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Cellular aging has been progressively elucidated by science. However, aging at the1

multicellular-individual level is still poorly understood. A recent theory of individuated multicellularity2

describes the emergence of crucial information content for cell differentiation. This information is3

mostly conveyed in the non-epigenetic constraints on histone modifications near transcription start4

sites. According to this theory, the non-epigenetic content emerges at the expense of the information5

capacity for epigenetic content. However, it is unclear whether this “reassignment” of capacity6

continues after adulthood. To answer this question, I analyzed publicly available high-throughput7

data of histone H3 modifications and mRNA abundance in human primary cells. The results show8

that the “reassignment” continues after adulthood in humans. Based on this evidence, I present a9

falsifiable theory describing how continued “reassignment” of information capacity creates a growing10

epigenetic/non-epigenetic information imbalance. According to my theoretical account, this imbalance11

is the fundamental reason why individuated multicellular organisms senesce.12
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Our intellectual endeavors have entertained the13

prospect of unlimited lifespan for centuries [1], and the14

scientific endeavor has been no exception [2]. In the 1950s,15

the immortality of cultured somatic cells was indeed a16

widely-held belief [3]. That changed only when Hayflick17

& Moorhead showed that cultured human somatic cells18

do stop dividing and become less viable once their19

divisions reach a certain number [4], a phenomenon known20

today as the Hayflick limit [3]. This loss of replicative21

capacity and, in general, the process of aging at the22

cellular level, have been found to correlate with telomere23

length [3,5,6]. Yet, the number of times human cells can24

divide in culture exceeds the number of times cells divide25

throughout our lifespan; there is no significant correlation26

between human cell replicative capacity and cell donor27

age [7]. That is, we—and individuated multicellular28

organisms in general—age before most of our cells do [8,9].29

The outstanding question is why.30

Theoretical descriptions of senescence or aging at the31

multicellular-individual level have been classified into32

two categories: programmed senescence and senescence33

caused by damage/error [10]. Recently it has been34

argued, however, that senescence is not programmed35

nor is it ultimately a consequence of damage or error36

in the organism’s structure/dynamics [11]. Instead,37

it may be a byproduct of maintenance and/or38

developmental dynamics [11,12], themselves underpinned39

in part by intracellular signaling pathways such as40

the cell-cycle-related PI3K/AKT/mTOR pathway [11].41

These pathways have been shown to modulate aging42

at the cellular level in species such as the yeast43

Saccharomyces cerevisiae [13].44

The analogous notion of aging at the45

multicellular-individual level as a byproduct of46
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certain functional signaling pathways [11] is, in principle,47

supported by the fact that the deficiency of mTOR48

kinase—a key component of the PI3K/AKT/mTOR49

pathway—can double the lifespan of the roundworm50

Caenorhabditis elegans [14]. However, the fundamental51

dynamics that make individuated multicellular organisms52

senescent after adulthood remain unclear and largely53

lack falsifiable scientific theories. Falsifiability—the54

possibility of establishing a hypothesis or theory as55

false by observation and experiment [15]—allows the56

objective rejection of existing scientific theories, fosters57

the development of new ones, and constitutes the58

most widely accepted demarcation between science59

and non-science [16].60

Using publicly available high-throughput data of61

histone H3 modifications and mRNA abundance in human62

primary cells to look for proof of concept, the issue of63

senescence can also be approached from the angle of64

theoretical biology. Thus, I conducted a statistical data65

analysis in this study, which revealed that proof of concept66

exists for the human species. These findings provide67

empirical grounds for my theoretical work, suggesting that68

senescence is a byproduct of functional developmental69

dynamics as first described by a recently proposed70

theory of individuated multicellularity [17]. Specifically,71

I show that the byproduct is a post-ontogenetic,72

growing imbalance between two different information73

contents conveyed respectively in two different types of74

constraints on histone post-translational modifications75

near transcription start sites (TSSs). Constraints are76

here understood as the local and level-of-scale specific77

thermodynamic boundary conditions required for energy78

to be released as work as described by Atkins [18].79

The concept of constraint is crucial because, according to80

the theory of individuated multicellularity, a higher-order81

constraint (i.e., a constraint on constraints) on changes82

in histone modifications harnesses critical work that83
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regulates transcriptional changes for cell differentiation84

at the multicellular-individual level.85

Under the theory of individuated multicellularity,86

the intrinsic higher-order constraint is the simplest87

multicellular individual in fundamental terms. In addition,88

the dynamics of the lower-order constraints must be89

explicitly unrelated to each other (i.e., statistically90

independent) in order to elicit the emergence of91

the intrinsic higher-order constraint. Along with the92

emergence of this intrinsic higher-order constraint, the93

theory of individuated multicellularity describes the94

emergence of critical information content, named in the95

theory hologenic content, which is about the multicellular96

individual as a whole in terms of developmental97

self-regulation. Thus, for the sake of brevity, I here refer98

to the theory of individuated multicellularity as the99

hologenic theory.100

The constraints on the combinatorial patterns of101

histone modifications are generally known as histone102

crosstalk [19,20]. Histone modifications are also known to103

be relevant for epigenetic changes [21], which are defined104

as changes in gene expression that cannot be explained105

by (i.e., that are explicitly unrelated to) changes in the106

DNA sequence [22]. This relevance is underpinned by the107

capacity of histone modifications to convey information108

content, which has allowed the prediction of mRNA109

levels from histone modification profiles near TSSs with110

high accuracy [23].111

Based on these considerations and the properties of the112

nonnegative measure of multivariate statistical association113

known as total correlation [24] or multiinformation [25]114

(symbolized by C and typically measured in bits), the115

overall observable histone crosstalk can be decomposed.116

That is, histone crosstalk, if measured as a total117

correlation C, is the sum of two explicitly unrelated118

C components: one epigenetic (i.e., explicitly related to119

changes in gene expression) and the other non-epigenetic120

(i.e., explicitly unrelated to changes in gene expression).121

This sum can be expressed as follows:122

C(X1, . . . , Xn)︸ ︷︷ ︸
Overall histone crosstalk

(total correlation
of X1, . . . , Xn)

= CY (X1, . . . , Xn, Y )︸ ︷︷ ︸
Epigenetic histone crosstalk

(total correlation of X1, . . . , Xn
that is explicitly related to Y ),
depends on DNA-nucleosome

interactions (Ref. 17), and conveys
epigenetic information content

+ C(X1, . . . , Xn|Y ),︸ ︷︷ ︸
Non-epigenetic histone crosstalk
(total correlation of X1, . . . , Xn

that is explicitly unrelated to Y ),
depends on protein/RNA-nucleosome
interactions (Ref. 17), and conveys

hologenic information content

(1)

where X1, . . . , Xn are random variables representing n123

histone modification levels in specific genomic positions124

with respect to the TSS and Y is a random variable125

representing either gene expression level, transcription126

rate, or mRNA abundance level associated with the TSS.127

These levels are equivalent for the decomposition because128

of the strong correlation that exists between them ([26]129

and references therein).130

The hologenic theory describes how the epigenetic131

component of histone crosstalk (represented by132

CY (X1, . . . , Xn, Y ) in the sum decomposition of Eq. 1)133

conveys information about each cell’s transcriptional134

profile. This component is, in information content135

terms, the dominating component for any eukaryotic136

colonial species (such as the alga Volvox carteri [27]) and,137

importantly, also for undifferentiated stem cells.138

The second, non-epigenetic component of histone139

crosstalk (represented by C(X1, . . . , Xn|Y ) in Eq. 1) is140

known to grow in magnitude during development until the141

organism’s mature form is reached [17]. This component142

is described by the hologenic theory as conveying143

information about the multicellular individual as a144

whole—starting from the moment said individual emerges145

as an intrinsic higher-order constraint on the early146

embryo’s proliferating cells.147

Importantly, the overall observable histone crosstalk148

magnitude (represented by C(X1, . . . , Xn) in Eq. 1) is149

not infinite. In other words, the overall histone crosstalk150

has a finite information capacity, which can be measured151

in bits. Moreover, the sum decomposition in Eq. 1 implies152

that the growth in magnitude (bits) of the hologenic153

(i.e., non-epigenetic) component must be accompanied154

by a decrease in magnitude of the epigenetic component.155

That is, the capacity (in bits) for hologenic information156

content in histone crosstalk is bound to grow at the157

expense of the capacity for epigenetic information content.158

The hologenic theory also maintains that a necessary159

condition for the evolution of individuated multicellular160

lineages was the appearance of a class of molecules161

synthesized by the cells—called Nanney’s extracellular162

propagators (symbolized by F→N ) in the theory [17].163

These F→N molecules are predicted to be, in a given164

tissue and time period, (i) secretable into the extracellular165

space, (ii) once secreted, capable of eliciting a significant166

incremental change (via signal transduction) in the167

magnitude of the non-epigenetic histone crosstalk (i.e., the168

C(X1, . . . , Xn|Y ) summand in Eq. 1) within other169

cells’ nuclei, and (iii) affected in their extracellular170

diffusion dynamics by the geometrical complexity of the171

extracellular space (i.e., constraints on diffusion at the172

multicellular-individual level, which cannot be reduced to173

constraints at the cellular level). Also under the hologenic174

theory, for the multicellular individual to develop and175

survive, both hologenic (developmental self-regulation of176
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the multicellular individual overall) and epigenetic (each177

cell’s transcriptional profile) contents must coexist.178

One final but important consideration regarding179

histone crosstalk is that it is the result of constraints180

which, as mentioned previously, are level-of-scale specific.181

To exemplify this specificity, consider the example of an182

internal combustion engine: a single molecule in a cylinder183

wall does not embody a constraint on the expansion184

of the igniting gas, yet the cylinder-piston ensemble185

does. For this reason, histone crosstalk constraints were186

expected to have relevance for senescence but only at a187

specific level of scale. The specific level of scale in histone188

crosstalk that is relevant for human senescence has not189

been studied in detail before.190

To investigate from a theoretical angle if the191

“reassignment” of information capacity for epigenetic192

and non-epigenetic (i.e., hologenic) content stops when193

development reaches the multicellular individual’s mature194

form or instead continues without interruption, one also195

needs to investigate the “reassignment” (if any) in cancer196

cells. One of the corollaries of the hologenic theory is197

a significant loss of hologenic content in cancer cells,198

because they are no longer constrained by the multicellular199

individual that normal (i.e., non-cancerous) cells serve and200

are constrained by. Thus, I developed a falsifiable theory201

of senescence based on the post-ontogenetic continuation202

of this “reassignment” process in human histone crosstalk203

as proof of concept.204

To test this theory, I formalized the proof of concept205

into the following two hypotheses: (i) within genomic206

regions adjacent to TSSs in primary normal cells, the207

log-ratio between the non-epigenetic and epigenetic208

histone H3 crosstalk magnitudes is significantly and209

positively correlated with cell donor age (over a range of210

0-90 years old) and (ii) no such statistically significant211

correlation exists for primary cancer cells (see Fig. 1).212

TSS-adjacent genomic region-2000 bp +4000bp

Histone H3 post-translational
modifications (PTMs)

Trascription start site (TSS)
(+1)

Same
sample

ChIP-seq data from all
RefSeq TSS genomic regions with

mRNA abundance (RPKM) > 0

RNA-seq data corresponding to
mRNA abundances (RPKM) > 0

at RefSeq TSSs

= +C( , , ) C( , , | )CY( , , , )

Overall histone crosstalk
(total correlation

of , , )

Cor log2
C( , , | )

CY( , , , ) cancer
, age = 0Cor log2

C( , , | )

CY( , , , ) normal
, age > 0

a

b

c

log      [Histone H3 PTM X  ChIP-seq signal]i

log      [Histone H3 PTM X  ChIP-seq signal]j
log      [Histone H3 PTM X     ChIP-seq signal]k2

2

2

(mRNA abundance)
log      [RPKM]2

Epigenetic histone crosstalk
(total correlation of , ,
that is explicitly related to ),
conveys epigenetic content

Non-epigenetic histone crosstalk
(total correlation of , ,

that is explicitly unrelated to ),
conveys hologenic content

Fig. 1. Schematic for proof-of-concept hypotheses and computational analysis for testing. Publicly available ChIP-seq (chromatin
immunoprecipitation followed by high-throughput DNA sequencing) and RNA-seq (transcriptome high-throughput sequencing) data for human
primary cell samples allowed the computation, for each TSS, of position-specific histone H3 modification levels (at every 200bp) and its associated
mRNA abundance level (a). After log-transforming these levels and taking into account all TSSs, the TSS-adjacent histone H3 crosstalk (triad-wise
crosstalk depicted here) was represented as a total correlation [24] or information capacity in bits, which in turn was decomposed as the sum
of two measurable and explicitly unrelated components: one epigenetic (explicitly related to transcriptional changes) and the other non-epigenetic
(explicitly unrelated to said changes) (b). Taking into account all samples, the log-ratio of non-epigenetic to epigenetic histone H3 crosstalk
magnitude was hypothesized to be positively correlated with cell donor age in normal cells (c, left) and also to be uncorrelated with cell donor
age in cancer cells (c, right). The subsequent rejection of the statistical null hypothesis in (c, left) and the failure to reject the statistical null
hypothesis in (c, right) provided proof of concept for the theory of senescence proposed in this paper.
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RESULTS

To test the two proof-of-concept hypotheses,213

I used publicly available ChIP-seq (chromatin214

immunoprecipitation followed by high-throughput215

DNA sequencing) and RNA-seq (transcriptome216

high-throughput sequencing) data for human primary cell217

samples, which were obtained from different individuals218

with ages ranging from 0 to +90 years old. I computed219

log-transformed ChIP-seq signal magnitudes for each220

primary cell sample from ChIP-seq data of different221

position-specific (in bp relative to the TSS) histone H3222

modifications. Similarly, I log-transformed mRNA223

abundance values from RNA-seq assay data associated224

with each ChIP-seq assay for each primary cell sample.225

Using these tandem ChIP-seq and RNA-seq data,226

I quantified the non-epigenetic and epigenetic227

histone H3 crosstalk magnitudes (Eq. 1) for triads228

of variables {Xi, Xj , Xk}. These variables represented229

position-specific histone H3 modification levels,230

i.e., C(Xi, Xj , Xk|Y ) and CY (Xi, Xj , Xk, Y ) for231

the non-epigenetic and epigenetic histone crosstalk232

components, respectively, where Y represents mRNA233

abundance. Triads (as opposed to pairs or tetrads) were234

first analyzed because a triad constitutes the number235

of variables (i.e., position-specific histone modification236

levels) found to possess both significant predictive237

power and predictive synergy to resolve the statistical238

uncertainty about the mRNA abundance level associated239

with a given TSS (see details in Methods).240

The log-ratio (base 2) between the non-epigenetic and241

epigenetic histone H3 crosstalk magnitudes was thus242

computed as the dimensionless quantity243

log2

[
C(Xi, Xj , Xk|Y )

CY (Xi, Xj , Xk, Y )

]
. (2)

Importantly, total correlation C captures all possible244

associations in the set of variables {Xi, Xj , Xk} that may245

exist starting from the pairwise level.246

The log-ratio of non-epigenetic to epigenetic
histone H3 crosstalk magnitude is positively
correlated with cell donor age in normal cells

ChIP-seq data for five histone H3 modifications247

were used in all analyses: H3K4me1 (histone H3248

lysine 4 monomethylation), H3K9me3 (histone H3249

lysine 9 trimethylation), H3K27ac (histone H3250

lysine 27 acetylation), H3K27me3 (histone H3 lysine 27251

trimethylation), and H3K36me3 (histone H3 lysine 36252

trimethylation). The ChIP-seq signals for these253

modifications were computed for 30 200bp-long genomic254

bins across a 6,000bp-long TSS-adjacent region (see255

Fig. 1). Thus, a total of 150 variables Xi representing256

Cell donor age

lo
g 2

C
(
X 1

,X
2,

X 3
|Y

)

C
Y
(
X 1

,X
2,

X 3
,Y

)

0 10 20 30 40 50 60 70 80 90
–0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
r = 0.83

q-value = 1.86 ×10−2

Fig. 2. Positive correlation between the log-ratio of
non-epigenetic to epigenetic histone H3 crosstalk magnitude
and cell donor age for one triad of position-specific histone H3
modification levels in normal cells. In this triad X1 represents
H3K27ac (at –1000bp), X2 represents H3K36me3 (at +1000bp), and
X3 represents H3K4me1 (at +3200bp), which together comprise all
TSSs. Regardless of the specific triad, Y always represents the mRNA
abundance profile comprising all TSSs. Each data point in the figure
corresponds to a primary cell sample.

position-specific histone H3 modification levels—each257

variable with signals for 18,220 RefSeq TSSs—were used258

when analyzing each cell sample. A total of 18 normal259

cell samples and 17 cancer cell samples was included260

in the analysis. The Pearson correlation coefficient r261

between the log-ratio and the cell donor age was obtained262

for each of the
(

150
3

)
= 551,300 possible {Xi, Xj , Xk}263

triads. The 551,300 p-values (one-sided Student’s t-test)264

associated to these r values were then corrected for265

multiple testing (Benjamini-Yekutieli correction, see266

Methods), obtaining q-values.267

To determine whether the hypothesized positive268

correlation between the non-epigenetic/epigenetic269

histone H3 crosstalk log-ratio and cell donor age exists,270

and also to illustrate the concept of positive correlation in271

normal cells vs. no correlation cancer cells, I obtained all272

possible 551,300 correlation values for triads (one-sided273

Student’s t-test). To exemplify, the results for the triad274

{H3K27ac (at –1000bp), H3K36me3 (at +1000bp),275

H3K4me1 (at +3200bp)} are shown here, where the276

correlation was positive (r=0.83) and highly significant277

(q=1.86×10−2), as seen in Fig. 2, indicating that the278

hypothesized correlation holds for this triad.279

Altogether, the 551,300 correlation values had a mean280

value r̄=0.58, a median value r̃=0.67, and a standard281

deviation value σr=0.24 (see statistical distribution282

of r in Fig. 3). From these correlation values, only283

24,185 (i.e., ∼4%) were nonpositive and none of them284

was statistically significant (i.e., where r≤0, q>0.05).285

In contrast, it was found that for 315,378 triads286
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Fig. 3. Statistical distribution of the correlation coefficient
(r) between the log-ratio of non-epigenetic to epigenetic
histone H3 crosstalk magnitude (triad-wise) and cell donor age.
Histograms represent r values for all 551,300 possible triads in normal
cells (blue), normal cells excluding the neonate data point (yellow),
and cancer cells (orange).

(i.e., ∼57%) the correlation values were positive and287

statistically significant (i.e., r>0 and q≤0.05).288

Importantly, I also found that the hypothesized positive289

correlation between the log-ratio of non-epigenetic to290

epigenetic histone H3 crosstalk and cell donor age verified291

for triads of position-specific histone H3 modifications292

in normal cells loses its strength for tetrads (r̄=0.34;293

r̃=0.35; σr=0.27). It is also no longer greater than294

zero for pairs (r̄=−0.30; r̃=−0.38; σr=0.40) (Fig. 4).295

These results for tetrads and pairs indicate that the296

predicted positive correlation only holds for triads297

(and it was predicted in the second proof-of-principle298

hypothesis not to hold in cancer cells). Such specificity299

was expected because if senescence can be explained300

in terms of an imbalance of information-conveying301

constraints that are level-of-scale specific like other302

thermodynamic constraints, the imbalance itself also must303

be level-of-scale specific.304

The log-ratio of non-epigenetic to epigenetic
histone H3 crosstalk magnitude does not correlate

with cell donor age in cancer cells

When I analyzed the log-ratio of non-epigenetic to305

epigenetic histone H3 crosstalk magnitude and cell306

donor age for cancer cells using the same exemplary307

triad {H3K27ac (at –1000bp), H3K36me3 (at +1000bp),308

H3K4me1 (at +3200bp)}, I found that no significant309

correlation exists between those two variables (r=−0.2;310

q=1; see Fig. 5), as hypothesized.311

For the 551,300 correlation values corresponding to312

all triads of position-specific histone H3 modifications313

in cancer cells, the mean and median were close to314

zero (r̄=0.05; r̃=0.07), and the standard deviation was315

r
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Fig. 4. Statistical distribution of the correlation coefficient
(r) between the log-ratio of non-epigenetic to epigenetic
histone H3 crosstalk magnitude and cell donor age for triads,
tetrads, and pairs of position-specific histone H3 modification
levels. Histograms represent r values for all 551,300 possible triads
(blue), 50,000 random tetrads (yellow), and all 11,175 possible
pairs (orange).

Cell donor age
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–0.05

0.00

0.05

0.10
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)
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)

Fig. 5. No significant correlation between the log-ratio of
non-epigenetic to epigenetic histone H3 crosstalk magnitude
and cell donor age for one triad of position-specific histone H3
modification levels in cancer cells. This is the same triad of
Fig. 2, i.e., X1 representing H3K27ac (at –1000bp), X2 representing
H3K36me3 (at +1000bp), and X3 representing H3K4me1 (at +3200bp).

σr=0.15 (see statistical distribution of r in Fig. 3).316

All associated p-values (two-sided Student’s t-test) were317

corrected and the resulting q-values were all equal to318

1 and hence non-significant. Similar results—i.e., all319

q-values equal to 1—were obtained for all 11,175 pairs of320

position-specific histone H3 modification levels (r̄=−0.04;321

r̃=−0.05; σr=0.23) and for all 50,000 random tetrads322

(r̄=0.08; r̃=0.11; σr=0.15). These results suggest that,323

as predicted, no significant correlation exists between324

the log-ratio of non-epigenetic to epigenetic histone H3325

crosstalk magnitude and cell donor age in cancer cells.326
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I also evaluated whether the stark difference of the327

correlation values between normal—i.e., r markedly328

positive—and cancer cells—i.e., r close to zero—was only329

attributable to the data point (for normal cell samples)330

that corresponds to a neonate, with coordinates (0, 0.01)331

in Fig. 2. In other words, whether the neonate data point332

was simply a statistical outlier that created an otherwise333

nonexistent difference between normal and cancer cells in334

the analysis.335

For this purpose, I recomputed all 551,300 correlation336

values corresponding to normal cells, excluding the337

neonate data point. The mean, median, and standard338

deviation values obtained were r̄=0.38, r̃=0.44, and339

σr=0.19, respectively (see distribution of r in comparison340

with that for cancer cells in Fig. 3). This difference341

between r values for normal cells (neonate data point342

excluded) and cancer cells was further tested and shown to343

be highly significant (Mann-Whitney U test: U=2.7×1011,344

p<2.2×10−16). These findings suggest that the neonate345

data point is not a statistical outlier among normal346

cell samples let alone explains the difference between347

normal and cancer cells in terms of the correlation348

values obtained.349

The total information capacity of triad-wise
histone H3 crosstalk does not correlate

with cell donor age

Finally, I assessed whether the total information350

capacity (represented by C(X1, . . . , Xn) in Eq. 1 and351

measured in bits) of overall histone H3 crosstalk352

(triad-wise) is significantly correlated with age, in353

particular, whether it is positively correlated. This354

potential correlation is important, because if total355

information capacity increases with cell donor age,356

an age-correlated decrease of the proportion available357

for epigenetic content would not be necessarily a358

problem. That is, a proportionally smaller and smaller359

information capacity for epigenetic content within histone360

crosstalk would not generate an information content361

imbalance—hypothesized in the Introduction—as long362

as a growing total capacity provides enough room for363

epigenetic content in absolute terms.364

To test this possibility, the correlation value r between365

cell donor age and total information capacity (in bits) of366

TSS-adjacent histone H3 crosstalk, computed as367

CY (Xi, Xj , Xk, Y ) + C(Xi, Xj , Xk|Y ), (3)

was obtained for all 551,300 triads of position-specific368

histone H3 modifications for normal cells.369

The analysis revealed that the correlation coefficients r370

have mean, median, and standard deviation values r̄=0.21,371

r̃=0.21, and σr=0.24, respectively, and that all associated372

q-values were equal to 1 and thus non-significant.373

For cancer cells, all correlation values were also374

non-significant (q=1). Their mean, median, and standard375

deviation values were r̄=0.01, r̃=0.04, and σr=0.18,376

respectively. These results suggest that senescence377

would indeed be an information capacity “reassignment”378

problem—creating in turn an information-content379

imbalance, as hypothesized—rather than a “total capacity380

contraction” problem.381

Taken together, the statistical strength of all the results382

obtained—notwithstanding the heterogeneous origin of383

the primary cell samples analyzed given the different384

tissues from different individuals—provides proof of385

concept and underpins a strong falsifiable prediction for386

a theory of senescence presented in the Discussion.387

DISCUSSION

The successful testing of the two proof-of-concept388

hypotheses in the present work provides empirical grounds389

for the following falsifiable theory of senescence as a390

byproduct of developmental dynamics: Given that the391

“reassignment” process for information capacity in histone392

crosstalk—i.e., a progressive gain of capacity for hologenic393

information content at the expense of that for epigenetic394

content—continues without interruption throughout395

the multicellular individual’s lifespan, a growing and396

ultimately lethal information content imbalance is created397

in the cells’ nuclei. Importantly, this “reassignment”398

process is underpinned by constraints on the extracellular399

diffusion of F→N molecules, and the constraints are400

embodied only at the multicellular-individual level.401

That is, in histone crosstalk there is a time-correlated402

loss of capacity for epigenetic information (i.e., less and403

less epigenetic constraints on histone crosstalk), which404

causes a global and progressive impairment of biological405

functions at the multicellular-individual level, eventually406

causing the death of the individual.407

The nature of the epigenetic constraints on histone408

crosstalk strongly implicates this time-correlated loss409

of capacity for epigenetic information content (and410

concurrent gain of that for hologenic content) as the411

fundamental cause of senescence. Epigenetic constraints412

are explicitly related to transcriptional/gene expression413

changes and represented by the CY (X1, . . . , Xn, Y )414

summand in Eq. 1. Because they depend on the415

interactions between the histone-modified nucleosomes416

and the DNA wrapped around them—allowing or417

preventing transcription—the epigenetic information418

content they embody allows precise mRNA (and,419

ultimately, gene expression) levels from histone420

modification patterns.421

This age-correlated hologenic/epigenetic information422

imbalance in histone crosstalk can also be understood423

in terms of an imbalance between the accuracy and424

precision of transcription in the cells with respect to425

the needs of the multicellular individual. That is, more426

accuracy (i.e., closeness of the mean mRNA level to the427

mean level functional for the multicellular individual) is428

reached with age at the expense of precision (i.e., closeness429

of the resulting mRNA levels from the same pattern430
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of histone modifications). This trade-off is unavoidable431

because (i) the relative growth of C(X1, . . . , Xn|Y )432

implies an increasing constraint on (i.e., regulation433

of) histone modification patterns with respect to the434

multicellular individual [17], thus making transcription435

more accurate and (ii) the concurrent relative decrease of436

CY (X1, . . . , Xn, Y ) means histone modification patterns437

become worse and worse predictors of mRNA levels, in438

turn making transcription less and less precise to the439

point of dysfunctionality with respect to the multicellular440

individual (see schematic in Fig. 6a).441

Thus, we can characterize senescence under this theory442

as a global transcriptional over-regulation with respect to443

the multicellular individual’s needs—as opposed to cancer,444

where the dysfunctional effect is typically characterized445

in terms of the dysregulation of transcription and gene446

expression [28,29].447

The following general prediction applies to the448

falsifiability of the theory of senescence: Within genomic449

regions adjacent to TSSs in primary normal cells from450

any given tissue in any individuated multicellular species,451

a significant positive correlation will be observed between452

the log-ratio of non-epigenetic to epigenetic histone453

crosstalk magnitude and the age of the individual454

from whom the cells were obtained. The specific level455

of crosstalk—i.e., number of position-specific histone456

modifications involved—at which this correlation exists457

may vary among species. It is predicted to be the level that458

possesses both significant predictive power and predictive459

synergy (see Methods) on mRNA levels. Moreover,460

since hologenic information content is described as461

emerging locally and independently in each developmental462

process [17], the statistical strength of the predicted463

positive correlation will be further increased—and464

underpinned by a monotonically increasing function—if465

all primary cell samples are obtained from the same tissue466

of the same individual throughout its lifespan.467

The notable exceptions to be made for the prediction468

above are a few species able to undergo reverse469

developmental processes from adult to juvenile stages.470

One such species is the jellyfish Turritopsis nutricula [30],471

which is predicted to display an analogous negative472

correlation in the processes, i.e., “reassignment” in473

reverse. Another exception for the prediction are species474

displaying extremely slow or potentially negligible475

senescence processes [31]. Examples of these are the476

bristlecone pine Pinus longaeva [32], the freshwater477

polyp Hydra vulgaris [33], and the naked mole-rat478

Heterocephalus glaber [34], which, after adulthood, are479

predicted to display a significant but very weak positive480

correlation (in cases where senescence is extremely slow),481

or an hologenic/epigenetic log-ratio invariant with age482

(i.e., no correlation in cases where senescence is truly483

negligible; Fig. 6b).484

Senescence is widely regarded as an evolutionary485

consequence of the relaxation of selection on traits that486

maintain/repair the multicellular individual’s functions in487

later life, because later life would have been rarely realized488

in the wild with the hazards it imposes [35]. However,489

under the falsifiable theory presented in this paper, this490

consensus is fundamentally incorrect. Indeed, senescence491

at the multicellular-individual level is, I suggest, not492

the result of relaxed selection but instead an intrinsic493

developmental byproduct that would have been already494

observable theoretically in the emergence of the very495

first individuated multicellular organisms as described496

by the hologenic theory [17]. In other words, had the497

first individuated multicellular organisms been free from498

any extrinsic hazard in the wild, they would have begun499

to senesce significantly after reaching a mature form in500

their development, as opposed to displaying extremely501

slow or negligible senescence as can be inferred from the502

relaxed-selection hypothesis.503

If correct, the evolutionary account of senescence504

suggested here underscores the need for modern505

evolutionary theory to incorporate the effects of the506

few yet crucial events where unprecedented forms of507

biological individuality have emerged throughout the508

history of life on Earth. One of these events—as discussed509

here—is the emergence of the individuated multicellular510

organism [17] with senescence as its developmental511

byproduct, and its influence on the population renewal512

process. Other emergence events where new forms of513

individuality can arise with significant evolutionary514

consequences include the origin of life—explicitly excluded515

by Darwin from the scope of his original theory [36]—with516

its unprecedented self-regulating and self-reproducing517

dynamics that first enabled natural selection [44], and518

the emergence of the mind [37], which—through synthetic519

biology—could at some point elicit the appearance of520

new species in the evolutionary process without any521

involvement of natural selection. These latter two events,522

and potentially others, remain to be fully elucidated along523

with their evolutionary consequences.524

Any theory of senescence is bound to address the525

question of whether aging at the multicellular-individual526

level can be dynamically stopped. The answer suggested527

here is that achieving a dynamical arrest of senescence528

is not a fundamental impossibility but it may well529

be a technical impossibility because of a therapeutic530

safety issue. From a fundamental point of view, methods531

could be developed to, for example, artificially increase532

the dynamical range of nucleosome-DNA interactions533

(thus increasing the capacity for epigenetic information534

content in histone crosstalk at the expense of that for535

hologenic content).536

Yet, the hologenic theory also predicts that a537

significant loss of hologenic content is a necessary538

condition for the onset of cancer. If this is correct,539

a potentially unsurmountable safety problem arises:540

also under hologenic theory, the in vivo balance541

between hologenic and epigenetic information content542

is predictably “fine-tuned” as it is individual-specific,543

cell-type-specific, and also confined to small functional544

ranges. Thus, there could be an inherent high risk of545

greatly increasing cancer incidence with the slightest546
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Fig. 6. Schematic of the imbalance between information capacity for hologenic content and epigenetic content in TSS-adjacent
histone modification crosstalk as the cause of senescence. (a) The age-correlated increase in C(X1, . . . , Xn|Y ) and concurrent decrease
in CY (X1, . . . , Xn, Y ) over-regulates the transcriptional response with respect to the multicellular individual’s needs, i.e., the response becomes
more and more accurate (blue) but less and less precise (orange) to the point of dysfunctionality. This unavoidable trade-off is explained by histone
modification patterns becoming more constrained by regulation at the multicellular-individual level while at the same time becoming worse
predictors of mRNA levels. The specific critical level of histone modification crosstalk (i.e., the value of n in {X1, . . . , Xn}) at which this phenomenon
occurs is n=3 (i.e., triads of position-specific histone modifications) in humans, but may vary for other species. (b) The log-ratio of non-epigenetic
to epigenetic histone crosstalk magnitude increases during development as the embryo grows (black f(t) in darker blue area). After the organism
reaches its mature form (yellow area), the log-ratio continues to increase (orange f(t))—with a few notable exceptions (blue and magenta f(t)).
This continuous increase in turn creates an increasing dysfunctional imbalance of information contents that translates into senescence and, eventually,
into death.

extrinsic attempt to correct for the hologenic/epigenetic547

content imbalance. This problem resides in that hologenic548

constraints, whose growth in magnitude has senescence549

as a byproduct, are the very constraints preventing an550

otherwise likely onset of cancer [17].551

Based on a mathematical model of intercellular552

competition, Nelson and Masel have argued that stopping553

senescence, even if possible, will always elicit the onset of554

cancer and that senescence is ultimately inevitable [38].555

Nevertheless, the existence of individuated multicellular556

species such as Turritopsis nutricula demonstrates that557

development can be reversed at least into juvenile558

developmental stages [30] and that of the naked559

mole-rat suggests that senescence is reversible in some560

cases and negligible or close to negligible in others,561

however exceptional.562

The delicate balance between hologenic and epigenetic563

information described here may shed light on the564

well-known positive correlation between cancer incidence565

and age [39]: if the senescent multicellular individual566

attempts to correct its growing hologenic/epigenetic567

content imbalance too strongly, it may elicit the onset568

of cancer. Thus, age-related cancer would be the result569

of a strong enough “pushback” from the multicellular570

individual against its own senescence. Although the571

specific dynamics that would underpin the “pushback”572

are beyond the scope of this paper, this hypothesis is573

indeed falsifiable by means of the following secondary574

prediction: the observed log-ratio of non-epigenetic to575

epigenetic histone crosstalk magnitude in the normal576

(i.e., non-cancerous) cells closest to an age-related stage I577

malignant tumor will be significantly lower than said578

log-ratio observed in the other (i.e., tumor-nonadjacent)579

normal cells of the same tissue. (Note: The falsification of580

this secondary prediction does not imply the falsification581

of the theory as a whole.)582

In turn, the “pushback”-against-senescence hypothesis583

for age-related cancer has, if correct, an implication we584

should not overlook. Namely, stopping senescence and585

eliminating the incidence of age-related cancer should be586

one and the same technical challenge. In this respect,587

it is worth noting that in the naked mole-rat both588

senescence [34] and cancer incidence [40,41] have been589

described as negligible or close to negligible.590

Rozhok and DeGregori have recently highlighted591

the explanatory limitations [42] of the Armitage-Doll592

multistage model of carcinogenesis, which regards the593

accumulation of genetic mutations as the cause of594
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age-related cancer [43]. They further argued that595

age-related cancer should rather be understood as a596

function of senescence-related processes [42]. However,597

their description of age-related cancer is based on598

Darwinian processes and thus differ from the account599

suggested here, which can be understood within the600

concept of teleodynamics [37,44]—a framework of601

biological individuality based on the emergence of intrinsic602

higher-order constraints, such as that described in the603

hologenic theory [17].604

Apart from the proof of concept presented here, if the605

main prediction of this paper resists falsification attempts606

consistently, further research will be needed to elucidate607

the specific molecular dynamics embodying hologenic and608

epigenetic constraints within histone crosstalk completely.609

Such insights will be necessary to decide whether the610

hologenic/epigenetic information content imbalance can611

be corrected without compromising the multicellular612

individual’s health or survival.613

METHODS

Data collection

The genomic coordinates and associated transcript614

lengths of all annotated RefSeq mRNA TSSs for the hg19615

(Homo sapiens) assembly were downloaded from the616

UCSC (University of California, Santa Cruz) database [45].617

All ChIP-seq and RNA-seq data downloaded, processed,618

and analyzed in this work were generated by the619

Canadian Epigenetics, Epigenomics, Environment and620

Health Research Consortium (CEEHRC) initiative621

funded by the Canadian Institutes of Health622

Research (CIHR), Genome BC, and Genome Quebec.623

CEEHRC protocols and standards can be found at624

http://www.epigenomes.ca/protocols-and-standards,625

and specific details on ChIP-seq antibody validation626

can be found on this link. Further information627

about the CEEHRC and the participating628

investigators and institutions can be found at629

http://www.cihr-irsc.gc.ca/e/43734.html. For a630

full list of source data files with their respective URLs631

for downloading, see Supplementary Information.632

Cell sample data sets in the CEEHRC database were633

selected based on the following criteria: (i) only data634

sets with associated age were included and (ii) among635

these data sets, the group (for both normal and cancer636

cells) that maximized the number of specific histone H3637

modifications present in all data sets was chosen.638

ChIP-seq datafile processing

The original ChIP-seq binary datafile format was639

bigWig. For mapping its ChIP-seq signal into the hg19640

assembly, each datafile was processed with standard641

bioinformatics tools [46–48] in the following pipeline:642

bigWigToWig → wig2bed --zero-indexed →643

sort -k1,1 -k2,2n → bedtools map -o median644

-null 0 -a hg19 all tss.bed/hg19 all tss control.bed
645

to generate an associated BED (Browser Extensible Data)646

file. (Note: The hg19 all tss.bed file is a 200bp-per-bin647

BED reference file with no score values to perform648

the final ChIP-seq histone modification data mapping649

onto the 6,000bp-long TSS-adjacent genomic regions.650

The hg19 all control.bed file is an analogous BED651

reference file for mapping the ChIP-seq input data onto652

200-bp, 1-kbp, 5-kbp, and 10-kbp genomic windows,653

see ChIP-seq read profiles and normalization.)654

ChIP-seq read profiles and normalization

To quantify and represent ChIP-seq read signal655

profiles for the histone H3 modifications, data were656

processed with the same method used in the EFilter657

multivariate algorithm [23] to predict mRNA levels with658

high accuracy (R∼0.9). Steps in this method comprise659

(i) dividing the genomic region from 2 kbp upstream660

to 4 kbp downstream of each TSS into 30 200-bp-long661

bins, in each of which ChIP-seq reads were later counted;662

(ii) dividing the read count signal for each bin by its663

corresponding control (ChIP-seq input) read density to664

minimize artifactual peaks; (iii) estimating the control665

read density within a 1-kbp window centered on each bin,666

if the 1-kbp window contained at least 20 reads; otherwise,667

a 5-kbp window, or else a 10-kbp window was used if the668

control reads were less than 20. When the 10-kbp length669

was insufficient, a pseudo-count value of 20 reads per 10670

kbp was set as the control read density. This implies that671

the denominator (i.e., control read density) is at least 0.4672

reads per bin.673

RNA-seq datafile processing

For each strand in the DNA, original datafiles contained674

mRNA abundances in RPKM (reads per kilobase of675

transcript per million mapped reads) in bigWig format.676

These datafiles were thus processed analogously to the677

ChIP-seq datafiles, i.e., using the pipeline
678

bigWigToWig → wig2bed --zero-indexed →679

sort -k1,1 -k2,2n → bedtools map -o median680

-null 0 -a refseq pos.bed/refseq neg.bed
681

to obtain associated BED files. (Note: The682

refseq pos.bed and refseq neg.bed files are BED683

reference files for each strand, with no score values, to684

perform the final RPKM calculation for each RefSeq685

mRNA in the hg19 assembly.)686

When two or more mRNAs shared the same TSS687

(i.e., transcription start site with same genomic position688

and strand) the mean of the respective RPKM values was689

computed and associated with the corresponding TSS.690
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ChIP-seq/RNA-seq signal data tables

Using the RPKM values processed in this work, a691

subset TSSdef of all RefSeq mRNA TSSs displaying692

measured abundance (i.e., RPKM > 0) in all normal693

and cancer samples was determined. The number of694

TSSs in this subset TSSdef was 18,220, indicating that695

∼70% of the 26,048 RefSeq mRNA TSSs annotated in696

the hg19 assembly had an associated mRNA abundance697

greater than zero in all (i.e., both normal and cancer)698

samples. The obtained TSSdef subset thus provided the699

data analysis with a common basis for all samples that700

comprises most protein-coding genes annotated in the701

human genome.702

For each sample data entry, 30 genomic bins were703

defined and denoted by the distance (bp) between their704

5′-end and their respective TSSdef genomic coordinate:705

“-2000”, “-1800”, “-1600”, “-1400”, “-1200”, “-1000”,706

“-800”, “-600”, “-400”, “-200”, “0” (TSSdef or ‘+1’),707

“200”, “400”, “600”, “800”, “1000”, “1200”, “1400”,708

“1600”, “1800”, “2000”, “2200”, “2400”, “2600”, “2800”,709

“3000”, “3200”, “3400”, “3600”, and “3800”. Then, for710

each sample data entry, the ChIP-seq read signal was711

computed for all bins and for all histone modifications712

(30 bins×5 modifications=150 signal values) in all TSSdef713

genomic regions. Data input tables—comprising the714

histone H3 modifications H3K4me1, H3K9me3, H3K27ac,715

H3K27me3, and H3K36me3—were thus generated for716

each sample entry as exemplified next:717

#TSSdef


H3K4me1 -2000 . . . H3K36me3 -2000 · · · H3K4me1 3800 . . . H3K36me3 3800 RPKM

4.68 . . . 7.94 · · · 1.32 . . . 12.15 35.63
...

...
...

...
...

2.13 . . . 4.97 · · · 6.33 . . . 3.06 17.44

The tables were then written to tab-delimited datafiles,718

which were subsequently classified into two groups: normal719

and cancer cells (see Table 1).720

group datafiles

normal
(n = 18)

CEMT0032.nm.dat CEMT0033.nm.dat
CEMT0034.nm.dat CEMT0040.nm.dat
CEMT0042.nm.dat CEMT0044.nm.dat
CEMT0050.nm.dat CEMT0051.nm.dat
CEMT0052.nm.dat CEMT0053.nm.dat
CEMT0054.nm.dat CEMT0055.nm.dat
CEMT0056.nm.dat CEMT0057.nm.dat
CEMT0058.nm.dat CEMT0059.nm.dat
CEMT0060.nm.dat CEMT0061.nm.dat

cancer
(n = 17)

CEMT0004.nm.dat CEMT0005.nm.dat
CEMT0006.nm.dat CEMT0019.nm.dat
CEMT0021.nm.dat CEMT0025.nm.dat
CEMT0026.nm.dat CEMT0027.nm.dat
CEMT0028.nm.dat CEMT0029.nm.dat
CEMT0030.nm.dat CEMT0047.nm.dat
CEMT0063.nm.dat CEMT0064.nm.dat
CEMT0065.nm.dat CEMT0066.nm.dat
CEMT0067.nm.dat

Table 1. Datafiles generated in this work containing
normalized ChIP-seq signal values and RPKM values. The ‘nm’
suffix in the filename refers to the ‘NM’ RefSeq label for messenger
RNAs, as opposed to non-coding RNAs.

Shannon measures of statistical uncertainty
and statistical association

Shannon measures of statistical uncertainty and721

statistical association were used in this work in order to722

quantify histone H3 crosstalk at TSSs and its relationship723

with mRNA levels.724

Statistical uncertainty

C.E. Shannon’s seminal work, among other things,725

introduced the notion of—and a measure for—the726

uncertainty about discrete random variables [49]. For a727

discrete random variable X with probability mass function728

P (X) its uncertainty (also known as Shannon entropy) is729

defined as730

H(X) := −
∑
x∈X

P (x) logb[P (x)], (4)

where P (x) is the probability of X=x and b is the731

logarithm base. When b=2 (the base used in this work),732

the unit for this measure is the bit. H(X) can also733

be interpreted as the amount of information necessary734

to resolve the uncertainty about the outcome of X.735

Shannon uncertainty was the measure used to estimate736

the uncertainty about the mRNA abundance level to be737

resolved in normal cells.738

H(X) is typically called marginal uncertainty because739

it involves only one random variable. In a multivariate740

scenario, the measure H(X1, . . . , Xn) is called the joint741

uncertainty of the set of discrete random variables742

{X1, . . . , Xn}, and it is analogously defined as743

H(X1, . . . , Xn) := −∑
x∈X1

· · · ∑
x∈Xn

P (x1, . . . , xn) logb[P (x1, . . . , xn)].

(5)
Another measure important to this work is the conditional744

uncertainty about a discrete random variable Y , with745

probability mass function P (Y ), given that the value746

of another discrete random variable X is known.747

This conditional uncertainty H(Y |X) can be expressed748

as749

H(Y |X) = −
∑
x∈X

∑
y∈Y

P (x, y) logb

[
P (x)

P (x, y)

]
, (6)

where P (x, y) is the joint probability of X=x and Y=y.750

Importantly, any measure of Shannon uncertainty (or any751

other derived Shannon measure) that is conditional on a752

random variable X can also be understood as said measure753

being explicitly unrelated to, or statistically independent754

from, the variable X.755
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Statistical association

A classic Shannon measure of statistical association of756

any two discrete random variables X and Y is that of757

mutual information I, defined as758

I(X;Y ) := −
∑
x∈X

∑
y∈Y

P (x, y) logb

[
P (x, y)

P (x)P (y)

]
(7)

= H(X) +H(Y )−H(X,Y ) (8)

= H(Y )−H(Y |X). (9)

Note that if and only if X and Y are statistically759

independent then I(X;Y )=0, H(X,Y )=H(X)+H(Y ),760

and H(Y |X)=H(Y ). To analyze the magnitude of761

histone H3 crosstalk at TSSs, the two best known762

multivariate generalizations of mutual information were763

used in this work. The first is interaction information [50]764

or co-information [51], also symbolized by I, which is765

defined analogously to Eq. 8 for a set V of n discrete766

random variables as767

I(V ) :=
∑
U⊆V

(−1)|U |+1H(U), (10)

where |U | is the cardinality (in this case, the number768

of random variables) of the subset U . In the case of769

interaction information I, Shannon uncertainty H is thus770

summed over all subsets of V (the uncertainty of the771

empty subset is H(∅) = 0). Importantly, the interaction772

information of the random variables {X1, . . . , Xn} can be773

decomposed with respect to another random variable Y774

as follows:775

I(X1; . . . ;Xn) = I(X1; . . . ;Xn;Y ) + I(X1; . . . ;Xn|Y ).
(11)

Interaction information I(X1; . . . ;Xn) captures the776

statistical association of all variables {X1, . . . , Xn} taken777

at once, i.e., excluding all lower-order associations, and it778

can also take negative values in some cases. Interaction779

information was used in this work as a means to compute780

total correlation values.781

To specifically quantify the magnitude of histone H3782

crosstalk, the second multivariate generalization of mutual783

information used in this work was total correlation [24]784

(symbolized by C) or multiinformation [25], which is785

defined as786

C(X1, . . . , Xn) :=

[
n∑
i=1

H(Xi)

]
−H(X1, . . . , Xn), (12)

i.e., as the sum of the marginal uncertainties of the random787

variables {X1, . . . , Xn} minus their joint uncertainty.788

Importantly, and unlike interaction information I, total789

correlation C captures all possible statistical associations790

including lower-order associations or, equivalently, all791

possible associations between any two or more random792

variables in the set {X1, . . . , Xn}. This is because the793

definition of interaction information I in Eq. 10 allows794

total correlation C to be rewritten as a sum of quantities I795

for all possible combinations of variables in {X1, . . . , Xn}:796

C(X1, . . . , Xn) =
∑
i,j

I(Xi;Xj) +
∑
i,j,k

I(Xi;Xj ;Xk) + . . .+ I(X1; . . . ;Xn).

(13)
This expression for total correlation C as a sum of797

interaction information quantities I along with the sum798

decomposition of I in Eq. 11 allows C to be decomposed799

also as a sum:800

C(X1, . . . , Xn) = CY (X1, . . . , Xn, Y )+C(X1, . . . , Xn|Y ),
(14)

where CY (X1, . . . , Xn, Y ) is the sum (analogous to that801

of Eq. 13) of all interaction information quantities I but802

now including the random variable Y in each combination803

of variables in {X1, . . . , Xn}, i.e.,804

CY (X1, . . . , Xn, Y ) =
∑
i,j

I(Xi;Xj ;Y ) +
∑
i,j,k

I(Xi;Xj ;Xk;Y ) + . . .+ I(X1; . . . ;Xn;Y ),

(15)
and where C(X1, . . . , Xn|Y ) is the sum of all conditional805

interaction information quantities I given Y for each806

combination of variables in {X1, . . . , Xn}, i.e.,807

C(X1, . . . , Xn|Y ) =
∑
i,j

I(Xi;Xj |Y ) +
∑
i,j,k

I(Xi;Xj ;Xk|Y ) + . . .+ I(X1; . . . ;Xn|Y ).

(16)
For this work’s purposes, total correlation C was808

chosen as the measure of statistical association to809

assess TSS-adjacent histone crosstalk because (i) C is810

non-negative and thus easier to interpret conceptually,811

(ii) C is equal to zero if and only if all random variables it812

comprises are statistically independent, (iii) C captures813

all possible associations up to a given number of variables814

(in this work, position-specific histone modification levels)815

and, (iv) C can be decomposed, as shown in Eq. 14,816

as a sum of two C quantities: one explicitly related to817

a certain variable Y and the other explicitly unrelated818

to Y . Property (iv) was useful to decompose the overall819

histone crosstalk as a sum of an epigenetic and other820

non-epigenetic component (see Introduction).821

An additional Shannon measure of statistical822

association was used to assess the predictive power823

of TSS-adjacent histone modification levels on mRNA824

abundance levels (such power has already been used825

to predict mRNA levels with high accuracy [23]).826

The uncertainty coefficient U [52] is defined as827

U(Y |X1, . . . , Xn) :=
H(Y )−H(Y |X1, . . . , Xn)

H(Y )
, (17)

i.e., U(Y |X1, . . . , Xn) is the relative decrease in828

uncertainty about Y when {X1, . . . , Xn} are known—or,829

equivalently, the fraction of bits in Y that can be predicted830

by {X1, . . . , Xn}—and it can take values from 0 to 1.831

U(Y |X1, . . . , Xn)=0 implies the set {X1, . . . , Xn} has832

no predictive power on Y , whereas U(Y |X1, . . . , Xn)=1833

implies {X1, . . . , Xn} can predict Y completely.834
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Levels of possible statistical associations
when assessing histone crosstalk magnitudes

An important aspect of quantifying the epigenetic835

and non-epigenetic histone crosstalk components is the836

specific range of possible statistical associations. In other837

words, the choice of the number n of TSS-adjacent,838

position-specific histone H3 modification levels when839

computing CY (X1, . . . , Xn, Y ) and C(X1, . . . , Xn|Y ).840

To this end, the minimal n able to predict mRNA841

levels significantly and non-redundantly—which842

corresponds to the level of histone crosstalk able843

to convey a non-neglectable amount of epigenetic844

information content—was first determined. This value is845

straightforward to assess using the uncertainty coefficient846

U(Y |X1, . . . , Xn), where Y represents mRNA levels.847

In effect, U(Y |Xi, Xj) (i.e., where n=2) quantifies848

the predictive power of pairs of position-specific849

histone modification levels, U(Y |Xi, Xj , Xk) quantifies850

the predictive power of triads, etc. U(Y |X1, . . . , Xn)851

values were thus computed for singletons, pairs, triads,852

and tetrads. Singeltons were calculated for descriptive853

purposes only, because histone crosstalk is not measurable854

for them. On average, a triad (i.e., when n=3) of855

position-specific histone H3 modification levels was found856

to have (i) significant predictive power on mRNA levels857

(U(Y |Xi, Xj , Xk)=0.63) and, importantly, (ii) at least 2.3858

times more predictive power than all possible singletons859

(3) and pairs (3) that exist within a triad taken together,860

i.e.,861

U(Y |Xi, Xj , Xk)∑
i

U(Y |Xi) +
∑
i,j

U(Y |Xi, Xj)
≥ 2.3, (18)

a phenomenon known as synergy of a set of862

predictor variables [53] (see Table 2).863

level set U(Y |V ) [mean] κ U(Y |V ) measured in

singleton V ={Xi} 0.02 154 all 150 singletons

pair V ={Xi, Xj} 0.07 441 all 11,175 pairs

triad V ={Xi, Xj , Xk} 0.63 325 all 551,300 triads

tetrad V ={Xi, Xj , Xk, Xl} 0.95 379 50,000 random tetrads

Table 2. Predictive power (quantified as U(Y |V )∈ [0, 1])
of different sets V ={X1, . . . ,Xn} of TSS-adjacent,
position-specific histone H3 modification levels on mRNA
levels (represented by Y ) in normal cells. For each instance of the
set V , U(Y |V ) was averaged over the 18 normal cell samples analyzed.
The distribution of U(Y |V ) in the interval [0, 1] for each family V
of sets (singletons, pairs, triads, and tetrads) was parameterized
and described here in terms of the mean x̄ and the concentration
parameter κ, which are derived from the respective beta distribution

Beta(α, β), with κ=α̂+β̂ [54]. Point estimators α̂ and β̂ were

computed using the method of moments, i.e., α̂ = x̄2
(

1−x̄
σ2 − 1

x̄

)
and β̂ = α̂

(
1
x̄ − 1

)
, where σ2 is the variance.

Pairs (i.e., when n=2) were also found to possess864

predictive synergy, but this synergy is smaller than that865

found for triads

(
1.75 ≤ U(Y |Xi,Xj)∑

i

U(Y |Xi) < 2.3

)
. The average866

predictive power of pairs on mRNA levels is also867

substantially lower (U(Y |Xi, Xj)=0.07). On the other868

hand, tetrads (i.e., when n=4) were found to have high869

predictive power (U(Y |Xi, Xj , Xk, Xl)=0.95) but they870

possess no synergy whatsoever and display instead what is871

called redundancy [53]. Based on previous work [23], high872

predictive power on mRNA levels and yet no synergy are873

thus expected to happen with a large enough n. From all874

possible singletons (4), pairs (6), and triads (4) that exist875

within a tetrad, the explanatory power on mRNA levels876

of a non-redundant set of only one triad and five pairs877

already exceeds the explanatory power of the tetrad.878

(Note: In previous work it has been argued that RPKM879

may not always be a suitable unit of mRNA abundance880

when studying differential gene expression. Specifically,881

it was shown that, if transcript size distribution882

varies significantly among the samples, RPKM might883

introduce significant biases [55]. To overcome this problem,884

an alternative abundance unit TPM (transcripts per885

million)—which is an invertible linear transformation of886

the RPKM value for each sample—was introduced [55].887

Nonetheless, this issue was not a problem for the888

present work because Shannon measures are invariant889

under any invertible transformation of the discrete890

random variables.)891

Theoretical methods

The elaboration of the main falsifiable prediction took892

into account two observations for human primary cells893

in this work. Namely, (i) the uniqueness of triads of894

position-specific histone modification levels in terms of895

significant predictive power and predictive synergy and896

(ii) the post hoc result that triads constitute precisely the897

level n at which the predicted correlation between the898

non-epigenetic/epigenetic histone H3 crosstalk log-ratio899

and cell donor age actually exists. In this way, the main900

prediction was formulated with explicit dependence on the901

level of scale: “For any given tissue in any individuated902

multicellular species a positive correlation between the903

non-epigenetic/epigenetic histone H3 crosstalk log-ratio904

and cell donor age will be observed at the level n of histone905

crosstalk that possesses both significant predictive power906

and predictive synergy on mRNA levels.”907

Statistical tests

The statistical significance of each Pearson correlation908

coefficient r obtained was assessed using the statistic t909

defined as910

t := r

√
n− 2

1− r2
, (19)

which is known to follow a Student’s t-distribution911

with n−2 degrees of freedom, and where n is the912

number of data pairs [56]. For the hypothesized913

positive correlation between the non-epigenetic/epigenetic914
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histone H3 crosstalk log-ratio and age, the statistical null915

hypothesis was tested against the alternative hypothesis916

that the correlation is greater than zero (i.e., one-sided917

Student’s t-test). For the hypothesized non-significant918

correlation between the overall histone H3 crosstalk919

magnitude and age, the statistical null hypothesis920

was tested against the alternative hypothesis that the921

correlation is greater or less than zero (i.e., two-sided922

Student’s t-test).923

On the other hand, the distribution of correlation924

coefficients (r) is known to be non-Gaussian [57], which925

can be easily appreciated in Fig. 3. For this reason, the926

statistical comparison of r for normal cells (neonate data927

point excluded) and cancer cells was performed using the928

non-parametric Mann-Whitney U test [58].929

Correction for multiple testing

The analysis of histone crosstalk involved930

5 histone H3 modifications × 30 genomic bins = 150931

TSS-adjacent, position-specific histone H3 modification932

levels. Thus, assessing the statistical significance of the933

correlation values involved a large number of tests of934

the null hypothesis (for triads, tetrads, and pairs) under935

general dependence. This dependence derives from the936

fact that different histone modification levels are known937

to be highly correlated (this is the phenomenon of histone938

crosstalk itself).939

The resampling-based procedure by Benjamini and940

Yekutieli [59] provides control of the false discovery rate941

(FDR) [60] under general dependence conditions. This was942

the method thus used in this work in order to correct for943

multiple testing.944

Code availability

Standard bioinformatics tools [46–48] and the Perl945

language were used to process the ChIP-seq and RNA-seq946

source data and to generate the *.nm.dat files displayed in947

Table 1. The R software [61] and its infotheo package [62]948

were used for the computation of Shannon measures of949

statistical uncertainty and statistical association from the950

*.nm.dat files. Marginal and joint Shannon uncertainties951

and all the other derived Shannon measures were952

computed using maximum likelihood (ML) estimation [63]953

and bias-corrected with the Miller-Madow method [64].954

All the R code and the *.nm.dat files necessary for955

a full reproduction of the results are available as956

Supplementary Information.957

Sample metadata

sample ID disease status cell donor age sex cell type/tissue

CEMT0032 normal 0 N/A hematopoietic (cord)

CEMT0033 normal 82 F colon

CEMT0034 normal 73 M colon

CEMT0040 normal 67 F thyroid

CEMT0042 normal 46 F thyroid

CEMT0044 normal 55 M thyroid

CEMT0050 normal 53 M colon

CEMT0051 normal 67 M colon

CEMT0052 normal 72 M colon

CEMT0053 normal 81 F colon

CEMT0054 normal 90+ F colon

CEMT0055 normal 90+ F colon

CEMT0056 normal 84 F colon

CEMT0057 normal 84 F colon

CEMT0058 normal 56 F colon

CEMT0059 normal 56 F colon

CEMT0060 normal 77 M colon

CEMT0061 normal 77 M colon

CEMT0004 cancer 74 M peripheral blood

CEMT0005 cancer 68 F peripheral blood

CEMT0006 cancer 60 M peripheral blood

CEMT0019 cancer 46 F brain

CEMT0021 cancer 35 M brain

CEMT0025 cancer 62 F peripheral blood

CEMT0026 cancer 79 M peripheral blood

CEMT0027 cancer 71 M peripheral blood

CEMT0028 cancer 79 F peripheral blood

CEMT0029 cancer 47 M colon

CEMT0030 cancer 56 F peripheral blood

CEMT0047 cancer 43 M brain

CEMT0063 cancer 81 F colon

CEMT0064 cancer 90+ F colon

CEMT0065 cancer 84 F colon

CEMT0066 cancer 56 F colon

CEMT0067 cancer 77 M colon

Table 3. Metadata for each primary cell sample analyzed.
Note: Age entries originally tabulated as 90+ were entered as 90 into
the computational analysis. Metadata source: CEEHRC.
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