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ABSTRACT 
Vector-borne diseases display wide inter-annual variation in seasonal epidemic size due to their 
complex dependence on temporally variable environmental conditions and other factors. In 
2014, Guangzhou, China experienced its worst dengue epidemic on record, with incidence 
exceeding the historical average by two orders of magnitude. To disentangle contributions from 
multiple factors to inter-annual variation in epidemic size, we fitted a semi-mechanistic model to 
time series data from 2005-2015 and performed a series of factorial simulation experiments in 
which seasonal epidemics were simulated under all combinations of year-specific patterns of 
four time-varying factors: imported cases, mosquito density, temperature, and residual variation 
in local conditions not explicitly represented in the model. Our results indicate that while 
epidemics in most years were limited by unfavorable conditions with respect to one or more 
factors, the epidemic in 2014 was made possible by the combination of favorable conditions for 
all factors considered in our analysis.  
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In response to warming temperatures and other consequences of climate change, many regions 
are becoming increasingly suitable for pathogens whose transmission is sensitive to climatic 
conditions1,2. One clear example is El Niño, which is known to drive inter-annual variation in 
epidemics of both water-borne3,4 and vector-borne5,6 pathogens. Another example is rising 
temperatures, which have been hypothesized to facilitate pathogen range expansion7 and to 
fuel more explosive epidemics8. 
 
Although there are clear links between local climatic conditions and the transmission of 
numerous pathogens, those links can be difficult to isolate in epidemiological analyses9,10. In an 
area where a pathogen is endemic, its host population may often be considerably immune, 
resulting in inter-annual variation driven by a combination of time-varying climatic conditions and 
nonlinear feedbacks of population immunity11–13. Those feedbacks may furthermore vary with 
shifting patterns of host demography, which modulate ebbs and flows in the pool of susceptible 
hosts over time14. In an area where a pathogen is not endemic but is instead transmitted in the 
context of limited seasonal epidemics, pathogen importation can play a critical role in limiting, or 
enabling, transmission15. 
 
The recent history of dengue virus (DENV) in the city of Guangzhou, China presents an ideal 
opportunity to examine how temporal variation in local climatic conditions and pathogen 
importation interact to drive inter-annual variability in transmission in a seasonally epidemic 
context. Since 1990, mainland China has experienced highly variable, but relatively low DENV 
transmission, with a median of 376 and a range of 2-6,836 cases reported annually from 1990-
200416. More recently, increasingly large seasonal epidemics have occurred, with a median of 
438 and a range of 59-47,056 cases from 2005-201416. These epidemics have been highly 
seasonal and distinct from year to year, given the markedly seasonal climatic conditions in 
portions of mainland China where dengue is locally transmitted. At the same time, the endemic 
status of DENV in neighboring southeast Asia ensures a reliable, and growing, source of DENV 
importation into Guangzhou and elsewhere in mainland China17. 
 
Following the epidemic of 37,445 locally acquired dengue cases in Guangzhou in 2014, there 
has been growing interest in modeling DENV transmission there. Different models have 
emphasized different drivers, however, leading to different conclusions. Two studies concluded 
that climatic conditions were the primary driver of DENV transmission18,19, whereas others 
concluded that importation patterns, combined with delayed outbreak response, were causal 
drivers of the 2014 outbreak20–22. Still others found that neither climatic conditions nor 
importation were the key drivers of transmission, but instead that urbanization was pivotal23,24. 
Several analyses that used incidence data aggregated at a monthly time scale for 2005-2015 
showed high predictive capability at one-month lead times18,19 but did not facilitate clear 
interpretation of how importation interacts with local conditions to result in high inter-annual 
variation in transmission. Mechanistic models applied to date have used daily or weekly data, 
but only for 2013-2014, and therefore only considered years with anomalously high 
transmission20,22–24. As a result, it is unclear how well those models could explain the strikingly 
low incidence observed in years other than 2013-2014. 
 
Here, we applied a stochastic, time-series susceptible-infected-recovered (TSIR) model25 that 
we fitted to daily dengue incidence data from 2005-2015 to determine the relative roles of local 
conditions and pathogen importation in driving inter-annual variation in DENV transmission. To 
make detailed inferences with incidence data at daily resolution, we made several 
enhancements to the standard TSIR framework, including a realistic description of the DENV 
generation interval, lagged effects of covariates on transmission, and flexible spline 
relationships between covariates and their contributions to transmission. After fitting the model 
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and checking its consistency with the data to which it was fitted, we conducted simulation 
experiments in which we examined how annual incidence of locally acquired dengue differed 
across simulations with inputs about local conditions and importation patterns that varied from 
year to year. Using a series of factorial simulation experiments, we quantified the relative 
contributions of time-varying local factors and importation to inter-annual variation in dengue 
incidence. 
 
RESULTS 
Estimating relationships between local conditions and transmission 
In the 11-year time series that we examined, there was marked seasonal variation in local 
dengue incidence and in putative drivers of DENV transmission (Fig 1). We estimated a latent 
mosquito density curve, !(#), using two different types of entomological data (Fig 1 C), resulting 
in a seasonal pattern of mosquito density. Although inter-annual variation in mosquito density 
and temperature was minimal (Fig 1 C, D), there was pronounced inter-annual variation in 
imported and local dengue incidence (Fig 1 A, B).  

 
Fig 1. Time series of data from 2005-2015 in Guangzhou, China. (A) Local dengue 
incidence. (B) Imported dengue incidence. (C) Breteau index (BI) of mosquito density, mosquito 
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ovitrap index (MOI) of mosquito larval density, and maximum likelihood estimate of latent 
mosquito density variable, m(t). (D) Daily mean temperature.  
 
To understand the association between temporal variation in local conditions and local DENV 
transmission, we fitted two bivariate basis functions with cubic B-splines that allowed for distinct 
lagged relationships between temperature, mosquito density, and their effects on transmission 
(Fig 2). For temperature, we found that its contribution on a given day to the time-varying 
transmission coefficient, %(#), generally peaked near 30 °C and that the magnitude of these 
daily contributions was somewhat larger at shorter lags (Fig 2A). For mosquito density, we 
found a positive relationship between !(#) and %(#) at all lags, with the daily contribution of 
mosquito density at intermediate lags being 10-15% larger than at shorter or longer lags (Fig 
2B). In addition, we estimated a term, %&(#), that explicitly modeled residual variation in %(#) that 
was not accounted for by temperature or mosquito density but that was necessary to reproduce 
observed patterns of local dengue incidence (Fig 3). The 95% posterior predictive interval for 
this term was entirely positive during the transmission season in 2014, whereas in other years it 
fluctuated relatively tightly around zero (Fig 3B). This implies that appealing to systematic 
differences with respect to one or more unspecified local conditions is necessary to explain the 
anomalously high incidence observed in 2014. 
 

 
Fig 2. Contributions of temperature (A) and mosquito density (B) at different lags ' to the 
transmission coefficient on day t. Following eqn. (4), the surface in A corresponds to 
()(*+,-, /) and the surface in B corresponds to (0(!(# − /), /), both of which are summed 
across values of / ranging 1-49, exponentiated, and multiplied by each other and 234(+) to obtain 
%(#). Values of parameters informing these surfaces shown here represent medians from the 
posterior distribution of parameters. 
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Fig 3. Time series of posterior estimates of the time-varying transmission coefficient 5(6) 
(A) and contributions thereto from residual local conditions, 57(6) (B), mosquito density, 
8(6) (C), and temperature (D). Different colored lines correspond to different samples from the 
posterior distribution of parameter values, which provide information about correlations among 
parameters that pertain to different components of the model. The red horizontal line in A 
indicates %(#) = 1. The shaded blue region represents the 95% posterior predictive interval, and 
the black line is the median value.  
 
By estimating three separate components of %(#), we were able to evaluate the relative 
contributions to %(#) of each of mosquito density, temperature, and other local conditions at 
different points in time (Fig 3). We found that mosquito density tended to have a smaller but 
more variable effect compared to temperature, which resulted in considerably lowered %(#) 
values at low temperatures. In most years, the effect of mosquito density on %(#) tended to be 
more pronounced within a shorter seasonal time window than did that of temperature (Fig 3C, 
D). The contributions of %&(#) to %(#) were highly variable across different draws from the 
posterior, other than the consistently large, positive effect in 2014 (Fig 3B). 
 
Checking model consistency with data 
We used data on imported cases to seed 1,000 simulations of local DENV transmission over the 
entire 2005-2015 time period, with local transmission patterns in each simulation determined by 
a different random draw from the posterior distribution of model parameters. Over the period as 
a whole, daily medians of simulated local dengue incidence were highly correlated (; = 0.966) 
with observed local incidence (Fig 4A). Within each year, observed “features” of local dengue 
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incidence patterns were generally consistent with simulations. For annual incidence across 
years and peak weekly incidence, observed values fell within the 95% posterior predictive 
intervals (PPI) in 11/11 years (Fig S1, S2). For total number of weeks with non-zero incidence 
and for the length of the transmission season (time elapsed between first and last cases), 
observed values fell within the 95% PPIs in 8/11 and 9/11 years, respectively (Fig S3, S4). 
Years for which observed values fell outside of the 95% PPI tended to be those with 
intermediate levels of transmission (2006, 2013) or longer transmission seasons (2010, 2015). 
Years for which observed values most consistently fell within the 95% PPIs were those with 
either low (2007, 2008) or high (2014) transmission. In addition, we found that the fitted model 
correctly ranked 2014 as the year with the highest annual incidence 100% of the time (Fig 5). 
Other notable high years included 2013 and 2006, which were both correctly ranked as years 
with relatively high local incidence. Years with low local incidence that our model ranked 
correctly included 2008-2011 and 2015. 
 

 
Fig 4. Correspondence between empirical and simulated patterns of local dengue 
incidence. In A, the black line shows empirical values of log local incidence and the blue band 
shows the 95% posterior predictive interval from model simulations. The value of Pearson’s 
correlation coefficient indicated in the upper right pertains to untransformed daily values 
between model simulations and data. In B, different colored lines correspond to simulations 
based on different samples from the posterior distribution of parameter values. Simulations of 
local transmission were seeded by data on imported cases and otherwise used the fitted model 
of local transmission to simulate local cases. 
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Fig 5. Ranking of years by annual local incidence simulated with the fitted model given 
data on local conditions and imported cases from that year. Dark red corresponds to the 
lowest ranking (i.e., highest simulated local incidence), and dark blue corresponds to the highest 
ranking (i.e., lowest simulated local incidence). The height of a given segment of a given year’s 
bar is proportional to the posterior probability that simulations of local incidence from that year 
were of a given rank relative to other years. For example, the dark red segments in 2013 and 
2014 indicate a high posterior probability that model simulations correctly resulted in high 
rankings for those years. The total number of dengue cases reported in each year is shown in 
the top panel for reference. 
 
Disentangling drivers of inter-annual variation in dengue incidence 
Once we determined that simulations from the fitted model were consistent with observed 
patterns, we performed a factorial simulation experiment in which we swapped local conditions 
from each year with imported case patterns from each other year and used those conditions to 
drive simulations of 1,000 replicate transmission seasons under each of these 122 
combinations. Some of the more extreme contrasts illustrate the reasoning behind this 
approach. For example, given local conditions in 2014, our model projects that much higher 
local incidence would have been observed under importation conditions experienced in most 
other years (Fig 6, top). In contrast, given imported case patterns from 2008, our model projects 
that very low local incidence would have resulted from local conditions in every year, including 
2014 (Fig 6, bottom). 
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Fig 6. Example outputs from the factorial simulation experiments. The top row shows a 
series of 1,000 simulations per year (blue = 95% posterior predictive interval) combining local 
conditions from 2014 with importation patterns from each year in 2005-2015. The bottom row 
shows a series of 1,000 simulations per year combining importation patterns from 2008 with 
local conditions from each year in 2005-2015. These examples contrast seasonal epidemic 
patterns that would have resulted from hypothetical situations swapping year-specific local 
conditions and year-specific importation patterns from different years. For reference, empirical 
patterns of local incidence are shown with black lines. 
 
Of variation in simulated local incidence that was accounted for by the model (51.2%) in a two-
way analysis of variance, local conditions accounted for approximately 88.9% and imported 
case patterns accounted for the remaining 11.1% (Table 1, first row). A large amount of residual 
variation (49.8%) in simulated local incidence across replicates was not explained by either 
factor and instead reflected the highly stochastic nature of epidemics in this setting where DENV 
transmission is so volatile. Because the number of replicates was at our discretion in this 
simulation experiment, the p-value from this analysis of variance was not meaningful26. On the 
whole, these results showed that high local incidence was unlikely to occur in years in which 
local conditions were not highly suitable for transmission (Fig 7). Performing a similar factorial 
simulation experiment in which we dropped 2014, we found that local conditions only accounted 
for 38.3% of variation in local incidence explained by the model, while importation accounted for 
61.7% (Table 1, second row). 
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Years	included	 SSQ3	4NON)	(%	Model)	 SSQS	(%	Model)	 SSQres	(%	Total)	 SSQ	Total	

2005-2015	 4.1 × 10X	(88.9) 5.1 × 10[	(11.1) 4.6 × 10X	(49.8) 9.1 × 10X 
2005-2013,	2015	 1.7 × 10[	(38.3) 2.8 × 10[	(61.7) 3.7 × 10X	(88.9) 4.1 × 10X 

Table 1. Sum of squared error (SSQ) and normalized percent variation described by local 
conditions (57 +a+ b), imported case patterns (c), or residual stochasticity in the two-
way analysis of variance on the factorial simulation experiments. The % Model values 
were calculated by dividing the SSQ explained by a given variable by the sum of SSQ values 
from all four model variables. 
 

 
Fig 7. Ranking of years by simulated annual incidence from the factorial simulation 
experiment. (Top) The total number of dengue cases reported in each year is shown in the top 
panel for reference. (Middle) Simulations with the fitted model given data on local conditions 
from a given year and imported cases from each of the other years. (Bottom) Simulations with 
the fitted model given data on imported cases from a given year and local conditions from each 
of the other years. A large amount of red in a column indicates that conditions in that year were 
relatively favorable for transmission, whereas blue indicates the opposite, similar to Fig. 5. 
 
To parse the individual contributions of each local variable to inter-annual variation in local 
incidence, we performed an additional factorial simulation experiment in which we swapped all 
possible combinations of imported case patterns, mosquito density, temperature, and %& from 
different years. We performed a set of 1,000 replicate simulations for the 14,641 possible ways 
that year-specific patterns could be combined, allowing us to account for possible interactions 
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among these four variables. Calculating the variation explained by %& in the four-way analysis of 
variance, we found that it accounted for 75.4% of all variation in local incidence accounted for 
by the model (Table 2). Imported cases contributed the next largest portion of variation (11.3%), 
whereas mosquito density (9.5%) and temperature (3.8%) each contributed less. Repeating this 
four-way analysis of variance without data from 2014, the proportions of all variation explained 
by the models were somewhat more consistent across these four variables (Table 2, second 
row). Furthermore, the rankings of relative contributions of the four variables changed, with 
mosquito density (35.9%) and imported cases (39.2%) playing dominant roles in driving inter-
annual variation in local incidence. 
 

Years	
included	

SSQ34	
(%	Model)	

SSQO	
(%	Model) 

SSQS	
(%	Model) 

SSQ)	
(%	Model)	

SSQres	
(%	Total)	

SSQ	
Total	

2005-2015	 4.2 × 10d	
(75.4) 

5.2 × 10e 
(9.5) 

6.3 × 10e 
(11.3) 

2.1 × 10e 
(3.8) 

7.8 × 10d 
(58.7) 

1.3
× 10f  

2005-2013,	
2015	

7.6 × 10X	
(10.5) 

2.6 × 10e 
(35.9) 

2.9 × 10e 
(39.2) 

1.0 × 10e 
(14.3) 

5.0 × 10d 
(87.2) 

5.7
× 10d  

Table 2. Sum of squared error (SSQ) and normalized percent variation described by the 
predictor variables and the residuals in the four-way analysis of variance on the factorial 
simulation experiments. The % Model values were calculated by dividing the SSQ explained 
by a given variable by the sum of SSQ values from all four model variables. 
 
DISCUSSION 
Populations subject to seasonal epidemics of any number of diseases are prone to high 
variability in epidemic size, due to inter-annual variation in imported cases that seed those 
epidemics and inter-annual variation in local conditions that drive transmission. We estimated 
the relative contributions of local conditions and importation in driving inter-annual variation in 
dengue epidemics in Guangzhou, China, which has recently been subject to seasonal 
epidemics ranging four orders of magnitude in size. Other studies18–23 have investigated the 
same 11-year time series, either in whole or in part, but arrived at differing conclusions and did 
not take full advantage of the exceptional level of detail in this data set (Table S1). By 
leveraging these data more fully and using a modeling framework that blends elements of 
mechanistic and statistical modeling, we showed that local conditions and importation patterns 
jointly determined epidemic size in most years and that anomalous local conditions were 
responsible for one anomalously large epidemic. Specific examples from this 11-year time 
series reinforce the notion that either or both of these factors can limit epidemic size (Fig 7). 
 
Regarding the large epidemic in 2014, our results suggest that unknown local conditions 
captured by %& played a dominant role in driving this extreme event. For this reason, the 
unknown factors that %& was picking up on should now be of great interest. One possibility is 
that transmission was actually not much higher in 2014 but instead that a larger proportion of 
DENV infections resulted in symptomatic disease in 2014 than in other years. This could have 
occurred if a large number of people experienced a mild or asymptomatic first infection prior to 
2014 and then experienced a more severe second infection in 201427. It is also possible that the 
DENV serotype or genotype that circulated in 2014 could have been more infectious28 or more 
virulent29,30. Another possibility is that, although mosquito densities were not notably higher in 
2014 than in other years, there could have been undetected changes in the composition of the 
mosquito population that enhanced their competence for transmission. Demographic dynamics 
are known to result in substantial temporal variation in the age profile of mosquito populations31, 
which has been shown to be a key determinant of dengue epidemic size in some settings32. Yet 
one more possibility is that media attention during the 2014 epidemic33,34 could have heightened 
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awareness of dengue and led to an increase in the number of people recorded by the 
surveillance system35. Without further investigation, these hypotheses all remain plausible, with 
each potentially acting alone or in combination to contribute to the unprecedented dengue 
incidence observed in 2014. 
 
Although it is somewhat unsatisfying that our analysis could not pinpoint the cause of the 2014 
epidemic more specifically, clearly defining the roles that known factors played and ruling them 
out as primary drivers of the 2014 epidemic is also of great value. Our results did show that 
temperature played a role in delimiting the transmission season, that mosquito density 
influenced the timing and extent of transmission within a season, and that importation regulated 
the potential for local transmission in a given season. Our modeling approach was unique in 
allowing us to isolate each of those effects by building on prior knowledge about them in such a 
way that we captured their differential influence at different lags and captured the extent to 
which imported dengue cases translated into locally acquired cases. Had we fitted our model 
solely to data from 2013 and 2014, as others have20,22–24, we likely would have misestimated the 
contributions of these factors to local transmission and would not have been able to detect the 
anomalous local conditions in 2014 that appear to have driven the large epidemic that year. 
 
Our model incorporates a number of innovations that were essential for obtaining our results, 
including the ability to accommodate daily incidence data, to adapt the timescale of transmission 
to the pathogen's generation interval, to estimate multiple lagged effects in a flexible manner, 
and to isolate the timing of residual variation in transmission, all of which may prove useful to 
time series analyses of climate-sensitive pathogens10,36. At the same time, there are important 
limitations of our approach. First, even though it is well known that many DENV infections are 
inapparent27, we worked under the assumption that cases detected through passive surveillance 
were representative of the true incidence of infection. Combining data augmentation 
methods37 with hypotheses about ways in which reporting rates might vary through time could 
offer one way to relax this assumption. Second, we assumed that the population was 
immunologically naïve and remained so over time. The limited data available pertaining to this 
question suggest that DENV immunity is indeed low (2.43%, range: 0.28-5.42%)38, meaning that 
impacts of immunity on transmission should be negligible. These effects could be stronger at 
finer spatial scales, however. 
 
In conclusion, our finding that epidemic size in any given year depends on a complex interaction 
between importation and local conditions suggests that public health authorities should not 
focus on only one of these factors at the exclusion of others. As some studies have done20–22, it 
is tempting to attribute the increase in local dengue incidence in Guangzhou to the concurrent 
increase in imported dengue. Our results suggest that doing so belies the important role that 
local conditions play in limiting or enhancing transmission in any given year. What an overly 
simplistic view risks is allowing for another epidemic like the one in 2006, which our results 
suggest was driven by favorable local conditions despite relatively low importation. Moreover, 
understanding and reducing the favorability of local conditions for transmission may also mean 
the difference between years like 2014 and 2015, with importation high in both years but local 
transmission much lower in 2015. Given the global expansion of DENV and other viruses 
transmitted by Aedes mosquitoes, improved understanding of the interactions among multiple 
drivers in settings with potential for seasonal DENV transmission—including portions of 
Australia, the United States, and the Mediterranean—will be essential for reducing the risk of 
large epidemics such as the one observed in Guangzhou in 2014. 
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METHODS 
Data 
Data on locally acquired and imported dengue cases from 2005-2015 were obtained from the 
Health Department of Guangdong Province (http://www.gdwst.gov.cn/). As one of the statutorily 
notifiable infectious diseases in China, dengue is diagnosed according to national surveillance 
protocol with standardized case definitions described in detail elsewhere16. An imported case is 
defined as one for which the patient had traveled abroad to a dengue-endemic country within 15 
days of the onset of illness. In some cases, importation is defined based on laboratory results 
showing that the infecting DENV had a high sequence similarity in the preM/E region compared 
with viruses isolated from the putative source region where the patient had traveled. Otherwise, 
a dengue case was considered locally acquired. This determination was made by local public 
health institutes. All the data used in this study were anonymized; the identity of any individual 
case cannot be uncovered. 
 
We utilized indices of both adult mosquito density and larval density, which are available from 
the Guangzhou Center for Disease Control and Prevention (http://www.gzcdc.org.cn). Adult 
Aedes albopictus mosquitoes were sampled by light traps with mosquito ovitrap index (MOI). 
The MOI was defined as the number of positive ovitraps for adult and larval Ae. albopictus per 
100 retrieved traps39. Breteau index (BI), which measures the density of Ae. albopictus 
mosquito larvae, was the number of positive containers per 100 houses inspected39,40. Both 
indices were measured monthly and comprised the information on mosquito density sampled in 
residential households (>50 households sampled per month), parks, construction sites, and 
other urban areas. Data on daily average temperature were obtained from the China 
Meteorological Data Sharing Service System (http://data.cma.cn). 
 
Model description 
Transmission modeling framework 
A general framework that can be used to model the relationship between cases from one 
generation to the next is the TSIR model24. Under an adaptation of that model to realistically 
account for time lags associated with vector-borne pathogen transmission41, g+ is defined as the 
number of new local cases at time t and gh+ is the effective number of cases, both local and 
imported, that could have generated a local case at time t. This effective number of cases in the 
previous generation is defined as 

gh+ =ij-(g+,- + k+,-)

[l

-mn

,						(1) 

where j- is the probability that the serial interval is / days41. We described j- with a function 
derived by Siraj et al.8 based on first-principles assumptions about DENV transmission. The 
flexibility afforded by eqn. (1) allowed us to fully utilize the daily resolution of case data available 
for Guangzhou, which distinguished between imported and local cases, k+ and g+, respectively. 
 
Consistent with other TSIR models, the relationship between gh+ and g+ was assumed to take the 
form 

g+ = %(#)
g+
h

o
p+
h, (2) 

where %(#) is the transmission coefficient on day #, o is population size, and p+h is the number of 
susceptible people who could potentially become infected and present on day #. Due to the low 
incidence of dengue in Guangzhou on a per population basis (40,108 cases detected by 
surveillance during 2005-2015 in a city of 14 million), the number of susceptible people at any 
given time changes very little and remains very close to the overall population size. Therefore, 
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we assumed that p+h ≈ o, meaning that these terms canceled out in eqn. (2). Also because of 
such low incidence, including many days with zero incidence, accounting for the role of 
stochasticity in transmission was essential. Eqn. (2) has a clear and direct stochastic analogue 
in 

g+	~	negative	binomial(%(#)g′+, g′+), (3) 
where %(#)gh+ is the mean parameter and gh+ is the clumping parameter of the negative binomial 
distribution42,43. 
 
Drivers of local transmission 
We assumed that the potential for local transmission at time #, represented by %(#), was 
determined by a combination of a latent variable representing mosquito abundance at time #, 
!(#), temperature at time #, *+, and other factors not accounted for directly by available data, 
such as mosquito control or preventative measures taken by local residents. Although the role 
of these factors in driving transmission is commonly assumed by models44 and consistent with 
the highly seasonal nature of DENV transmission in Guangzhou16, it is also clear that these 
factors may influence transmission considerably in advance of a case occurring. For example, 
high mosquito densities would be expected to affect transmission 2-3 weeks in advance, rather 
than instantaneously, to allow mosquitoes sufficient time to become infected, incubate the virus, 
and transmit it8. 
 
To afford the model sufficient flexibility to account for such lagged effects, we allowed	%(#) to 
depend on weighted sums of daily effects of !(# − /) and *+,- for / ∈ {1,… ,49}, which spanned 
the full range of serial intervals that we assumed were possible. Because the effects of !(# − /) 
and *+,- could differ for different values of / in complex ways, we defined flexible bivariate basis 
functions (0(!(# − /), /) and ()(*+,-, /) with cubic B-splines to capture the contribution of daily 
conditions on day # − / to %(#) using the fda package in R45. Each of (0(!(# − /), /) and 
()(*+,-, /) was defined by nine parameters associated with a 3x3 matrix that defined the height 
of each component of the bivariate spline ranging 1-49 days for /, 4-36 °C for *, and 0-5 for !, 
with the units of the latter corresponding to the scale of the mosquito oviposition index. That 
particular choice of units was not of consequence to the model, however, because a different 
choice would simply result in different values of parameters in (0(!(# − /), /) but yield the same 
values of %(#). These lagged daily effects combined to define 

%(#) = 2∑ }~()�ÄÅ,-)
ÇÉ
ÅÑÖ 2∑ }Ü(0(+,-),-)

ÇÉ
ÅÑÖ 234(+), (4) 

where %&(#) is a univariate cubic B-spline function that defines the time-varying contribution of 
factors other than temperature and mosquito abundance to %(#). We specified %&(#) as a 
univariate spline with three evenly spaced knots per year across the 11-year time period, 
requiring a total of 33 parameters. We also represented the latent mosquito density variable 
!(#) using a univariate cubic B-spline function with three knots per year for the 11-year time 
period. This variable allowed us to reconcile differences between the MOI and BI mosquito 
indices and to obtain daily values for mosquito abundance based on monthly indices. 
 
Model fitting 
We used a two-step process to estimate the posterior probability distribution of model 
parameters. First, we fitted the entomological model (i.e., !(#)) using maximum likelihood. 
Second, we fitted the epidemiological model using a Sequential Monte Carlo (SMC) algorithm in 
the BayesianTools R library46. 
 
Entomological likelihood 

The probability of the full mosquito index time series, MOIââââââââ⃑  and BIâââ⃑ , depends on the 33 
parameters that define !(#) (referred to collectively as å⃑0) and three parameters, çéS , èéS, and 
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èOêS, that define an observation model relating !(#) to the data. Under this model, the 
probabilities of these data are 

PríMOIââââââââ⃑ |å⃑0, èOêSî =ïñ(MOI+|!ó(#), èOêS)
+

					(5) 

and 
PríBIâââ⃑ |å⃑0, çéS , èéSî =ïñ(BI+|çéS!ó(#), èéS)

+

, (6) 

where ñ(ò|ç, è) denotes a normal probability density with parameters ç and è evaluated at ò 
and !ó(#) denotes the monthly average of !(#). Together, eqns. (5) and (6) specify 

ℒíå⃑0, èOêS, çéS , èéSöMOIââââââââ⃑ , BIâââ⃑ î = PríMOIââââââââ⃑ |å⃗0, èOêSî PríBIâââ⃑ |å⃗0, çéS , èéSî ,				(7) 
which is the overall likelihood of the entomological model parameters. 
 
Entomological model fitting 
We obtained maximum-likelihood estimates of å⃗0, èOêS, çéS , and èéS by maximizing the log of 
eqn. (7) using the Nelder-Mead optimization algorithm under default settings in the optim 
function in R47. To safeguard against obtaining an estimate that represented a local rather than 
global optimum, we repeated this optimization procedure 1,000 times under different initial 
conditions. The initial conditions for each of these runs came from separate draws from a 
posterior distribution obtained through SMC estimation using the BayesianTools R library46. Of 
the 1,000 estimates of å⃗0, èOêS, çéS , and èéS that this yielded, we chose the one with the 
highest log likelihood to derive our maximum-likelihood estimate of !(#) for use in the 
epidemiological model (Fig S8). 
 
Epidemiological likelihood 

The probability of the local incidence data, g⃗, depends on a total of 51 parameters in addition to 
!(#) that define %(#), with nine for å⃑}Ü, nine for å⃑}~, and three for each of the eleven years 
spanned by å⃑&. Although the transmission model (eqn. 3) is stochastic, it does not readily lend 
itself to calculation of the probability of g⃗ as a function of these parameters. Consequently, we 
used a simulation-based approach to approximate the probability of each daily value of g+ under 
a given value of the 51 model parameters. To do so, we performed 100 simulations of the entire 
time series of local incidence across 2005-2015, with each simulation driven by data on 
imported cases feeding into eqn. (3) for a given %(#). As local incidence occurred in these 
simulations, those cases fed back into generating subsequent cases, again following eqn. (3). 
Using these simulations, we approximated a probability of the local incidence data by treating 
the number of local cases on a given day as a beta binomial random variable. This assumes 
that all residents of Guangzhou are subject to a probability of being infected and detected by 
surveillance as a locally acquired dengue case on each day, with uncertainty in that probability 
described by a beta distribution. The parameters of that beta distribution enable calculation of 
the beta binomial probability and were approximated by Bayesian conjugate distributional 
relationships as ú+ = 1 + ∑ g+,ù

n&&
ùmn  and %+ = o −∑ g+,ù

n&&
ùmn + 1  48, where o = 14,040,000. In 

summary, 100 values of g+,ù simulated for each day in 2005-2015 using a single %(#) specified 
ℒ ûå⃑}Ü, å⃑}~, å⃑&üg⃑, *

â⃑ , !(#)† =ïbeta	binomial(g+|ú+, %+, o)
+

				(9) 

as the overall likelihood of the epidemiological model parameters. 
 
Epidemiological parameter priors 
Given that numerous studies have investigated relationships between temperature, mosquito 
density, and DENV transmission, we sought to leverage that information by specifying prior 
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distributions for epidemiological model parameters. Doing so still permits the data to influence 
parameter estimates in the posterior via the likelihood, but it does so in such a way that 
parameter values in the posterior are penalized if they deviate too strongly from prior 
understanding of which parameter values are plausible based on previous work. For å⃑}Ü and 
å⃑}~ , we used relationships between *, !, and °& (which is similar to our transmission coefficient 
%41) recently described by Siraj et al.8. In doing so, we assumed that relationships among these 
variables were identical at all lags /, given a lack of specific prior understanding of how these 
relationships vary at different lags. Given that the scales of ! and that of Siraj et al.8 are not 
directly comparable, we parameterized the prior distribution around values of ! with relevance 
to the time series of !(#) in Guangzhou. That is, at the temperature optimum of 33.3 °C 
estimated by Siraj et al.8, we set our prior for % such that % = 0 when ! = 0 and % = 2.5 when 
! = 3. The latter value of ! is just above the maximum value estimated for Guangzhou, and 
the corresponding value of % is equal to the median seasonal estimate of daily °& in Iquitos, 
Peru, a dengue-endemic setting with empirical estimates of seasonal °&49 that Guangzhou 
should be unlikely to exceed. At the same time, posterior estimates of the parameters did have 
the flexibility to yield values of % in excess of 2.5 should the data support such values via the 
likelihood. Consistent with standard theory for mosquito-borne disease epidemiology50, values 
of the prior at other temperatures were obtained by reducing the value of % linearly in proportion 
to ! and by the proportion of °& from Siraj et al.8 for other temperatures relative to its value at 
33.3 °C. Using 1,000 Monte Carlo samples of the relationship between *, !, and °& from Siraj 
et al.8, we obtained 1,000 estimates of å⃑}Ü and å⃑}~  by using the optim function in R to minimize 
the sum of squared differences between °& values from Siraj et al.8 and corresponding values of 
% defined by å⃑}Ü and å⃑}~and with %& = 0. A multivariate normal distribution fitted to those 1,000 
estimates of å⃑}Ü and å⃑}~ represented our prior distribution of those parameters. Separately, we 
defined the prior distribution of each parameter in å⃑& as normally distributed with mean 0 and 
standard deviation 5, given our expectation that residual variation in %(#) not attributable to 
temperature or mosquito density should be minimal, on average. 
 
Epidemiological model fitting 
We obtained an estimate of the posterior distribution of epidemiological parameters using an 
SMC algorithm implemented in the BayesianTools R library51. To assess convergence, we 
performed three independent runs of the SMC algorithm set to ten iterations of 10,000 samples 
each. We then calculated the Gelman-Rubin convergence diagnostic statistic across the three 
independent runs, along with the multivariate potential scale reduction factor (Table S2)52.  
 
Simulation experiments 
Checking model consistency with data 
To verify that the behavior of the transmission model was consistent with the data to which it 
was fitted, we simulated an ensemble of 2,000 realizations of daily local incidence using 
parameter values drawn from the estimated posterior distribution. These simulations were 
performed for all of 2005-2015 in the same manner in which the likelihood was approximated; 
i.e., driven by imported case data and with local transmission following eqns. (1)-(4). We 
compared simulated and empirical local incidence patterns in two ways. First, we computed 
Pearson’s correlation coefficient between daily local incidence data and median values from the 
simulation ensemble. Second, we compared simulated and empirical patterns on an annual 
basis in terms of four features of local incidence patterns: annual incidence, peak weekly 
incidence, total number of weeks with non-zero local incidence, and number of weeks between 
the first and last local case. Consistency between simulated and empirical values of these 
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quantities was assessed using Bayesian p-values, with values > 0.025 and < 0.975 indicating 
consistency between empirical values and the model-derived ensemble48. 
 
Factorial simulation experiment 
To partition inter-annual variation in local incidence into portions attributable to inter-annual 
variation in local conditions or importation patterns, we performed a simulation experiment with 
a two-way factorial design. In this experiment, we grouped temperature, mosquito density, and 
residual variation in local conditions together as one set of predictor variables and importation 
patterns as the other. Each year from 2005 to 2015 was considered as a factor for each set of 
predictors. An ensemble of 1,000 simulations was generated for each of the 122 combinations 
of 11 years of each of the two sets of predictors. For example, with temperatures, mosquito 
densities, and %&(#) values from 2005, 1,000 simulations were performed with imported cases 
from each of 2005-2015, and likewise for temperatures, mosquito densities, and %&(#) values 
from 2006-2015. We summed annual local incidence for each of these 122,000 simulations and 
performed a two-way analysis of variance, resulting in estimates of the variation (defined in 
terms of sum of squared error, SSQ) in annual incidence attributable to local conditions, to 
importation, and to a portion unexplained by either predictor set due to the stochastic nature of 
the simulations. 
 
To quantify the overall portion of variation attributable to each predictor variable, we performed 
an additional simulation experiment with a four-way factorial design. In this experiment, we 
interchanged temperature, mosquito density, %&(#) values, and importation patterns from 
different years, again considering each year as a factor for each predictor variable. An 
ensemble of 1,000 simulations was generated for each of the 14,641 combinations of 11 years 
of all four predictors. Similar to the two-way factorial experiment, we summed annual local 
incidence for each of these simulations and performed a four-way analysis of variance. This 
resulted in direct estimates of the variation in annual incidence attributable to temperature, 
mosquito density, %&(#) values, importation patterns, and to a portion attributable to 
stochasticity.  
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SUPPLEMENTARY TABLES 1 
 2 
Paper Location Time 

step 
Time 
frame 

Type of 
model 

Factors / covariates included Main conclusion 

[1] Guangzhou Monthly 2005-
2015 

Statistical Avg. temperature, avg. min. 
temperature, avg. max. 
temperature, accumulated 
precipitation, number of days 
with rainfall, MOI, and BI 

Climate conditions explain temporal 
dynamics of dengue incidence 

[2] Guangzhou Monthly 2006-
Sept. 
2014 

Statistical Local min. temperature, 
accumulative precipitation 

Minimum temperature in previous month and 
accumulative precipitation with 3-month lag 
can project dengue outbreaks of 2013 and 
2014 

[3] Guangdong Weekly  2014 Mechanistic Weekly avg. temperature, and 
weekly precipitation 

Delayed mosquito control, continuous 
importations from April-July, transmission of 
asymptomatic infections, and high 
precipitation from May-August are causal 
factors for unprecedented outbreak 

[4] Guangzhou Daily  2013-
2014 

Mechanistic, 
deterministic 

Temperature, rainfall, and 
evaporation 

In 2013 and 2014, date of first imported case 
and unusually high precipitation, and in 2014 
only, delayed interventions and vertical 
transmission, are factors responsible for 
patterns of moderate outbreak in 2013 and 
much larger outbreak in 2014 

[5] Guangzhou Daily 2014 Spatial Urbanization level, ratio of 
urban village, road density, 
population density, GDP, 
NDVI, temperature, and 
precipitation 

Temperature, precipitation, road density, and 
water body area were the dominant factors of 
dengue fever in 2014 outbreak 

[6] Guangzhou Daily  Sept. 
2014-
Nov. 
2014 

Mechanistic Population density, human 
mobility (transportation), 
temperature, rainfall, humidity, 
MOI, and BI 

Urbanization, vector activities, and human 
behavior played significant roles in shaping 
the 2014 dengue outbreak and the patterns 
of its spread  

[7] Guangzhou Daily  2013-
2014 

Mechanistic, 
stochastic 

Tourist exchange, temperature, 
precipitation, BI, and MOI 

Higher number of imported cases in May and 
June were the most important determinants 
of dengue outbreaks 

 3 
Table S1. Model attributes, covariates included, and conclusions of papers that investigated dengue incidence in Guangzhou or 4 
Guangdong in 2014 and other years. 5 
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 3 

Parameter Point estimate Upper C.I. 
!"#$  1.03 1.08 
!"#%  1.03 1.09 
!"#&  1.03 1.10 
!"#'  1.01 1.04 
!"#(

 1.03 1.11 
!"#)  1.03 1.08 
!"#*  1.00 1.01 
!"#+  1.00 1.00 
!"#,  1.00 1.00 
!"-$  1.04 1.10 
!"-%  1.03 1.09 
!"-&  1.03 1.09 
!"-'  1.04 1.12 
!"-(  1.02 1.07 
!"-)  1.02 1.07 
!"-*  1.02 1.06 
!"-+  1.00 1.01 
!"-,  1.00 1.01 
!.$  1.05 1.15 
!.%  1.01 1.01 
!.&  1.15 1.45 
!.'  1.03 1.07 
!.(  1.05 1.18 
!.)  1.06 1.19 
!.*  1.04 1.14 
!.+  1.04 1.12 
!.,  1.09 1.28 
!.$/  1.06 1.17 
!.$$  1.03 1.08 
!.$%  1.01 1.02 
!.$&  1.05 1.16 
!.$'  1.00 1.01 
!.$(  1.02 1.06 
!.$)  1.19 1.56 
!.$*  1.04 1.05 
!.$+  1.09 1.18 
!.$,  1.04 1.12 
!.%/  1.03 1.08 
!.%$  1.06 1.17 
!.%%  1.09 1.21 
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 4 

!.%&  1.03 1.07 
!.%'  1.04 1.08 
!.%(  1.04 1.14 
!.%)  1.04 1.09 
!.%*  1.02 1.07 
!.%+  1.03 1.05 
!.%,  1.05 1.17 
!.&/  1.03 1.06 
!.&$  1.10 1.31 
!.&%  1.03 1.10 
!.&&  1.16 1.46 

 6 
Table S2. Gelman-Rubin convergence diagnostic based on three independent SMC 7 
sampling routines. Convergence is diagnosed to have occurred when the upper confidence 8 
interval is close to 1. The multivariate potential scale reduction factor is 1.72.  9 
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 5 

SUPPLEMENTARY FIGURES  10 

11 
Fig S1. Posterior predictive distribution of total dengue incidence for each year based on 12 
2,000 simulations from the fitted transmission model. The red line shows observed annual 13 
local incidence for each year. The number in each panel indicates the Bayesian p-value, with 14 
values between 0.025 and 0.975 indicating model consistency with the data. 15 
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 6 

 16 
Fig S2. Posterior predictive distribution of peak weekly incidence for each year based on 17 
2,000 simulations from the fitted transmission model. The red line shows observed peak 18 
weekly dengue incidence for each year. The number in each panel indicates the Bayesian p-19 
value, with values between 0.025 and 0.975 indicating model consistency with the data. 20 
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 7 

 21 
Fig S3. Posterior predictive distribution of the number of weeks with non-zero dengue 22 
incidence in each year based on 2,000 simulations from the fitted transmission model. 23 
The red line shows observed number of weeks with non-zero dengue incidence for each year. 24 
The number in each panel indicates the Bayesian p-value, with values between 0.025 and 0.975 25 
indicating model consistency with the data.  26 
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 8 

 27 
Fig S4. Posterior predictive distribution of the difference between the first non-zero 28 
dengue incidence week to the last non-zero dengue incidence week in each year based 29 
on 2,000 simulations from the fitted transmission model. The red line shows observed 30 
difference between the first non-zero dengue incidence week to the last non-zero dengue 31 
incidence day for each year. The number in each panel indicates the Bayesian p-value, with 32 
values between 0.025 and 0.975 indicating model consistency with the data.  33 
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 9 

 34 
Fig S5. Epidemic trajectories (log10 scale) from the factorial experiment for each 35 
combination of local condition years (rows) and imported case years (columns). The 36 
shaded regions represent 95% posterior predictive intervals. Black lines represent observed 37 
values of daily local incidence. Colored lines show three different random samples from the 38 
epidemic trajectory posterior.  39 
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 40 
Fig S6. Posterior distributions for parameters estimated using Sequential Monte Carlo 41 
sampling. Within each plot, each shaded region represents the posterior distribution for a 42 
parameter from one independent SMC run.  43 
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 44 
Fig S7. Correlation matrix for posterior estimates of parameters. Brackets indicate which 45 
entries in the matrix belong to which set of parameters. Dark blue corresponds to a large 46 
positive correlation and dark red corresponds to a large negative correlation. 47 
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 48 
Fig S8. Confidence interval surrounding mosquito spline estimates. Blue shaded region is 49 
the 95% confidence interval. Red dotted line is the median mosquito spline estimate. Black line 50 
is the maximum likelihood estimate.   51 
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