebra while others seem to organize into distinct
groups of conspecifics. Therefore, we hypothesize that there might be a correlation
between the feeding and movement patterns of animals. We observe a small number of
unexpected classifications: for example, Vulture V1 was classified among the animals that
live in water. A possible explanation is related to the fact that the dataset is noisy. To
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find long-term similarities among animals movement patterns we compare approximately
one year movement data of 16 animals (Table 1) across six different species. We selected
these datasets due to their temporal duration. Results (Figure 6) show that there might
be some similarities in the long-term movement patterns of vultures and jackals which
are both scavengers. This supports a hypothesis that there might be a correlation in the
movement patterns of animals with similar feeding habits.

We compare this approach with the pairwise mutual information of the distance
covered with respect to the two instances discussed above (see Figures 1 and 2 in
the Supplementary Material). We believe that the insights obtained by means of this
technique might be of value for researchers in order to formulate new research hypotheses
based on the patterns emerging from this data.

5 Limitations And Open Challenges

While we have highlighted the potential use of information theoretic metrics in obtaining
insights about animal movement and also show the applications of these metrics to real
animal movement data, we would like to underline that these methods should be applied
with caution given their inherent limitations. First, the issue of missing data remains
a challenging problem due to logger failure or inability to regularly obtain position
fixes. In addition, it suffices to state here that care must be taken while choosing
the appropriate amount of data from which inference can be made. For example,
let us consider the analysis of the similarities of the complexities of animals across
different taxa and spatio-temporal scales. We identified similarity only in the long-term
movement patterns of jackals and vultures. This phenomenon might not have been
observed if datasets of shorter length had been used. Indeed the results derived from
using the measures presented in this paper should always be evaluated considering the
corresponding temporal scale of the dataset.

We issue a caveat on estimating probability density functions (PDF) of continuous
movement data. At the moment, most of the methods and tools available are based
on the assumption of underlying normal distributions. Considering that continuous
animal movement data often follows skewed (e.g., power-law or truncated power-law)
distributions [27] [12], researchers employing some of the methods described here, for
example the Kullback-Leibler divergence, should exercise appropriate caution while
estimating the PDF of these distributions. In the present study, we took special
precaution while computing the probability distribution for entropy by binning the data
around several mean values of the data in the direction of skewness.

Furthermore, appropriate methods for permutation and randomization must be used
while determining a threshold, for example for the calculation of the pairwise mutual
information between animals in a group.

6 Conclusions

We have demonstrated the use of a class of non-parametric information theoretic tools
for studying movement patterns of animals and have showed how they can be applied by
means of several animal movement datasets. First, we demonstrate how Shannon entropy
can be used to characterize the movement patterns of sheep with Batten disease where
the distance covered every ten minutes was used as the basis for generating symbols
to compute the entropy. The result shows that the Batten sheep have a lower entropy
than their control counterparts. Also, we describe the use of mutual information for
detecting associations in animals using pigeons as an example. Our findings show that
this method can be very useful in lieu of the widely used gambit of the group approach
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as we were able to implicitly detect the leader from the flight data. We have showed
how the Kullback-Leibler divergence can be used to characterize the movement patterns
of the Turkey Vulture. From our results we were able to see that the movement patterns
of this bird is highly predictable over several years. Lastly, we have described a metric
with foundations in the field of algorithmic information theory known as Kolmogorov
complexity (normalized compression distance). We have used this metric to characterize
the movement patterns of animals across different taxa and spatio-temporal scales with
results suggesting there might be a correlation between the feeding and movement
patterns of animals. These methods provide complementary insights in the study of
animal behaviour. In particular, they can be used to formulate new hypotheses regarding
animal movement. In other words, they provide additional information about animal
movement that is not apparent using other types of analysis. This class of probabilistic
methods is also usually more robust in presence of noise, which is inherent in location
data.

As part of our future research agenda, we plan to explore additional movement
datasets as they become publicly available and, possibly, other types of behavioural
datasets, for example from accelerometers, in order to show further how these information
theoretic metrics can be used to obtain novel insights about the behaviour of animals in
their natural habitats.
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Tables & Figures

Species No of individuals Habitat Feeding strategy

African buffalo (B) 5 Land Herbivore
African elephant (E) 5(3) Land Herbivore

Black-backed jackal (J) 11 Land Scavengers
Burchell’s zebra (Z) 2(2) Land Herbivore

California sea lion (sl) 15 Water Piscivore
Galapagos albatross (A) 8 Land/Air Piscivore
Galapagos tortoise (T) 7(4) Land/Water Piscivore/Herbivore
N. elephant seal (SE) 14 Water Piscivore

Sheep & Sheep-dog (SD) 5 Land Herbivore
Springbok (Sp) 9(1) Land Herbivore

White-blacked vulture (V) 4(2) Land/Air Scavengers

Table 1. Summary of 85 individuals within 11 species. The code in front of the species
represents the label codes used for each animals in the hierarchical clustering while the
number in the bracket under the no of individuals represents the number of animals
with up to one year of observational data.
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Figure 1. (a) Mean entropy with synthetic data; (b) Mean entropy of the two groups
of sheep across 6 days where the larger circles represent days when the mean difference
in entropy are statistically significant. The sheep affected by Batten disease can be seen
to have a lower entropy due to the tendency to repeat the same behaviour over a long
period of time; (c) Mean distance covered by the two groups of sheep; (d) Corresponding
variance of the mean distance covered.
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Figure 2. Flight dynamics of homing pigeons characterized by (a) Mutual Information;
(b) Correlation Coefficient; (c) Transfer entropy (Kernel estimator) [36]; (d) Transfer
entropy (Kraskov estimator) [36]; (e) Granger Causality (p-value = 0.05); (f) Granger
Causality (p-value = 0.001); (g) Granger Causality (p-value = 0.0001). The tables
presenting the pair-wise values can be found in the supplementary material.
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Figure 3. Kullback-Leibler divergence of the monthly movement pattern over a period
of 3 years. The peaks represent the annual period of breeding as well as the flight back
home after winter and the troughs migratory periods during which the bird travels in
search of food. We compare the KL divergence with the mean difference and the Earth
Movers Distance (EMD).
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Figure 4. Kullback-Leibler divergence of the monthly movement patterns over a period
of 3 years where the reference month is (a) February (b) March (c) April (d) May (e)
June (f) July (g) August (h) September (i) October (j) November (k) December. From
the result, it can be seen that the movement pattern during January, February, March,
April, May, October, November and December are the same, while the bird exhibits a
different pattern in June, July, August and September. This suggests that the breeding
season of this bird is between June and September. The result is consistent with the
information about Turkey Vulture in North America as they lay their eggs between May
and June, incubate them for between 38 and 41 days and when the eggs hatch. The
hatchlings are further brooded for a period between 70 and 80 days resulting in between
108 and 121 days of breeding, which is equivalent to four months of breeding.
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Figure 5. Hierarchical clustering of the pairwise NCD of 85 animals spread across 11
species. All the animals on average organize into three groups of those that live on land
(green), those that live in water (red) as well as those who fly (blue).
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Figure 6. Hierarchical clustering of the pairwise NCD of 16 animals spread across 6
species representing the movement patterns over a period of one year. The animals
organize into three distinct groups that are correlated with their feeding patterns.
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