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Abstract 
  
16S rRNA amplicon sequencing has enabled detailed investigation of the spatiotemporal 
dynamics of the human gut microbiome and their corresponding alterations during disease1–4.  
However, the contributions of temporal changes, spatial sampling location and technical sources 
of variability in gut microbiome studies remain poorly understood. Commonly used sequencing 
approaches are further limited by compositional biases due to relative abundance 
measurements5–7. Here, we combine mathematical modeling with an experimental workflow 
based on replicate sampling and spike-in sequencing to separately quantify the major sources of 
gut microbiota variability measured in absolute abundances. We apply this framework to the 
healthy human gut microbiome and find substantial and distinct contributions to measured 
abundance variability associated with time, spatial sampling location and technical noise. Notably, 
our approach allows us to identify a critical abundance threshold (~0.01% in average taxa relative 
abundance) above which variability primarily results from temporal changes and below which 
technical noise predominates. Furthermore, we find a large contribution (~20%) to measured 
microbiota variability resulting from different spatial sampling locations. Across all taxa, we 
observe that overall patterns of temporal and spatial variability in the human gut microbiome follow 
closely those in other diverse ecosystems8,9, but we also identify specific taxa whose behavior 
are largely associated with either underlying temporal or spatial sources. Finally, we use our 
approach to show that temporal factors can largely explain the significant changes in total 
bacterial densities observed in the gut and the abundance correlations of individual bacterial taxa. 
Collectively, our results highlight important pitfalls of current fecal profiling practices and provide 
a general framework to facilitate future quantitative ecological analysis of the human gut 
microbiome and other complex microbial communities.    
 
Main Text 
 
Metagenomic sequencing is now widely utilized to survey microbial diversity and taxa abundances 
of fecal microbiota10–14. In a commonly used approach, genomic DNA is extracted from samples 
and the 16S rRNA region is then amplified and sequenced. Resulting reads are clustered into 
operational taxonomic units (OTUs), thus yielding relative abundances of individual bacterial taxa 
within each sample. Abundances obtained in this way have been used to investigate disease 
pathophysiology15–17, microbe-microbe interactions18–20 and microbiome dynamics1,21–23. 
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Despite their widespread use, current 16S rRNA sequencing approaches have important 
limitations. First, there are no principled methods that can separate temporal sources of gut 
microbiota variability from that of spatial sampling location20,24 and confounding technical 
sources10,25. Second, OTU measurements are typically reported in relative abundances, which 
may mask underlying absolute abundance changes of bacteria5–7. With the exponentially 
increasing scale of microbiome studies2,26,27 and emerging microbiota diagnostic paradigms28,29,  
a quantitative understanding of the primary sources of microbial variability will be critical for the 
proper analysis and interpretation of these data.  
 
To address these challenges, we developed a custom fecal sampling approach and 
complementary mathematical model to separately quantify sources of bacterial abundance 
variability in the gut, as well as a spike-in procedure during sample processing30 to estimate total 
bacterial loads (Fig. 1a, Box 1, Supp. Note, Methods). In our Decomposition of Variance using 
Replicate Sampling (DIVERS) approach, fecal samples are collected from two independent 
locations of the same stool specimen on each day of the time series study. One of these samples 
is then further processed in duplicate. Interestingly, this sampling scheme and underlying model 
mirror the classic dual reporter approach used previously to separate intrinsic and extrinsic 
sources of noise in gene expression profiles31–33. The developed approach relies on the fact that 
OTUs that experience genuine temporal fluctuations should exhibit high covariance of spatial 
replicates across different time points, with spatial sampling variability and technical noise acting 
to diminish this correlation. Similarly, spatial sampling variability should lead to high covariance 
of technical replicates across different sampling locations after controlling for temporal 
correlations. 
 

 
We first characterized total baseline bacterial abundance variation in the human gut microbiome 
by applying DIVERS to a healthy male individual tracked daily over the course of three weeks. 
Consistent with previous findings5, we found that total bacterial densities (measured in arbitrary 

Box 1: Decomposition of bacterial abundance variance 
 
Let 𝑋 denote the total bacterial density in a collected sample or the abundance of an individual OTU. The variance 
of 𝑋  can be written as a sum of three components associated with temporal, spatial and technical factors 
contributing to changes in 𝑋 across samples:	 
 

𝑉𝑎𝑟(𝑋) = 𝑉𝑎𝑟)𝐸+|)𝐸(𝑋|𝑆, 𝑇)0111112111113
Temporal

+ 𝐸)𝑉𝑎𝑟+|)𝐸(𝑋|𝑆, 𝑇)0111112111113
Spatial

	+ 𝐸)𝐸+|)𝑉𝑎𝑟(𝑋|𝑆, 𝑇)0111112111113
Technical

(1) 

 
Here, 𝑆 and 𝑇 are space and time-associated random variables capturing the respective spatial and temporal 
processes influencing the abundance of 𝑋 from sample to sample. Following the notation in Figure 1, each of 
these terms are estimated as follows (see Supplementary Note for full derivations): 
 

𝑉𝑎𝑟)𝐸+|)𝐸(𝑋|𝑆, 𝑇)0111112111113
Temporal

= 𝐶𝑜𝑣(𝑋, 𝑍) (2) 

 
𝐸)𝑉𝑎𝑟+|)𝐸(𝑋|𝑆, 𝑇)0111112111113

Spatial

	 = 𝐶𝑜𝑣(𝑋 − 𝑍, 𝑌) (3)
	

 

𝐸)𝐸+|)𝑉𝑎𝑟(𝑋|𝑆, 𝑇)0111112111113
Technical

=
1
2
𝑉𝑎𝑟(𝑋 − 𝑌) (4) 

 
where 𝑋, 𝑍 and 𝑌, 𝑍 denote spatial replicate pairs of either total bacterial density measurements or individual 
OTU abundances, and 𝑋, 𝑌 denote technical replicates. 
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units) fluctuate significantly across different days and sampling locations (coefficient of variation 
~0.5) (Fig. 1b). Notably, the observed variability resulted primarily from daily temporal changes in 
total load (Fig. 1b). Both spatial sampling variation and technical noise made significantly smaller 
contributions, demonstrating that at the macroscopic scale of our fecal sample collection, total 
bacterial loads on each day remain relatively constant across different spatial locations.  
 
Utilizing these measurements of total bacterial density in each sample, we transformed relative 
OTU abundances into absolute abundance units and used our model to decompose the 
abundance variance of individual OTUs (Methods, Supp. Note). We reasoned that bacteria with 
low abundances would likely be significantly affected by technical error whereas variations 
reflecting true biological phenomena would be more pronounced for higher abundance OTUs. 
Indeed, variance profiles exhibited two distinct regimes as a function of average OTU abundance 
across samples, with a transition occurring at ~0.01% in relative abundances (Fig. 1c, Supp. Fig. 
1). Fluctuations of OTUs below this cutoff largely reflected technical variability consistent with 
Poissonian sampling noise (Supp. Fig. 2b, Supp. Fig 3a,c). In contrast, the variability of higher 
abundance OTUs could be primarily explained by temporal changes, suggesting that OTU 
abundance fluctuations in the gut largely reflect underlying ecological dynamics, likely driven by 
environmental and dietary changes1,34 and interspecies interactions23,35 (Fig. 1c, Supp. Fig 2a). 
Interestingly, spatial sampling location also contributed a surprisingly large fraction of total 
variability (mean ~20% over abundant OTUs), demonstrating significant spatial heterogeneity of 
fecal samples despite the relatively large mass of fecal matter processed per sample (mean ~45 
mg). As a validation for our variance decomposition model, we conducted a set of controlled 
experiments that specifically eliminated either temporal or spatial variability from our collected 
fecal samples. First, to remove any temporal variability from data, we applied our DIVERS 
protocol to a single stool specimen and obtained fecal samples from ten independent spatial 
locations, thus effectively simulating five consecutive days of sampling. Second, to remove spatial 
variability, we carried out eight consecutive days of replicate sampling with spatial replicates 
homogenized on each day before sequencing (Methods). Importantly, the model correctly 
predicted no temporal or spatial contributions to OTU abundance variability when the underlying 
signals were absent from data (Supp. Fig 4). 
 
The ability to extract temporal and spatial variances from individual OTUs enables quantitative 
investigation of ecological relationships in the gut microbiome. Interestingly, temporal variances 
predicted from our model scaled strongly with average OTU abundance, following closely a 
relationship described by Taylor’s power law in ecology8,9 (Fig. 2a, power law exponent b = 1.87, 
R = 0.97). In addition, our replicate sampling approach allowed us to investigate the relationship 
between mean OTU abundance and spatial variance, which was also well-described by a power 
law (Fig. 2a, b = 1.70, R = 0.96). This  suggests that in contrast to the null model of randomly 
distributed abundances (b = 1), bacterial species in the gut microbiome show significant spatial 
aggregation20. We note that as the model-estimated spatial variances in our analysis reflect an 
average over time (Supp. Note), they differ slightly from scaling observed from multiple spatial 
replicates obtained from a single day (Supp. Fig. 3b).  
 
Differences in temporal and spatial abundance variance may also provide insight into the 
ecological behavior of phylogenetically diverse bacteria. When grouping abundant OTUs by the 
three most prevalent phyla in the gut, we found variance profiles on average to be similar across 
phyla, with temporal contributions comprising the majority of abundance variance (Supp. Fig. 5). 
This indicates that overall, there exists a consistent hierarchy to sources of variability in the gut. 
Despite this similar behavior on average across phyla, we used our model to identify specific taxa 
with particularly high spatial or temporal contributions (>70%) to total variance (Fig. 2c, Table S3, 
Methods). The time series of identified strains show divergent behavior of different individual 
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bacteria over space and time, highlighting that within-sample spatial heterogeneity may confound 
analysis of longitudinal gut microbiome studies, at least for certain OTUs (Fig. 2d,e). 
 
Changes in individual OTU abundances are often a result of the collective behavior of multiple 
different bacterial species18,36. We therefore used our mathematical framework to decompose the 
abundance covariance of all OTU pairs. (Box 2, Supp. Note, Methods). Analogous to the variance 
decomposition model, the total abundance covariance for any pair of OTUs may result from 
temporal sources driving changes in overall abundances on each day, spatial factors that cause 
different bacteria to co-occur or exclude one another across different sampling locations, and 
technical noise that may lead to spuriously correlated behavior  across sequencing replicates. 
After normalizing covariance contributions by individual OTU standard deviations to obtain 
correlation contributions (Box 2), we found that the majority of pairwise abundance correlations 
could be attributed to temporal sources, with relatively minor contributions from sampling location 
and technical factors (Fig. 3a,b, Supp. Fig. 6) We also found, as reported previously5, that total 
correlations based on absolute abundance measurements were larger on average than those 
calculated from relative abundances. This effect is likely due to the variance in total load across 
samples, which leads to an additional positive contribution to relative abundance correlations 
(Supp. Fig. 7, Supp. Note).  
 

 
Co-occurrence patterns across space and time may also reveal underlying ecological interactions 
of phylogenetically distinct taxa7,19,37. We therefore examined correlations of OTU abundances 

Box 2: Decomposition of bacterial abundance covariance 
 
As with variances, the covariance between the abundances of any two OTUs 𝑖 and 𝑗, denoted 𝑋O  and 𝑋P, can also 
be written as a sum of temporal, spatial and technical contributions:   

 
 

𝐶𝑜𝑣Q𝑋O , 𝑋PR = 𝐶𝑜𝑣) S𝐸(𝑋O|𝑇), 𝐸Q𝑋PT𝑇RU01111111211111113
Temporal

+ 𝐸)𝐶𝑜𝑣+|) S𝐸(𝑋O|𝑆, 𝑇), 𝐸Q𝑋PT𝑆, 𝑇RU01111111111211111111113
Spatial

	+ 𝐸)𝐸+|)𝐶𝑜𝑣Q𝑋OT𝑆, 𝑇,𝑋P|𝑆, 𝑇	R0111111112111111113
Technical

(5) 

 
Each of these terms may also be estimated using the protocol described in Figure 1 as follows: 
 

𝐶𝑜𝑣) S𝐸(𝑋O|𝑇), 𝐸Q𝑋PT𝑇RU01111111211111113
Temporal

= 	𝐶𝑜𝑣Q𝑋O, 𝑍PR (6)	

 
𝐸)𝐶𝑜𝑣+|) S𝐸(𝑋O|𝑆, 𝑇), 𝐸Q𝑋PT𝑆, 𝑇RU01111111111211111111113

Spatial

= 	𝐶𝑜𝑣Q𝑋O − 𝑍O , 𝑌PR (7)	

 

𝐸)𝐸+|)𝐶𝑜𝑣Q𝑋OT𝑆, 𝑇, 𝑋P|𝑆, 𝑇	R0111111112111111113
Technical

=
1
2
𝐶𝑜𝑣Q𝑋O − 𝑌O , 𝑋P − 𝑌PR (8) 

 
where 𝑋O ,𝑍O and 𝑌O,𝑍O denote spatial replicate measurements of the abundance of OTU 𝑖 and 𝑋O ,𝑌O denote 
technical replicates. To obtain temporal, spatial and technical correlations shown in Figure 3, we simply 
normalize each covariance contribution by the respective standard deviations of individual OTUs: 
 

𝐶𝑜𝑟Q𝑋O, 𝑋PR = 	
𝐶𝑜𝑣)(𝐸(𝑋O|𝑇), 𝐸Q𝑋PT𝑇R

𝜎[O𝜎[\011111121111113
Temporal

+
𝐸)𝐶𝑜𝑣+|) S𝐸(𝑋O|𝑆, 𝑇), 𝐸Q𝑋PT𝑆, 𝑇RU

𝜎[O𝜎[\01111111111211111111113
Spatial

	+ 	
𝐸)𝐸+|)𝐶𝑜𝑣Q𝑋OT𝑆, 𝑇, 𝑋P|𝑆, 𝑇	R

𝜎[O𝜎[\0111111112111111113
Technical

(9)	

  
Full derivations for all equations are provided in the Supplementary Note.  
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stratified across the three most prevalent phyla in gut by analyzing pairs of OTUs belonging to 
the same phyla (Fig. 3c). While the overall patterns of correlations were preserved within each of 
the phyla, OTUs belonging to the Bacteroidetes exhibited significantly larger temporal and total 
correlations among themselves as compared to other phyla (p < 1e-10, Wilcoxon rank sum test). 
This result remained significant even after controlling for 16S rRNA sequence dissimilarity (Fig. 
3c, Supp. Fig. 8). Such correlated abundance fluctuations of Bacteroidetes may result from 
environmental factors such as dietary polysaccharide availability on each day38,39 or interactions 
involving reciprocal cross-feeding observed in these taxa40,41. 
 
Quantification of the sources of variability in bacterial abundance measurements is important for 
understanding the underlying biological processes in the human gut microbiome. Here, we have 
developed and validated DIVERS, a novel data collection and modeling framework based on 
replicate sampling and spike-in sequencing. The developed framework allows the separation of 
temporal, spatial and technical sources of gut microbiota variability measured in absolute 
abundances. Importantly, our method corrects for compositional artifacts associated with relative 
abundance measurements and enables the identification of study and context-specific criteria for 
data inclusion and analysis. Furthermore, our method makes it possible to infer the underlying 
sources of variability of individual bacteria that are masked with current sequencing approaches.  
 
More broadly, our study provides a quantitative framework for understanding general ecological 
relationships in diverse microbial communities. While our results suggest that human gut microbial 
ecology is highly dynamic over time, it will be interesting to compare results from the gut 
microbiome to other host-associated and non-host associated communities. It will also be 
interesting to determine how the variability associated with sampling location changes as the 
spatial resolution of sample collection is systematically altered. The flexibility of DIVERS should 
facilitate deep exploration of the primary determinants of microbial variation and co-occurrence 
patterns across highly diverse ecosystems.  
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Figure 1: Variance decomposition of absolute gut bacterial abundances. a) Schematic of 
replicate sampling protocol and spike-in procedure. b) Total bacterial densities in the human gut 
microbiome over time and different sampling locations. X and Y correspond to technical replicate 
measurements of total bacterial density from a single spatial location while Z corresponds to a 
second spatial replicate. Gray line indicates the mean of spatial replicates. Total densities are 
reported in arbitrary units and normalized to a mean of unity (see Methods). Inset, variance in 
total bacterial loads attributed to technical (N, purple), spatial (S, blue) and temporal (T, red) 
factors as calculated by the variance decomposition model. c) Variance decomposition of 
individual OTU abundances. Absolute OTU abundances were obtained by multiplying relative 
abundance profiles by the total bacterial density in each sample and are reported in arbitrary units 
(see Methods). OTUs were binned by their mean abundance across all samples with data 
showing the average variance contribution of technical, spatial and temporal sources to OTUs 
within each bin.  Error bars denote the standard error of the mean.    
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Figure 2: Temporal and spatial variation of human gut microbiota. a) Temporal and b) spatial 
variances of human gut microbiota abundances as predicted by the variance decomposition 
model. Data points correspond to the mean and model estimated temporal or spatial variance of 
individual OTUs. Power law coefficients were estimated with regression on log-transformed axes 
(regression slopes b=1.9, b=1.7 for temporal and spatial variability respectively) c) Identification 
of OTUs with high temporal or spatial variance. Boxes indicate strains with a contribution of 
temporal (red) or spatial (blue) variance relative to total variance exceeding 0.7. Only highly 
abundant OTUs (log10 mean absolute abundance > -4) are shown. d,e) Time series of individual 
OTUs whose abundance variation are comprised predominantly of temporal (red) or spatial 
sources (blue), indicated with filled circles in c). Gray lines denote abundances of technical 
replicates (X,Y) obtained from the same spatial location and colored lines indicate abundances of 
the second spatial replicate (Z). 
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Figure 3: Decomposition of human gut microbiota abundance correlations. a) Boxplots of 
total, temporal, spatial and technical correlations for all pairs of highly abundant OTUs (log10 mean 
absolute abundance > -4). b) Pairwise temporal and spatial correlations for top 40 most abundant 
OTUs. OTUs are clustered by similarity in temporal correlation profiles and colored by phyla 
indicated in c). c) Pairwise OTU abundance correlations within three major phyla in the human 
gut microbiome (n=10,14, and 103 OTUs belonging to Actinobacteria, Bacteroidetes, and 
Firmicutes respectively). Correlations were restricted to pairs of highly abundant OTUs belonging 
to the indicated phyla.  
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Material and methods 
 
Ethical review 
 
This study was approved and conducted under Columbia University Medical Center Institutional 
Review Board protocol AAAR0753. Written informed consent was obtained from the subject in 
the study, a healthy male adult.   
 
Sample collection and storage 
 
Fecal samples were collected by the subject daily over the course of twenty days, with two 
additional samples taken on days 27 and 48 of the study. After defecation, inverted sterile 200 µL 
pipette tips (Rainin RT-L200F) were used to core out a small sample from the stool, and placed 
immediately in a sterile cryovial (Sarstedt 72.694.106). On each day of stool collection, two 
samples were obtained from independent spatial locations at least >5cm in distance on the same 
stool specimen. Samples were immediately placed in a -20C freezer and transferred to a -80C 
freezer for long term storage.  
 
Spike-in strain for calculation of bacterial absolute abundance 
 
A spike-in approach was utilized during sample processing to allow for calculation of bacterial 
absolute abundance per mass of fecal matter. Sporocarcina pasteurii (ATCC 11859), an 
environmental bacterium not found in human feces, was grown to saturation in NH4-YE medium 
(ATCC medium 1376) and concentrated by centrifugation, resuspended in ~0.1X volume 
phosphate buffered saline with 20% glycerol and stored in cryovials at -80C for subsequent use 
during genomic DNA extraction.  
 
Replicate sampling experimental protocol 
 
To enable decomposition of gut bacterial abundance variability into temporal, spatial and technical 
contributions, we utilized a replicate sampling approach. Specifically, on each day, two fecal 
samples were collected from independent spatial locations on the same stool specimen. For one 
of these samples, two technical replicates were prepared in parallel by splitting the individual fecal 
core. Thus, a total of three samples were processed for each day of the time series: two technical 
replicates from a single spatial location (denoted samples X and Y) and a second spatial replicate 
(sample Z). To characterize spatial variaton at a single time point in further detail, we performed 
a more extensive set of sampling experiments in which fecal samples were collected from 14 
independent locations >2 cm in distance on the same stool specimen. One of these samples was 
further subjected to 12 independent rounds of sample processing and sequencing to directly 
assess technical variability. Metadata associated with all samples can be found in Table S1.  
Theoretical details associated with the DIVERS approach can be found in the Supplementary 
Note.  
 
Sample genomic DNA extraction 
 
Genomic DNA (gDNA) extraction was performed using a custom liquid handling protocol based 
on the Qiagen MagAttract PowerMicrobiome DNA/RNA Kit (Qiagen 27500-4-EP) adapted for 
lower volumes. Briefly, a 96 well plate (Axygen P-DW-20-C) was loaded with 1mL of 0.1mm 
Zirconia Silica beads (Biospec 11079101Z) using a loading device (Biospec 702L). During sample 
processing, appropriate negative controls were run on each plate (i.e. water control). 10uL of 
thawed and concentrated spike-in strain was added to each well. 10-100mg of each sample 
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(average 45.9 mg, standard deviation 14.7 mg) was added to the plate using a sterile plastic 
spatula, and the weight added for each sample was determined via an analytical balance. 750 µL 
of lysis solution was then added to each well (90 mL master mix, 9 mL 1M Tris HCl pH 7.5, 9 mL 
0.5M EDTA pH 8.0, 11.25 mL 10% SDS, 22.5 mL Qiagen lysis reagent, 38.25 mL nuclease free 
water). The plate was then centrifuged down for 1 m at 4500 g and a bead sealing mat was affixed 
to the plate (Axygen AM-2ML-RD). The plate was then placed on a bead beater (Biospec 1001) 
and subjected to bead beating for 5 m followed by 10 m for cooling. This bead beating cycle was 
repeated, for a total of 10 m of bead beating. The plate was then centrifuged down for 5 m at 4500 
g and 200uL of supernatant was transferred to a V-bottom microplate. 35 µL of Qiagen inhibitor 
removal solution was added to each well and mixed by vortexing, incubated 4C for 5 m, and the 
plate was again centrifuged down for 5 m at 4500 g. 100 µL of supernatant was removed from 
the plate and placed in a round-bottom plate (Corning 3795). The plate was then placed on a 
robotic liquid handler (Biomek 4000) for magnetic bead purification of the supernatant per the 
manufacturers recommendations but at a scaled volume; magnetic beads in binding solution were 
mixed in each well, and subjected to 3 washes with wash solution and elution in 100uL of nuclease 
free water into a new plate.   
 
16S rRNA amplicon sequencing  
 
16S sequencing of the V4 region was performed utilizing a custom protocol and a dual indexing 
scheme adapted from Kozich et al42. Briefly, dual indexing sequencing primers were adapted from 
the previous study but we utilized Illumina Nextera barcode sequences and altered 16S primers 
to match updated 505f and 806rB primers (see Table S2 for sequences). A 20 µL PCR 
amplification was set up in a 96 well skirted PCR microplate (1 µM forward 5XX barcoded primer, 
1 µM reverse 7XX barcoded primer, 1 µL prepared gDNA, 10uL NEBNext Q5 Hot Start HiFi 
Master Mix [NEB M0543L], 0.2X final concentration SYBR Green I). A quantiative PCR 
amplification (98C 30s; cycle: 98C 20s, 55C 20s, 65C 60s, 65C 5m) was performed and cycling 
was stopped during exponential amplification (typically 12-20 cycles) and the reaction was 
advanced to the final extension step.  
 
The resulting PCRs were quantified utilizing a SYBR Green I dsDNA assay; 2 µL of PCR product 
was added to 198 µL of TE with 1X final concentration SYBR Green I and fluorescence was 
quantified on a microplate reader. Samples were pooled based on this quantification on a robotic 
liquid handler (Biomek 4000). The resulting ~390bp amplicon from the pool was then gel-purified 
utilizing a 2% E-gel (Invitrogen) and Wizard SV gel extraction kit.  
 
Final libraries were then quantified by Qubit dsDNA HS assay and sequenced on the Illumina 
MiSeq platform (V2 500 cycle kit) according to the manufacturers instructions with modifications. 
Specifically, the library was loaded at 10 pM with 20% PhiX spike in, and custom sequencing 
primers were spiked into the MiSeq reagent cartridge (6uL of 100 µM stock; well 12: read1, well 
13: index1, well 14: read2).  
 
Sequence analysis and OTU clustering 
 
Resulting sequence data was analyzed with the USEARCH43 pipeline. Specifically, raw reads 
were merged using the –fastq_mergepairs command with options  –fastq_maxdiffs 10 –
fastq_maxdiffpct 10. Merged sequences were filtered using the –fastq_filter command with 
options –fastq_maxee 1.0 and –fastq_minlen 240. Resulting sequences were dereplicated (–
derep_fulllength), clustered into OTUs (–cluster_otus) and the merged reads were searched 
against OTUs sequences (–usearch_global) at 97% identity. Taxonomic assignments were made 
to OTUs using the RDP classifier44. 
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Calculation of OTU absolute abundances  
 
Total bacterial loads in each sample were calculated using the following formula: 
 

𝑅O = 	
𝐶_

𝐶_ + 𝜌O𝑊O	
 

 
Here, 𝑅O is the sequenced relative abundance of the spike-in strain in sample 𝑖, 𝐶_ is the constant 
amount of spike-in strain (units of total DNA copies) added to each sample,  𝑊O is the weight of 
the fecal sample 𝑖 (mg), and 𝜌O is the total bacterial density per fecal mass (DNA copies/mg). 
Solving for 𝜌O,  
 

𝜌O = 	
𝐶_(1 − 𝑅O)
𝑅O𝑊O

 

 
where we have measured 𝑅O  and 𝑊O  experimentally. Note that relative changes in 𝜌O  are 
independent of the constant 𝐶_, and therefore its exact number need not be known. We therefore 
scaled total bacterial densities across samples to a mean of unity. Relative abundance profiles 
(with the spike-in strain excluded) were then multiplied by this scaled quantity to obtain absolute 
OTU abundances in arbitrary units that were used for all analyses. 
 
 
Variance and covariance decomposition of OTU abundances and total bacterial loads 
 
Variances and covariances of OTU abundances were calculated across the twenty consecutive 
days of sampling. The variance decomposition of total bacterial densities also included samples 
taken from days 27 and 48 of the times series. To minimize artifacts of technical noise, only OTUs 
with a log10 mean absolute abundance > -4 were included when stratifying variance contribution 
profiles across phyla and in the covariance decomposition analysis. This cutoff was chosen based 
on the variance profiles of individual OTUs shown in Fig. 1c. 16S rRNA sequence distances were 
calculated using the pairwise2 module of Biopython for the comparison of correlation contributions 
across phyla.  
 
Identification of OTUs with high temporal or spatial variance 
 
To minimize effects of technical noise, OTUs were first filtered by abundance (log10 mean absolute 
abundance > -4). Of the remaining OTUs, those with temporal or spatial variance contributions 
exceeding 70% were identified and are listed in Table S3. 
 
 
Removal of temporal or spatial variability from fecal samples 
 
To ensure our model did not report any temporal or spatial variance contributions when those 
signals were absent from data, we conducted two sets of experiments specifically removing either 
temporal or spatial variability of OTU abundances from fecal samples. To eliminate temporal 
contributions, we re-sampled a single stool specimen ten times total to simulate five consecutive 
days of time series sampling. To eliminate spatial variability, replicate sampling was conducted 
for eight consecutive days. On each day fecal samples obtained from independent spatial 
locations were homogenized together by combining fecal samples and mechanically 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 2, 2018. ; https://doi.org/10.1101/310649doi: bioRxiv preprint 

https://doi.org/10.1101/310649


	 14 

homogenizing in 1X phosphate buffered saline with a P200 pipette tip. The resulting homogenized 
sample was then split into technical triplicates and procesed as per the normal DIVERS protocol.  
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