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Linkage disequilibrium (LD) score regression is an increasingly popular method used to
quantify the level of confounding in genome-wide association studies (GWAS) or to estimate
heritability and genetic correlation between traits. When applied to a pair of GWAS, the
LD score regression (LDSC) methodology produces a statistic, referred to as the bivariate
LDSC intercept, which deviation from 0 is classically interpreted as an indication of sample
overlap between the two GWAS. Here we propose an extension of the theory underlying
the bivariate LDSC methodology, which accounts for population stratification within and
between GWAS. Our extended theory predicts an inflation of the bivariate LDSC inter-
cept when sample sizes and heritability are large, even in the absence of sample overlap.
We illustrate our theoretical results with simulations based on actual SNP genotypes and we
propose a re-interpretation of previously published results in the light of our extended theory.

Initially introduced in Bulik-Sullivan et al. (2014)1, the LD score regression (LDSC) methodology relies
on a derivation for a particular SNP j of the expectation of its association χ2-statistic (χ2

j) as function of
the LD score (`j), that is the sum of pairwise squared correlation between minor allele counts at SNP j
versus all SNPs or versus SNPs in its vicinity, the heritability (h2) of the trait plus a term indicating the
level of confounding in the GWAS attributable to population stratification. The derivation proposed in
Bulik-Sullivan et al. (2014) predicts that the latter term (a.k.a the LDSC intercept) increases linearly with
the sample size (N) of the GWAS and the heritability of the trait, which raises a number of challenges
in its interpretation as an indication of confounding when N is very large (N ∼400,000 for example).
This problematic behavior of the LDSC intercept has been underlined in a recent publication by Loh et
al. (2017)2, which recommends the use of an alternative statistic to quantify the influence of population
stratification on GWAS results.

The LDSC methodology was later extended in Bulik-Sullivan et al. (2015)3 to analyse pairs of GWAS
in order to quantify the genetic correlation between focus traits of each GWAS. The theory proposed in
Bulik-Sullivan et al. (2015) introduced the bivariate LD score intercept, obtained from the regression of
the product of association statistics (defined further below) onto LD scores, as a measure of sample overlap
between the two GWAS. Compared to Bulik-Sullivan et al. (2014), the model underlying the bivariate
LDSC methodology does not consider the presence of population stratification within and between stud-
ies, neither discusses how this might contribute to the expectation of the bivariate LDSC intercept. We
therefore address this question here and propose an extension of the initial theory.

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 28, 2018. ; https://doi.org/10.1101/310565doi: bioRxiv preprint 

https://doi.org/10.1101/310565
http://creativecommons.org/licenses/by-nc-nd/4.0/


Theoretical results

Notations

We consider that GWASs of two traits y1 and y2 are performed in two cohorts: cohort 1 and cohort 2
respectively. Each SNP j is tested for association with each trait using a test statistic Tj defined as the
ratio between estimated SNP effect from linear regression of y1 or y2 onto the minor allele count (MAC)
over its estimated standard error. Let us denote Tj1 and Tj2 the test statistics for SNP j calculated for y1

in cohort 1 and for y2 in cohort 2 respectively. We propose hereafter an extension of the expectation of
the product of Tj1 and Tj2, initially proposed in Bulik-Sullivan et al. (2015), in the presence of population
stratification within each cohort induced by genetic drift.

As Bulik-Sullivan et al. (2014), we assume that population stratification can be modelled in each cohort
as a 50:50 mixture of two sub-populations deriving from a common ancestral population and thus having
different allele frequencies spectra. We denote σS1 and σS2 as the mean phenotypic difference between
sub-populations of cohort 1 and 2 respectively (environmental stratification). We introduce F

(1)
ST and F

(2)
ST

as Wright’s FST measures of allele frequency differences between sub-populations of cohort 1 and cohort
2 respectively (genetic stratification). For the sake of simplicity, we assume that the level of genetic and

environmental stratification is similar between cohort 1 and cohort 2. Therefore F
(1)
ST ≈ F

(2)
ST = FST and

σS1 ≈ σS2 = σS. We finally denote h21, h
2
2 and rg, the heritabilities of y1 and y2 and their genetic correlation.

We consider the following model

yk = zkβk + sk + ek (1)

where yk is the vector of phenotypes of Nk individuals from cohort k, sk a Nk-dimensional vector which
entries equal ±σS (mean of environmental fixed effects) depending on whether participants enrolled in co-
hort k are from one or the other sub-population, zk a Nk×M matrix of scaled MAC, βk a M dimensional
vector of true SNP effect sizes on trait yk and ek a Nk-dimensional vector of residuals.

We denote zjk = (z1j, . . . , zNkj)
′ the j-th column of matrix zk. The i-th entry of zjk, denoted zijk, is defined

as zijk = (xijk − 2pjk)/
√

2pjk(1− pjk) where xijk is the MAC at SNP j of individual i from cohort k and
pjk is minor allele frequency (MAF) of SNP j in cohort k. We assume that all sub-samples of cohorts
1 and 2 have derived from the same ancestral population and denote pj as the MAF of SNP j in that
ancestral population.

As in Bulik-Sullivan et al. (2015), we model the true genetic effects as

β =

[
β1
β2

]
∼ N

([
0M

0M

]
,

1

M

[
h21IM ρgIM
ρgIM h22IM

])
(2)
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and the residuals as

e =

[
e1

e2

]
∼ N

([
0N1

0N2

]
,

[
(1− h21)IN1 ρe1N11

′
N2

ρe1N21
′
N1

(1− h22)IN2

])
, (3)

where ρg = rg
√
h21h

2
2 is the genetic covariance between y1 and y2 and ρe is the covariance between error

terms e1 and e2. We also define ρ as ρ ≡ ρg + ρe.

In cohort k, the least-squares estimate of the effect of SNP j on yk, denoted β̂jk, is approximately equal

to β̂jk ≈ [z′jkyk]/Nk and has a sampling variance ≈ 1/Nk. The accuracy of these approximations increases
with the sample size Nk, that we assume here to be large, e.g. hundreds of thousands. Therefore the
t-statistic Tjk can be approximated as Tjk ≈ [z′jkyk]/

√
Nk.

Derivation of E[Tj1Tj2]

We can express E[Tj1Tj2] as follows

E[Tj1Tj2] =
1√
N1N2

E
[(

z′j1z1β1 + z′j1s1 + z′j1e1

) (
z′j2z2β2 + z′j2s2 + z′j2e2

)]
(4)

=
1√
N1N2

E
[
(z′j1z1β1)(z

′
j2z2β2)

]
+

1√
N1N2

E
[
(z′j1e1)(z

′
j2e2)

]
+

1√
N1N2

E
[
(z′j1e1)(z

′
j2z2β2)

]
+

1√
N1N2

E
[
(z′j1e1)(z

′
j2s2)

]
+

1√
N1N2

E
[
(z′j1z1β1)(z

′
j2e2)

]
+

1√
N1N2

E
[
(z′j1s1)(z

′
j2e2)

]
+

1√
N1N2

E
[
(z′j1s1)(z

′
j2z2β2)

]
+

1√
N1N2

E
[
(z′j2s2)(z

′
j1z1β1)

]
+

1√
N1N2

E
[
(z′j1s1)(z

′
j2s2)

]
. (5)

If we assume independence between ek and βk, between ek and sk, and that E[ek|zk] = 0 and E[βk|zk] = 0,
which are classical assumptions made in Bulik-Sullivan et al. (2014), then

E
[
(z′j1e1)(z

′
j2z2β2)

]
= E

[
(z′j1e1)(z

′
j2s2)

]
= E

[
(z′j1z1β1)(z

′
j2e2)

]
= 0 (6)

and

E
[
(z′j1s1)(z

′
j2e2)

]
= E

[
(z′j1s1)(z

′
j2z2β2)

]
= E

[
(z′j2s2)(z

′
j1z1β1)

]
= 0. (7)

This therefore leads to simplify E[Tj1Tj2] as

E[Tj1Tj2] =
1√
N1N2

E
[
(z′j1z1β)(z

′
j2z2β)

]
+

1√
N1N2

E
[
(z′j1s1)(z

′
j2s2)

]
+

1√
N1N2

E
[
(z′j1e1)(z

′
j2e2)

]
. (8)
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Equation (8) shows a strong similarity with equation (1) from Bulik-Sullivan et al. (2015) but one can
already notice the inclusion of the second term on the right side of the equation, representing the contri-
bution of population stratification within and between cohorts. We now further simplify equation (8).

Let us start with the first term of the right side of equation (8). We can rewrite it as

E
[
(z′j1z1β1)(z

′
j2z2β2)

]
= E

[
β′1
(
z′1zj1z

′
j2z2

)
β2
]

= E
[
E
[
β′1
(
z′1zj1z

′
j2z2

)
β2|z1, z2

]]
=
ρg
M

E
[
E
[
tr
(
z′1zj1z

′
j2z2

)
|z1, z2

]]
=
ρg
M

E
[
tr
(
z′1zj1z

′
j2z2

)]
=
ρg
M

N1∑
k=1

N2∑
h=1

M∑
q=1

E
[
z
(1)
kq z

(2)
hq z

(1)
kj z

(2)
hj

]
. (9)

Denote Os as the set of samples overlapping cohort 1 and cohort 2. We use the simplified notation ”i ∈ Os”
(or ”i 6∈ Os”) to indicate that individual i belongs (or does not belong) to Os. We can therefore write

E
[
(z′j1z1β1)(z

′
j2z2β2)

]
=

ρg
M

∑
(k,h)∈Os

M∑
q=1

E
[
z
(1)
kq z

(2)
hq z

(1)
kj z

(2)
hj

]

+
ρg
M

∑
(k,h) 6∈Os

M∑
q=1

E
[
z
(1)
kq z

(2)
hq z

(1)
kj z

(2)
hj

]

=
N2

s ρg
M

M∑
q=1

E

 1

N2
s

∑
(k,h)∈Os

z
(1)
kj z

(1)
kq z

(2)
hj z

(2)
hq


+
ρg
M

∑
(k,h) 6∈Os

M∑
q=1

E
[
z
(1)
kj z

(1)
kq

]
E
[
z
(2)
hj z

(2)
hq

]

=
N2

s ρg
M

M∑
q=1

E

[(
1

Ns

∑
k∈Os

z
(1)
kj z

(1)
kq

)(
1

Ns

∑
h∈Os

z
(2)
hj z

(2)
hq

)]

+
ρg
M

∑
(k,h) 6∈Os

M∑
q=1

E
[
z
(1)
kj z

(1)
kq

]
E
[
z
(2)
hj z

(2)
hq

]

=
N2

s ρg
M

E

[
M∑
q=1

r̂2jq

]
+

(N1N2 −N2
s )ρg

M

M∑
q=1

E
[
z
(1)
kj z

(1)
kq

]
E
[
z
(2)
hj z

(2)
hq

]
(10)

where r̂2jq is the squared sample correlation between MAC at SNP j and MAC at SNP q.
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Besides, E
[
z
(1)
kq z

(1)
kj

]
= E[r̂jq] is the expectation of the sample correlation in cohort 1 between MAC at SNP

j and MAC at SNP q, which we assumed to be the same as the expectation of the sample correlation in

cohort 2, i.e. E
[
z
(1)
kq z

(1)
kj

]
= E

[
z
(2)
hj z

(2)
hq

]
= E[r̂jq].

Therefore E
[
z
(1)
kq z

(1)
kj

]
× E

[
z
(2)
hq z

(2)
hj

]
= E[r̂jq]

2 = E[r̂2jq] − V(r̂jq). From equation (2.3) in Bulik-Sullivan et

al. (2014) we can therefore deduce that

E
[
z
(1)
kq z

(1)
kj

]
× E

[
z
(2)
hq z

(2)
hj

]
≈ r2jq + F 2

ST + (1− F 2
ST )/N︸ ︷︷ ︸

E[r̂2jq ]

r2jq − (1− F 2
ST )/N︸ ︷︷ ︸

V(r̂jq)

= r2jq + F 2
ST , (11)

where, in the equation above, N = N1 or N = N2 indifferently. We can therefore rewrite equation (10) as

E
[
(z′j1z1β1)(z

′
j2z2β2)

]
=
N2

s ρg
M

E
[
ˆ̀
j

]
+

(N1N2 −N2
s )ρg

M
`j + (N1N2 −N2

s )ρgF
2
ST , (12)

where ˆ̀
j =

∑M
q=1 r̂

2
jq is the sample LD score of SNP j calculated only from samples in Os and `j =

∑M
q=1 r

2
jq

is theoretical true LD score.

If we assume that Os is a random sample of cohort 1 and cohort 2, then the population structure within
Os is expected to be similar to that within cohort 1 and within cohort 2. Bulik-Sullivan et al. (2014)

derived an approximation of the expectation of the sample LD score E[ˆ̀j] = E
[∑M

q=1 r̂
2
jq

]
(equation 2.4 of

their supplementary note) that we rewrite here as

E[ˆ̀j] ≈ `j +MF 2
ST +

M(1− F 2
ST )

Ns

≈ `j +MF 2
ST +

M

Ns

. (13)

If we combine equations (12) and (13) we get

E
[
(z′j1z1β1)(z

′
j2z2β2)

]
≈ N1N2ρg

M
`j +N2

s ρgF
2
ST +Nsρg + (N1N2 −N2

s )ρgF
2
ST

=
N1N2ρg
M

`j +Nsρg +N1N2ρgF
2
ST . (14)

From Bulik-Sullivan et al. (2015) we know that E
[
(z′j1e1)(z

′
j2e2)

]
= Nsρe. Therefore from combining

equations (8) and (14) we have

E[Tj1Tj2] ≈
√
N1N2ρg
M

`j +
Nsρ√
N1N2

+ ρgF
2
ST

√
N1N2 +

E
[
(z′j1s1)(z

′
j2s2)

]
√
N1N2

. (15)
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The last term to derive, E
[
(z′j1s1)(z

′
j2s2)

]
, can be rewritten as in Bulik-Sullivan et al. (2014) (eq. 2.11) as

E
[
(z′j1s1)(z

′
j2s2)

]
= N2

s σ
2
SFST . (16)

By combining equations (15) and (16), we obtain the final expression

E[Tj1Tj2] ≈
√
N1N2ρg
M

`j +
Nsρ√
N1N2

+ ρgF
2
ST

√
N1N2 +

N2
sFSTσ

2
S√

N1N2

(17)

As a special case we can obtain the univariate LD score regression equation by assuming that cohort 1 is
the same as cohort 2, i.e. N1 = N2 = Ns = N and ρ = 1. We hence have

E[χ2
j ] ≈

Nh2

M
`j + 1 +NFST

(
h2FST + σ2

S

)
(same as eq. 2.12 in Ref1). (18)

Another interesting special case is the absence of sample overlap (Ns = 0), which leads to

E[Tj1Tj2] ≈
√
N1N2ρg
M

`j + ρgF
2
ST

√
N1N2, (19)

i.e. a non-zero intercept is expected even in the absence of sample overlap. Note in this case that the
intercept is proportional to the geometric mean of the sample sizes of both GWAS (

√
N1N2) and the

genetic covariance between the traits. It is therefore expected to increase with large sample sizes and
more heritable traits. As a numerical example, although F 2

ST is small in general, values of h2F 2
ST

√
N1N2

can be as large as ∼0.17, which would be indicative of sample overlap if we take for example h2 = 0.5,
FST = 0.001, N1 = 450, 000 (sample size of UK Biobank) and N2 = 250, 000 (sample size of Wood et al.,
2014).

Simulations

We performed a simulation to quantify the inflation of the bivariate LDSC intercept created when the sam-
ple size of each GWAS and the heritability are large. We used for our simulations genotypes at 1,123,348
HapMap 3 SNPs (Online methods) from 348,502 unrelated (genetic relationship < 0.05) participants of
the UK Biobank (UKB) with European ancestry (Online methods). To mimic independent GWAS, we
randomly split our dataset in two sub-samples of equal size (N1 = N2 = 174, 251), and simulated traits
from 10,000 causal variants (randomly sampled among HapMap 3 SNPs) and with an heritability varying
from 0.1, 0.2,. . ., up to 0.9. Each trait was simulated with same SNPs effect sizes in each sub-sample
so that the genetic correlation is expected to be rg = 1. For each simulation replicate, we performed
a GWAS of each simulated trait in each sub-sample separately, then used GWAS summary statistics to
perform a bivariate LD score regression. LD score regression was performed using the LDSC software
v1.0.0 and using LD scores from European samples of the 1,000 genomes reference panel. We performed
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100 simulation replicates for each value of expected heritability.

We present the results our this simulation in Figure 1. Overall, we found an inflation of the bivariate
LDSC intercept, which increases with the heritability of the trait. For example, with h2 = 0.9 we observed
bivariate LDSC intercepts as large as ∼0.1 (s.e. 0.02), which under the theory developed in Bulik-Sullivan
et al. (2015), would falsely indicate a potential overlap of ∼ 0.1

√
N1N2 ≈ 8, 712 participants between the

two sub-samples of the UKB. We also observed an inflation of the univariate LDSC intercept (Figure 1,
panel b), which is expected under Bulik-Sullivan et al. (2014) theory.

Under the assumptions made in this simulation (i.e. Ns = 0, σ2
S = 0, N1 = N2 = N and ρg = h2),

Equation (17) predicts a affine relationship between univariate LDSC intercepts (Iu) within each cohort
and bivariate LDSC intercept (Ib): Ib = Iu − 1. We validated this prediction in our simulated data as
shown on Figure 2.

Empirical results: GWAS of height and body mass index (BMI)

We used summary statistics from published GWAS of height4 (Wood et al., 2014; median N ≈ 252, 083)
and BMI5 (Locke et al., 2015; median N ≈ 233, 692). We also performed a GWAS of height and BMI
in 348,502 unrelated participants of the UK Biobank (UKB) of European ancestry. We then estimated
the bivariate LDSC intercept obtained from the comparison of Wood et al. (2014) with GWAS of height
in UKB as well as from the comparison of Locke et al. (2015) with GWAS of BMI in UKB. We found
in the first case a bivariate LDSC intercept ∼0.15 (s.e. 0.04) for height and ∼0.01 (0.01) for BMI. We
previously reported similar observations using test statistics from linear mixed model association analyses
in the UKB (Yengo et al., 2018)6. Under Bulik-Sullivan et al. (2015) theory, these estimates suggest a
significant overlap of ∼ 0.15×

√
252, 083× 348, 502 = 44, 460 participants between the Wood et al. (2014)

study and UKB but no signigicant overlap between partcipants of the Locke et al. (2015) study and UKB.
Given that the same cohorts are included in the Locke et al. (2015) study and in the Wood et al. (2014)
GWAS, these two conclusions are therefore contradictory or inconsistent with the Bulik-Sullivan et al.
(2015) theory.

To further illustrate this contradiction, we performed in the 348,502 unrelated UKB participants a GWAS
of height in females (N1 = 188, 465) and males (N2 = 160, 037) separately. Although no true sample
overlap is to be expected, we nonetheless found a significant bivariate LDSC intercept of ∼ 0.1 (s.e. 0.02),
which also suggests a significant sample overlap under Bulik-Sullivan et al. (2015) theory.

In the light of the theoretical extension proposed in this note, we believe that these observations can be
explained by the large sample sizes considered here, by the difference of heritability between height and
BMI and the amount of trait variance explained by population stratification.
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Figure 1: Statistics from the LD score regression applied to 900 simulated GWAS. Panels a and b
show univariate LD score regression intercepts and estimates of heritability respectively obtained from
analyzing summary statistics from each sub-sample separately, then averaged between the two indepen-
dent sub-samples of participants of the UK Biobank (UKB). Panels c and d show estimates of genetic
correlations (expected to be rg = 1) between the two sub-samples and bivariate LD score regression in-
tercepts respectively, indicating sample overlap between the two sub-samples of UKB, in particular when
the underlying heritability is > 0.5.
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Figure 2: Relationship between univariate (x-axis) and bivariate (y-axis) LD score regression intercepts
under the assumption that the same trait is analysed in both cohort (i.e. the genetic correlation rg = 1),
that population stratification does not explain any phenotypic variance (σ2

S = 0) and in the absence
of sample overlap (Ns = 0). Each black dot corresponds one simulation replicate as described in our
simulation study. Colored dots represent the mean of 100 simulations replicates obtained with a fixed
value of heritability (h2).
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Discussion

We have developed in this note an extension of the theory underlying the bivariate LD score regression
methodology in the presence of population stratification within each GWAS. Beyond the Bulik-Sullivan
et al. (2015) theory, our results show that a non-zero bivariate LDSC intercept does not always indicate
sample overlap but may also reflect patterns of population stratification within each study that are shared
between studies.

Our extended theory thus explains and predicts a series of puzzling observations that the initial theory
does not. For example, we can explain inconsistent detection of sample overlap from GWAS of traits with
different heritabilities. Other theoretical extensions of the LDSC methodology have been previously pro-
posed. We may for instance refer to the works of Lu et al. (2017)7 (GNOVA method) who generalized the
”sample overlap” term (Ns) by replacing it with the sum of genetic relatedness coefficients between part-
cipants of the two studies. This extension therefore predicts an inflation of the bivariate LDSC intercept if
relatives span both studies, which is more general than the restriction to actual sample overlap. Another
contribution by Lee et al. (2018)8 is also worth mentioning here as it provides a rigorous mathematical
framework that not only refines our understanding of the LD score regression methodology but also helps
clarifying its interpretation. These two examples, among many others, both illustrate the effervescence of
researches driven by the LD score regression methodology.

In conclusion, our findings improve the interpretation of results from bivariate LDSC analyses and may
further have implications in other methodologies which use output statistics from LD score regression in
their inference.

Finally we recommend using an

Online methods

UK Biobank data and summary statistics
We used genotypic and phenotypic data (height and body mass index) measured in participants of the
UK Biobank. Samples and SNPs selection have been described in a previous publication6. We also anal-
ysed publicly available GWAS summary statistics from the Wood et al. (2014) and Locke et al. (2015)
GWAS of height and BM respectively. Summary statistics from these studies were downloaded from
the following link: https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_

consortium_data_files.

GWAS simulation
We simulated 900 GWAS (9 values of heritabiliy × 100 simulation replicates) according to the following
steps: 1) For each simulation replicate and each value of heritability, we randomly sampled M = 10, 000
SNPs as causal variants. 2) For each of the 348,502 UKB unrelated participants, we then simulated a
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quantitive trait y using the following equation

yi =
M∑
j=1

[
(xij − 2pj) {2pj(1− pj)}−1/2

]
βj + ei, (20)

where xj is the MAC of individual i at SNP j, pj is the MAF of SNP j and βj and ei are independent
normally distributed terms such as

βj ∼ N (0, h2/M) and ei ∼ N (0, 1− h2). (21)

3) Once the trait is simulated we randomly split the cohort into 2 equally sized sub-cohorts and performed
SNP-trait association analyses using PLINK9 in each sub-cohort.
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