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Abstract  24 

The deep ocean is the largest habitat on earth and holds diverse microbial life forms. Significant 25 

advances have been made in microbial diversity and their genomic potential in the deep ocean, 26 

however, little is known about microbial metabolic activity that is crucial to regulate the 27 

bathypelagic carbon sequestration. Here, we characterized proteomes covering large particulate 28 

(>0.7 m), small particulate (0.2-0.7 m) and dissolved (10 kDa-0.2 m) fractions collected at a 29 

depth of 3000 m in the South China Sea. The Rhodospirillales, SAR324, SAR11, 30 

Nitrosinae/Tectomicrobia were the major contributors in the particulate fraction whereas 31 

Alteromonadales and viruses dominated the dissolved counterpart. Frequent detection of 32 

transcription or translation proteins in the particulate fractions indicated active metabolism of 33 

SAR324, Archaea, SAR11, and possible viable surface microbes, e.g. Prochlorococcus. 34 

Transporters for diverse substrates were the most abundant functional groups, and numerous 35 

spectra of formate dehydrogenases and glycine betaine transporters unveiled the importance of 36 

methylated compounds for the survival of deep-sea microbes. Notably, abundant non-viral 37 

proteins, especially transporters and cytoplasmic proteins, were detected in the dissolved fraction, 38 

indicating their potential roles in nutrient scavenging and the stress response. Our size-based 39 

proteomic study implied the holistic microbial activity mostly acting on the labile dissolved 40 

organic matter as well as the potential activities of surface microbes and dissolved non-viral 41 

proteins in the deep ocean. 42 

 43 

Importance  44 

The deep ocean produces one third of the biological CO2 in the ocean. However, little is known 45 

about metabolic activity of the bathypelagic microbial community which is crucial for 46 
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understanding the biogeochemical cycling of organic matter, especially the formation of bulk 47 

refractory dissolved organic matter (DOM), one of the largest reservoirs of reduced carbon on 48 

Earth. This study provided the protein evidence firstly including both particulate and dissolved 49 

fractions to comprehensively decipher the active microbes and metabolic processes involved in 50 

the DOM recycling in the deep ocean. Our data supported the hypothesis of the carbon and 51 

energy supply from the labile DOM after the solution of sinking particles to the bathypelagic 52 

microbial community. 53 

 54 

INTRODUCTION 55 

The vast areas of deep ocean, characterized by low temperature, high hydrostatic pressure and 56 

complete darkness, is the most unexplored biome on Earth and produces one third of the 57 

biological CO2 in the ocean (1). However, this habitat has not yet been greatly explored. 58 

Recently culture independent sequencing techniques, i.e. 16S rRNA gene sequencing (2-7) and 59 

metagenomics (8-11), have been applied to explore the phylogenetic diversity and genomic 60 

potential of microbial communities in the deep ocean. Bacterial (5), archaeal (12) and small 61 

eukaryotic (3) populations are diverse and abundant in this extreme environment. Single-cell 62 

genomics provides the first insights into the unambiguous genome features of several uncultured 63 

clades from the deep ocean, i.e. SAR324, Arctic96BD-19, Agg47 and a deep SAR11 bathytype 64 

(13-15). Despite of this progress, very little is known about microbial metabolic activities in the 65 

deep ocean because of methodological limitations, but such knowledge is essential to understand 66 

the biogeochemical cycling of organic matter, especially the formation of bulk refractory 67 

dissolved organic matter (DOM), one of the largest reservoirs of reduced carbon on Earth (16). 68 

Proteins as the carrier and the functional executor of life can indicate information on 69 
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metabolic activities and provide clues into the decomposition and degradation of organic matter 70 

(17). Recently, the emergence of metaproteomics has greatly broadened our knowledge of 71 

marine microbial activities by identifying proteins in the particulate fraction (18-24) and the 72 

dissolved fraction (25-28). However, these studies typically focus on a certain microbial fraction, 73 

resulting in partial snapshots of in situ microbial behavior. In addition, most of these studies are 74 

conducted on the surface ocean: no systematic effort has been devoted to the proteins from the 75 

dark deep ocean. 76 

As the depth increases in the ocean, the quantity and quality of DOM decrease (16). The 77 

microbial carbon pump (MCP) hypothesis suggests that the fresh produced DOM are rapidly 78 

removed by microbial metabolism in the surface and mesopelagic layers, leaving a background 79 

concentration of bathypelagic DOM refractory due to either chemical resistance or too dilute for 80 

microbial utilization (16). Although microbial activity in the deep ocean is key to determine the 81 

fate of DOM deposited there and to support the MCP hypothesis, understanding of the microbial 82 

activity is very lack. A recent metaproteomics of the free-living fraction (0.2-0.8 µm) indicates 83 

that the heterotrophic community utilize similar DOM from the lower euphotic and bathypelagic 84 

layers (29). However, this study mainly focuses on the transporters, and meanwhile, information 85 

of microbial activity beyond the size fraction is missing. Despite of that, it leads to our 86 

hypothesis that the microbial community in the deep ocean is more dependent on the labile DOM 87 

rather than refractory DOM. Here we applied a shotgun proteomic approach to explore the 88 

proteomes covering large particulate (LP, >0.7m), small particulate (SP, 0.2-0.7 m) and 89 

dissolved (DS, 10 kDa-0.2 m) fractions collected from the dark deep ocean (3000 m) of the 90 

South China Sea (SCS). Using combined bacterial and viral metagenomic databases, 315 91 

non-redundant proteins were confidently identified: they exhibited diverse microbial origins and 92 
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functions, providing first insights into the holistic microbial metabolic activities in the dark deep 93 

ocean. 94 

 95 

RESULTS 96 

Proteomic overview 97 

Four metagenomic datasets (8, 10, 30) (Table S1) were combined for protein identification in this 98 

study, including three bacterial metagenomics (the local DCM community, SEATS_DCM; the 99 

vertical community of Hawaii Ocean Time-series, HOT; and the Mediterranean Sea community 100 

at a depth of 3010 m, Deep_Med) together with a viromic dataset (Pacific Ocean Virome, POV, 101 

with size < 0.2 µm). Searching against the combined reference database, 228, 24 and 104 102 

proteins matching 2112, 136 and 631 spectra were confidently identified from the LP, SP and DS 103 

fractions, respectively (Table S2). After removing redundant proteins among the three fractions, 104 

315 proteins remained. The local surface metagenomic dataset (SEATS_DCM) obtained the most 105 

sequences in each fraction, followed by the vertical community genomics of HOT. The dataset of 106 

the Pacific Ocean Virome (POV), targeted at a size below 0.2 μm, presented hits comparable 107 

with the metagenomics of the deep Mediterranean Sea (Deep_Med) in the LP fraction, but 108 

displayed more hits in both SP and DS fractions. Notably, the protein profile of the DS fraction 109 

was composed almost half and half of sequences from SEATS_DCM and POV. Moreover, only 110 

27 and 15 proteins matched the sequences from 4000 m of the HOT station in the Pacific Ocean 111 

and 3010 m of the Mediterranean Sea. Surprisingly, only 38% of the total 315 proteins matched 112 

the sequences from the dark ocean if 200 m down from the surface was thought of as the upper 113 

boundary of the dark ocean (Table S1). 114 

Biological origins 115 
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More than half of the spectra identified in each fraction originated from bacteria, followed by 116 

eukaryotes in the LP and SP fractions but by viruses in the DS fraction (Fig. 1A). Proteins in the 117 

LP fraction exhibited the most diverse microbial origins (Fig. 1A). Rhodospirillales, SAR324, 118 

Nirospinae/ Tectomicrobia and SAR11, and picophytoeukaryotic prasinophytes contributed the 119 

most spectra in the LP fraction. Most spectra from the archaea were detected only in the LP 120 

fraction, accounting for less than 5% and almost all of them from the thaumarchaea. Most of 121 

proteins in the SP fraction originated from Alteromonadales, Enterobacterales, 122 

Nitrosinae/Tectomicrobia and prasinophytes. Specifically, Alteromonadales, and prasinophytes 123 

dominated both proteomes of the SP and DS fractions. Other bacterial spectra from 124 

Rhodobacterales, SAR324, Betaproteobacteria, SAR11 and SAR116 were frequently detected in 125 

the DS fraction. Most of the viral spectra were found only in the DS fraction and many were 126 

assigned to cyanophages and uncultured phages from the DCM of the Mediterranean Sea. Five 127 

proteins representing 0.4% of the spectra in the LP fraction and 4.2% in the DS fraction were 128 

close to viral structural proteins but assigned to the bacteria; they might be from uncharacterized 129 

viruses or viral genes integrated to bacterial genome. Surprisingly, surface phytoplankton, i.e. 130 

Prochlorococcus, Synechococcus and prasinophytes, significantly contributed to the proteomes 131 

of all fractions, indicating that allogeneic microbial groups made up an important part of the 132 

microbial community in the dark deep ocean. It should be pointed out that quite a number of 133 

spectra in the LF (11%) and DS (28%) fractions were not assigned to any known organisms. 134 

Protein functions 135 

Protein function was interpreted using annotations based on the NCBInr, COGs, Pfam and 136 

KEGG databases (Fig. 1B). Except for the unknown functions, spectra assigned to transport, 137 

cytoskeleton, Methylated and one-carbon compounds metabolism, nitrogen metabolism, 138 
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transcription and translation, energy production and conversion, protein chaperones, refolding 139 

and degradation, and photosynthesis were abundant in the LP fraction; while spectra affiliated 140 

with translation and transcription, energy production and conversion, and nitrogen metabolism 141 

dominated in the SP fraction. Many spectra assigned to viral structure proteins, i.e. capsid and 142 

tail, were detected in the DS fraction. In addition, spectra related to cell motility, adhesion and 143 

secretion, transport, energy production and conversion, nitrogen metabolism, transcription and 144 

translation, and protein chaperones, refolding and degradation were frequently detected in the DS 145 

fraction. 146 

Transporters were abundant in the proteome of the deep SCS (Fig. 1B), and 93 and 21 147 

transporters representing 43 and 12% of spectra were detected in the LP and DS fractions but 148 

only one in the SP fraction. Diverse substrates and microbial origins were predicted to be 149 

affiliated with these transporters (Fig. 2A). The predicted substrates of the transporters were 150 

amino acid, polyamine, glycine betaine, oligopeptide, urea, and sugar in the LP fraction; while 151 

transporters for amino acid were frequently detected in the DS fraction. Regardless of abundance, 152 

not all transporters present in the LP fraction were found in the DS fraction, such as those for 153 

substrates of glycine betaine, oligopeptide, urea, sugar, ammonium, and 154 

2-aminoethylphosphonate. Alphaproteobacteria (SAR11, Rhodobacteceae, Rhodospiralles and 155 

SAR116) and Deltaproteobacteria (SAR324 and Desulfobacterales) contributed most of the 156 

transporter spectra in the two fractions. Moreover, transporters for different substrates were 157 

species specific. Multiple periplasmic substrate-binding proteins for sugar, oligopeptide, 158 

carboxylate, nitrate, sulfonate and taurine, and amino acid were highly expressed in the SAR324 159 

group; while transporters with less diverse substrates were found in SAR11, and even less in 160 

other bacteria (Fig. 2). In the DS fraction, high abundance of the TonB-dependent receptor was 161 
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detected in Alteromonadales. Interestingly, high-affinity Pi transporters (PstS) from both SAR11 162 

and Alteromonadales, and one putative transporter for 2-aminoethylphosphonate from SAR324 163 

were detected, indicating that some of these microbial groups might be subjected to phosphorus 164 

limitation in the deep ocean. Transporters for urea, taurine, ammonium and nitrate were 165 

identified, suggesting that these nitrogen-containing compounds were important nitrogen sources 166 

for the deep oceanic microbial community, although the community expressed abundant 167 

substrate-binding proteins for amino acid, oligopeptide and polyamine. 168 

Several proteins related to transcription and translation, such as DNA-directed RNA 169 

polymerase subunit B and C (RpoB and RpoC), elongation factor Tu (Tuf) and 1-alpha (EEF1A), 170 

and ribosomal proteins were frequently detected in the LP fraction. These proteins were linked to 171 

several microbial groups, such as the Gammaproteobacteria, SAR324, SAR11, thaumarchaea, 172 

Chloroflexi, Planctomycetes, Prochlorococcus, Betaproteobacteria and prasinophytes (Table S3 173 

and Fig. 3), indicating active metabolisms of these microbial groups in the dark deep ocean. 174 

Interestingly, these proteins were also found in the DS fraction, such as RpoC, Tuf and ribosomal 175 

protein L2 from the Alteromonadales, as well as RpoC from SAR324 and Tuf from the 176 

Chromatiales. 177 

The subcellular locations of all detected non-viral proteins were in silico predicted using 178 

CELLO (31), which apparently showed a fraction-specific pattern of cellular proteins in the deep 179 

ocean (Fig. 4). Cytoplasmic proteins contributed the most spectra in both LP and SP fractions but 180 

extracellular proteins instead in the DS fraction. Moreover, spectra assigned to cytoplasmic 181 

proteins, especially those from the Alteromonadales, were also abundant in the DS fraction, 182 

indicating that these proteins were protected from proteolysis. 183 

 184 
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DISCUSSION 185 

Although great achievements have been made regarding the phylogenetic diversity and genomic 186 

potential of microbial communities in the dark deep ocean, our knowledge of microbial 187 

metabolic activity is far less understood. This study applied a shotgun proteomic approach to 188 

characterize the whole proteome of the microbial community from the deep ocean, and unveiled 189 

major microbial players and their metabolic activities in the dark deep ocean. High abundance of 190 

transporters was affiliated with diverse labile DOM, such as amino acid, polyamine, glycine 191 

betaine, peptide and sugar (Fig. 2A), which is consistent with the pattern found at the 192 

bathypelagic layers of the Atlantic Ocean (29). Labile and semi-labile DOM rapidly turn over in 193 

the upper layer, and leave a large amount of refractory aged DOM in the deep ocean (16). 194 

However, A recent study suggests that the deep ocean contains a large fraction of modern DOM 195 

derived from sinking particles (32). These data as well as the absence of proteins related to 196 

carbon fixation or metabolism of refractory DOM in our data support the hypothesis that the 197 

solution of sinking POM mostly contributed the carbon and energy source to the deep ocean 198 

microbes (29). 199 

Important microbial groups and their activities in the dark deep ocean 200 

Spectra affiliated with transcription or translation indicated active microbial groups, including 201 

SAR324, archaea, SAR11 and Alteromonadales (Fig. 3). SAR324 contributed significant spectra 202 

in the proteome of the deep ocean (Fig. 1A), which was consistent with the current knowledge of 203 

SAR324 as a typically abundant bathypelagic group (7). Versatile metabolisms including carbon 204 

fixation, one-carbon metabolism, sulfur oxidation and alkane oxidation are genetically 205 

implicated (33). In our study, high abundant transporters affiliating with sugar, oligopeptide, 206 

carboxylate, nitrate, sulfonate and taurine, and amino acid were detected (Fig. 2B), suggesting 207 
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that the heterotrophic lifestyle of SAR324 in the deep SCS depended on these labile organic 208 

compounds. It is reported that SAR324 genomic bins contain genes for degrading aromatic 209 

compounds with the byproduct of formate, as well as the formate dehydrogenase (FDH) gene 210 

(34). The detection of the FDH from SAR324 suggested that SAR324 could be fueled with 211 

formate, perhaps via this degradation process. The actyl-CoA synthetase (ACSS) and carbon 212 

monoxide dehydrogenase in the Wood-Ljungdahl pathway, or ribulose-1,5-biphosphate 213 

carboxylase-oxygenase in the Calvin-Benson-Bassham Cycle are proposed to be involved in 214 

carbon fixation of SAR324 (13, 34). In our study, we detected only ACSS from SAR324. 215 

Meanwhile, its close homologs in SAR324 genomes were clustered with genes involved in the 216 

pathway to produce acetate from compounds such as acetylated peptidoglycan or fucose (Fig. 5). 217 

It seemed that SAR324 in the deep SCS might express ACSS for acetate metabolism rather than 218 

carbon fixation. In addition, protein chaperonin of GroEL and DnaK, and a regulator of protease 219 

FtsH were found, implying that protein refolding and proteolysis were important for the survival 220 

of SAR324 in the harsh bathypelagic environment. Spectra of flagellin from SAR324 were also 221 

frequently detected, suggesting their particle-associated lifestyle (13). SAR324 might be one of 222 

the important players involved in the transformation between sinking POM and bathypelagic 223 

DOM. 224 

SAR11 was another major contributor to the deep SCS proteome (Fig. 1A). Consistent with 225 

the dominance of transporters in the SAR11 metaproteome from the oligotrophic Sargasso Sea 226 

(20), spectra assigned to SAR11 in the deep SCS were also dominated by transporters, especially 227 

ABC transporters. A high proportion (13-16%) of transporter genes is found in the SAR11 228 

genomes (35), but have distinct expression patterns in different systems. For example, amino 229 

acids, carboxylates, and polyamines are the dominant substrates of SAR11 transporters in the 230 
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surface ocean (20, 22) whereas those for amino acid, sugar and taurine are abundant in a 231 

laboratory culture system (36). In our study, glycine betaine substituted for these compounds and 232 

became the preferred substrates in the SAR11 population from the deep SCS (Fig. 2C). In 233 

SAR11, methylated compounds such as glycine betaine is proposed to be 234 

tetrahydrofolate-mediated oxidized to formate with a final product of CO2 by FDH, and its 235 

utilization for energy production but not for biomass incorporation is experimentally 236 

demonstrated (37). The detection of FDH and the transporter profile in SAR11 suggested that the 237 

oxidation of methylated compounds including glycine betaine and formate were important 238 

energy sources for SAR11 to be a successful population in the energy limited deep ocean. 239 

Cell division proteins FtsA and EEF1A from marine group II/III euryarchaeota, together 240 

with RpoB and EEF1A from the thaumarchaea, indicated that these two archaeal groups were 241 

active in the deep SCS, which was consistent with previous studies showing that they are 242 

abundant and active in the dark ocean (7, 12). Additionally, some other archaeal proteins were 243 

also detected. For example, pyruvate ferredoxin oxidoreductase (a key enzyme in the reverse 244 

Krebs cycle pathway for carbon fixation) was detected from marine group II/III euryarchaeota, 245 

indicating that the euryarchaeal autotrophic activity might occur in the deep SCS. Thaumarchaea 246 

in dark polar waters are reported to have urease genes that may enable them to utilize urea to fuel 247 

nitrification (38). Both detections of the urea transporter and ammonia permease in the 248 

thaumarchaea might supported the urea utilization by thaumarchaea in a cold and dark habitat for 249 

energy supply via nitrification. 250 

Bacterial nitrification in the deep SCS was demonstrated by the detection of nitrite 251 

oxidoreductase from the nitrite oxidizing bacterium, Nitrospina (Table S3). Moreover, 252 

5,10-methylenetetrahydromethanopterin- reductase (mer) involved in CO2 reduction to methane 253 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 28, 2018. ; https://doi.org/10.1101/310524doi: bioRxiv preprint 

https://doi.org/10.1101/310524


 12 

(39) indicated the presence of methanogenesis. Numerous spectra from FDH that was involved 254 

in energy generation during bacterial growth on C1 compounds (40) were detected (Table S3), 255 

demonstrating that formate might be an important DOM for many bacteria in the deep SCS. 256 

Surface microbial groups in the dark deep ocean 257 

Proteins from cyanobacteria and prasinophytes were frequently detected, and the majority of 258 

them were found in the LP fraction (Table S4 and Fig. 1). It is common to capture 259 

phytoplanktonic proteins (18, 27, 41) and DNA (8, 10, 11) from the pelagic deep ocean, and 260 

sinking particles carrying surface phytoplanktonic detritus result in the detection of 261 

phytoplanktonic signals. However, a notable signal of translation related to Procholorococcus 262 

and Bathycoccus prasinos were observed in the proteome of the LP fraction, suggesting that 263 

these two phytoplanktonic groups might be active or in an infectious stage. Infected cells should 264 

be captured on the membrane. Proteins from Synechococcus phages rather than viruses infecting 265 

Procholorococcus or B. prasinos were detected in the LP fraction (Fig. S1A), even though 266 

Synechococcus cells were very fewer indicated by much less abundant Synechococcus proteins 267 

than the other two groups Fig. 1A), more likely supporting the active cells of Procholorococcus 268 

and B. prasinos. 269 

Active and intact phytoplanktonic cells have been found at a depth of 500 m in the ocean 270 

(42-44) and even in the sea floor at a depth of up to 4500 m (45). So far, there is no phylogenetic 271 

evidence (42, 43) to support the presence of any native group of phytoplankton specifically 272 

occupying the habitats of the dark ocean, suggesting that the survived phytoplanktonic cells in 273 

the dark ocean are from the surface. Mechanisms for exporting surface phytoplankton to the deep 274 

ocean include sinking or fluffy particle association (43), internal solitary waves (42), or two-step 275 

transportation combining deep convection with down slope density current (44). However, it 276 
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typically takes weeks for cells to reach this depth, hence phytoplanktonic cells face challenges to 277 

maintain their viability until they arrive at the deep ocean with extremely adverse environments. 278 

Probably, the picophytoplankton could survive with heterotrophic activity since several 279 

cyanobacterial strains have been demonstrated to have the ability to utilize organic compounds 280 

(46). The detection of FDH and ATP synthase from Prochlorococcus (Table S4) indicated that 281 

they might oxidize formate to CO2 for energy generation. Meanwhile, the finding of urea 282 

transporters and glutamate synthetase from Prochlorococcus indicated that it could use urea as a 283 

nitrogen source. Therefore, urea and formate might support Prochlorococcus to survive until 284 

cells reach the dark deep ocean. 285 

Numerous spectra assigned to SAR11 were also detected in our study although the SAR11 286 

of surface-ecotype and bathytype could not be distinguished from most of the peptides detected. 287 

Metagenomic recruitment suggests that surface SAR11 groups contribute more than 20% to the 288 

dark oceanic SAR11 population (15). Detection of a PstS protein in our study (Table S3) 289 

suggested that the surface SAR11 ecotype might contribute the population in the deep SCS, since 290 

that none of the single cell genome of the bathytype contains genes related to phosphate 291 

metabolism, i.e. PstS (15). Furthermore, the expression of SAR11 PstS is linked to phosphorus 292 

limitation in contrast to the relatively high concentration (3 µM) of phosphate at a depth of 3000 293 

m in the SCS, which might be consistent with our suggestion. 294 

Overall, our study suggested that the microbial community in the deep ocean might be 295 

comprised of live surface microbes and native microbes. The role of live surface microbes in the 296 

biogeochemical cycling of carbon, nitrogen and phosphorus in the deep ocean is an interesting 297 

concern. 298 

Viral and non-viral proteins in the DS fraction 299 
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Approximately 15% of the DS spectra were predicted to be virion-associated (Fig 1A) and many 300 

were related to cyanophages (Fig. S1A). Cyanophages were also found in the bacterial 301 

metagenomics of the dark ocean (8) as well as the proteomes of the LP and SP fractions in our 302 

study. These results suggested their contribution to the sinking carbons arriving in the deep ocean. 303 

Viral sequences from the dark ocean did not dominate the viral proteins (Fig. S2B), although the 304 

POV dataset included some deep-sea viromes (30). This might be partially caused by the lack of 305 

a local viromic database or less abundance of native deep-sea viruses. Numerous spectra 306 

originated from unclassified viruses, suggesting that the deep-sea viruses might be far less 307 

characterized. In the future, approaches such as integrated metaproteomics and metagenomics on 308 

purified environmental virions (47) combined with bioinformatic tools for environmental viral 309 

detection (48) could be applied to promote the characterization of unknown deep-sea viruses. 310 

As in our previous studies (25, 27, 28), the DS samples without purification for virions 311 

allowed us to identify exoproteins referring to the proteins present in the extracellular milieu. 312 

After two-step filtration, cell density (< 10
3
 mL

-1
) of the DS fraction was below the detection 313 

limit of flow cytometry, indicating that the intact cells contributed little to the DS fraction. 314 

However, extracellular, cytoplasmic and periplasmic proteins were abundantly detected (Fig. 4). 315 

They can be derived from cell secretion, cell leakage or cell lysis, and some of them such as 316 

cytoplasmic protein may stay stable in marine extracellular milieu via being packed in nanogels 317 

or microgels (27) or having an enclosing membrane (49-51) to against enzymatic attack. 318 

Exoproteins may indicate the interaction of cells with their environments (52). Except for 319 

functionally unknown (29%), proteins related to transport (12%) and motility (18%) dominated 320 

the DS fraction, which was consistent with both the in silico and experimental exoproteomes 321 

from marine bacteria (53, 54). Interestingly, the abundance patterns of transporters within a 322 
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microbial group in terms of predicted substrates were sometimes not coincident between the DS 323 

and LP fractions (Fig. 2). For example, no spectra in the DS fraction were assigned to SAR324 324 

transporters for sugar or oligopeptide despite of their relatively high abundance in the LP fraction, 325 

while low abundance taurine or branch-chain amino acid transporters from SAR324 were 326 

detected in both fractions. More obviously in SAR11, only transporters for polyamines and 327 

amino acids could be detected in the DS fraction, but both were less abundant. These results 328 

suggested that specific transporters in the DS fraction might be exported by different microbes, 329 

probably as function active exoproteins in the deep ocean. 330 

Surprisingly, the spectral proportion of Alteromonadales (most was Alteromonas macleodii) 331 

was increased with the decreased size fraction, and reached the highest in the DS fractions (40%, 332 

Fig. 1A). Most of these spectra were associated with extracellular proteins linking to motility, 333 

transport and proteolysis. Interestingly, however, they also included typical cytoplasmic proteins, 334 

such as ribosomal protein L2, Tuf, glutamine synthetase and proteins related to the Krebs cycle 335 

(Fig. 4 and Table S5). The increasing cytoplasmic proteins found in the exoproteomes of marine 336 

bacteria in laboratory culture appears to be linked to cell lysis or leakage caused by adverse 337 

stresses (53). A. macleodii is a ubiquitous copiotrophic marine bacterium. The detection of 338 

flagellin was consistent the putative particle-attached lifestyle found in this group (55). As the 339 

attached sinking particles left the layer where they were living, the habitat became harsher: such 340 

as less available DOM and a cold temperature. Consequently, the ongoing cell lysis of A. 341 

macleodii probably occurred leading to only a few of their proteins being present in the larger 342 

fractions.  343 

 344 

Remark conclusions 345 
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Our proteomic study revealed the holistic metabolic activity of microbial community greatly 346 

dependent on the labile DOM in the dark deep ocean. Proteins for the uptake or oxidation of 347 

methylated compounds such as formate and glycine betaine were frequently detected, suggesting 348 

that these compounds might be an important carbon source for energy supply for the microbial 349 

community in the deep ocean. Both archaeal and bacterial nitrification also contributed energy 350 

production to the community. Microbial groups, such as SAR324, Archaea and SAR11 were the 351 

key metabolically active populations. Notably, the identification of translation proteins from 352 

phytoplankton such as Prochlorococcus indicated the presence of viable phytoplanktonic cells in 353 

the deep SCS. The picophytoplankton might survive via fueling by urea and formate, which 354 

raises the concern of the importance of surface microbes actively involved in the biogeochemical 355 

cycle of the deep ocean. In the DS fraction, abundant non-viral proteins, including cytoplasmic 356 

proteins and transporters, might indicate the physiological state of deep-sea microbial cells and 357 

their interactions with the harsh environments. These non-viral proteins should be ecologically 358 

important, since they might either be functionally active or served as an important labile or 359 

semi-labile DOM recycling in the ocean. In addition, the deep SCS proteome included numerous 360 

unknown viral sequences and taxonomically unclassified sequences, suggesting that much effort 361 

should be devoted to both viral and bacterial communities in the deep ocean. 362 

 363 

MATERIALS AND METHODS 364 

Sample collection. All three size fractions, each containing two replicates, were collected from 365 

the 3000 m depth at the SouthEast Asian time-series Study (SEATS) station (18.0 °N, 116.0 °E) 366 

in the SCS during the summer cruise of 2012. LP fraction samples (> 0.7μm) were achieved by 367 

filtering 1000 L seawater using an in situ large-volume water-transfer-system sampler (McLane) 368 
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equipped with 142 mm GF/F glass-fiber filters (Whatman). A total of 110 L seawater for each 369 

replicate was collected with a rosette sampler equipped with 12-L Niskin Go-flo bottles (General 370 

Oceanics), and immediately filtered onboard through a GF/F glass filter. The materials captured 371 

on a subsequent Durapore membrane filter (0.2 μm, Millipore) were used for the SP fraction (0.2 372 

- 0.7 μm), while the filtrates were collected as the DS fraction. The additional concentration steps 373 

for the DS fraction was were as previously described (28). In brief, the filtrates were 374 

concentrated onboard with a Millipore Pellicon 2 tangential flow filtration system with a 10 kDa 375 

regenerated cellulose filter, and further concentrated and desalted in a Millipore 50 mL stirred 376 

ultrafiltration cell on ice. All the membrane filters and concentrates were stored at -80 °C before 377 

protein extraction.  378 

Metaproteomic procedure. The procedure for protein extraction of the three fractions was 379 

slightly modified from our previous studies (18, 27, 28, 56). Briefly, filters for LP or SP fractions 380 

were cut into chips and suspended in lysis buffer (urea, thiourea, Triton X-100, carrier 381 

ampholytes,3-[(3-Cholamidopropyl)dimethylammonium]-1-propanesulfonate, protease inhibitor 382 

cocktail, and dithiothretol (DTT)), broken-down with an ultrasonic shaker, sonicated on ice, and 383 

finally centrifuged at 10000×g for one hour after one-hour incubation. The supernatant was 384 

transferred to a new tube while the sediment was rinsed with lysis buffer twice. All the 385 

supernatant was pooled together to be precipitated with ice-cold 20% trichloroacetic acid in 386 

acetone overnight. Protein extraction from the concentrated DS fraction was the same as in a 387 

previous study (28). 388 

The protein extract was reduced with DTT and alkylated with iodoacetamide. Peptide 389 

solutions of the two replicates in each fraction were pooled after trypsin digestion on a 10 kDa 390 

Microcon filtration device (Millipore) using a filter-aided sample preparation method (57). The 391 
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pooled peptide solution was separated with strong cationic exchange and desalted, then offline 392 

subjected to nanoelectrospray ionization connecting to a tandem mass spectrometry (Thermo 393 

Scientific Q Exactive™ Hybrid Quadrupole-Orbitrap™ Mass Spectrometer) as previously 394 

described (28). A data-dependent acquisition mode was applied to automatically select the 15 395 

most abundant precursor ions for fragmentation by a high-energy collision induced dissociation 396 

with a dynamic exclusion duration of 15 s. A resolution of 70000 was used to MS scans from 350 397 

Da to 2000 Da in the Orbitrap while a resolution of 17500 for fragmented ions. Tools in 398 

Proteome Discoverer (ver. 1.3.0.339; Thermo Fisher Scientific) were used to merge the raw data 399 

and transform to MGF format. The protein identification was performed using Mascot searching 400 

engine (ver. 2.3.0; Matrix Science, London, United Kingdom) as follows: specifying trypsin 401 

peptides and allowing one missed cleavage; 20 ppm and 0.6 Da mass tolerances for precursor 402 

and fragmented ions; fixed carbamidomethyl modification on cysteine and variable oxidation 403 

modification on methionine; peptide charges were set to +1, +2 and +3.  404 

A custom reference database included four metagenomic datasets that are a local and 405 

contemporary metagenomics at DCM (SEATS_DCM, 75 m) (28); a suite of vertical community 406 

genomics from 10 m to 4000 m at the HOT station ALOHA (8); a metagenomics of the 407 

Mediterranean Sea at the 3010 m depth (Deep_Med) (10); and the largest dataset of viromics 408 

from 10 m to 4300 m in the Pacific Ocean (POV) (30) . After removal of the redundant 409 

sequences, the reference database finally consisted of 7199369 sequences. Moreover, a reverse 410 

decoy database was automatically generated to test the proportion of false positive hits. Peptide 411 

identifications were accepted with a minimal probability of 95%. Mascot searches with a false 412 

discovery rate over 1% were rejected. Proteins matched with two or more peptides were finally 413 

accepted as confident identifications. The formation of “Protein Groups” was conducted and the 414 
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highest scoring protein in the group was used as a master protein. 415 

Bioinformatic analysis. Taxonomic and functional annotation as well as subcellular 416 

location prediction for identified sequences were performed as previously described (28). To 417 

avoid the mis-annotation between virus and non-virus due to the auxiliary metabolic genes 418 

encoded by viruses, the BLASTp-based non-viral sequences from datasets of SEATS_DCM, 419 

HOT and POV (Deep_Med was ignored owing to no assembly data being available) were 420 

considered as putative viral sequences once they were annotated from viral contigs scanned 421 

using VirSorter (48). In addition, non-viral sequences functionally assigned to viral structure 422 

were also re-classified as putative viral proteins. Normalized spectral counts were used for 423 

proteomic semi-quantification following the previous description (47). 424 

Accession number(s). The mass spectrometry proteomics data have been deposited in the 425 

Proteome-Xchange Consortium (58) (http://www.proteomexchange.org/) via the PRIDE partner 426 

repository with the data set identifier PXD00XXXX. 427 
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Figure Legends 606 

Fig. 1. Taxonomic (A) and functional (B) distribution of proteins from the deep SCS. 607 

Percentages of each protein category show their contributions to proteomes in each fraction. The 608 

inset in Fig. 1A shows the distribution of the superkingdoms in each fraction. LP: large 609 

particulate fraction (>0.2 μm); SP: small particulate fraction (0.2 - 0.7 μm); DS: dissolved 610 

fraction (10 kDa - 0.2 μm). 611 
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 621 

Fig. 2. Relative abundance of transporters in each fraction in terms of predicted substrates and 622 

taxonomy (A), substrates of transporters from SAR324 (B) and from SAR11 (C). Squares in Fig. 623 

2A shows the numbers of connecting predicted substrates (left) and their microbial groups 624 

(right). 625 
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 30 

Fig. 3. Relative abundance of RNA polymerase (A) and proteins related to translation (B) in 629 

terms of taxonomy. 630 
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Fig. 4. Relative abundance of proteins in terms of predicted subcellular location (A), and the 633 

taxonomic distributions of cytoplasmic proteins (B). 634 
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 32 

Fig. 5. Genome context analysis of SAR324 contigs containing homologs of detected 637 

acetyl-coenzyme A synthetase, peptide/nickel system and leucyl aminopeptidase (in red). The 638 

detected ACSS of SAR324 in deep SCS appears to be related to acetate metabolism. The two 639 

gene clusters include both L-fuconate dehydratase and L-fucose dehydrogenase that are involved 640 

in the pathway of converting L-fucose to acetate. Nickel ion and oligopeptides e.g. acetylated 641 

peptidoglycan could be incorporated by SAR324 cells via peptide/nickel transport system. In the 642 

gene clusters, deacetylases such as N-acetylglucosamine-6-phosphate deacetylase in 643 

amidohydrolase family or polysaccharide deacetylase could catalyze peptidoglycan with the 644 

product of acetate. In addition, scavenging for nickel ion is required for the enzymatic activity of 645 

polysaccharide deacetylase. 646 
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 653 

Supplementary materials 654 

Fig. S1. Percentages of viral spectra in proteomes of each fraction in terms of viral host (A) and 655 

sequence source (B). 656 

 657 

Table S1. The numbers show how many sequences are identified in each dataset from the 658 

different fractions collected from the deep SCS (3000 m). 659 

 660 

Table S2 (see Excel file). Summary table of proteins identified from the deep SCS. 661 

 662 

Table S3 (see Excel file). Important proteins mentioned in the main text.  663 

 664 

Table S4 (see Excel file). List of identified proteins from surface phytoplankton. 665 

 666 

Table S5 (see Excel file). List of identified proteins from Alteromonadales.  667 
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