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Metagenomic sequencing has enabled detailed investigation of diverse microbial 
communities, but understanding their spatiotemporal dynamics remains an important 
challenge. Here we present DIVERS, a widely applicable method based on replicate 
sampling and spike-in sequencing that quantifies the contributions of temporal 
dynamics, spatial sampling variability and technical noise to the variances and 
covariances of absolute bacterial abundances. Using high resolution time series 
profiling, we apply DIVERS to the human gut microbiome. Our method reveals complex 
spatiotemporal dynamics of individual gut bacteria and unmasks key features of their 
behavior hidden from previous analyses. 
 
Metagenomic sequencing is widely used to explore patterns of bacterial abundances and the 
spectrum of functions carried out by diverse microbial communities1–4. However, as research 
efforts move beyond static descriptions of communities towards understanding their complex 
spatiotemporal dynamics5–8, a number of key challenges remain to be addressed. First, robust 
and quantitative frameworks are required to characterize both the temporal variability and 
spatial heterogeneity of bacterial abundances across environments9,10. Second, the effects of 
technical noise arising from sample preparation and sequencing must be quantified and 
accounted for11,12. Third, measurements of absolute bacterial abundances are necessary to 
correct for possible compositional artifacts associated with relative abundances13,14. Importantly, 
quantitative approaches for understanding both the spatiotemporal and noise profiles of 
microbial communities must be experimentally tractable, minimizing the number of sample 
preparations and costs associated with data collection, processing and sequencing. 
 
To address these challenges, we have developed Decomposition of Variance Using Replicate 
Sampling (DIVERS), a broadly applicable method for metagenomic sequencing studies. 
DIVERS utilizes the laws of total variance and covariance to provide a principled mathematical 
approach for separating the contributions of time, spatial sampling location and technical noise 
to measured abundance variances for individual taxa and covariances for pairs of taxa: 
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where �� denotes the absolute abundance of an individual bacterial taxon �, � and � are space 
and time-associated random variables capturing the respective spatial and temporal processes 
affecting the abundance of taxon �, and  �, ��� and �	
 denote the expectation, variance and 
covariance of random variables respectively.  
 
We derived unbiased statistical estimators for each of the six terms in equations (1) and (2), and 
devised a workflow to enable their calculation directly using experimental measurements 
(Supplementary Note, Online Methods). Importantly, DIVERS requires only two samples 
obtained from randomly chosen spatial locations at each time point of a longitudinal microbiome 
study. One of these spatial replicates is then split in half to obtain two technical replicates, and 
absolute abundance measurements on the resulting three samples are performed using a 
spike-in procedure during sample processing15,16 (Fig. 1a, Supplementary Note, Online 
Methods). The key idea behind this approach is that bacterial taxa that exhibit genuine temporal 
fluctuations should also exhibit large abundance covariances between pairs of spatial replicates 
across time points. Spatial variability, quantified by differences in abundances between the two 
random locations, and technical noise result in decreased covariances. Interestingly, our 
sampling scheme and underlying mathematical model are conceptually similar to the dual 
reporter approach previously used to separate intrinsic and extrinsic sources of noise in gene 
expression profiles17,18 (Supplementary Note). 
 
To demonstrate the ability of DIVERS to separate different sources of microbiota variability, we 
focused on the human gut microbiome, an ecosystem known to exhibit complex spatiotemporal 
dynamics9,19. We carried out 16S rRNA sequencing of fecal samples collected daily over the 
course of three weeks from a healthy male individual. (Fig. 1a, Online Methods). Using the 
obtained data, we first characterized total baseline bacterial abundance variation in the human 
gut microbiome. Consistent with previous results13, we found that total bacterial abundances 
fluctuated substantially across different samples (coefficient of variation = ~0.5) (Fig. 1b). 
Notably, the observed variability was dominated by daily temporal changes, with total bacterial 
loads remaining relatively constant across different spatial locations on each day (Fig. 1c). 
 
Using measurements of total bacterial loads, we calculated the absolute abundances of all 
operational taxonomic units (OTUs) and then used DIVERS to decompose the abundance 
variance of individual OTUs (Online Methods and Supplementary Note). Interestingly, variance 
profiles exhibited two regimes when OTUs were grouped by average abundance, with a 
transition occurring at ~0.01% in relative abundances (Fig. 1d and Supplementary Fig. 1). 
Fluctuations of OTUs below this abundance cutoff could be primarily explained by technical 
sources of variability, generally consistent with Poissonian sampling noise (Supplementary Fig. 
2b and Supplementary Fig. 3). In contrast, variability of OTUs above this cutoff largely 
reflected temporal changes (Fig. 1d and Supplementary Fig. 2a). Differences across spatial 
sampling locations also contributed a substantial fraction of total variability (on average ~20% 
across OTUs with an average absolute abundance > 10-4), demonstrating significant spatial 
heterogeneity of fecal samples. 
 
To validate the developed workflow and the variance decomposition model, we performed a set 
of controlled experiments that specifically eliminated either temporal or spatial variability from 
collected fecal samples (Online Methods). First, we obtained fecal samples from ten 
independent spatial locations of the same stool specimen. This effectively simulated five 
consecutive time points of the DIVERS protocol, but without any temporal contribution to 
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microbiota variability. Second, to remove spatial variability, we carried out eight consecutive 
days of sampling with spatial replicates homogenized on each day before sequencing (Online 
Methods). Reassuringly, the model correctly predicted no temporal or spatial contributions to 
OTU abundance variability when the corresponding signals were absent from the data (Fig. 1e). 
 
The ability of DIVERS to unmask temporal and spatial variances of individual OTUs makes it 
possible to use absolute bacterial abundances to investigate microbiota fluctuations in the 
human gut20. Interestingly, temporal variances calculated from DIVERS showed a robust power 
law dependence on average OTU abundance, following a relationship known as Taylor’s law in 
ecology21 (Fig. 2a, power law exponent b = 1.9, Pearson’s r = 0.97 on log-transformed means 
and variances). In addition, DIVERS allowed us to investigate the relationship between average 
absolute abundances and their spatial variances, which could be also well-described by a power 
law (Fig. 2b, b = 1.7, r = 0.96). These results suggest that, in contrast to the null model of 
randomly distributed OTU abundances across time and space (b = 1), bacterial species within 
the gut microbiome display significantly more complex spatiotemporal dynamics9,22. 
 
Beyond general ecological relationships, we used our approach to identify specific taxa with 
particularly high spatial or temporal contributions to their total abundance variance (Fig. 2c, 
Supplementary Table 3, Online Methods). Interestingly, the time series of several high-
abundance OTUs showed behavior primarily shaped by either spatial (OTU 13, Genus: 
Clostridium IV and OTU 122, Genus: Terrisporobacter) or temporal factors (OTU 12, Genus: 
Bifidobacterium and OTU 25, Genus: Lachnospiracea incertae sedis) (Fig. 2d). These 
examples demonstrate that DIVERS may be used to characterize the spatiotemporal dynamics 
of individual OTUs in the human gut. 
 
Fluctuations in bacterial abundances often result from the collective behavior of multiple 
different taxa, whose interactions are reflected in correlated abundance changes23. DIVERS can 
also be used to quantify the factors contributing to abundance correlations between pairs of 
OTUs in a microbial community (Online Methods and Supplementary Note). Applying this 
analysis to the human gut microbiome, we found that the majority of pairwise abundance 
correlations were due to temporal sources, with relatively smaller contributions from spatial 
sampling location and technical noise (Fig. 3a and Supplementary Fig. 4). Consistent with 
previous results13, we also found that total correlations based on absolute abundance 
measurements were generally larger than correlations calculated using relative abundances, an 
effect primarily caused by the variance in total bacterial loads across samples (Supplementary 
Fig. 5 and Supplementary Note). 
 
Next, we examined factors contributing to the correlations of OTU abundances within and 
between the four most prevalent bacterial phyla in the human gut. Interestingly, the 
Bacteroidetes exhibited significantly larger intra-phyla temporal abundance correlations 
compared to the rest of the community (p < 1e-10, Wilcoxon rank sum test) (Fig. 3b, 
Supplementary Fig. 6, Supplementary Fig. 7). This result was also observed at the family 
level, and was not due to differences in 16S rRNA sequence similarity across taxa 
(Supplementary Fig. 8 and Supplementary Fig. 9). The coordinated temporal changes of 
Bacteroidetes in the human gut may reflect fluctuations in the availability of dietary 
polysaccharides on each day that are specifically metabolized by these bacteria24,25, as well as 
previously observed cross-feeding interactions between these taxa26,27. In addition, our analysis 
revealed several interesting examples of OTU pairs with positive and negative correlation 
contributions from both temporal and spatial factors (Fig. 3c,d). These examples highlight the 
diversity of bacterial dynamics in the gut, and demonstrate the ability of DIVERS to disentangle 
the factors contributing to abundance correlations between different taxa. 
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While current sequencing technologies enable bacterial communities to be profiled at high 
temporal resolution, novel approaches are required to reveal key features of ecosystem 
dynamics. Our results demonstrate the ability of DIVERS to quantify both the spatiotemporal 
dynamics and noise profiles of microbial communities, while requiring only a small number of 
additional samples compared to current metagenomic sequencing protocols. Although we focus 
on human gut microbiome dynamics in this study, DIVERS can be readily applied to explore 
patterns of variation in any bacterial ecosystem across different hosts and environments 
(Supplementary Note). Moreover, given the flexibility of the developed quantitative framework, 
it can be easily extended to other sequencing-based applications, such as the characterization 
of human immune cell repertoires28 and gene expression changes in tumors29. 
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Figure 1 | Variance decomposition of gut bacterial abundances using DIVERS. (a) Illustration of 
the DIVERS workflow applied to the fecal microbiome. Samples are collected from two random 
spatial locations (X/Y and Z, as shown on the left side of the figure) on each day of microbiome 
sampling, and two technical replicates (X and Y) are prepared from one these spatial locations. 
The resulting three samples from each day (X, Y and Z) are subjected to a custom spike-in 
procedure to estimate absolute bacterial abundances. The DIVERS variance decomposition 
model is then applied (right side of the figure) to abundance profiles of each taxa to quantify 
contributions of temporal variability, spatial sampling heterogeneity and technical noise to total 
abundance variability. (b) Temporal profiles of total bacterial densities in the human gut 
microbiome. X and Y correspond to technical replicate measurements of total bacterial density 
from a single spatial location, while Z corresponds to a second spatial replicate. Gray line shows 
the average of spatial replicates. Total bacterial densities are reported in arbitrary units and 
normalized to an average of one (Online Methods). (c) Variance fraction of total bacterial 
densities attributed to technical (N, purple), spatial sampling (S, blue) and temporal (T, red) 
factors as calculated by the variance decomposition model. (d) Variance decomposition of 
individual OTU abundances. Absolute OTU abundances were obtained by multiplying relative 
abundance profiles by the total bacterial density in each sample and are reported in arbitrary 
units (Online Methods). OTUs are binned by their mean abundance across all samples, and 
stacked bars show the average variance contribution of technical, spatial sampling and temporal 
sources to OTUs within each bin. Dashed vertical line corresponds to a mean absolute 
abundance of 10-4. Error bars represent the SEM. (e) Variance decomposition of microbiota 
abundances from control experiments. Top: DIVERS applied to stool samples without spatial 
variability; bottom: DIVERS applied to stool samples without temporal variability. 
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Figure 2 | Temporal and spatial variation of human gut microbiota. (a,b) Temporal and spatial 
variances of human gut microbiota abundances calculated using the DIVERS variance 
decomposition model. Each data point corresponds to the average abundance (m) and the 
temporal (in a) and spatial (in b) abundance variance (v) of a particular OTU. Variances follow a 
power law of the form 
 � ��  with exponents b=1.9 (temporal) and b=1.7 (spatial). (c) 
Identification of specific OTUs with either high temporal or high spatial variance contributions. 
Boxes indicate OTUs with a predominant contribution of temporal (variance fraction > 0.8, red) 
or spatial variances (variance fraction > 0.6, blue). Only abundant OTUs (mean absolute 
abundance > 10-4) are shown. (d) Time series of individual OTUs, corresponding to filled points 
in c, whose abundance variation is attributed predominantly to temporal (red) or spatial sources 
(blue). Gray lines correspond to abundances of technical replicates (X,Y) obtained from the 
same spatial location, and colored lines correspond to abundances from the second spatial 
replicate (Z). 
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Figure 3 | Decomposition of pairwise OTU abundance correlations in the human gut 
microbiome. (a) Boxplots of total, temporal, spatial and technical correlations for all pairs of 
abundant OTUs (average absolute abundance > 10-4). Boxes denote the median and 
interquartile ranges, with maximum whisker lengths three times the interquartile range. (b) 
Temporal correlations of OTU abundances within and between different phyla. Colors reflect 
average temporal correlations between pairs of OTUs belonging to the indicated phyla. Data are 
shown for all highly abundant OTUs (mean absolute abundance >10-4) from the Actinobacteria 
(n = 10), Bacteroidetes (n=15), Firmicutes (n=103), and Proteobacteria (n=5). (c) Temporal and 
spatial correlations for all pairs of abundant OTUs (average absolute abundance > 10-4). 
Colored points (1-4) indicate pairs of OTUs with temporal profiles shown in d. (d) Temporal 
abundance profiles for pairs of OTUs highlighted in c. Pairs (from left to right) exhibit: 1) 
Substantial negative temporal ( � � �0.63 ), 2) substantial positive spatial ( � � 0.85 ), 3) 
substantial positive temporal ( � � 0.90 ), and 4) substantial negative spatial (� � �0.73 ) 
correlations. For every OTU pair, blue and pink solid lines show abundances of each OTU 
measured from the same spatial location (Z). Blue and pink dashed lines show the average 
between technical replicates (1/2(X+Y)) of each OTU measured from the second spatial 
location. Note that the large spatial correlation between OTUs 13 and 33 (panel 2) is reflected in 
similar profiles of the two dashed lines, as well as the two solid lines (measurements from the 
same spatial location); the lower temporal correlation between these OTUs is reflected in more 
dissimilar profiles of solid and dashed lines of the opposite color (measurements from different 
spatial locations). Also note that OTUs 37 and 58 exhibit anti-correlated spatial behavior despite 
abundances being correlated over time. 
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Methods 
 
Ethical review. This study was approved and conducted under Columbia University Medical 
Center Institutional Review Board protocol AAAR0753. Written informed consent was obtained 
from the subject in the study, a healthy male adult. 
 
Sample collection and storage. Fecal samples were collected daily over the course of twenty 
days, with two additional samples taken on days 27 and 48 of the study. After defecation, 
inverted sterile 200 µL pipette tips (Rainin RT-L200F) were used to core out a small sample 
from the stool, and placed immediately in a sterile cryovial (Sarstedt 72.694.106). On each day 
of stool collection, two samples were obtained from independent spatial locations at least >5cm 
in distance using the same stool specimen. Samples were immediately placed in a -20 °C 
freezer and transferred to a -80 °C freezer for long term storage. 
 
Spike-in strain for calculation of bacterial absolute abundances. A spike-in approach was 
utilized during sample processing to allow for calculation of bacterial absolute abundance per 
mass of fecal matter. Sporocarcina pasteurii (ATCC 11859), an environmental bacterium not 
found in human feces, was grown to saturation in NH4-YE medium (ATCC medium 1376). It 
was then concentrated by centrifugation, resuspended in ~0.1X volume phosphate buffered 
saline with 20% glycerol, and stored in cryovials at -80 °C for subsequent use during genomic 
DNA extraction. 
 
Replicate fecal sampling experimental protocol. To enable decomposition of gut bacterial 
abundance variability into temporal, spatial and technical contributions, we utilized a replicate 
sampling approach. Specifically, on each day, two fecal samples were collected from random 
spatial locations on the same stool specimen. For one of these samples, two technical 
replicates were prepared in parallel by splitting the individual fecal core. Thus, a total of three 
samples were processed for each day of the time series: two technical replicates from a single 
spatial location (denoted samples X and Y) and a second spatial replicate (denoted sample Z). 
To further characterize technical noise, a single fecal sample was subjected to 12 independent 
rounds of sample processing and sequencing. Metadata associated with all samples are given 
in Supplementary Table 1.  Theoretical details associated with the DIVERS approach are 
described in the Supplementary Note. 
 
Sample genomic DNA extraction. Genomic DNA (gDNA) extraction was performed using a 
custom liquid handling protocol based on the Qiagen MagAttract PowerMicrobiome DNA/RNA 
Kit (Qiagen 27500-4-EP) adapted for lower volumes. Briefly, a 96 well plate (Axygen P-DW-20-
C) was loaded with 1 mL of 0.1 mm Zirconia Silica beads (Biospec 11079101Z) using a loading 
device (Biospec 702L). During sample processing, appropriate negative controls were run on 
each plate (i.e. water control). 10 uL of thawed and concentrated spike-in strain was added to 
each well. 10-100 mg of each sample (average 45.9 mg, standard deviation 14.7 mg) was 
added to the plate using a sterile plastic spatula, and the weight added for each sample was 
determined via an analytical balance. 750 µL of lysis solution was then added to each well (90 
mL master mix, 9 mL 1M Tris HCl pH 7.5, 9 mL 0.5M EDTA pH 8.0, 11.25 mL 10% SDS, 22.5 
mL Qiagen lysis reagent, 38.25 mL nuclease free water). The plate was centrifuged down for 1 
min at 4500xg and a bead sealing mat was affixed to the plate (Axygen AM-2ML-RD). The plate 
was then placed on a bead beater (Biospec 1001) and subjected to bead beating for 5 min 
followed by 10 min for cooling. This bead beating cycle was repeated, for a total of 10 min of 
bead beating. The plate was centrifuged down for 5 min at 4500xg and 200uL of supernatant 
was transferred to a V-bottom microplate. 35 µL of Qiagen inhibitor removal solution was added 
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to each well and mixed by vortexing, incubated 4 °C for 5 min, and the plate was again 
centrifuged down for 5 min at 4500xg. 100 µL of supernatant was removed from the plate and 
placed in a round-bottom plate (Corning 3795). The plate was then placed on a robotic liquid 
handler (Biomek 4000) for magnetic bead purification of the supernatant per the manufacturers 
recommendations but at a scaled volume; magnetic beads in binding solution were mixed in 
each well, and subjected to 3 washes with wash solution and elution in 100 uL of nuclease free 
water into a new plate. 
 
16S rRNA amplicon sequencing. 16S sequencing of the V4 region was performed utilizing a 
custom protocol and a dual indexing scheme adapted from Kozich et al1. Briefly, dual indexing 
sequencing primers were adapted from the previous study, but we utilized Illumina Nextera 
barcode sequences and altered 16S primers to match updated 505f and 806rB primers (see 
Table S2 for sequences). A 20 µL PCR amplification was set up in a 96 well skirted PCR 
microplate: 1 µM forward 5XX barcoded primer, 1 µM reverse 7XX barcoded primer, 1 µL 
prepared gDNA, 10 uL NEBNext Q5 Hot Start HiFi Master Mix (NEB M0543L), 0.2X final 
concentration SYBR Green I. A quantiative PCR amplification (98°C 30s; cycle: 98°C 20s, 55°C 
20s, 65°C 60s, 65°C 5m) was performed and cycling was stopped during exponential 
amplification (typically 12-20 cycles) and the reaction was advanced to the final extension step. 
 
The resulting PCRs were quantified utilizing a SYBR Green I dsDNA assay; 2 µL of PCR 
product was added to 198 µL of TE with 1X final concentration SYBR Green I and fluorescence 
was quantified on a microplate reader. Samples were pooled based on this quantification on a 
robotic liquid handler (Biomek 4000). The resulting ~390 bp amplicon from the pool was then 
gel-purified utilizing a 2% E-gel (Invitrogen) and Wizard SV gel extraction kit. 
 
Final libraries were then quantified by Qubit dsDNA HS assay and sequenced on the Illumina 
MiSeq platform (V2 500 cycle kit) according to the manufacturers instructions with modifications. 
Specifically, the library was loaded at 10 pM with 20% PhiX spike-in, and custom sequencing 
primers were spiked into the MiSeq reagent cartridge (6 uL of 100 µM stock; well 12: read1, well 
13: index1, well 14: read2). 
 
Sequence analysis and OTU clustering. Resulting sequence data was analyzed with the 
USEARCH30 pipeline. Specifically, raw reads were merged using the –fastq_mergepairs 
command with options  –fastq_maxdiffs 10 –fastq_maxdiffpct 10. Merged sequences were 
filtered using the –fastq_filter command with options –fastq_maxee 1.0 and –fastq_minlen 240. 
Resulting sequences were dereplicated (–derep_fulllength), clustered into OTUs (–cluster_otus) 
and the merged reads were searched against OTUs sequences (–usearch_global) at 97% 
identity. Taxonomic assignments of OTUs were made using the RDP classifier31. 
 
Calculation of OTU absolute abundances. Total bacterial loads in each sample were 
calculated using the following formula: 
 

�� �  
��

�� � ���

 

 
where, ��  is the sequenced relative abundance of the spike-in strain in sample � , ��  is the 
constant amount of spike-in strain (units of total DNA copies) added to each sample, �� is the 
weight of the fecal sample � (mg), and �  is the total bacterial density per fecal mass (DNA 
copies/mg). Solving for �, 
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where we have measured ��  and ��  experimentally. Note that relative changes in �  are 
independent of the constant ��. We therefore scaled total bacterial densities across samples to 
a mean of unity. Relative abundance profiles (with the spike-in strain excluded) were then 
multiplied by this scaled quantity to obtain absolute OTU abundances in arbitrary units that were 
used for all analyses. 
 
Variance decomposition of OTU abundances and total bacterial loads. DIVERS utilizes the 
replicate sampling and sequencing protocol described above to decompose measured bacterial 
abundance variances. Let �  denote the total bacterial density in a collected sample or the 
abundance of an individual OTU. Using the law of total variance, the variance of � can be 
written as a sum of three components associated with temporal, spatial and technical factors 
contributing to changes in � across samples:  
 

������ � ������|����|
, ��������������
Temporal

� ������|����|
, ��������������
Spatial sampling

 � ����|������|
, ��������������
Technical

#�1�
 

 
where, �  and �  are space and time-associated random variables capturing the spatial and 
temporal processes that influence the abundance of � across samples. Following the notation in 
Fig. 1, each of the terms in (1) is estimated as follows (see Supplementary Note for full 
derivations): 
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Technical

� 1
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where �, !  and ", !  denote pairs of spatial replicate measurements of either total bacterial 
density or individual OTU abundances. As described above, spatial replicates are obtained from 
two independent spatial locations in the environment at every time point. In contrast, � and " 
denote technical replicates that are measured from the same spatial location. 
 
Covariance decomposition of OTU abundances. Using the law of total covariance, the 
covariance between the abundances of any two OTUs � and #, denoted �� and ��, can also be 
written as a sum of temporal, spatial and technical contributions: 
 

������, ��� � ���� �����|��, ������������������������
Temporal

� ������|� �����|
, ��, �����
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 � ����|�������, ��|
, ����������������
Technical
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Each of the terms in (5) is estimated using the replicate sampling and sequencing protocol as 
follows (see Supplementary Note for full derivations): 
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where, ��,!� and "�,!� denote spatial replicate measurements of the abundance of OTU �, and 
��,"� denote technical replicates. To obtain temporal, spatial and technical correlations shown in 
Fig. 3, we normalize each covariance contribution by the respective standard deviations of 
individual OTUs: 
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Variances and covariances of OTU abundances were calculated using data obtained across the 
twenty consecutive days of sampling. The variance decomposition of total bacterial densities 
also included samples taken from days 27 and 48 of the times series. To minimize artifacts due 
to technical noise, only OTUs with a mean absolute abundance >10-4 were included in the 
covariance decomposition analysis. This cutoff was chosen based on the observed variance 
profiles of individual OTUs (Fig. 1d). To compare contributions across phyla, 16S rRNA 
sequence-based phylogenetic distances were calculated using the pairwise2 module of 
Biopython. 
 
Identification of OTUs with high temporal or spatial variance contributions. To minimize 
effects of technical noise, OTUs were first filtered by abundance (mean absolute abundance 
>10-4). Of the remaining OTUs, those with temporal variance above 80% or spatial variance 
above 60% of total variability were identified and given in Supplementary Table 3. 
 
Removal of temporal or spatial variability from fecal samples. We conducted two sets of 
control experiments to remove either temporal or spatial variability of OTU abundances from 
fecal samples. Specifically, to eliminate temporal contributions, we re-sampled a single stool 
specimen ten times total to simulate five consecutive days of time series sampling. To eliminate 
spatial variability, replicate sampling was conducted for eight consecutive days; on each day, 
fecal samples obtained from random spatial locations were homogenized together by combining 
fecal samples, and then mechanically homogenizing in 1X phosphate buffered saline with a 
P200 pipette tip. The resulting homogenized sample was then split into technical triplicates and 
processed following the normal DIVERS protocol. 
 
Code availability. MATLAB scripts to perform all variance and covariance decomposition 
analyses from original OTU abundance tables will be available on GitHub at the time of 
publication. 
 
Data availability. All sequencing data will be made available through NCBI SRA at the time of 
publication. 
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