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Abstract

Evidence suggests that novel enzyme functions evolved from low-level promis-
cuous activities in ancestral enzymes. Yet, the evolutionary dynamics and
physiological mechanisms of how such side activities contribute to systems-
level adaptations are poorly understood. Furthermore, it remains untested
whether knowledge of an organism’s promiscuous reaction set (‘underground
metabolism’) can aid in forecasting the genetic basis of metabolic adapta-
tions. Here, we employ a computational model of underground metabolism
and laboratory evolution experiments to examine the role of enzyme promis-
cuity in the acquisition and optimization of growth on predicted non-native
substrates in E. coli K-12 MG1655. After as few as 20 generations, the
evolving populations repeatedly acquired the capacity to grow on five pre-
dicted novel substrates–D-lyxose, D-2-deoxyribose, D-arabinose, m-tartrate,
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and monomethyl succinate–none of which could support growth in wild-type
cells. Promiscuous enzyme activities played key roles in multiple phases of
adaptation. Altered promiscuous activities not only established novel high-
efficiency pathways, but also suppressed undesirable metabolic routes. Fur-
ther, structural mutations shifted enzyme substrate turnover rates towards
the new substrate while retaining a preference for the primary substrate. Fi-
nally, genes underlying the phenotypic innovations were accurately predicted
by genome-scale model simulations of metabolism with enzyme promiscuity.
Computational approaches will be essential to synthesize the complex role of
promiscuous activities in applied biotechnology and in models of evolutionary
adaptation.

Keywords: adaptive evolution, enzyme promiscuity, systems biology,
genome-scale modeling

1. Introduction1

Understanding how novel metabolic pathways arise during adaptation to2

environmental changes remains a central issue in evolutionary biology. The3

prevailing view is that enzymes often display promiscuous (i.e., side or sec-4

ondary) activities and evolution takes advantage of such pre-existing weak5

activities to generate metabolic novelties[1, 2, 3, 4, 5, 6, 7, 8, 9]. However, it6

remains poorly explored how and at what evolutionary stages enzyme side7

activities contribute to environmental adaptations. Do genetic elements as-8

sociated with promiscuous activities mutate mostly in the initial ‘innovation’9

stage of adaptation when the population acquires the ability to grow on a10

new nutrient source[9, 10] (i.e., innovation) or do they also contribute to11

improving fitness in subsequent stages (i.e., optimization)[11]? Innovations12

have been linked to beneficial mutations that endow an organism with novel13

capabilities such as the ability to use a new carbon source and expand into14

a new ecological niche[11, 12]. This is distinct from optimizations associated15

with mutations that improve upon the initial innovation. It is often observed16

that the mutations accrued within this optimization phase produce gradual17

benefits in fitness[11]. Typically, enzyme promiscuity has been linked to the18

innovation phase, for which mutations enhancing secondary activities may19

result in dramatic phenotypic improvements[2, 11]. In this work, we demon-20

strate that enzyme promiscuity can be linked to fitness benefits in both the21

innovation and optimization stages of adaptive evolution.22
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A second open question in understanding the role of enzyme promiscuity23

in adaptation concerns our ability to predict the future evolution of broad ge-24

netic and phenotypic changes[13, 14]. There has been an increasing interest25

in studying empirical fitness landscapes to assess the predictability of evolu-26

tionary routes[15, 16]. However, these approaches assess predictability only27

in retrospect and there is a need for computational frameworks that forecast28

the specific genes that accumulate mutations based on mechanistic knowl-29

edge of the evolving trait. A recent study suggested that a detailed knowl-30

edge of an organisms promiscuous reaction set (the so-called ‘underground31

metabolism’[17]) enables the computational prediction of genes that confer32

new metabolic capabilities when artificially overexpressed[4]. However, it re-33

mains unclear whether this approach could predict evolution in a population34

of cells adapting to a new nutrient environment through spontaneous muta-35

tions. First, phenotypes conferred by artificial overexpression might not be36

accessible through single mutations arising spontaneously. Second, and more37

fundamentally, mutations in distinct genes may lead to the same phenotype.38

Such alternative mutational trajectories may render genetic evolution largely39

unpredictable. Furthermore, computational approaches can aid in predicting40

and discovering overlapping physiological functions of enzymes [15, 18], but41

these have also yet to be explored in the context of adaptation. In this study,42

we address these issues by performing controlled laboratory evolution exper-43

iments to adapt E. coli to predicted novel carbon sources and by monitoring44

the temporal dynamics of adaptive mutations.45

2. Results and Discussion46

2.1. Computational prediction and experimental evolution of non-native car-47

bon source utilizations48

To test our ability to predict evolutionary adaptation to novel (non-49

native) carbon sources based on our knowledge of underground metabolism,50

we utilized a comprehensive network reconstruction of underground metabolism[4].51

This network reconsruciton was previously shown to correctly predict growth52

on non-native carbon sources if a given enabling gene was artificially over-53

expressed in a growth screen[4]. By adding the set of underground reactions54

to the comprehensive metabolic reconstruction for E. coli K-12 MG1655,55

iJO1366[19], we employed the constraint-based modeling framework to iden-56

tify carbon sources where the native E. coli metabolic network was unable57

to grow, but addition of a single underground reaction predicted growth.58
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Based on this computational procedure, we selected eight carbon sources59

that cannot be utilized by wild-type E. coli MG1655 (Table S1).60

Next, we initiated laboratory evolution experiments to adapt E. coli to61

these non-native carbon sources to examine the validity of the computational62

predictions. Adaptive laboratory evolution experiments were conducted in63

two distinct phases: first, an ‘innovation’[9, 10] stage during which cells64

acquired mutations to grow on the non-native carbon sources and, second,65

an ‘optimization’[11] stage during which a strong pressure was placed to66

select for the fastest growing cells on the novel carbon sources (Figure 1A).67

During the initial innovation stage of laboratory evolution experiments68

(Figure 1A, see SI Materials and Methods), E. coli was successfully adapted69

to grow on five non-native substrates. Duplicate laboratory evolution ex-70

periments were conducted in batch growth conditions and in parallel on an71

automated adaptive laboratory evolution (ALE) platform using a protocol72

that uniquely selected for adaptation to conditions where the ancestor (i.e.,73

wild-type) was unable to grow (Fig. 1A)[20]. In the innovation phase, E. coli74

was weaned off of a growth-supporting nutrient (glycerol) onto the novel sub-75

strates (Fig. 1A, Table S2). A description of the complex passage protocol76

is given in the Figure 1 legend and expanded in the methods for both phases77

of the evolution. This procedure successfully adapted E. coli to grow on five78

out of eight non-native substrates, specifically, D-lyxose, D-2-deoxyribose, D-79

arabinose, m-tartrate, and monomethyl succinate. Unsuccessful cases could80

be attributed to various experimental and biological factors such as exper-81

imental duration limitations, the requirement of multiple mutation events,82

or stepwise adaptation events, as observed in an evolving E. coli to utilize83

ethylene glycol [21].84

2.2. Underground metabolism accurately predicted the genes mutated during85

innovation86

To analyze the mutations underlying the nutrient utilizations, clones were87

isolated and sequenced shortly after an innovative growth phenotype was88

achieved and mutations were identified (see Methods) and analyzed for their89

associated causality (Fig. 1B, Fig. S1, Dataset S1). Strong signs of par-90

allel evolution were observed at the level of mutated genes in the replicate91

evolution experiments. Such parallelism provided evidence of the beneficial92

nature of the observed mutations and is a prerequisite for predicting the93

genetic basis of adaptation[22]. Mutations detected in the evolved isolated94
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clones for each experiment demonstrated a striking agreement with such pre-95

dicted ‘underground’ utilization pathways[4]. Specifically, for four out of the96

five different substrate conditions, key mutations were linked to the predicted97

enzyme with promiscuous activity, which would be highly unlikely by chance98

(P <10−8, Fishers exact test), (Table 1, Fig. S2). Not only were the specific99

genes (or their direct regulatory elements) mutated in four out of five cases,100

but few additional mutations (0-2 per strain, Dataset S1) were observed in101

the initial innovation phase, indicating that the innovations required a small102

number mutational steps to activate the predicted growth phenotype and the103

method utilized was highly selective. For the one case where the prediction104

and observed mutations did not align, D-arabinose, a detailed inspection of105

the literature revealed existing evidence that three fuc operon associated en-106

zymes can metabolize D-arabinose–FucI, FucK, and FucA [23]. In this case,107

the modeling approach could not make the correct prediction because the108

promiscuous (underground) reaction database was incomplete.109

In general, key innovative mutations could be categorized as regulatory110

(R) or structural (S) (Table 1). Of the fifteen mutation events outlined111

in Table 1, eleven were categorized as regulatory (observed in all five suc-112

cessful substrate conditions) and four were categorized as structural (three113

of five successful substrate conditions). For D-lyxose, D-2-deoxyribose, and114

m-tartrate evolution experiments, mutations were observed within the cod-115

ing regions of the predicted genes, namely yihS, rbsK, and dmlA (Table116

1, Figs. S3-S5). Regulatory mutations, occurring in transcriptional regu-117

lators or within intergenic regions–likely affecting sigma factor binding and118

transcription of the predicted gene target–were observed for D-lyxose, D-119

2-deoxyribose, m-tartrate, and monomethyl succinate (Table 1). Observing120

more regulatory mutations is broadly consistent with previous reports[10, 24].121

The regulatory mutations were believed to increase the expression of the122

target enzyme, thereby increasing the dose of the typically low-level side123

activity[18]. This observation is consistent with ‘gene sharing’ models of124

promiscuity and adaptation where diverging mutations that alter enzyme125

specificity are not necessary to acquire the growth innovation[18, 25]. Fur-126

thermore, although enzyme dosage could also be increased through dupli-127

cation of genomic segments, this scenario was not commonly observed dur-128

ing the innovation phase of our experiments. Two large duplication events129

(containing 165 genes (yqiG-yhcE ) and 262 genes (yhiS -rbsK ), respectively)130

were observed only in the innovation phase adaption for growth on D-2-131

deoxyribose, and these regions did include the rbsK gene with the under-132
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ground activity predicted to support growth (Table 1).133

To identify the mutations that were causally involved in the nutrient uti-134

lization phenotypes, we re-introduced each key mutation (Table 1) into the135

ancestor wild-type strain using the genome engineering method (pORTMAGE)[26].136

Genome editing was performed for screening mutation causality[27] on all137

novel substrate conditions, except for monomethyl succinate, which only con-138

tained a single mutation (Table 1). Furthermore, the large duplication in the139

D-2-deoxyribose strain could not be reconstructed using this method due to140

the limitations of the method. Individual mutants were isolated after pORT-141

MAGE reconstruction, and their growth was monitored on the innovative142

growth medium over the course of one week. The growth test revealed that143

single mutations were sufficient for growth on D-lyxose, D-arabinose, and144

m-tartrate, but with varying lengths of time for growth to be detected de-145

pending on the mutation present (Table S3). For example, in the case of146

D-lyxose, growth was detected in YihW ∆2bp mutant cells in approximately147

3-4 days, compared to 5-7 days for YihS single mutation cells. Interestingly,148

in the case of D-2-deoxyribose, an individual mutation (either the N20Y rbsK149

or the ∆rbsR mutation) was not sufficient for growth, thereby suggesting150

that the mechanism of adaptation to this substrate is more complex, requir-151

ing multiple mutation events (in this case, both regulatory and structural152

mutations). Overall, these causality assessments support the notion that153

underground activities open short adaptive paths towards novel phenotypes.154

Were the mutations observed in our laboratory experiment relevant for155

environmental adaptations in the wild? The N20Y sole mutation observed156

in the RbsK enzyme during the evolution on D-2-deoxyribose served as a157

case study. Previous work has found that predominantly intestinal and ex-158

traintestinal strains of E. coli, as well as some Salmonella species, can use159

D-2-deoxyribose as a sole carbon source as they possess a pathogenicity is-160

land containing the deoxyribokinase deoK[28, 29, 30], which shares a 36%161

sequence identity with rbsK (BLASTp [31] expect (E) value 4e-29). Specifi-162

cally, four such reported pathogenic strains in this set (three E. coli and one163

Salmonella)[28, 29, 30] were shown to grow on D-2-deoxyribose and possess a164

deoxyribokinase (DeoK) with a tyrosine residue at the equivalent N20Y posi-165

tion (Fig. S4). This information suggests that the N20Y mutation may have166

improved the ribokinase underground activity of RbsK in the mutant strain167

evolved here on D-2-deoxyribose and enabled growth in this environment168

similar to the capabilities of the strains that possess the DeoK enzyme (see169

Fig. S5 for a structural comparison). Therefore, this case highlighted that170
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the genetic basis of adaptation observed in the laboratory is indeed relevant171

to evolution in the wild.172

2.3. Contribution of enzyme side activities to the optimization phase of adap-173

tation174

Once the roles of mutations acquired during the innovation phase were es-175

tablished, adaptive mechanisms required for optimizing or fine-tuning growth176

on the novel carbon sources were explored. Specifically, of major inter-177

est for this study was the role of enzyme promiscuity during this second178

‘optimization’[11] phase of the evolutions. Analysis of mutations in the opti-179

mization phase led to identification of additional promiscuous enzyme activi-180

ties, above and beyond the innovative mechanisms, impacting the phenotypes181

of the evolved strains in four of the five nutrient conditions (Table 2). Dis-182

covery of these optimizing activities was driven by a systems-level analysis183

consisting of mutation, enzyme activity, and transcriptome analyses coupled184

with computational modeling of optimized growth states on the novel carbon185

sources.186

The ‘optimization’ phase of the evolution experiments consisted of serially187

passing cultures in the early exponential phase of growth in order to select188

for cells with the highest growth rates (Fig. 1A). Marked and repeatable in-189

creases in growth rates on the non-native carbon sources was observed in as190

few as 180-420 generations (Table S1). Whole genome sequencing of clones191

was performed at each distinct growth-rate ‘jump’ or plateau during the opti-192

mization phase (see arrows in Fig. 1B, Fig. S1). Such plateaus represent re-193

gions where a causal mutation has fixed in a population[20]. Out of the total194

set of 41 mutations identified in the growth optimization regimes (Datasets195

S1, S2), a subset (Table 2) was explored. This subset consisted of genes which196

were repeatedly mutated in replicate experiments or across all endpoint se-197

quencing data on a given carbon source. To unveil the potential mechanisms198

for improving growth on the non-native substrates, the transcriptome of ini-199

tial and endpoint populations (right after the innovation phase and at the200

end of the optimization phase, respectively) was analyzed using RNAseq.201

Differentially expressed genes were compared to genes containing optimizing202

mutations (or their direct targets) and targeted gene deletion studies were203

performed. Additionally, for the D-lyxose experiments, enzyme activity was204

analyzed to determine the effect of a structural mutations acquired in a key205

enzyme during growth optimization.206
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Several mutations acquired during the optimization phase leading to large207

gains in fitness were directly linked to the influence of enzyme promiscuity.208

A clear example of optimizing mutations involved with optimization were209

those acquired during the D-lyxose experiments that were linked to enhanc-210

ing the secondary activity of YihS, the enzyme also involved in the initial211

innovation. Protein structural mutations were observed beyond those ob-212

served during after the initial innovation. Structural mutations are believed213

to improve the enzyme side activity to achieve the optimization, and this214

effect was experimentally verified. The effects of structural mutations on215

enzyme activity were examined for the YihS isomerase enzyme that was mu-216

tated during the D-lyxose evolution (Fig. 1B, Table 1). The activities of the217

wild-type YihS and three mutant YihS enzymes (YihS R315S, YihS V314L218

+ R315C, and YihS V314L + R315S) were tested in vitro. A cell-free in vitro219

transcription and translation system[32, 33] was used to express the enzymes220

and examine conversions of D-mannose to D-fructose (a primary activity[34])221

and D-lyxose to D-xylulose (side activity) (Fig. 2A, Fig. S6). The ratios of222

the turnover rates of D-lyxose to the turnover rates of D-mannose were cal-223

culated and compared (Fig. 2B). The double mutant YihS enzymes showed224

approximately a ten-fold increase in turnover ratio of D-lyxose to D-mannose225

compared to wild type (P <0.0003, ANCOVA). These results suggest that226

the mutations indeed shifted the affinity towards the innovative substrate227

(enzyme side activity), while still retaining an overall preference for the pri-228

mary substrate, D-mannose (ratio <1). This is in agreement with ‘weak229

trade-off’ theories of the evolvability of promiscuous functions[2] in that only230

a small number of mutations could result in significant improvements in the231

promiscuous activity of an enzyme without greatly affecting the primary ac-232

tivity.233

Another clear example of an important optimizing mutation was found234

in the D-arabinose experiments occurring in the araC gene, a DNA-binding235

transcriptional regulator that regulates the araBAD operon involving genes236

associated with L-arabinose metabolism[35]. Based on structural analysis237

of AraC (Fig. 3A), the mutations observed in the two independent parallel238

experiments likely affect substrate binding regions given their proximity to239

a bound L-arabinose molecule (RCSB Protein Data Bank entry 2ARC)[36],240

possibly increasing its affinity for D-arabinose. Expression analysis revealed241

that the araBAD transcription unit associated with AraC regulation[37] was242

the most highly up-regulated set of genes (expression fold increase ranging243

from approximately 45-65X for Exp 1 and 140-200X for Exp 2, P <10−4)244
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in both experiments (Fig. 3B). Further examination of these up-regulated245

genes revealed that the ribulokinase (AraB) has a similar kcat on four 2-246

ketopentoses (D/L- ribulose and D/L- xylulose)[38] despite the fact that247

araB is consistently annotated to only act on L-ribulose (EcoCyc)[39] or L-248

ribulose and D/L-xylulose (BiGG Models)[40]. It was thus reasoned that249

AraB was catalyzing the conversion of D-ribulose to D-ribulose 5-phosphate250

in an alternate pathway for metabolizing D-arabinose (Fig. 3C) and this was251

further explored.252

The role of the proposed second pathway in optimizing growth on D-253

arabinose was analyzed both computationally and experimentally. A flux254

balance analysis simulation of a model without the FucK associated ribulok-255

inase reaction (the pathway of D-arabinose metabolism associated with inno-256

vative mutations), but with a non-zero flux through the AraB underground257

reaction, predicted in an approximately 10% higher simulated growth rate258

compared to when AraB is inactive (Fig. S7). This signaled the possibility259

of a growth advantage for using the araB enabled pathway and thus was260

explored experimentally. Experimental growth rate measurements of clones261

carrying either the fucK or araBAD genes knockouts showed that the FucK262

enzyme activity was essential for growth on D-arabinose for all strains ana-263

lyzed (innovative and optimized) (Fig. 3D, Table S4). However, removal of264

araB from optimized endpoint strains reduced the growth rate of the strain265

to the approximate growth rate of the initial innovative strain (Fig. 3D),266

suggesting that the proposed araB encoded pathway (Fig. 3C) was respon-267

sible for enhancing the growth rate and therefore qualifies as fitness opti-268

mization. Putting this in the context of previous work, a similar pathway269

has been described in mutant Klebsiella aerogens W70 strains[41]. In the270

1977 study, it was suggested that the D-ribulose-5-phosphate pathway (i.e.,271

the araB pathway) is more efficient for metabolizing D-arabinose than the272

D-ribulose-1-phosphate pathway (i.e., the fucK pathway), possibly because273

the L-fucose enzymatic pathway requires that three enzymes recognize sec-274

ondary substrates[41]. This conclusion supports the role of the optimization275

mutations observed here in araC. Overall, underground activities of both the276

fuc operon (innovative mutations) and ara operon (optimizing mutations)277

encoded enzymes were important for the adaptation to efficiently metabo-278

lize D-arabinose and the ara mutated operon did not solely support growth.279

Furthermore, computational analyses suggest that a similar mechanism of280

amplification of growth-enhancing promiscuous activities played a role in the281

m-tartrate optimization regime. Similarly, both independent evolutions on282

9

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 22, 2018. ; https://doi.org/10.1101/310946doi: bioRxiv preprint 

https://doi.org/10.1101/310946


m-tartrate possessed a mutation in the predicted transcription factor, ygbI,283

with a resulting overexpression of a set of genes with likely promiscuous ac-284

tivity (Supporting Text, Fig. S8). Two additional proposed mechanisms for285

growth optimization on m-tartrate and D-lyxose were related to the primary286

activities of pyrE and xylB and are discussed in the Supporting Text (Fig.287

S8 and Fig. S10).288

2.4. Loss of an enzyme side activity improves fitness289

Analysis of the D-2-deoxyribose adaptation revealed a conceptually novel290

way by which alterations in promiscuous enzyme activities contribute to291

growth optimization. Several lines of observation suggested that suppres-292

sion of a side reaction of aldehyde dehydrogenase A (AldA) enhanced growth293

on this novel carbon source. The optimizing mutation event in the D-2-294

deoxyribose evolution was a large deletion event spanning 171 genes (Fig.295

S9). Of these, the metabolic gene that was most significantly expressed in296

the ancestor (i.e., before the large deletion) was aldA (Fig. 4A). AldA has297

been described as a broad substrate specificity enzyme and has shown cat-298

alytic activity on acetaldehyde[42]. Turning to computational modeling to299

understand the impact of an active AldA, showed that forcing increased flux300

through acetaldehyde to acetate conversion decreased the overall growth rate301

(Fig. 4B, C; Dataset S3). Together, these findings indicate that the large302

deletion event observed in the D-2-deoxyribose endpoint selected against the303

AldA side activity, leading to improved growth. This scenario suggests that304

not only enhancement, but also suppression of side reactions can play a piv-305

otal role in adaptation to novel environments.306

3. Conclusions307

Taken together, the results of this combined computational analysis and308

laboratory evolution study show that enzyme promiscuity is prevalent in309

metabolism and plays a major role in both phenotypic innovation and op-310

timization during adaptation. It was demonstrated that enzyme side activ-311

ities can confer a fitness benefit in two distinct ways. First, side activities312

contributed to the establishment of novel metabolic routes that enabled or313

improved the utilization of a new nutrient source. Second, suppression of an314

undesirable underground activity that diverted flux from a newly established315

pathway conferred a fitness benefit.316
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The results of this study have direct relevance for understanding the role317

of promiscuous enzymatic activities in evolution and for utilizing computa-318

tional models to predict the trajectory and outcome of molecular evolution[14,319

43]. Here, it was demonstrated that computational metabolic network mod-320

els which include the repertoire of enzyme side activities made it possible321

to predict the genetic basis of adaptation to novel carbon sources. As such,322

systems models and analyses are likely to contribute significantly towards323

representing the complex implications of promiscuity in theoretical models324

of molecular evolution[43]. Furthermore, the evolution of new gene functions325

from secondary promiscuous activities has been proposed by multiple models326

assuming functional gene divergence from a common ancestor following gene327

duplication events[44, 45, 46, 7, 47, 48] and the findings and strains from328

this study are relevant towards better understanding such models. Finally,329

the computational and subsequent approaches developed in this work can330

be leveraged to understand promiscuous activity in engineered strains for331

industrial biotechnology and in the adaptation of pathogenic microbes.332

4. Materials and Methods333

Flux balance analysis and sampling in silico methods utilized in this work334

are described in SI Materials and Methods. Detailed information regard-335

ing the laboratory evolution experiments, growth media composition, and336

whole genome sequencing and mutation analysis is provided in SI Materials337

and Methods. Furthermore, details regarding the pORTMAGE library con-338

struction and mutant isolation as well as the cell-free in vitro transcription,339

translation enzyme activity characterizations performed are also provided in340

SI Materials and Methods. Experimental methods utilized to analyze opti-341

mization regime mechanisms of adaptation including RNA sequencing, phage342

transduction mutagenesis, and individual mutant growth characterizations343

are included in SI Materials and Methods. The RNAseq data is available344

in the Gene Expression Omnibus (GEO) database under the accession num-345

ber GSE114358. Data analysis, computation, and statistical analysis, un-346

less otherwise specified in SI Materials and Methods, were conducted using347

the scientific computing Python library SciPy (http://www.scipy.org/) in a348

Jupyter Notebook (http://jupyter.org/).349
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[13] M. Lässig, V. Mustonen, A. M. Walczak, Predicting evolution, Nat Ecol410

Evol 1 (2017) 77.411

[14] B. Papp, R. A. Notebaart, C. Pál, Systems-biology approaches for pre-412

dicting genomic evolution, Nat. Rev. Genet. 12 (2011) 591–602.413

[15] R. A. Notebaart, B. Kintses, A. M. Feist, B. Papp, Underground414

metabolism: network-level perspective and biotechnological potential,415

Curr. Opin. Biotechnol. 49 (2018) 108–114.416

[16] J. A. G. M. de Visser, J. Krug, Empirical fitness landscapes and the417

predictability of evolution, Nat. Rev. Genet. 15 (2014) 480–490.418
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ley, I. Schröder, A. G. Shearer, P. Subhraveti, M. Travers, D. Weeras-507

inghe, V. Weiss, J. Collado-Vides, R. P. Gunsalus, I. Paulsen, P. D.508

Karp, EcoCyc: fusing model organism databases with systems biology,509

Nucleic Acids Res. 41 (2013) D605–12.510
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Table 1: Key Innovative Mutations.
Gene Gene Protein Change(s) Perceived Impact
Mutated Substrate Prediction (Experiment #) (Structural (S) or Regulatory (R))
yihS D-Lyxose yihS R315S(1) Substrate binding1 (S)

R315C(2) Substrate binding1 (S)
yihW D-Lyxose yihS Frameshift(1) Loss of function, large truncation (R)

I156S(2) - (R)
rbsK D-2-Deox. rbsK N20Y(1) - (S)
rbsR D-2-Deox. rbsK Insertion Sequence(1) Loss of function, increased rbsK expression (R)
181 kbp and D-2-Deox. rbsK Large Duplications(1) Increased gene expression (R)
281 kbp Regions 165 and 262 genes
fucR D-Arabinose rbsK D82Y(1) Pfam: DeoRC C terminal substrate sensor domain2 (R)

S75R(1 and 2) Pfam: DeoRC C terminal substrate sensor domain2 (R)
*244C(2) - (R)

dmlA m-Tartrate dmlA A242T(1) - (S)
dmlR/dmlA m-Tartrate dmlA intergenic -50/-53(2) sigma 70 binding: -10 of dmlRp3 promoter3 (R)

intergenic -35/-68(2) dmlRp3 promoter region3 (R)
ybfF /seqA Mon. Succ. ybfF intergenic -73/-112(1) sigma 24 binding: -35 of ybfFp1 promoter3 (R)

intergenic -51/-123(2) sigma 24 binding: -10 of ybfFp1 promoter3 (R)
Substrates D-2-deoxyribose and monomethyl succinate are abbreviated D-2-Deox. and Mon. Succ. respectively. The
detailed locations of the mutations listed in this table are available in Datasets S1. 1Substrate binding information
about YihS previously published[34]. 2Protein family information listed in the Pfam database[49]. 3Promoter/sigma
factor binding regions found on EcoCyc[39] based on computational predictions[50].

Table 2: Optimizing Mutations.
Associated with
Underground

Gene Mutated Substrate Mutation Type Proposed Impact Activity?
yihS D-Lyxose V314L SNP Improved D-Lyxose affinity Yes
131 kbp Region D-Lyxose Large Duplication (129 genes) Increased xylB expression No
183 kbp Region D-2-Deoxyribose Large Deletion (171 genes) Decreased aldA expression Yes
araC D-Arabinose 6 bp Deletion, SNP Increased araB expression Yes
ygbI m-Tartrate 20 bp Deletion, SNP Increased ygbJKLMN expression Maybe
pyrE D-Lyxose*, m-Tartrate Duplication*, Intergenic Increased pyrE expression No

*pyrE is located in the large region of duplication (second entry of the table).
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Figure 1: Laboratory evolution method schematic and the growth trajectory of D-lyxose
experiments. A) A schematic of the two-part adaptive laboratory evolution (ALE) ex-
periments. The innovation phase involved growing cells in supplemented flasks containing
the innovative substrate (blue) and growth-promoting supplement (red). As cultures were
serially passed, they were split into another supplemented flask as well as an ‘innovation
test flask’ containing only the innovative nutrient (no supplement) to test for the desired
evolved growth phenotype. The ‘optimization’ phase consisted of selecting for the fastest
growing cells and passing in mid log phase. B) Growth rate trajectories for duplicate
experiments (green and purple) for the example case of D-lyxose. Population growth rates
are plotted against cumulative cell divisions. Clones were isolated for whole genome se-
quencing at notable growth-rate plateaus as indicated by the arrows. Mutations gained
at each plateau are highlighted beside the arrows (mutations arising earlier along the
trajectory persisted in later sequenced clones).
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Figure 2: Evaluation of enzymatic activity for the wild-type and mutated promiscuous
enzyme, YihS. A) YihS V314L + R315S mutant enzyme activity on D-mannose and D-
lyxose. LC-MS was used to analyze YihS activity at saturating substrate concentrations
to compare turnover rates on each substrate. Product formation was followed over time at
a constant enzyme concentration. Turnover rates were calculated using linear regression.
B) Turnover ratios of substrate conversion of D-lyxose / D-mannose are shown for the
wild type YihS and mutant YihS enzymes. A ratio <1 indicates a higher turnover rate
on D-mannose compared to D-lyxose. Error bars represent standard error calculated from
the linear regression analysis.

21

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 22, 2018. ; https://doi.org/10.1101/310946doi: bioRxiv preprint 

https://doi.org/10.1101/310946


L-arabinose Binding Residues
Mutated Residues

6 bp deletion

L156I SNP

H
om

od
im

er
 in

te
rf

ac
e

fucI

fucK

fucA

araB

Glycolaldehyde

D-arabinose

D-Ribulose

D-Ribulose-1-Phosphate

D-Ribulose 5-Phosphate

Pentose Phosphate 
Pathway

3-Phospho-D-glycerateD-Glycerate 2-phosphate
Glycolysis

A B

C D

Transcription Units
Activated by AraC
Repressed by AraC

0 1 2 3 4

AraC Regulon Expression

x106

Coordinate in Reference Genome
Lo

g2
(F

ol
d 

Ex
pr

es
si

on
 C

ha
ng

e)

araBAD, araC

araJ araFGH
araE/ygeA

xylAB
ydeNM

innovation

innovation ∆fucK

innovation ∆araBAD

optimization ∆araBAD

optimization ∆fucK

optimization

Strain Description

G
ro

w
th

 R
at

e 
(1

/h
ou

r)
Effect of Optimizing
Genes on Growth

AraC Structure and Mutations

Proposed Metabolic Pathways
for D-arabinose

P-val = 5.4e-5

P-val = 2.2e-2

AraC regulon gene Exp.1
AraC regulon gene Exp. 2
Significant up/down reg Exp. 1 & 2

Exp. 1 M9 + D-arabinose 
Exp. 2 M9 + D-arabinose 
No measurable growth

Figure 3: Optimization mutation analysis for D-arabinose evolution experiments. A)
Structural mutations observed in sequencing data of Experiments (Exp.) 1 and 2 (green)
as well as residues previously identified as important for binding L-arabinose (blue) are
highlighted on one chain of the AraC homodimer protein structure. The six base pair
deletion observed in Exp. 1 appears to be most clearly linked to affecting substrate
binding. B) Expression data (RNAseq) for significantly differentially expressed genes (q-
value <0.05). Scatter plot shows log2(fold change) of gene expression data comparing
endpoint to initial populations for Exp. 1 and Exp. 2 (grey dots) with the location of
the gene in the reference genome as the x-axis. Those genes that are associated with
AraC transcription units are highlighted (red dots for Exp. 1 and blue dots for Exp. 2).
Above the plot, the transcription units are labeled green if AraC activates expression (in
the presence of arabinose) or red if AraC represses expression of those genes. C) The
proposed two pathways for metabolizing D-arabinose. The pink pathway is enabled by
the optimizing mutations observed in araC. D) Growth rate analysis of various innovation
(starting point of optimization phase) and optimization (endpoint of optimization phase)
strains with or without fucK or araB genes knocked out. Strains were grown on M9
minimal media with D-arabinose as the sole carbon source.
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Figure 4: Optimization mutation analysis for the D-2-deoxyribose experiment. A) RNAseq
expression data represented as log2(normalized expression) initial population samples com-
pared to the endpoint population sample for experiment (Exp.) 1. Highlighted in red is
rbsK associated with small mutation events and in green are genes associated with the
large deletion. The aldA gene is highlighted in purple as a more highly expressed gene of
interest that was within the large deletion region in the optimized endpoint population.
The deleted genes have non-zero expression values in the optimized endpoint population,
which can be explained by evidence that a fraction of the population does not contain the
deletion (Fig. S9). B) A flux balance analysis plot showing the effect of flux through the
reaction associated with aldA on growth rate. Flux through this reaction is predicted to
have a negative effect on growth rate. C) A pathway map highlighting predicted pathways
for metabolizing D-2-deoxyribose. Starting with D-2-deoxyribose in the upper left, the
first reaction is catalyzed by the enzyme associated with the rbsK gene noted in red as it
was a key gene mutated in the initial innovation population. The following reactions in
blue are predicted to feed into lower glycolysis and the TCA cycle. The aldA-associated
unfavorable underground reaction, converting acetaldehyde to acetate is highlighted in
purple and marked with an X to note its deletion in an optimized endpoint population.
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