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Abstract:

Waddington’s epigenetic landscape is a classic metaphor for describing the
cellular dynamics during the development modulated by gene regulation.
Quantifying Waddington’s epigenetic landscape by mathematical modeling
would be useful for understanding the mechanisms of cell fate determination.
A few computational methods have been proposed for quantitative modeling
of landscape; however, to model and visualize the landscape of a high dimen-
sional gene regulatory system with realistic details is still challenging. Here,
we propose a Monte Carlo method for modeling the Waddington’s epige-
netic landscape of a gene regulatory network (GRN). The method estimates
the probability distribution of cellular states by collecting a large number
of time-course simulations with random initial conditions. By projecting al-
l the trajectories into a 2-dimensional plane of dimension i and j, we can
approximately calculate the quasi-potential U(xi, xj) = −ln P (xi, xj), where
P (xi, xj) is the estimated probability of an equilibrium steady state or a non-
equilibrium state. A state with locally maximal probability corresponds to a
locally minimal potential and such a state is called an attractor. Compared
to the state-of-the-art methods, our Monte Carlo method can quantify the
global potential landscape of GRN for a high dimensional system. The same
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topography of landscape can be produced from deterministic or stochastic
time-course simulations. The potential landscapes show that not only at-
tractors represent stability, but the paths between attractors are also part of
the stability or robustness of biological systems. We demonstrate the nov-
elty and reliability of our method by plotting the potential landscapes of a
few published models of GRN. Besides GRN-driven landscapes of cellular
dynamics, the algorithm proposed can also be applied to studies of global
dynamics of other dynamical systems.
keywords: Waddington’s epigenetic landscape; Monte Carlo; attractor;
gene regulatory network; dynamical systems

Introduction

The Waddington’s epigenetic landscape has been recognized as a powerful
metaphor for explaining the phenomenon of embryonic development and cel-
lular differentiation in biology1,2,3,4. The essence of the conceptual model
proposed by Waddington is the ability to explain the emergent properties of
cell fate decisions5. At least two types of approaches based on dynamical
systems theory for quantifying the Waddington’s epigenetic landscape have
been used. The first is the discrete formalism of Boolean network modeling6,7

and the second is continuous modeling in the form of ordinary differential
equations (ODEs)8,9,10. This paper is focused on the second approach in the
form of ODEs.

Recently, a few methods for quantifying and plotting Waddington’s epi-
genetic landscape based on gene regulatory networks (GRNs) have been
proposed11,12,13,14,15. A key step in these methods is the formulation of a
potential (or quasi-potential) value for the dynamical system of GRN that
can be displayed as a landscape. For example, Bhattacharya et al.11 pro-
posed a method for mapping aligned trajectories of the dynamical system of
GRN in ODEs to a “quasi-potential” surface in the x -y phase space. When
investigating mathematical models of two important processes in develop-
ment, cell-fate induction and lateral inhibition12, Ferrell showed that the
unique formulation of the potential surface for the lateral inhibition model
can produce a pitchfork bifurcation, which is consistent with Waddington’s
epigenetic landscape where a ball representing a cell is moving down the hill
and then bifurcate into two valleys (i.e. two stable states).

Later, Zhou et al.15 proposed a theoretical framework for the decompo-
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sition of vector fields which enables the computation of a “quasi-potential
function” for multi-attractor systems. Among the recent methods for quan-
tifying Waddington’s epigenetic landscape is the one proposed by Li and
Wang13 who used statistical mechanics to quantify the potential landscape
through self-consistent mean field approximation. Their formulation of the
potential based on the probability distribution of steady states captures the
global potential landscape and the global barrier height measured by the “po-
tential difference between the two attractor minimums and the saddle point
on landscape”13. Li and Wang13 also used a path integral method to obtain
the kinetic paths of transition between attractors. The self-consistent mean
field approximation method has been implemented into a software package by
our group to facilitate the drawing of Waddington’s epigenetic landscape16.

Although the method proposed by Li and Wang can quantify potential
landscapes for high dimensional GRNs, their method has limitation in the
lack of realistic details of the landscape. Moreover, the high dimensional-
ity of the GRN as measured by the number of genes poses challenges for
modeling, analysis and visualization; for example, the methods proposed by
Bhattacharya et al.11 and Ferrell12 allow two variables only. In this pa-
per we propose a simple and novel Monte Carlo method for quantifying the
Waddington’s epigenetic landscape of GRNs of more than two genes. Our
algorithm projects the time-course trajectories into a 2-dimensional plane
of dimension i and j to calculate the probability distribution and potential
U(xi, xj) = −ln P (xi, xj), where P (xi, xj) is the estimated probability of an
equilibrium steady state or a non-equilibrium state. We demonstrate unique
features of the proposed method by plotting a few case studies of GRN from
two-dimensional to higher dimensional models. Our Monte Carlo method lies
in that large random initial conditions drawn from the state space were used
to calculate time-series trajectories based on ODEs. A novelty of our method
is the projection of the time-series trajectories into a plane that is divided into
grid boxes to estimate the probability distribution and the quasi-potentials
of cell states. The landscape altitude proportional to the quasi-potential,
when laid out on the x -y plane, can capture detailed features of the dy-
namical system, such as basin of attraction, unstable manifolds connecting
two attractors, spiral attractors and limit cycle attractors in the potential
landscape.

Testing on a few published models of GRN showed that our Monte Carlo
method can successfully quantify global potential landscapes consistent with
the state-of-the-art methods. The case studies demonstrate the power of
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our computational method in uncovering the detailed dynamical behaviors
of GRNs that other methods fail to capture. In addition, we have also used
the stochastic approach of Chemical Langevin Equation (CLE) to estimate
the probability distribution of states by collecting simulated time series. The
potential landscape constructed by the stochastic approach turned out to be
consistent with the landscape by the deterministic approach. Our analysis
indicates that the structure of a GRN can contribute to the robustness of the
attractors to noise. Moreover, we argue that in the Waddington’s epigenetic
landscape not only the attractors represent stability, but that the paths be-
tween attractors characterised by unstable manifolds also contribute to the
stability or robustness of gene regulatory systems for cell fate decision.

Results

Quantifying the potential landscape of non-equilibrium
and equilibrium states

To demonstrate the capability of the proposed method, we selected four
real models of GRN and one artificial network model. These models are:
(1) a bistable synthetic toggle switch17, (2) a model of cancer attractors18,
(3) an artificial network with spiral attractors15, (4) a cell cycle oscillator
model19, and (5) a stem cell differentiation and reprogramming model13.
For the model equations, readers may refer to the original papers or the
source code included in our MATLAB package (see the Additional material).
These examples illustrate that our method can capture distinct details of
dynamical systems, e.g. attractor, repeller, unstable manifold, saddle point,
spiral attractor and limit cycle attractor.

Example 1: Bistable synthetic toggle switch from Gardner et al.17

In the first example, our method is used to analyse the transient properties
of a synthetic genetic toggle switch proposed by Gardner et al.17. The model
equations and parameter values we used are the same as given by Segel and
Edelstein-Keshet20. Phase plane analysis shows that the system displays two
attractors and one saddle point, and the saddle point is formed by both stable
and unstable manifolds17,20,21. According to the dynamical systems theory, a
stable manifold is characterized by eigenvector with negative real eigenvalue,

4

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 29, 2018. ; https://doi.org/10.1101/310771doi: bioRxiv preprint 

https://doi.org/10.1101/310771
http://creativecommons.org/licenses/by-nc-nd/4.0/


whereas an unstable manifold is characterized by eigenvector with positive
real eigenvalue.

By applying the Monte Carlo method which is presented as Algorithm 1
in this paper (see Methods), we obtained the landscape as shown in Figures
1a-b. The potential landscape shows two attractors and there is a valley
connecting the two attractors. Compared with the phase plane, the valley
(or kinetic path) in Figure 1a is found to be formed by the unstable manifolds,
which cannot be generated by analysing steady states only. Between the two
attractors, there is a saddle point (Figure 1b). It can be observed that the
unstable manifolds form the valley, whereas the stable manifolds form the
separatrix or boundary between the two attractors.

This simple model of GRN shows that our method of formulating the
potential can capture the transient properties of a dynamical system. For
example, when there is a valley between two attractors in the potential land-
scape, the kinetic path is formed by unstable manifolds. The saddle point sets
a threshold for the barrier height that can separate the two attractors. The
potential landscape displays a three-dimensional view of the phase plane and
shows the attractors and saddle point more clearly than a two-dimensional
plane only. In particular, the saddle point is shown to have one convex up
(local minimum) and one concave down (local maximum) in the opposite
directions. The result from this example suggests that not only attractors
represent stability but the kinetic path is also part of the stability of GRNs.

Example 2: Cancer attractors from Li and Wang18

To test if our method can handle a network of more than two genes, we choose
a six-gene network model proposed by Li and Wang18. This gene network
was reported to produce four attractors representing cancer stem cells, stem
cells, cancer cells and normal cells18. The potential landscape of this model
generated by our algorithm, however, shows four pairs of attractors in which
the two attractors in each pair are close to each other (Figure 1c). Our time-
course data analysis of the trajectories end points confirmed that there are
8 attractors (data not shown). The result suggests that Li and Wang18 may
have joined the two nearby attractors into one attractor and thus resulted in
only four attractors.

This result indicates that the potential landscape obtained using our
method can capture more details of attractors. In addition, the landscape
also contains 5 valleys connecting a pair of attractors (Figure 1c). These val-
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Figure 1: Potential landscapes for Example 1 and Example 2. (a)
3D view of a genetic toggle switch based landscape: The landscape displays
two attractors that are connected with a kinetic path formed by unstable
manifolds. (b) Side view of the genetic toggle switch based landscape in Ex-
ample 1: The landscape displays two basins of attraction that are connected
by the unstable manifolds. The saddle point separates the two attractors.
The saddle point is also a tipping point (or barrier height) for transition a-
long the kinetic path between the basins of attraction. c Validation of our
method by reproducing the potential landscape of Li and Wang18 in Example
2. By comparing the location of the attractors labeled by Li and Wang18, we
identified the attractors and its corresponding cell state. The landscape dis-
plays four main basins of attraction for normal cells, cancer cells, stem cells
and cancer stem cells. However, our landscape is slightly different from the
landscape plotted in the original paper (Li and Wang18): each of the main
basins of attraction is divided into two attractors which are connected by
kinetic paths. The color code corresponds to the value of the quasi-potential
U.

leys are formed by unstable manifolds, as discussed in the first example, and
contain the information about saddle point as barrier height for separating
two attractors. These valleys are similar to the kinetic paths in Example 1
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in illustrating the transition from one attractor to another attractor in the
landscape.

Example 3: Spiral attractors from Zhou et al.15

The third example was selected to demonstrate the capability of our method
to capture the dynamical features of spiral attractors. This model is an
artificial network of two variables proposed by Zhou et al.15. The original
landscape shows four attractors, four saddle points and one repeller in the
center. The potential landscape generated using our method is shown in
Figures 2a-b. There are four attractors on the four corners of the landscape
and one repeller in the middle. However, the basins of attractor are unique in
that they are formed by a counterclockwise spiral (Figure 2b). The landscape
also shows four valleys (or kinetic paths) connecting the four attractors. The
valleys are formed by the unstable manifolds of saddle points as discussed
earlier.

The conventional phase plane analysis can illustrate the vector field and
the flows of the trajectories (Figure 2c), but it can only show the flows
in terms of the counterclockwise spiral in a two-dimensional plane. Here,
our potential landscape can quantify and depict the spiral attractors in a
three-dimensional view of the potential landscape. The formulation of the
potential U = − ln P which includes the probability of non-equilibrium state
enables the quantitative description of the detailed transient behavior of the
dynamical system.

Example 4: Cell cycle modeling by limit cycle oscillator from Fer-
rell et al.19

The fourth example is used to test the capability of our method to investigate
other type of attractors, namely limit cycle attractor. This example is a 3-
gene network model of limit cycle oscillator for modeling cell cycle control
proposed by Ferrell et al.19. A few key proteins for controlling cell cycle
were observed to oscillate22, and Ferrell et al.19 proposed an ODE model
of gene network to explain why these proteins can oscillate in a limit cycle.
Based on this 3-gene network we used our method to generate a potential
landscape. The resulting potential landscape in Figures 3a-b shows a limit
cycle attractor (in blue color).
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Figure 2: Potential landscape for Example 3. The Waddington’s
epigenetic landscape displays four basins of attraction. (a) 3D view:
The Waddington’s epigenetic landscape contains four spiral attractors (four
blue dots) and the directions of the spirals are all counterclockwise. (b)
Top view: There are unstable manifolds connecting any two attractors. (c)
A conventional phase plane analysis shows the nullclines (green and brown
lines) and the vector field. Intersections of the nullclines indicate the steady
states. In this phase plane there are 9 intersection points corresponding to the
9 steady states: 5 unstable and 4 stable. The stability of the steady state can
be determined by checking the eigenvalues of the eigenvectors: negative eigen-
values indicate stable steady states whereas positive eigenvalues indicate un-
stable steady states. Also shown is an example of a trajectory (blue line) be-
ing attracted to the stable steady state (one of the intersections between the
nullclines at the top right). (Figure 2c was generated using XPPAUT, which
can be downloaded from http://www.math.pitt.edu/∼bard/xpp/xpp.html)

The limit cycle is a unique feature of dynamical systems for describ-
ing trajectories attracted to a closed-form cycle from inside and outside the
closed orbit23. It is traditionally illustrated as a closed-form orbit (with no
intersection or crossing) in a two-dimensional diagram as shown in the top
view of the potential landscape (Figure 3b). Limit cycle oscillations can be
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viewed as time-course simulations with a fixed periodic form of oscillation.
The potential landscape constructed by our method can capture the limit
cycle attractor in a 3D view (Figure 3a).

C

BA

limit cycle attractor

stem cell attractor

differentiation attractor

Figure 3: Potential landscapes for Example 4 and Example 5. (a)
3D view of the Waddington’s epigenetic landscape for the 3-gene ODE model
of cell cycle control which demonstrates the limit cycle attractor (Example 4).
(b) Top view of the Waddington’s epigenetic landscape for the ODE model
of cell cycle oscillator demonstrates the limit cycle oscillator, which corre-
sponds to the limit cycle attractor. (c) Waddington’s epigenetic landscape
based on a 52-gene network model13 (Example 5), which shows two basins
of attraction. By comparing the location of the attractors labeled by Li and
Wang13, we identified the stem cell attractor located on the left is the dom-
inant attractor, i.e. bigger and deeper (blue color) than the differentiation
attractor located on the right.

Example 5: Stem cell differentiation and reprogramming from Li
and Wang13

Finally, to test if our method can model high dimensional gene regulatory
networks, we selected a 52-gene network model proposed by Li and Wang13
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for quantifying the stem cell differentiation and reprogramming. The authors
of Ref. 13 identified two attractors in the state space of gene expression: stem
cell attractor and differentiated cell attractor. To plot the potential landscape
we chose two marker genes GATA6 and NANOG as in Li and Wang13, which
play pivotal roles in regulating stem cell fates and used their expression levels
as the coordinates of the 2D panel. The shape of our potential landscape
is consistent with that in Li and Wang13, e.g. both showing two attractors
(Figure 3c). The potential landscape shows that the stem cell attractor has
a bigger basin of attraction and lower potential value than the differentiated
cell attractor.

The result in Figure 3c suggests that our method can capture the transient
non-equilibrium states and the attractors of the equilibrium steady states
with more details than the results reported by Li and Wang13. The potential
landscape displays one dominant attractor shown as the stem cell attractor,
which means the probability of getting attracted to this stem cell attractor
is higher compared to the differentiated cell attractor.

Computational time

For existing models of Waddington’s epigenetic landscape in the literature,
most authors did not report computational time for obtaining potential land-
scapes. Here, we record the computational time for generating each of the
landscape using our Monte Carlo method (Table 1). We used MATLAB
R2012b software installed on a Dell desktop computer running Windows 7
(64-bit) operating system with 8 GB memory (RAM). Table 1 shows the
benchmark computational time in generating Waddington’s epigenetic land-
scape, for example, even for the 52-gene model of Li and Wang13 needs only
33 minutes and 50 seconds. One key factor that might affect the computa-
tional time is the non-linearity in the model equations. The 2-gene model
from Zhou et al.15 contains four cubic terms, whereas the 52-gene model
from Li and Wang (2013) is composed of Hill functions takes much less time.
Moreover, Ferrell et al.19 model with non-linearity terms of multiplication
between one variable and Hill functions required the third longest time al-
though it contains only 3 variables.
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Table 1: Benchmark computational time for generating Waddington’s epi-
genetic landscape

No. Model No. variables No. interactions Computational time

1 Gardner et al. (2000) 2 2 10 min 5 s
2 Li and Wang (2015) 6 16 12 min
3 Zhou et al. (2012) 2 8 39 min 21 s
4 Ferrell et al. (2011) 3 3 20 min 22 s
5 Li and Wang (2013) 52 123 33 min 50 s

Landscape modeling based on stochastic Chemical Langevin
Equation (CLE)

The models of Waddington’s epigenetic landscape in the previous section
were constructed based on deterministic simulations using ODEs. Here, we
also investigate the landscape model for Li and Wang18 constructed using a
stochastic approach based on Chemical Langevin Equation (CLE)24,25. We
applied the same procedure as described in Algorithm 1 in the Methods
Section with the only difference that the numerical simulation of the time-
course data was done with CLE instead of ODEs. For the Example 2 from Li
and Wang18, we defined 22 reactions (16 network interactions of activation
and inhibition plus 6 self-degradations) and converted the rate constants
from the deterministic ki in ODEs to the stochastic rate constants ci, as
explained in Methods. We simulated 100,000 trajectories with random initial
conditions. Two examples of the time-course simulation using CLE with
random initial conditions are given in Figure 4a. Each trajectory is projected
to a 2D plane of dimension i and j to estimate the probability distribution
of P (xi, xj) and the quasi-potential U(xi, xj) = −ln P (xi, xj) as in the ODE
model. A potential landscape for the model of Li and Wang18 obtained from
CLE is shown in Figure 4b, which is comparable to the one obtained using
deterministic ODE-based simulation (Figure 1c). The stochastic noise in the
CLE only slightly perturbed the dynamic simulations as the shapes of the
attractors in the potential landscape were almost unchanged (even when we
used a larger noise than in Higham25 original code V = 10−15 by setting the
volume of the system V = 10−20). However, the attractors in the potential
landscape from CLE display slightly larger basins of attraction. As a result,
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two of the attractors that are located close to each other in the ODE-based
landscape have been merged into one in the CLE-based landscape (Figure
4b). We also tested by setting the volume of the system V = 10−15 for
obtaining large number of molecules, and the landscapes plotted based on
ODE and CLE are identical (data not shown). The computational time for
generating the potential landscape using CLE is 57.9 minutes, which is much
longer than using ODEs (12 minutes). This is expected as the stochastic
simulation normally takes a longer time due to the high computational cost
for simulating all the events of biochemical reactions26.

We also performed a stochastic simulation using the synthetic toggle
switch model of Gardner et al.17 and obtained similar results as in the Li and
Wang18 model, i.e. the potential landscape is not affected by the noise (Sup-
plementary Figure S6). These results implicate some degree of robustness
in GRNs. The design of the GRN interactions likely enables cells to func-
tion properly even though in reality there are intrinsic noises from molecular
fluctuations and extrinsic noises from the environment27,28. Overall, these re-
sults suggest that the global dynamics of the attractors in the Waddington’s
epigenetic landscape tends to be robust to noise.

Discussion

In this paper, we present a novel Monte Carlo method for quantitatively
modeling and visualization of Waddington’s epigenetic landscape based on
dynamical modeling of GRNs. This method uses a large number of initial
conditions randomly sampled from a uniform distribution in the state space,
and the collected time-series data are then used to estimate the probability
distribution of the cell states and the quasi-potential of the landscape. One
key advantage of our method is that it can quantify the potential landscape
to display both global and detailed dynamics of the cell state transitions for
equilibrium states (e.g. steady states or attractor states) and non-equilibrium
states (e.g. transient states along a kinetic path). The landscape provides
a 3D view of the dynamical features (e.g. attractor, saddle point, unstable
manifold, stable manifold, limit cycle, and spiral attractor) of the system,
whereas conventional dynamical system analysis uses 2D views of bifurcation
diagram, phase plane and vector field. Thus, our computational method can
be used for detailed modeling and 3D visualization of dynamical systems of
cells.
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Figure 4: (a) Two examples of time-course simulation generated from
Chemical Langevin Equation (CLE) with random initial conditions. These
time-course simulations show that, starting from two different initial con-
ditions, two trajectories with some randomness can eventually converge to
the same attractor. (b) Waddington’s epigenetic landscape of the 6-gene
network model from Li and Wang18, which shows four basins of attraction.
The potential landscape was generated by using CLE based dynamic simu-
lations, and its shape is consistent with that of the landscape obtained using
ODEs shown in Figure 1c. It implicates that the attractors in the potential
landscape are robust to noise.

While the method proposed by Li and Wang13 formulates the potential
as U = −ln P ss (where P ss is the steady state probability) and uses the
self-consistent mean field approximation, our method uses U(xi, xj) = −ln
P (xi, xj) (where P (xi, xj) is the estimated probability of an equilibrium
steady state or non-equilibrium transient state) and a Monte Carlo method
to approximate the potential landscape. Li and Wang13 also used 100,000
time-course simulations from random initial conditions in the state space and
inferred the steady state probability distribution with multi-variable Gaus-
sian distribution to plot the potential landscape, which displays a smooth
surface with basins of attraction. Between their method and ours, the loca-
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tions of attractors are essentially the same. However, our method can capture
more detailed information than their method13,18, as demonstrated in Exam-
ple 2 (with four pairs of attractors as shown in Figure 1c) and in Example
5 (with one dominant attractor as shown in Figure 3c). In Example 2, four
pairs of attractors (Figure 1c) can be explained by the kinetic paths for the
transition between attractors. As for Example 5, we are not aware of any
biological reason for the landscape to display one dominant stem cell attrac-
tor and one minor differentiated cell attractor (Figure 3c), which should be
investigated in the future. Moreover, our Monte Carlo method is powerful in
that it can capture the kinetic path without using the path integral method
as in Li and Wang13. The kinetic path between two attractors can give bi-
ological insight into the transition from one attractor to another attractor
where the intermediate state transitions must follow this path towards the
final stable state. The kinetic path in the Waddington’s epigenetic landscape
can explain why the cell differentiation in embryonic development follows a
deterministic path1,29 which was called by Waddington himself “chreod”3,30.

The potential landscape modeling based on stochastic simulations has
also been conducted by Li and Wang (2013) with the method of root mean
square distance (RMSD), i.e. using coordinates of two attractors (with locally
minimum potentials) as two reference points to reduce a multi-dimensional
space into two dimensions of RMSD1 and RMSD2. Using the Langevin
dynamics and RMSD they obtained a landscape with the same number of
attractors as the landscape based on their self-consistent mean field approx-
imation method. However, the topographies of the two landscapes (from
self-consistent mean field and RMSD) reported by Li and Wang13 are com-
pletely different. Here, we used Chemical Langevin Equation to obtain the
time-course trajectories and applied our Monte Carlo method to directly ob-
tain a landscape. Using the stochastic approach of CLE we can obtain a
Waddington’s epigenetic landscape consistent with that using the determin-
istic approach of ODEs. These results of computer simulation highlight the
robustness of the gene regulatory network to noise31,32.

Conclusions

The Monte Carlo method for plotting potential landscapes for multi-dimensional
GRNs allows us to study the links between genotype and phenotype as initial-
ly proposed by Conrad Waddington about 60 years ago1,2. Through studies of
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real biological networks, we have demonstrated the usefulness, simplicity and
power of the method for plotting Waddington’s epigenetic landscape. It can
facilitate our understanding of cellular differentiation and reprogramming as
well as other biological processes. In general, the algorithm proposed here for
cellular dynamics can also be applied to studying other types of dynamical
systems such as social networks.

Methods

In this paper, we propose a Monte Carlo method to quantify the potential
landscape of equilibrium steady states and non-equilibrium states of a GRN.
First, we discuss how to derive the quasi-potential from chemical master e-
quation (CME) using the Monte Carlo method. Instead of solving the CME
using the Gillespie’s algorithm (also known as the stochastic simulation algo-
rithm) which is computationally costly, we use numerical simulations of ODE
mainly because there are many efficient solvers to obtain time-course trajec-
tories. The Monte Carlo method is used to: (1) generate a large number
of random initial conditions that are used for time-course simulations, and
(2) estimate probability distribution from time-course trajectories projected
into a 2-dimensional plane to quantify the quasi-potential U. A summary of
the Monte Carlo method for quantifying Waddington’s epigenetic landscape
is given in Algorithm 1. Second, we discuss how to use stochastic simula-
tions with CLE, which is an improved computation of tau-leaping method
for approximate simulation of Gillespie’s algorithm33. Using the time-course
trajectories generated from CLE we can also quantify the Waddington’s epi-
genetic landscape for a GRN.

Quantifying Waddington’s epigenetic landscape using
deterministic ODE models

Derivation of average state probability used in quasi-potential

To derive the quasi-potential for the dynamics of gene expression driving cell
state transition, we start from the definition of the CME34,35

dP (x, t)

dt
=

m∑
j=1

aj(x− νj)P (x− νj, t)−
m∑
j=1

aj(x)P (x, t), (1)
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where x = (x1, x2, ..., xn) is the state of the system under study (e.g. a
GRN), xi is the copy number of the ith molecular species, n is the number of
molecular species, m is the number of reactions, and P (x, t) is the probability
of system in state x at time t. The function of aj(.) defines the propensity
function for the jth reaction and νj defines the stoichiometric transition
vector for the jth reaction. The CME defines the time-evolution of the
function P (x, t)34. The CME can be interpreted as that the flow of the
probability of a system being in state x at time t is given by the probability
of arriving at x when reaction j fires, aj(x − νj)P (x − νj, t) subtracted by
the probability of the system leaving x when reaction j fires, aj(x)P (x, t)36.
Summing up all the possible reactions for j from 1 to m gives Eq. (1). From
Eq. (1), we can calculate the probability of a cell in state x at time t

P (x, t) =

∫ m∑
j=1

[(aj(x− νj)P (x− νj, t)− aj(x)P (x, t))]dt+ C (2)

In theory, when the time t is large, e.g. approaching infinity, the probabil-
ity P (x, t) will approach the steady-state probability Pss

37,38. Wang and co-
workers37,38 proposed a formulation for the quasi-potential as U = −ln Pss.
However, to study the dynamics of a biological system we also consider the
probability over the period of time from 0 to T, and calculate the average
probability of state at x over the time from 0 to T, as

P (x) =

∫ T

0
P (x, t)dt

T
(3)

According to the definition of the quasi-potential U proposed by Wang
and co-workers as U = −ln P (x)31,38, thus we approximate the quasi-
potential U by using P (x) from Eq.(3) as given by

U = −ln P (x) (4)

Using Monte Carlo simulation and Gillespie’s algorithm to estimate
quasi-potential

It is difficult to solve U = −ln P (x) analytically. Thus, we can use a Monte
Carlo method to get an approximate solution. Monte Carlo methods use
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computer simulations with random sampling to approximate the exact solu-
tions39. It has been widely used for solving a variety of problems including
landscape modeling. For example, two recent works used Monte Carlo sim-
ulations to model epigenetic landscape and cell type transitions. Nakagawa
and Narikiyo40 proposed a minimal modeling of epigenetic landscape based
on the fitness of interacting cells. Wang et al.41 proposed a Monte Carlo
method based on an ensemble of parameters to simulate the global dynam-
ics of the epigenetic state network. Our Monte Carlo method is different
from the above two methods, in that we use a large number of random ini-
tial conditions for simulating trajectories and then obtain the probability
distribution of P (x).

First, from Eq. (3) we discretize the formulation from integral into sum-
mation:

P (x) =

∑
0≤ti≤T

P (x, t)∆ ti∑
0≤ti≤T

∆ ti
(5)

where ∆ ti is the increment of time for P (x, t). Suppose the initial condition
is uniformly distributed, and xi is not larger than Xi, which is a positive
integer fixed by a modeler based on the maximum value in the dynamical
system. Then the probability averaged over the initial conditions is given by:

P (x, 0) =

{
1

X1·X2·...·Xn
, 1 < xi 6 Xi, (i = 1, 2, ..., n)

0, otherwise
(6)

Next, we randomly choose N initial states {x1(0),x2(0), ....,xN(0)} which
are uniformly distributed in every dimension. Based on these random ini-
tial conditions we simulate N trajectories using Gillespie’s algorithm34. Let
us denote the ith trajectory by Si = {xi(ti,0),xi(ti,1),xi(ti,2), ...,xi(ti,mi

)},
where xi(ti,mi

) is the state at time ti,mi
for the ith trajectory. From these

trajectories we can estimate the probability in Eq. (5) as follows:

P (x) =

N∑
i=1

mi∑
j=1

[xi(ti,j) = x] · (ti,j − ti,j−1)

N∑
i=1

mi∑
j=1

(ti,j − ti,j−1)

, (7)
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where [x ] is the Iverson bracket defined by

[x] =

{
1, if x is true
0, otherwise

(8)

From this Monte Carlo method we can estimate the probability distribu-
tion of the state at x given by P(x) and then using Eq. (4) we can obtain
the quasi-potential U for the dynamical system.

Improving the speed for obtaining quasi-potential by using ODEs

Using the Gillespie’s algorithm we can simulate the time trajectory for CME.
However, it incurs very high computational cost for simulating every event
of the chemical reactions26. According to the Gillespie’s work34, when the
number of molecules present in the biochemical reactions is large the stochas-
tic and deterministic simulation results are almost equivalent with negligible
random fluctuations. Assuming that the number of molecules present in
the biochemical reactions is large, we use numerical simulation of ODEs to
speed up the computation. We also randomly choose N initial conditions
{x1(0),x2(0), ...,xN(0)} which are uniformly distributed in every dimension.
However, these initial conditions are measured in concentration level of the
molecular species. Using these random initial conditions we simulate N tra-
jectories.

After numerically solving the ODEs, the output trajectories can be dis-
cretized from the continuous time with a specific time step. As such, we can
use Eq. (7) to obtain P (x) for calculating the quasi-potential of the dynam-
ical system. The only difference here is that x is measured in concentration
for each molecular species instead of the number of molecules as in the Gille-
spie’s algorithm. We choose to use ODE solver with a fixed time step so that
the time difference for ∆t is constant. Let us assume the time difference is
given by

∆t = ti,j − ti,j−1 (9)

Then substitute Eq. (9) into Eq. (7), and after simplification we obtain

P (x) =

N∑
i=1

mi∑
j=1

[xi(ti,j) = x] · ∆t

N∑
i=1

mi∑
j=1

∆t

, (10)

18

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 29, 2018. ; https://doi.org/10.1101/310771doi: bioRxiv preprint 

https://doi.org/10.1101/310771
http://creativecommons.org/licenses/by-nc-nd/4.0/


P (x) =

∆t
N∑
i=1

mi∑
j=1

[xi(ti,j) = x]

∆t
N∑
i=1

mi∑
j=1

1

, (11)

P (x) =

N∑
i=1

mi∑
j=1

[xi(ti,j) = x]

N ·mi

. (12)

With Eq. (12) we have simplified Eq. (7) and improved the calculation
speed to obtain the quasi-potential value. However, accurate estimation of
P (x) still involves high computational cost due to the large state space of
the system. In order to further improve the speed of the computation we
apply a coarse graining formulation defined by

P (x) = P (x− ∆x ≤ x ≤ x + ∆x)

=

N∑
i=1

mi∑
j=1

[xi(ti,j) ⊂ (x− ∆x,x + ∆x)]

N ·mi

.

(13)

The coarse graining formulation above is implemented as the division of a
2-D plane into grid boxes.

Plotting landscape

From previous section we have derived the expressions of Eq. (7) and Eq. (13)
for calculating P (x). However, these equations are for dynamical systems
with high-dimensional state space. In order to plot the potential landscape
in 3 dimensions for human viewers to understand, we need to reduce the
dimensions of a system. There are many dimensionality reduction methods
that can be applied to the plotting of our landscape. Here, we propose
a simple method of dimensionality reduction by projecting the trajectories
into a 2-dimensional plane. By marginalizing out all the variables except for
the ith and jth variables, we can obtain the probability distribution of the
states in the ith and jth dimensions as

P (xi, xj) =
∑
s1

∑
s2

...
∑
si−1

∑
si+1

...
∑
sj−1

∑
sj+1

...
∑
sn

P (x1=s1,x2=s2,...,xi−1=si−1,xi,xi+1=si+1,
...,xj−1=sj−1,xj ,xj+1=sj+1,...,xn=sn)

(14)
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After dimensionality reduction, we can subtitute Eq. (14) into Eq. (4)
to obtain the quasi-potential of a state in two dimensions

U(xi, xj) = −ln P (xi, xj). (15)

With xi, xj and U(xi, xj) as the x, y and z axes respectively, we can plot the
landscape in 3 dimensions. Since the calculation of P (xi, xj) considers the
time course from t0 to tmi

, our method can be used to analyze the properties
of transient states, rather than being limited to steady states, and thereby
can reveal more dynamical details.

Our Monte Carlo method is summarized in Algorithm 1. Essentially, the
algorithm collects N simulated time-course trajectories from random initial
conditions in the state space. Here, we use a fixed time step of ∆t = 0.1 for
numerical simulation, and thereby we can use the number of time points along
a trajectory instead of the length of continuous time to estimate the proba-
bility of a state. Then from these time-course data, we project the points of
the trajectories into a phase plane of two selected variables of interest and
estimate the probability. For example, Figure 5 shows how the probabili-
ty distribution can be estimated in a plane that has been divided into grid
boxes. A grid box with a locally maximal number of points on the trajec-
tories represents an attractor. In Figure 5 there are two yellow grid boxes
with locally maximal numbers of points from the trajectories, and therefore
they represent two attractors. These results are then used to estimate the
quasi-potential U(xi, xj) = −ln P (xi, xj), where P (xi, xj) is the probability
of a state which is either an equilibrium state or a non-equilibrium state. A
non-equilibrium state quantifies the transient behaviors of the system such as
the intermediate flows in a vector field, whereas an equilibrium state quanti-
fies the repeller (unstable steady state) and attractor (stable steady state)42.
This formulation and approximate calculation of the quasi-potential enables
us to plot the Waddington’s epigenetic landscape with details.
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Figure 5: Illustration of the Monte Carlo method for approximating the
probability distribution and identifying attractors. The projection of the
time-course data into a plane with grid boxes enables the estimation of the
probabilities of cellular states. In this example 10 trajectories (blue lines) are
shown and the plane is split into 8 x 8 grid boxes. A grid box with a locally
maximal number of points of trajectories corresponds to an attractor. In this
landscape, there are two attractors as indicated by the two yellow boxes.

Algorithm 1. Monte Carlo steps for quantifying quasi-potential
landscape

1. generate N random initial conditions

2. generate 2-dimensional grids

3. for each initial condition:
(i) generate one trajectory
(ii) project the trajectory to the 2-dimensional grid boxes
(iii) from the trajectory calculate the number of points in each grid box

4. estimate probability of each grid P (xi, xj) as given by Eq. (15)

5. calculate quasi-potential of each grid using U(xi, xj) = −ln P (xi, xj)

6. plot the landscape in 3 dimensions
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Stochastic modeling of landscape based on Chemical
Langevin Equation (CLE)

To test the role of noise in gene expression and the robustness of GRNs
we also investigate a second type of potential landscape that is based on s-
tochastic time-course simulations. The algorithm for obtaining the potential
landscape is similar to Algorithm 1. The key difference is that the stochastic
approach uses Chemical Langevin Equation (CLE)24, an improved version of
tau-leaping method for approximate simulation of the Gillespie’s algorithm33,
to simulate the time-series trajectories. CLE differs from ODEs in that the
biochemical reactions are simulated using the stochastic part in the CLE25.
We adapted the CLE code from Higham25 with the model reactions from the
GRNs of Li and Wang18 and Gardner et al.17. We used a larger noise than
in the original code of Higham25, by decreasing the volume of the system
from V = 10−15 to V = 10−20. Since CLE is a well established method for
stochastic simulation of biochemical reactions33 we will not discuss it in de-
tail here. The CLE and their implementation in MATLAB code are given in
Supplementary material. Below we will illustrate how to construct CLE by
converting from ODEs. The definitions of the rates of change of molecular
species are different between ODEs and CLE. In ODEs the molecular species
are measured in concentrations, whereas in CLE the molecular species are
measured in the numbers of molecules. To explain how to convert the de-
terministic rate constant ki in ODEs to the stochastic reaction rate constant
ci in CLE, let us look at Eq. (16), an example model equation for protein x
with self-activation (the first term on the right hand side) and spontaneous
degradation (the second term):

dx

dt
= k1

xn

kn2 + xn
− k3x. (16)

Let us use X to denote the copy number of protein x. Hereafter we will use x
to denote the concentration of protein X, in the unit of µM . The relationship
between x and X is given by:

X = x ·NA · V, (17)

where NA is the Avogadro’s number which equals 6.023× 1023 and V is the
volume of the system in liters25. Next, denote B = NA · V , then Eq. (17)
becomes

X = x ·B.
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Multiply B to both sides of Eq. (16), and we get

dx

dt
B = B · k1

xn

kn2 + xn
− k3x ·B,

dx

dt
B = B · k1

Bn · xn

Bn(kn2 + xn)
− k3x ·B,

d(x ·B)

dt
= B · k1

(x ·B)n

(Bk2)n + (x ·B)n
− k3(x ·B).

Since X = x ·B, we obtain the following equation:

dX

dt
= B · k1

(X)n

(Bk2)n + (X)n
− k3X. (18)

In the stochastic approach the rate of change for X is defined by:

∆X

∆t
= c1

Xn

cn2 +Xn
− c3 ·X. (19)

Comparing Eq. (18) and Eq. (19), we deduce that,

c1 = B · k1 = NA · V · k1

c2 = B · k2 = NA · V · k2
c3 = k3

From the derivations above, we demonstrate the relationship between ki and
ci which enables us to obtain the ci for the stochastic simulation using CLE.
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