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ABSTRACT 14 

Polymyxin B and E (colistin) have been pivotal in the treatment of extensively drug-resistant 15 

(XDR) Gram-negative bacterial infections, with increasing use over the past decade. 16 

Unfortunately, resistance to these antibiotics is rapidly emerging. The structurally-related 17 

octapeptin C4 (OctC4) has shown significant potency against XDR bacteria, including against 18 

polymyxin-resistant (Pmx-R) strains, but its mode of action remains undefined. We sought to 19 

compare and contrast the acquisition of XDR Klebsiella pneumoniae (ST258) resistance in vitro 20 

with all three lipopeptides to help elucidate the mode of action of the drugs and potential 21 

mechanisms of resistance evolution. Strikingly, 20 days of exposure to the polymyxins resulted in 22 

a dramatic (1000-fold) increase in the minimum inhibitory concentration (MIC) for the 23 

polymyxins, reflecting the evolution of resistance seen in clinical isolates, whereas for OctC4 only 24 

a 4-fold increase was witnessed. There was no cross-resistance observed between the polymyxin- 25 

and octapeptin-induced resistant strains. Sequencing revealed previously known gene alterations 26 

for polymyxin resistance, including crrB, mgrB, pmrB, phoPQ and yciM, and novel mutations in 27 

qseC. In contrast, mutations in mlaDF and pqiB, genes related to phospholipid transport, were 28 

found in octapeptin-resistant isolates. Mutation effects were validated via complementation assays. 29 

These genetic variations were reflected in phenotypic changes to lipid A. Pmx-R isolates increased 30 

4-amino-4-deoxy-arabinose fortification to phosphate groups of lipid A, whereas OctC4 induced 31 

strains harbored a higher abundance of hydroxymyristate and palmitoylate. The results reveal a 32 

differing mode of action compared to polymyxins which provides hope for future therapeutics to 33 

combat the increasingly threat of XDR bacteria. 34 

Keywords: Polymyxins, Octapeptin C4, Extensively drug-resistant, Klebsiella pneumoniae, Lipid 35 

A, Cross-resistance 36 
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INTRODUCTION 37 

Infections by extensively drug-resistant (XDR) bacteria are an increasing concern due to the lack 38 

of effective antibiotics, thereby resulting in high mortality (1, 2). Common therapeutic 39 

interventions include fosfomycin, tigecycline and polymyxins (2-4). However, the effectiveness 40 

of these therapies is short lived due to plasmid-encoded resistance (fosfomycin (4), polymyxin (5)) 41 

and rapid acquisition of resistance through mutation (fosfomycin (6), tigecycline (7) and 42 

polymyxin (8, 9)). New antibiotics with the capacity to ablate these XDR bacteria are urgently 43 

desired. 44 

Octapeptins are structurally similar to the polymyxins, with both lipopeptide classes consisting of 45 

a cyclic heptapeptide ring and linear tail capped with a fatty acid, containing multiple positively 46 

charged diaminobutyric acid (Dab) residues (10-12) (Fig. 1). Studies on the polymyxins have 47 

shown that these Dab residues are critical for interactions with the basal component of 48 

lipopolysaccharide (LPS), lipid A. The mode of action involves the initial binding to lipid A, 49 

displacement of magnesium (Mg2+) and calcium (Ca2+), permeabilization of the outer and inner 50 

membrane, leakage of cytoplasmic contents and subsequent cell death, however, the exact 51 

mechanism is yet to be discerned (13, 14). The phosphate groups on lipid A are modified during 52 

polymyxin resistance with 4-amino-4-deoxy-arabinose (Ara4N) and/ or phosphoethanolamine 53 

(pEtN) in order to stabilise the outer membrane. This reduces polymyxin binding by removing the 54 

negative phosphate that attracts the cationic Dab residues (15, 16). Constitutive up-regulation of 55 

this pathway is achieved through chromosomal variations in the two-component regulatory 56 

systems (TCS) crrAB, pmrAB, phoPQ and the negative regulator mgrB in Klebsiella pneumoniae 57 

(8, 9, 17). These modifications perturb the electrostatic interaction between lipid A and 58 

polymyxins to negate the infiltration of this antibiotic class. The structurally similar octapeptins 59 
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retain most of the key binding motifs, and might be expected to employ a similar mode of action. 60 

The most significant structural difference between the polymyxins and octapeptins is a truncated 61 

linear exocyclic peptide (1 residue instead of three) linked to a β-hydroxy-fatty acid (instead of an 62 

alkyl fatty acid) in the octapeptins (10-12). More minor variations include L-Dab to D-Dab and L-63 

Thr to L-Leu substitutions. Loss of the fatty acid tail component has been shown to attenuate 64 

activity in polymyxins (18). Despite their similarity, prior research has revealed octapeptins retain 65 

the ability to kill Pmx-R bacteria, inferring an alternative mode of action (10). In addition, some 66 

octapeptins have broad spectrum activity with potency against Gram-positive bacteria, fungi and 67 

protozoa (19, 20). 68 

We have recently reported the first synthesis of Octapeptin C4 (OctC4) (10) and Octapeptin A3 69 

(21), followed by detailed biological characterisation of OctC4 that demonstrates its potential as a 70 

new ‘last resort’ antibiotic to treat serious extensively drug-resistant Gram-negative infections. 71 

(22). In view of the limited understanding of the mechanism by which octapeptins target bacteria, 72 

we sort to investigate the differences driving development of OctC4 and polymyxin resistance at 73 

a genetic level. Two studies have previously investigated the acquisition of resistance towards 74 

octapeptins. One was performed using EM49 (a mixture of octapeptin classes A and B) which 75 

exhibited no increase in resistance after 10 passages for Pseudomonas aeruginosa, Escherichia 76 

coli, Staphylococcus aureus and Candida albicans (23). The other investigated lipid A 77 

modifications in P. aeruginosa isolates resistant to OctC4 obtained from a subculture surviving a 78 

single overnight treatment at 2 or 32 µg/ml.  79 

 80 

 81 

 82 
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The ST258 lineage of K. pneumoniae is endemic in numerous regions in the world and commonly 83 

involved in outbreaks (24-27). These isolates pose as a major threat due to frequently harboring 84 

carbapenem resistance, predominantly facilitated via blaKPC genes encoded on plasmids (25, 28). 85 

We have previously used whole genome sequencing to investigate the acquisition of resistance to 86 

polymyxin in an endemic lineage of K. pneumoniae, ST258, isolated from a Greek hospital (24). 87 

We selected one of these isolates which is susceptible to polymyxin and OctC4, but otherwise 88 

highly resistant (aac(6’)Ib, aac(6’)Ib-cr, aph(3’)-Ia, aph(3”)-Ib, aph(6)-Id, blaKPC-2, blaLEN-89 

12, blaOXA-9, blaTEM-1B, fosA, oqxAB, sul2, tet(A), dfrA14 positive), for resistance induction 90 

experiments. This strain is representative of the type of pathogens for which a ‘last resort’ 91 

antibiotic is employed, and one where high levels of clinical resistance to polymyxins have already 92 

been well characterised at a genetic level (24). The resistance induction experiments were followed 93 

by characterization of antibiotic susceptibility, whole genome sequencing, and analysis of lipid A 94 

composition. This research has uncovered significant differences in the development of resistance 95 

induced by the two classes of antibiotics, both in the level of resistance created and in the 96 

underlying genetic mutations. The results provide strong support for further development of the 97 

octapeptins as potential last-resort therapeutics.  98 
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RESULTS 99 

Rapid resistance acquisition for polymyxins dissimilar to OctC4. Forced evolution on XDR K. 100 

pneumoniae was monitored over a 20 day time course, with six replicates exposed to increasing 101 

concentrations of either polymyxin B (PMB), polymyxin E (colistin, CST) and OctC4. Significant 102 

variability was observed between polymyxins and OctC4 (Fig. 2D). Initially, an MIC of 0.125 103 

µg/ml was measured for both CST and PMB. The majority of replicates treated with the 104 

polymyxins had a clinical resistance phenotype of >2 µg/ml by day 10 (Fig. 2A and B). At some 105 

point, every replicate had a dramatic and rapid escalation in MIC to >64 µg/ml, generally over ≤5 106 

days. The timing for the drastic increase varied between replicates, and appeared dependent on 107 

whether the replicate could tolerate 0.5 µg/ml, with a steep escalation from the day that resistance 108 

level was exceeded. In sharp contrast, OctC4 resistance progressed steadily over the 20 days (Fig. 109 

2C) with only a 4-fold (initial MIC: 8 µg/ml) overall increase compared to a ≥1000-fold increase 110 

for the polymyxins (Fig. 2E). The trend for a gradual increase in OctC4 resistance was consistent 111 

amongst replicates. The induced resistance appeared to be stable after five additional passages 112 

without antibiotic exposure for polymyxins. The extent of growth in wells containing either 32 or 113 

16 µg/ml started to diminish for OctC4-induced isolates during the last passages. 114 

Lack of cross-reactivity and reduction of resistance in OctC4 induced isolates. Day 20 isolate 115 

MICs were determined against a broad array of antibiotic classes to evaluate if acquired resistance 116 

conferred cross-resistance, or resulted in regained susceptibility (Table 1). Remarkably, no cross-117 

reactivity was apparent between polymyxins and OctC4. Non-susceptibility towards amoxicillin, 118 

aztreonam, ceftriaxone, ciprofloxacin, piperacillin and trimethoprim was ubiquitous amongst 119 

treatment groups. Chloramphenicol resistance was observed in the initial isolate but was 120 

diminished in the majority of replicates over the time course for all three antibiotics. In some 121 
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instances, cefepime susceptibility was restored (replicates OctC4_3, OctC4_4 and OctC4_6). 122 

These replicates also regained susceptibility to meropenem, as did PMB_2. Replicate OctC4_2 123 

also exhibited susceptibility to tetracycline and tigecycline whilst this profile for OctC4_4 varied 124 

extensively for these antibiotics, where resistant and susceptible MICs were recorded depending 125 

on the colonies selected. 126 

Octapeptin resistance induced isolates harbor an increase in hydroxymyristate and 127 

palmitoylate dissimilar to Ara4N lipid A modifications in Pmx-R strains. In the initial isolate, 128 

MS/MS analysis of extracted lipid A fractions showed that the major singly charged peak was m/z 129 

1824.2, which corresponded to a hexa-acylated lipid A species comprised of two phosphate 130 

groups, two glucosamines and four 3-hydroxy-myristoyl groups (3-OH-C14), with two of these 131 

further acylated with myristate (C14) (Fig. 3A, also see Fig. S1 in the supplemental material). Due 132 

to the low intensity of this peak and the maximum detection limit of 2000 Da, in the system used, 133 

doubly charged masses were examined (see Fig. S1A in the supplemental material). This mass 134 

correlated to a doubly charged species of m/z 911.6 herein designated as the wild-type (WT) lipid 135 

A. Lesser quantities of various modifications accompanied the WT lipid A in the initial strain, 136 

including a hydroxyl modification of a myristate (m/z 919.6, WT+C14:OH), palmitoylation (m/z 137 

1030.7 WT+C16) and even the addition of Ara4N (m/z 977.1, WT+Ara4N), a modification known 138 

to confer polymyxin resistance (Fig. 3B). In sharp contrast, the predominant species found in Pmx-139 

R isolates was the near complete loss of WT lipid A and fortification of Ara4N on phosphate 140 

groups, mainly in hydroxymyristate species (m/z 985.1, WT+C14:OH+Ara4N; m/z 1042.7, 141 

WT+2(Ara4N); m/z 1050.7, WT+C14:OH+2(Ara4N)) (Fig. 3B, see Fig. S2 and S3 in the 142 

supplemental material). These changes corresponded to the genetic changes described in the 143 

following sections. The other commonly reported lipid A modification for resistance, pEtN, 144 
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corresponding to m/z 973.2 was never observed. The lipid A from the OctC4 induced isolates was 145 

substantially different from the Pmx-R isolates and similar to the WT profile, with a major peak 146 

of the hydroxymyristate derivative and a significant 5-fold increase in representation of 147 

palmitoylation (Fig. 3B, see Fig. S4 in the supplemental material). The Ara4N modification was 148 

enhanced compared to WT, but not to the extent seen with Pmx-R isolates. 149 

Plasmid loss associated with OctC4 resistance. To ascertain the genetic basis for resistance and 150 

subsequent phenotypic traits, four day 20 replicates were selected from each treatment group. 151 

Clonal expansion of genomic variations were monitored by selecting four colonies per replicate. 152 

Additionally, two colonies from the initial isolate were sequenced. The initial isolate harbored 153 

multiple acquired resistance genes targeting aminoglycosides, β-lactams, fosfomycin, quinolones, 154 

sulfonamides, tetracycline and trimethoprim, consistent with the parent XDR profile (Table 2). 155 

Five plasmid replicons were identified including ColRNAI, IncFIB(K)-Kpn3, IncFII(K), IncN and 156 

IncX3. In cross-resistance studies, the only Pmx-R replicate with an alteration in MIC profile to 157 

other antibiotics was PMB_2. Unique to PMB_2 was the susceptibility to meropenem and a 158 

reduction in resistance towards cefepime. Sequencing revealed a lack of aph(3’)-Ia, blaKPC-2, 159 

blaOXA-9 and no evidence of the IncX3 replicon in all four colonies. There was also a partial loss 160 

of this plasmid in PMB_4 (Table 2). 161 

High variability of acquired resistance genes and plasmids were witnessed for OctC4 exposed 162 

replicates. Resistance genes impacted included aph(3’)-Ia, aph(3”)-Ib, aph(6)-Id, blaKPC-2, 163 

blaOXA-9, blaTEM-1B, sul2, tet(A) and dfrA14. Furthermore, plasmid replicon loss was apparent 164 

in three of the four replicates including IncFIB(K)-Kpn3, IncFII(K) and IncN. Subtle discrepancies 165 

in β-lactamase genes were observed across the three treatment groups; however, this was attributed 166 

to difficulties in the assembly due to high homology amongst these genes. 167 
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Chromosomal variations in lipopolysaccharide pathways associated with polymyxin 168 

resistance whilst phospholipid transport associated with OctC4 resistance. Genomic 169 

alterations identified in polymyxin and OctC4 treated replicates differed significantly. In Pmx-R 170 

replicates, genes predominantly associated with LPS processing and lipid A modifications were 171 

altered, including crrB, hepIII, lptC, mgrB, pmrB, phoPQ and yciM (Table 3). An additional TCS 172 

gene, qseC, was also disrupted in PMB_3 (S8R, I283L) and PMB_4 (L40F). Although similar 173 

genes were impacted across replicates, the mutation positions differed. Additionally, an 174 

accumulation of variations in LPS pathways were apparent within a single replicate. All four 175 

colonies from a single replicate were commonly changed indicating clonal expansion of this 176 

variant. Complementation assays were further conducted to unveil the contributions of these genes 177 

to observed resistance (Fig. 4). Polymyxin susceptibility was restored in CST_2 (complete deletion 178 

of mgrB), CST_3 (M1I), CST_4 (N42I), PMB_2 (W47L) and PMB_4 (D29Y) once complemented 179 

with pTOPO-mgrB (Fig. 4B-D, F and H). The PmrB (P95L) variant in PMB_1 was validated to 180 

contribute to resistance (Fig. 4E). Alterations in CrrB (D57V), PhoP (R81C) and QseC (S8R, 181 

I283L) were confirmed to cause resistance once these genes were introduced into the initial strain 182 

(Fig. 4M). Subtle increases in polymyxin MIC was detected for PhoQ (P420A, G434C), PhoQ 183 

(D417N) and QseC (L40F) but did not surpass the breakpoint (Fig. 4M). This confirms the 184 

presence of multiple resistance conferring mutations being present in a single isolate and several 185 

contributing to the elevation of MIC. 186 

The OctC4 replicates harbored changes in mlaDF, pqiB and traH in all four colonies. Additional 187 

genes altered that were apparent in two colonies per replicate included azoR, hinT and rpsA. 188 

Strikingly, mlaF (A165P) was impacted in three different OctC4 replicates at the same position 189 

(Table 3). Complementation assays that introduced pTOPO-mlaD, -mlaF or -pqiB into OctC4 190 
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induced replicates reduced the MIC by 2-fold, however, consistently only partial growth was 191 

observed at 8 µg/ml. This finding validates the partial contribution of these genes to resistance 192 

(Fig. 4I-L). Introduction of WT genes into the initial isolate revealed that the vector and gene did 193 

not influence the MIC and confirmed that these alterations are responsible for the resistance 194 

observed (Fig. 4M and N).  195 
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DISCUSSION 196 

Polymyxin unfortunately now induce high levels of resistance during therapeutic use, which is 197 

further compromised by suboptimal exposure in the clinic due to the risk of nephrotoxicity (29). 198 

Resistance in K. pneumoniae appears to be stable and incurs a minimal fitness cost (30, 31). These 199 

clinical characteristics were reflected in our study whereby once the isolate could tolerate 0.5 200 

µg/ml of either CST or PMB, the clinical breakpoint was vastly exceeded within 48 h, well within 201 

the duration of clinical antibiotic therapy. This rapid induction of resistance was not observed for 202 

OctC4, in which only comparatively minor increases in MIC were observed. The slow progression 203 

in resistance profile could be an advantageous characteristic of OctC4 as a potential clinical 204 

intervention. 205 

Following 20 days of increasing sub-lethal antibiotic exposure, no cross-resistance was apparent 206 

between polymyxins and OctC4. CST and PMB resulted in similar profiles with the only deviation 207 

seen in sample PMB_2 in which susceptibility to meropenem was regained. This is due to the 208 

absence of blaKPC-2 and blaOXA-9. Additionally, the homogenous loss of the IncX3 plasmid was 209 

identified. Clinically, meropenem is being used in combination with polymyxins, and these results 210 

suggest that, in some cases, meropenem may overcome polymyxin resistance (32, 33). 211 

Furthermore, previous research has identified the loss of blaKPC plasmids in Pmx-R clinical 212 

isolates and suggests that this loss is due to a potential fitness cost (34). Our results show various 213 

accounts of plasmid loss in OctC4-exposed replicates, and this corresponded to a reduction in 214 

resistance towards cefepime, meropenem and tetracycline. Whether this resembles a fitness cost 215 

associated with OctC4 exposure or due to repeated passaging under no selective pressure for the 216 

genes harbored on these plasmids warrants further investigation. 217 
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Interestingly, resistance towards chloramphenicol was diminished in polymyxin and OctC4 218 

exposed strains. Resistance towards chloramphenicol can arise from plasmid-encoded 219 

chloramphenicol acetyltransferases, alterations in the target 50S ribosomal subunit, or disruptions 220 

in porins and efflux pumps (35). The absence of acquired resistance genes and the lack of 221 

modifications in these regions may imply either a down-regulation of efflux pumps or an 222 

alternative resistance mechanism. The synergistic mechanism of polymyxins and chloramphenicol 223 

have been extensively studied; however, this finding potentially indicates a novel loss of 224 

chloramphenicol resistance upon gaining resistance towards these lipopeptides (36, 37), and is also 225 

seen with the octapeptins. 226 

The mutations observed in polymyxin resistance induced ST258 strains can be compared to those 227 

we have previously identified in closely related polymyxin-resistant clinical ST258 isolates, 228 

2_GR_12, 4_GR_12, 10_GR_13, 13_GR_14 and 14_GR_14 (24). As in this study, the vast 229 

majority of resistance was attributed to mgrB (60%), albeit not via an IS element disruption 230 

commonly observed in the clinic. Additional mutations were also identified in phoPQ 231 

accompanying the mgrB disruption, which was also apparent in this study (CST_3, CST_4, 232 

PMB_2). Other mutations in crrB, mgrB, pmrB, phoPQ and yciM in acquisition of polymyxin 233 

resistance have previously been described in resistant strains (16, 17, 38). Taken together, this 234 

indicates that resistance induction experiments have the capacity to induce genomic changes 235 

observed in the clinic. 236 

These mutations lead to increased levels of Ara4N–modified lipid A, as observed in the lipid A 237 

analysis. Interestingly, the initial polymyxin-susceptible isolate exhibited Ara4N lipid A 238 

modifications which reveals a heteroresistant strain where a subpopulation of resistant bacteria 239 

exists within a phenotypically susceptible isolate. In several instances for polymyxin induced 240 
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isolates, mutations were present in multiple genes within a replicate. CST_3 harbored a deleterious 241 

mutation in mgrB (M1I) and additional alterations in phoQ (P420A, G434C) increased tolerance 242 

to CST. This was also the circumstance for CST_4 (mgrB: N42I, phoQ: D417N). PMB_2 243 

possessed a resistance conferring mutation in mgrB (W47L) and phoP (R81C). The notion that 244 

one alteration in TCS drives resistance, the circumstance for the majority of clinical isolates is well 245 

accepted (39). However, our findings contradict this concept.  246 

We also identified alterations in another TCS, QseBC, which is known to facilitate cross-talk with 247 

PmrAB in Escherichia coli (40). In E. coli, PmrB acts as a noncognate partner to the QseBC TCS 248 

and has the capability to not only phosphorylate PmrA, but also QseB. The absence of QseC was 249 

shown to impact virulence due to the accumulation of phosphorylated QseB and in particular, 250 

alterations in the histidine kinase domain attenuates its ability to de-phosphorylate QseB (40, 41). 251 

Furthermore, the deletion of qseC and pmrA, promoting phosphorylation of QseB by PmrB, 252 

stimulated tolerance to PMB (42). This signalling pathway remains severely under characterized 253 

in K. pneumoniae. We observed partial tolerance to PMB when a frameshift mutation was apparent 254 

at nucleotide 118; however, full resistance in PMB_4 was promoted by alterations in mgrB (D29Y) 255 

and yciM (V43G), which has recently been identified to cause resistance (38). Conversely, PMB_3 256 

also harbored a frameshift mutation early in the coding sequence of qseC 257 

(GCCTGAGCCTGC17Δfs), although an additional I283L change in the histidine kinase region 258 

resulted in an MIC of 4 µg/ml. This did not explain the full resistance profile exhibited by PMB_3 259 

and due to the presence of both alleles during complementation, the true extent of resistance cannot 260 

be deduced. Considering PMB_3 still resulted in the addition of Ara4N to lipid A, we speculate 261 

that due to the perturbation in the QseC kinase, this is increasing the accumulation of 262 

phosphorylated QseB and allows for the up-regulation of transcriptional targets. Subsequent 263 
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transcription could be activating PmrA, similar to other TCS in K. pneumoniae, allowing for the 264 

expression of the pmrHFIJKLM operon (Fig. 5A).  265 

The mutation pattern was greatly different in OctC4-exposed replicates, with all harboring 266 

alterations in the Mla pathway. These genes are responsible for phospholipid (PL) importation 267 

from the outer membrane into the cell (43). Removal of mlaC in E. coli was previously identified 268 

to increase the abundance of palmitoylated lipid A to stabilise the outer membrane which 269 

correlated to the phenotype in our study. Similarly, prior research exposing P. aeruginosa to OctC4 270 

(32 µg/ml) revealed an increase in palmitoylated lipid A (22). Literature reports have demonstrated 271 

that octapeptins have the capacity to bind to PLs (44), and likely OctC4 utilises this pathway in 272 

order to traverse to the outer membrane (Fig. 5B). The involvement of PqiB in membrane integrity 273 

has only recently been characterized in E. coli (45). PqiB was identified to connect to PqiC and 274 

potentially deliver substrate/s from the outer to inner membrane. The contribution of the PqiABC 275 

appeared minimal compared to the Mla pathway and was proposed to either ineffectively transport 276 

PLs or transport different substrates with a minute impact on membrane integrity. The contribution 277 

of the Pqi and Mla pathway appeared to be additive when evaluating the MIC reduction in OctC4_1 278 

and OctC4_2. Further genes impacted not homogeneous amongst the colonies included rpsA (40S 279 

ribosomal protein), azoR (quinone reductase), traH (plasmid conjugal transfer protein) and hinT 280 

(purine nucleoside phosphoramidase), which may indicate several intracellular targets (46-49). 281 

The lack of mutations associated with Ara4N-modifications to lipid A is consistent with the lipid 282 

A profile of the OctC4-induced isolates. This observation supports the hypothesis that the 283 

octapeptins work by a different mode of action compared to the polymyxins, one that does not 284 

require an initial binding to lipid A and explains the lack of cross-resistance between the two 285 

classes of lipopeptides. However, further studies are required to determine if this occurs 286 
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ubiquitously for K. pneumoniae and if the same phenomenon is observed for other Gram-negative 287 

pathogens. The slow progression of resistance, potential fitness cost if resistance develops, and the 288 

alternative mechanism of infiltration of OctC4 highlight the potential for octapeptins to be 289 

explored as future antibiotics.  290 
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MATERIALS AND METHODS  291 

Bacterial strains and growth conditions. Clinical polymyxin-susceptible XDR K. pneumoniae 292 

ST258 isolate, 20_GR_12, was sourced through Hygeia General Hospital, Athens, Greece as 293 

previously described (24). Cultures were grown in Luria-Bertani (LB) broth and for single colony 294 

isolation, cultures were grown on either LB or Nutrient Agar (NA) plates. 295 

Antimicrobial susceptibility assays. Minimum inhibitory concentration was determined by the 296 

broth microdilution method according to Clinical & Laboratory Standards Institute (CLSI) 297 

guidelines (50). Cultures were grown in cation-adjusted MHB and to assess cross-resistance of 298 

day 20 isolates, broth was supplemented with the concentration of antibiotic tolerated at that time 299 

point (see Table S1 in the supplemental material). Clinical breakpoints were determined in 300 

concordance to CLSI guidelines (51) and tigecycline as per The European Committee on 301 

Antimicrobial Susceptibility Testing (EUCAST) (Version 8.0, 2018) (see http://www.eucast.org).  302 

Induction of resistance. A single colony of the clinical isolate was selected and grown overnight 303 

at 37°C shaking at 220 rpm. Similar to the broth microdilution assay, this culture was grown to 304 

log phase (OD600 = 0.4-0.6). The culture was plated out into three separate 96-well polystyrene, 305 

non-treated plates (Sigma Aldrich) with six replicates for each treatment group including CST, 306 

PMB and OctC4. Plates were incubated overnight and OD600 was read at 20 h. The well which 307 

harbored dense growth (OD600 = ≥1) underwent a 1:1000 dilution, transferred to a new plate with 308 

the concentration range adjusted accordingly. The highest concentration used for the polymyxins 309 

was 128 µg/ml and 32 µg/ml for OctC4. This process was completed for 20 days with five 310 

following days of no antibiotic exposure. At day 20, the culture was further diluted (1:1000) and 311 

placed in non-supplemented broth to be incubated overnight. Part of this culture underwent an 312 

MIC against the antibiotic it was exposed to in order to evaluate stability of resistance. Several 313 
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time points were isolated and stored in 30% sterile glycerol at -80°C for future assays. Fold change 314 

significance was determined via GraphPad Prism 7 with a one-way ANOVA with a Tukey’s 315 

multiple comparisons test where significance was P<0.05. 316 

Lipid A modifications. Lipid A was extracted using the ammonium hydroxide-isobutyric acid 317 

protocol as previously described (52). Day 20 cultures were grown overnight in LB supplemented 318 

with antibiotic (see Table S1 in the supplemental material). Overnight inoculums were subcultured 319 

(1:100) into 100 mL LB broth and grown to an OD600 = 0.8-1. Cultures were pelleted (10,000 rpm, 320 

20 min, 4°C), washed with 1X PBS (10,000 rpm, 15 min, 4°C) and freeze dried. 10 mg of 321 

lyophilised cells were processed as per (52). Concisely, samples were suspended in isobutyric 322 

acid:ammonium hydroxide (5:3 [vol/vol]), under magnetic stirring at 100°C for 4 h, supernatants 323 

isolated by centrifugation at 13,000 rpm for 15 min, diluted with equal volume of water and freeze 324 

dried. Extracts then underwent two methanol washes (4,000 rpm, 15 min). The extracted lipid A 325 

was solubilised in methanol containing 5 mM ammonium acetate to a concentration of 1 µg/ml. 326 

Samples were infused at a low rate of 5 µl/min into a QSTAR Elite (Applied Biosystems) hybrid 327 

quadrupole Time-of-Flight (TOF) mass spectrometer. To acquire adequate fragmentation for 328 

MS/MS analysis, the collision energy was increased from 40 to 80. Averaged spectra were 329 

accumulated over at least 1 min. Data were exported from Analyst (SCIEX), normalized to the 330 

highest mass intensity and graphed in GraphPad Prism 7. 331 

DNA extractions and library preparation. Glycerol stocks from day 20 isolates were grown on 332 

NA plates overnight. Single colonies were isolated, grown in antibiotic supplemented broth (see 333 

Table S1 in the supplemental material), incubated overnight and DNA extracted using the DNeasy 334 

Blood and Tissue Kit (Qiagen) according to manufacturer’s guidelines. Two colonies were 335 

selected from day 0 and 4 colonies from 4 replicates per treatment group. Quantification of DNA 336 
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was acquired using Qubit®3.0 (ThermoFisher Scientific) and 1 ng of DNA underwent library 337 

preparation with the Nextera XT kit (Illumina) as per manufacturer’s instructions. Quality control 338 

was checked with a 2100 Bioanalyzer (Agilent Technologies) and LabChip GX (PerkinElmer).  339 

Sequencing and analysis. Libraries were sequenced on an Illumina NextSeq with 150 bp paired 340 

end sequencing reads with ≥95X coverage with the exception of CST_2 (colony 1) (48X). 341 

Trimmomatic (53) was used to trim paired end reads and SPAdes v3.10.1 implemented for 342 

assembly (54). Annotation of assembled genomes was accomplished using the Rapid Annotation 343 

using Subsystem Technology (RAST) (55). The Centre for Genomic Epidemiology (CGE) tools 344 

were implemented to delineate laterally acquired resistant genes (ResFinder 3.0) (56) and plasmids 345 

(PlasmidFinder 1.3) (57). Reads were aligned using BWA-MEM (58), analyzed through 346 

FreeBayes (59) and impact of change determined through snpEff (60). Nucleotide sequences have 347 

been deposited under NCBI BioProject PRJNA415530 348 

(www.ncbi.nlm.nih.gov/bioproject/415530). 349 

Complementation assays. Genes speculated to cause resistance underwent complementation as 350 

previously described (61). Briefly, genes harboring a potential variation contributing to resistance 351 

was amplified using the 2X Phusion HF master mix (ThermoFisher) with primers listed in Table 352 

S2 in the supplemental material. The gene was cloned into the pCR-BluntII-TOPO using the Zero 353 

Blunt TOPO PCR cloning kit (Invitrogen). The plasmid was transformed in electrocompetent E. 354 

coli TOP10 via electroporation, grown overnight on MHB agar supplemented with kanamycin (50 355 

µg/ml) at 37°C overnight and plasmids extracted using the QIAprep spin miniprep column kit 356 

(Qiagen). Plasmids were transformed into the initial susceptible strain (20_GR_12) and incubated 357 

overnight on MHB agar containing zeocin (1500 µg/ml). Furthermore, the wild-type gene was 358 
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amplified from the initial strain and placed into the resistant day 20 isolates. An MIC was 359 

conducted to determine if resistance was altered as mentioned above. 360 

 361 
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FIGURES & TABLES 584 

 585 

 586 

 587 

 588 

FIG 1 Structural comparison between the 3 lipopeptide antibiotics used in this study. Colistin (A) 589 

and polymyxin B (B) differ by one amino acid (polymyxin B: phenylalanine and colistin: leucine 590 

(R1)). One defining feature of octapeptin C4 (C) is that it contains 8 amino acids rather than 10 in 591 

polymyxins. In addition, a leucine residue replaces threonine within the ring (R2), the exocyclic 592 

diaminobutyric acid (Dab) residue is the D-enantiomer, and the fatty acid tail contains a 3-hydroxy 593 

group (R3). 594 

 595 

 596 

 597 

 598 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 28, 2018. ; https://doi.org/10.1101/309674doi: bioRxiv preprint 

https://doi.org/10.1101/309674
http://creativecommons.org/licenses/by/4.0/


30 
 

 599 

 600 
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 603 
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 605 

 606 

 607 

 608 

 609 

 610 

FIG 2 Acquired resistance in extensively drug-resistant K. pneumoniae over time for polymyxins 611 

and octapeptin C4. (A) Colistin (B) Polymyxin B (C) Octapeptin C4 (D) Overall comparison of 612 

acquired resistance for 20 day antibiotic exposure and 5 days following without exposure 613 

(mean±SEM, n=6) (E) Fold change of colistin (CST), polymyxin B (PMB), and octapeptin C4 614 

(OctC4) in concordance to day 0 and 20 MIC (mean±SD) (****P<0.001). Line represents break 615 

points (2 µg/ml polymyxins, 8 µg/ml set for octapeptin to highlight divergence from day 0). 616 

Highest concentration used for polymyxins was 128 µg/ml and 32 µg/ml for octapeptin C4. 617 

A B C 

D E 
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 618 

 619 

 620 

 621 

 622 

 623 

 624 

 625 

 626 

FIG 3 Lipid A modifications identified after 20 days of exposure to either colistin, polymyxin B or octapeptin C4. (A) Modifications 627 

which were detected in wild-type (WT) hexa-acylated lipid A. This included hydroxylation of a myristate (R1), palmitoylation (R2) and 628 

the addition of 4-amino-4-deoxy-arabinose (Ara4N) to either phosphate groups (R3, R4). (B) Doubly charged lipid A species detected 629 

for the initial isolate (n=2) and treatment groups (n=6). Values represent mean±SD of relative peak intensities. 630 

[M-2H]2- Species Initial CST PMB OctC4 

911.6 WT 100.0±0.0 6.2±4.6 9.6±4.8 84.2±7.6 
919.6 WT+OH 39.5±1.1 10.8±7.6 27.0±13.7 100±0.0 
977.1 WT+Ara4N 50.5±0.1 57.4±32.1 46.6±19 34.0±5.4 
985.1 WT+OH+Ara4N 22.7±0.2 78.9±38.7 88.6±18.9 45.1±3.5 

1030.7 WT+C16 21.5±3.0 4.1±3.3 16.0±14.0 41.9±6.4 
1038.7 WT+OH+C16 9.9±0.0 3.7±3.4 29.0±14.0 62.8±4.4 
1042.7 WT+2(Ara4N) 2.5±0.2 56.0±28.2 18.3±8.5 2.9±1.1 
1050.7 WT+OH+2(Ara4N) 1.2±0.1 64.6±36.4 30.7±16.3 2.3±0.3 
1096.3 WT+Ara4N+C16 9.5±0.9 33.6±20.3 48.4±32.2 8.6±1.5 
1104.3 WT+OH+Ara4N+C16 5.2±0.5 33.3±18.5 70.5±28.1 21.6±3.2 
1161.8 WT+2(Ara4N)+C16 0.4±0.0 31.2±14.2 11.7±8.5 0.5±0.1 
1169.8 WT+OH+2(Ara4N)+C16 0.3±0.0 26.3±20.4 12±5.7 0.5±0.1 

B A 
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FIG 4 Complementation assays to delineate contribution of variations detected in day 20 treated 649 

strains to resistance. (A-D) Colistin treatment groups complemented with WT gene. (A) CST_1 650 

with pTOPO-crrB. (B) CST_2 with pTOPO-mgrB. (C) CST_3 with pTOPO-mgrB or pTOPO-651 

phoQ. (D) CST_4 with pTOPO-mgrB or pTOPO-phoQ. (E-H) Polymyxin B treatment groups 652 

complemented with WT gene. (E) PMB_1 with pTOPO-pmrB. (F) PMB_2 with pTOPO-mgrB or 653 

pTOPO-phoP. (G) PMB_3 with pTOPO-qseC. (H) PMB_4 with pTOPO-mgrB or pTOPO-qseC. 654 

(I-L) Octapeptin C4 treatment groups complemented with WT gene. (I) OctC4_1 with pTOPO-655 

mlaD or pTOPO-pqiB (J) OctC4_2 with pTOPO-mlaF or pTOPO-pqiB. (K) OctC4_3 and with 656 

pTOPO-mlaF. (L) OctC4_4 with pTOPO-mlaF. (M) 20_GR_12, the initial strain, complemented 657 

with WT genes and genes harboring mutations potentially causing polymyxin resistance. (N) 658 

Complementation of octapeptin C4 resistance associated WT genes in 20_GR_12. The (-) indicates 659 

no complementation was conducted and represents the initial MIC. The y-axis split signifies the 660 

breakpoint for polymyxins (2 µg/ml) and initial MIC for octapeptin C4 (8 µg/ml). Values 661 

represented as mean±SD (n=4). Values above bars (A-L) indicate amino acid change in induced 662 

resistant isolate. Δ represents a complete deletion of protein and * is a stop codon. 663 

 664 

 665 

 666 

 667 

 668 

 669 
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 670 

FIG 5 Proposed pathway associated with K. pneumoniae polymyxin and octapeptin C4 resistance 671 

observed in this study. (A) To facilitate resistance against polymyxins, genomic variations are 672 

acquired in two-component regulatory systems. These encompass CrrAB, QseBC, PmrAB and 673 

PhoPQ with MgrB acting as a negative repressor. Once this pathway is activated during resistance, 674 

sensor histidine kinases (CrrB, QseC, PmrB, PhoQ) will phosphorylate response regulators (CrrA, 675 

QseB, PmrA, PhoP) and allow for the expression of target genes (crrC, unknown (?), pmrD, 676 

pmrHFIJKLM). Disruptions in MgrB allow for the up-regulation of this pathway resulting in the 677 

expression of pmrHFIJKLM which allows for 4-amino-4-deoxy-arabinose or 678 

phosphoethanolamine to be attached to phosphate groups on lipid A. (B) The major disruptions 679 

identified during octapeptin C4 resistance was in the Mla and Pqi pathway. OmpC removes 680 
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phospholipids (PLs) from the outer member and transfers these to MlaA. PLs are transported 681 

across the periplasm via MlaC and transported to the MlaBDEF complex where the subsequent 682 

fate of PLs is unknown. An unknown porin complexes with PqiC to transport metabolites and 683 

potentially PLs across the periplasm via the PqiAB complex. Perturbations in these pathways 684 

elevated the MIC towards octapeptin C4 and subsequent hydroxymyristae and palmitoylation of 685 

lipid A to potentially stabilise the outer membrane.  686 
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TABLE 1 Minimum inhibitory concentrations of day 20 replicates compared to initial isolate across several antibiotic classes 687 

 688 

  689 

Straina 

Minimum inhibitory concentration (µg/ml)b 

CST PMB OctC4 AMX ATM FEP CRO CHL CIP GEN MEM PIP TET TGC TMP 

Initial ≤0.25S ≤0.125S 8.00 >64.0R >64.0R ≥16.0R >64.0R ≥32.0R >64.0R ≤4.00S ≥32.0R >64.0I >64.0R ≤2.00S, I >64.0R 

CST_1 >128R >128R ≤8.00 >64.0R >64.0R ≥16.0R >64.0R ≤8.00S ≥32.0R 4.00S ≥32.0R >64.0I >64.0R ≤4.00S, R >64.0R 

CST_2 >128R >128R ≤4.00 >64.0R >64.0R >64.0R >64.0R 4.00S ≥32.0R ≤4.00S ≥32.0R >64.0I >64.0R 2.00I >64.0R 

CST_3 ≥128R ≥128R ≤4.00 >64.0R >64.0R >64.0R >64.0R 8.00S >64.0R ≤4.00S >64.0R >64.0I >64.0R ≤4.00 I, R >64.0R 

CST_4 >128R >128R ≤8.00 >64.0R >64.0R >64.0R >64.0R ≤8.00S >64.0R ≤4.00S >64.0R >64.0I >64.0R ≤4.00 I, R >64.0R 

CST_5 >128R >128R 2.00 >64.0R >64.0R >64.0R >64.0R ≤8.00S >64.0R ≤4.00S >64.0R >64.0I >64.0R ≤4.00I, R >64.0R 

CST_6 >128R >128R ≤8.00 >64.0R >64.0R >64.0R >64.0R 8.00S >64.0R ≤4.00S >64.0R >64.0I >64.0R ≥4.00R >64.0R 

PMB_1 128R 128R ≤4.00 >64.0R >64.0R >64.0R 32.0R 4.00S 32.0R ≤4.00S >64.0R >64.0I >64.0R ≤4.00I, R >64.0R 

PMB_2 >128R >128R 8.00 >64.0R >64.0R ≤8.00I >64.0R 4.00S >64.0R ≤4.00S ≤0.25S >64.0I >64.0R ≤2.00S, I >64.0R 

PMB_3 >128R >128R 4.00 >64.0R >64.0R ≥32.0R >64.0R 8.00S >64.0R 2.00S ≥32.0R >64.0I >64.0R 2.00I >64.0R 

PMB_4 >128R >128R 4.00 >64.0R >64.0R ≥8.00I,R ≥32.0R ≤2.00S 48.00R 2.00S ≥8.00R >64.0I >64.0R 2.00I >64.0R 

PMB_5 >128R >128R ≤8.00 >64.0R >64.0R ≥8.00I,R ≥32.0R ≤8.00S >64.0R ≤4.00S ≥2.00I, R >64.0I >64.0R ≤2.00S, I >64.0R 

PMB_6 >128R >128R ≤8.00 >64.0R >64.0R ≥16.0R >64.0R 8.00S >64.0R ≤4.00S ≥32.0R >64.0I >64.0R ≤4.00I, R >64.0R 

OctC4_1 0.25S ≤0.25S 32.0 >64.0R >64.0R ≥16.0R >64.0R 8.00S >64.0R ≤2.00S ≥32.0R >64.0I >64.0R ≤2.00S, I >64.0R 

OctC4_2 0.25S 0.25S 32.0 >64.0R >64.0R ≥8.00I,R >64.0R 8.00S >64.0R ≤2.00S ≥32.0R >64.0I ≤2.00S ≤1.00S ≥8.00R 

OctC4_3 ≤0.5S 0.25S 32.0 >64.0R >64.0R ≤4.00S, I 32.0R 8.00S >64.0R ≤4.00S ≤0.25S >64.0I >64.0R 2.00I >64.0R 

OctC4_4 ≤0.5S 0.25S >32.0 >64.0R >64.0R ≤4.00S, I 32.0R 8.00S >64.0R 1.00S ≤0.25S >64.0I ≥2.00S, R ≤2.00S, I ≥4.00R 

OctC4_5 0.50S 0.50S 32.0 >64.0R >64.0R >64.0R >64.0R ≤8.00S >64.0R 2.00S >64.0R >64.0I >64.0R 2.00I >64.0R 

OctC4_6 ≤0.5S ≤0.5S 32.0 >64.0R >64.0R ≤4.00S, I ≥32.0R ≤16.0S, I >64.0R 2.00S ≤0.25S >64.0I >64.0R 2.00I >64.0R 
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aInitial polymyxin-susceptible isolate is 20_GR_12 compared against 20 days of treatment against polymyxin B (PMB), colistin (CST) 690 

or Octapeptin C4 (OctC4). 691 

bMinimum Inhibitory Concentration tested for CST, Colistin; PMB, polymyxin B; OctC4, Octapeptin C4; AMX, Amoxicillin; ATM, 692 

Aztreonam; FEP, Cefepime; CRO, Ceftriaxone; CHL, Chloramphenicol; CIP, Ciprofloxacin; GEN, Gentamicin; MEM, Meropenem; 693 

PIP, Piperacillin; TET, Tetracycline; TGC, Tigecycline; TMP, Trimethoprim. Resistance determined as per CLSI guidelines and 694 

EUCAST for tigecycline with: S, Susceptible; I, Intermediate; R, Resistant. Fluctuations in MIC values (n=4) are displayed by two letters 695 

defining the resistance level. Resistance for Octapeptin C4 defined as ≥32 µg/ml.  696 
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TABLE 2 Detection of acquired resistance genes and plasmid replicons compared to the initial isolate and treatment groups 697 
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I II III IV V

20_GR_12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
CST_1 4 4 4 4 4 4 4 1 3 4 4 4 4 4 4 4 4 4 4 4 4
CST_2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
CST_3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
CST_4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
PMB_1 4 4 4 4 4 4 4 1 3 4 4 4 4 4 4 4 4 4 4 4 4
PMB_2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
PMB_3 4 3 4 4 3 3 3 1 4 4 4 4 4 4 4 4 4 4 4 4 3
PMB_4 4 4 4 4 4 4 4 1 3 4 4 4 4 4 4 4 4 4 4 4 4
OctC4_1 4 4 4 4 1 3 4 1 4 4 4 4 4 4 4 4 4 4 4 4 4
OctC4_2 4 4 3 4 4 4 4 4 4 4 4 4 4 4
OctC4_3 4 4 2 2 4 3 4 1 2 2 4 4 4 4 2 2 2 4 4 4 2 4
OctC4_4 4 1 1 4 1 4 4 4 4 1 1 1 4 1 4

Q

Strain
a

Antibiotic class impacted
b

Plasmids
c

A B
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aStrain represents initial isolate (20_GR_12) and this strain subjected to 20 days of treatment with either colistin, CST; polymyxin B, 708 

PMB; Octapeptin C4 and _replicate number. 709 

bAcquired resistance genes as determined by ResFinder 2.1 (≥90% identity and ≥60% length) for A, Aminoglycoside; B, Beta-Lactam; 710 

F, Fosfomycin; Q, Quinolone; S, Sulfonamide; T, Tetracycline; Tr, Trimethoprim. 711 

cPlasmid replicons detected by PlasmidFinder 1.3 (≥95% identity). Plasmid numbers represent I, ColRNAI; II, IncFIB(K)-Kpn3; III, 712 

IncFII(K); IV, IncN; V, IncX3. 713 

Shading represents the presence of the gene or plasmid and the number indicates the colonies harboring this attribute.  714 
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TABLE 3 Genomic alterations detected in day 20 resistance induced isolates 715 

716 
Straina Gene Gene description Nucleotide changeb Amino acid 

changec 

CST_1(4) crrB Two-component hybrid sensor and regulator  A170T D57V 
CST_2(4) hepIII Lipopolysaccharide heptosyltransferase III  A238Δfs R80Gtr 

CST_2(4) mgrB Putative inner membrane protein  1-144Δ 1-47Δ 
CST_3(4) mgrB Putative inner membrane protein  G3A M1I 
CST_3(4) phoQ Sensor protein  C1258G, G1300T P420A, G434C 
CST_4(3) epsJ Glycosyltransferase  T932G L310STOP 
CST_4(3) lptC Lipopolysaccharide export system protein  Δ498Afs N166Ktr 
CST_4(4) mgrB Putative inner membrane protein  G-41T, A125T N42I 
CST_4(4) phoQ Sensor protein  G1249A D417N 
PMB_1(4) pmrB Sensor protein  C284T P95L 
PMB_2(4) dnaJ Chaperone protein  A892C T298P 
PMB_2(4) mgrB Putative inner membrane protein  G140T W47L 
PMB_2(4) phoP Transcriptional regulatory protein  C241T R81C 
PMB_2(4) hepIII Lipopolysaccharide heptosyltransferase III  TGAAGAGACCCG153Δ Y51STOP 
PMB_3(4) qseC Sensory histidine kinase  GCCTGAGCCTGC17Δfs, A847C S8R, I283L 

PMB_4(4) mgrB Putative inner membrane protein  G85T D29Y 
PMB_4(4) qseC Sensory histidine kinase  CTGGATAAGCTG118Δfs L40F 
PMB_4(4) yciM Lipopolysaccharide regulatory protein  T128G V43G 

OctC4_1(4) mlaD Uncharacterized ABC transporter, periplasmic component  C403T Q135STOP 
OctC4_1(4) pqiB Paraquat-inducible protein B  C1258T Q420STOP 
OctC4_1(4) traH Conjugal transfer protein  G417T M139I 
OctC4_2(4) pqiB Paraquat-inducible protein B  A2080C T694P 
OctC4_2(2) rpsA SSU ribosomal protein S1p  T1031A L344Q 
OctC4_3(2) hinT YcfF/hinT protein: purine nucleoside phosphoramidase  Δ240Cfs D81Rtr 
OctC4_4(2) azoR FMN-dependent NADH-azoreductase  T152A L51Q 

OctC4_2(4),3(4),4(4) mlaF Uncharacterized ABC transporter, ATP-binding protein  GCCGC493Δfs A165Ptr 
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aStrain represented as treatment group (Colistin, CST; Polymyxin B, PMB; Octapeptin C4, 717 

OctC4), _ replicate number and number of colonies impacted from the 4 selected.  718 

bNucleotide variations present in ≥90 % of reads and ≥50 X coverage compared to initial strain, 719 

20_GR_12. Δ symbolises a deletion, – in front of the nucleotide position indicates an alteration 720 

upstream and fs represents a frameshift mutation. 721 

cThe introduction of a truncation in the protein downstream of the alteration is noted as tr. 722 
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