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Abstract 

Efficient planning for biodiversity-related goals requires the ability to measure biodiversity’s present 

state, observe recent change and project potential future outcomes from predicted anthropogenic 

change scenarios. Indicators of biodiversity change are most often derived by intersecting changes in 

habitat loss or degradation with underlying patterns in biological diversity. However, the current 

generation of these indicators are usually derived at resolutions far coarser than the spatial grain 

that key ecological and anthropogenic processes they are describing interact. Concurrently, current 

indicators trend to focusing on data rich biological groups, ignoring the other parts of the tree of life 

where data are less complete. Here we introduce the methodological underpinnings to a new 

capability in global biodiversity assessment that is based around macroecological modelling of 

underlying patterns in biodiversity. Through integrating advances in macroecological modelling, 

biodiversity informatics, remote sensing and high-performance computing, our modelling 

infrastructure assesses the spatio-temporal change in biodiversity across the entire terrestrial 

surface of the planet at a resolution of approximately 1 km. We then use this to follow two different 

analysis pathways. The first pathway generates indicators of biodiversity change by overlaying 

modelled biodiversity pattern with observed patterns in land-use change to observe the changing 

status and trends in ecological communities. Our second pathway replaces observed changes with 

projected changes in pressures and responses into the future. This enables the translation of 

alternative global change scenarios into the expected consequences for future biodiversity 

persistence. This approach allows a more robust assessment of the status, trends and possible 

futures for as broad a spread of biological diversity as possible. 
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INTRODUCTION 

Continued growth in human populations around the world is intensifying demands on our natural 

environment. Coupled with the effects of anthropogenic climate change, the potential for large-scale 

modification and loss of our planet’s remaining biological diversity seems ever more likely (Pereira et 

al., 2010). To combat this ongoing decline, governments have agreed to multi-lateral policy goals 

which aim to limit, reduce or halt biodiversity loss and environmental degradation. The Convention 

on Biological Diversity (CBD) Strategic Plan for Biodiversity 2011-2020 and the associated Aichi 

Biodiversity Targets are one such policy framework that sets near-future targets across five strategic 

goals addressing ultimate drivers of biodiversity loss, proximate pressures, management responses, 

benefits to people, and implementation challenges (CBD, 2010). More recently the Sustainable 

Development Goals (SDGs) adopted by the United Nations promote a healthy and sustainable future 

both for humans and for our environment, including all “life on land” and “life below water” (UN, 

2015), while the latest multi-lateral agreement to limit anthropogenic climate change, ratified in 

Paris in 2015, includes statements to limit the loss of natural habitat (through deforestation) with 

indirect consequences for biodiversity (Citroen et al., 2016).  

Efficient planning of actions to achieve biodiversity-related goals and targets under these policy 

processes, and effective tracking of progress towards this achievement, requires the ability to 

measure the present state of biodiversity, detect trends of recent change, and project the potential 

future state of biodiversity expected under alternative policy options in a globally consistent way. 

Unfortunately our ability to report or project indicators of change for many aspects of biodiversity is 

still limited by an inability to observe or infer changes in ecological communities directly from 

currently available global datasets (Ferrier, 2011). Indicators of change employed in biodiversity 

assessments are most often derived by intersecting observed or projected changes in the 

distribution of habitat loss and degradation, or of protected areas, with underlying patterns in the 

distribution of biodiversity (e.g. Tittensor et al., 2014; Butchart et al., 2015)  

Two sources of global data on terrestrial biodiversity patterns have been used most commonly in the 

derivation of protected-area and habitat indicators. The first of these is the World Wildlife Fund’s 

mapping of 867 terrestrial ecoregions, defined as “relatively large units of land containing a distinct 

assemblage of natural communities and species, with boundaries that approximate the original 

extent of natural communities prior to major land-use change” (Olson et al., 2001). Ecoregions have 

long provided a convenient and well-respected foundation for assessing changing patterns of 

protected-area coverage and habitat transformation around the world (e.g. Watson et al., 2016). 

However, as indicated by the above definition, ecoregions are typically delineated at a much coarser 

resolution than the spatial grain of key ecological processes shaping both land-use and biological 

distributions at the landscape scale (Londoño-Murcia et al., 2010; Calderón-Patrón et al., 2016).  

Using ecoregions as fundamental spatial units for assessing impacts of protected-area coverage and 

habitat transformation on biodiversity assumes that all biological elements (e.g. species) within an 

ecoregion will be equally affected by these activities. Yet, in reality, fine-scaled spatial heterogeneity 

in abiotic environmental attributes (e.g. terrain, soils, climate) within an ecoregion will tend to bias 

human uses to particular parts of the region (e.g. a greater likelihood of agriculture in flatter, more 

fertile environments) (Fig. 1a). Since these same environmental attributes shape natural 

distributions of species at landscape scale (Fig. 1b), impacts of any given land-use change within an 

ecoregion will tend to be biased towards a subset of the species occurring within that region (Fig. 

1c). This means that protected-area or habitat indicators derived using ecoregions as the 

fundamental units of analysis risk under- or over-estimating implications of protection or habitat 
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transformation for biodiversity contained within these regions (Ferrier et al., 2004; Londoño-Murcia 

et al., 2010).  

The other major source of global data on biodiversity patterns commonly used for indicator 

derivation – i.e. extent-of-occurrence range maps for terrestrial vertebrate species (e.g. Jenkins et 

al., 2013) – presents similar spatial-resolution challenges. As for ecoregions, this data source has, 

over recent years, enabled the derivation of a wide variety of indicators, and has also underpinned 

numerous macroecological analyses of global biodiversity patterns. However the relatively coarse 

resolution of most range maps, and the reality that many species occupy only those parts of their 

overall range offering suitable environmental conditions, has led some workers to suggest that these 

data should not be employed at a grid resolution finer than 1 degree, or approximately 100km x 

100km near the equator (Hurlbert & Jetz, 2007). This again is a resolution far coarser than the spatial 

grain of key ecological processes shaping land-use and biological distributions at landscape scale.  

Species distribution modelling (SDM) provides one widely used means of refining the resolution of 

mapped species distributions, by using fine-resolution environmental surfaces to characterise and 

spatially project a species’ niche space (Elith & Leathwick, 2009). This can be achieved either by 

using known occurrence records to fit a correlative model predicting occurrence of a given species as 

a mathematical function of multiple environmental variables, or through deductive modelling in 

which occurrence is predicted using simple rule-based descriptions of environmental suitability 

derived from expert knowledge (Ferrier, 2002). Distributions predicted using SDM can be used either 

directly in assessments, or combined with mapped species ranges, where available (e.g. for 

vertebrates), thereby providing refined mapping of the expected distribution of each species within 

its known range (Merow et al., 2017). However, regardless of the precise SDM technique employed, 

application of this general approach is restricted to species for which either there is a sufficient 

number of occurrence records available to develop a correlative model, or there is sufficient expert 

knowledge of the species’ habitat requirements to develop a deductive model. This capacity is 

therefore limited to a subset of species which is biased both taxonomically and geographically, with 

some regions of the world lacking adequate data to generate reliable SDMs even for better-known 

biological groups such as vertebrates, let alone for invertebrates and plants (Meyer et al., 2015). 

Here we adopt an alternative, yet highly complementary, approach to integrating species-

occurrence records with fine-scaled environmental surfaces to refine the spatial resolution with 

which patterns in the distribution of biodiversity can be mapped across our planet. Rather than 

attempting to model distributions of individual species, this approach instead focuses on modelling, 

and thereby mapping, collective properties of biodiversity as a correlative function of environmental 

predictors. Macroecological modelling of spatial variation in alpha diversity, particularly of variation 

in local species richness, has a relatively long history of application in ecology and conservation 

biology (e.g. Francis & Currie, 1998). However, with increasing awareness that the total (gamma) 

diversity encompassed by any set of areas (e.g. in a conservation reserve system) will typically 

depend more on the extent to which these areas complement one another in terms of species 

composition, than it does on the richness of individual areas, macroecological modelling is now 

placing greater emphasis on modelling patterns of beta diversity in addition to those of alpha 

diversity (Ferrier & Guisan, 2006; D'Amen et al., 2017).  

We here introduce a new capability for global biodiversity assessment – BILBI (the Biogeographic 

Infrastructure for Large-scaled Biodiversity Indicators) – underpinned by macroecological modelling 

of collective properties of biodiversity. The initial implementation of this infrastructure relies 

strongly on modelling of beta diversity patterns using an extension of one particular technique – 

generalised dissimilarity modelling (GDM; Ferrier et al., 2007) – applied to readily available biological 
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and environmental datasets. The overall framework is, however, designed to be sufficiently generic 

and flexible to allow incremental refinement and addition of modelling techniques and datasets into 

the future. This capability is also intended to complement, rather than compete with, other 

approaches to global biodiversity assessment, including those focussed on individual species (e.g. 

Jetz et al., 2012). Species-level approaches will always play a vital role in biodiversity assessment for 

better-known biological groups, and especially for species of particular conservation concern within 

these groups. However the approach described here has potential to add significant value to such 

species-based assessments by: 1) allowing more effective use of data for highly-diverse biological 

groups, containing large numbers of species but with few records per species; and 2) enabling robust 

extrapolation of expected patterns across poorly-sampled regions, even where the particular species 

occurring in these regions are unknown or unsurveyed. 

METHODS 

General approach 

The BILBI modelling framework (Fig. 2) integrates advances in macroecological modelling, 

biodiversity informatics, remote sensing and high-performance computing to assess spatial-temporal 

change in biodiversity at 30-arcsecond (approximately 1km) grid resolution across the entire 

terrestrial surface of the planet. Best-available data on observed occurrences of species within 

defined biological groups (e.g. all vascular plants) are used to fit correlative models describing 

patterns in the distribution of biodiversity as a function of fine-scaled spatial variation in climate, 

terrain and soils, within major habitat types (biomes) and biogeographic realms. These patterns are 

mapped as spatially-complete gridded surfaces by interpolating and, where necessary, extrapolating 

predictions from the fitted models. The resulting surfaces describe patterns in the spatial 

distribution of biodiversity which would be expected in the absence of anthropogenic habitat 

transformation. These modelled patterns then serve as the foundation for two subsequent pathways 

of analysis in the BILBI framework (Fig. 2).  

In the first pathway these patterns of biodiversity distribution are overlayed with observed changes 

in pressures (direct drivers) – particularly changes in habitat condition resulting from land-use 

change – or in management responses, such as the establishment of protected areas, to generate 

indicators of biodiversity change (e.g. for reporting progress towards the CBD’s Aichi Targets). In the 

second pathway, observed changes are replaced by projected changes in pressures and responses 

into the future. This enables application of BILBI in translating alternative scenarios of global change, 

and associated policy or management options, into expected consequences for the future 

persistence of biodiversity. In assessing such scenarios the BILBI framework allows consideration 

both of impacts mediated by changes in habitat condition, resulting for example from projected 

land-use change, and of potential impacts of climate change on community composition. The latter 

is predicted through space-for-time substitution of climate covariates in BILBI’s correlative models of 

spatial biodiversity distribution.  

In the remainder of this paper we describe our initial implementation of the BILBI framework, 

focusing primarily on the foundational modelling of spatial patterns in the global distribution of 

terrestrial biodiversity. The two analytical pathways flowing from this foundation – relating to 

indicator generation, and scenario analysis respectively (Fig. 2) – will be addressed in detail in 

subsequent papers. As alluded to above, our modelling of biodiversity patterns in the initial 

implementation of BILBI has focused on describing and predicting spatial turnover in species 

composition – i.e. patterns of beta diversity. However, our longer-term intent is to extend this 
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approach to accommodate joint modelling of both alpha and beta diversity; and to integrate next-

generation techniques for achieving this as they become operational.  

Modelling compositional turnover using presence-only data 

GDM is a nonlinear regression technique for modelling the turnover in species composition expected 

between two sites as a function of environmental differences between, and geographical separation 

of, these sites. This technique accommodates two types of nonlinearity commonly encountered in 

large-scaled analyses of compositional turnover. The curvilinear relationship between increasing 

environmental or geographical distance, and observed compositional dissimilarity, between sites is 

addressed through the use of appropriate link functions in a generalised linear modelling framework. 

Variation in the rate of compositional turnover at different positions along environmental gradients 

is addressed by transforming these gradients using smooth monotonic functions fitted to the 

training data (Ferrier et al., 2007). The response variable in a standard GDM model is typically a 

measure of between-site compositional dissimilarity, calculated from lists of species observed at 

each of the two sites, using indices such as Sørensen or βsim (e.g. Jones et al., 2013; König et al., 

2017). However, one of the biggest challenges in applying GDM globally has been that a large 

proportion of available species-occurrence data are presence-only rather than presence-absence in 

nature. Most occurrence records accessible through major data infrastructures, such as the Global 

Biodiversity Information Facility (GBIF), have been generated through geo-referencing of specimens 

from natural-history collections, or from relatively opportunistic field observations of individual 

species, rather than from planned inventories systematically recording all species present at a given 

site (Isaac & Pocock, 2015). Such data are not well suited to estimating compositional dissimilarity 

between sites, particularly in areas with lower sampling effort. This is because estimates of 

compositional dissimilarity will be inflated, to a varying yet unknown extent, by false absences of 

species at each of the sites concerned (Beck et al., 2013). 

In implementing the BILBI framework we have addressed this problem by modifying GDM to work 

with a binary response variable, defined in terms of matches versus mismatches in species identity, 

for pairs of individual species observations (where a “species observation” is the recorded presence 

of a particular species at a particular site). The probability that a species randomly drawn from site i 

has the same identity as a species randomly drawn from site j is expected to be a function of both 

the total number of species actually occurring at each of the two sites (alpha diversity) and the 

number of species at each site which are unique to that site, because they do not occur at the other 

site (beta diversity), following the expression: 
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where s is the identity of an individual species belonging to the combined list of species occurring at 

either one, or both, of the sites (�) and α is the number of species found at a particular site. As the 

quantity being summed reduces to 0 when s is not shared by both sites, this equation can be 

simplified to to ��,� �   1 �	�  	�
⁄ "# , where # is the number of species shared between the two 

sites.  

Using this understanding, we fit a modified form of GDM in which the response variable is a binary 

description of the match (0) or mismatch (1) in species identity of a randomly drawn pair of species 
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observations from two sites. This observation-pair GDM (obs-pairGDM) is then modelled as a non-

linear combination of environmental covariate data following 

$�%�� 1 & ��,�" �  '� (  �)�	 *	,�"�� & �	 *	,�")



	��

(  + 

where f represents a combination of I-spline basis functions (Ramsay, 1988). We can now model pi,j 

as a function of the environmental separation between two sites in the same way as a standard 

GDM, by ensuring )�	 *	,�"�� & �	 *	,�") represent the separation of a pair of sites in the spline 

transformed environmental space. This is not yet an estimate of the turnover in species composition 

between two sites. As we showed above, pi,j is a function not only of compositional turnover, but 

also of the richness of species at the two sites concerned. However, if we can estimate species 

richness then we can decompose this value into an estimation of compositional turnover between 

any pair of sites ('��, using  

'�� � 1 &  �����  

-here �� represents an estimate of the probability that a randomly drawn pair of species from a pair 

of identical sites (i.e. compositional turnover equals 0) are the same. To enable fitting we estimate 

�� as the intercept of our model – the point where environmental separation between sites is 0 and 

thus the sites are treated as the same.  

By fitting our models to pairs of individual species observations this method avoids the biases that 

can result from modelling community data where the inventory of species at sites is incomplete. We 

just need to satisfy the assumption that the particular species recorded as present at a given site 

constitute a random sample drawn from all species actually occurring at that site. In its current form 

the method also assumes that species richness remains reasonably constant across the region of 

interest – i.e. that the number of species actually occurring at individual sites (1km cells in this study) 

does not vary markedly across the region – and therefore that the effect of alpha diversity on the 

response being modelled is accounted for by the model’s intercept. As we describe in the next 

section, we have taken considerable care to minimise violation of this assumption by fitting separate 

models for different biomes and biogeographic realms. Our team is also currently developing an 

extension of the above approach which relaxes this assumption, and thereby explicitly models pi,j  as 

a function of variation in both alpha and beta diversity. Preliminary testing suggests that that this 

approach holds considerable promise as a means of simultaneously modelling patterns of both 

species richness and compositional turnover from presence-only data.  

Initial global implementation – model fitting 

A suite of models, describing compositional-turnover for species in three biological groups 

(invertebrates, vascular plants and vertebrates) across the terrestrial surface of the globe (above 

60˚S, i.e. excluding Antarctica) was generated using this obs-pairGDM technique (e.g. Fig. 3a-d). 

Models were fitted by pairing the best-available climate, terrain and soil surfaces with data from 

GBIF and Map of Life (MoL; Jetz et al., 2012) to produce global estimates of compositional-turnover 

at 30-second resolution (described in more detail below). 

Models were developed within the WWF nested realm, biome and ecoregion framework, with 

separate models fitted to each of the 61 unique realm/biome or bio-realm intersections. This 

allowed consideration of major biogeographic discontinuities between realms and potential 

variation in the response of different species assemblages between biomes. However, biomes were 
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as far as possible not treated as discrete units, so models drew on biological and environmental data 

from both the core biome and adjacent biomes within the realm, and from adjacent ecoregions in 

neighbouring realms where the realm boundary was considered porous to the movement of species 

(e.g.  the Nearctic/Neotropics divide in Florida). Models were then fitted to a combination of pairs of 

observations taken 50% from sites exclusively within the target bio-realm  and 50% from pairs of 

sites taken between the target bio-realm and the buffering regions 

Our models used three spline basis functions with knots placed at the 0, 0.5 and 1 quantiles of the 

environmental space contained within each target bio-realm. Where the environmental envelope of 

samples taken from buffering regions lay outside the envelope for the target biome, additional knots 

were added at the outer limits, resulting in 3, 4 or 5 knots depending on the structure of the data. 

This allowed us to maximise the description of spatial pattern within our primary analysis area (the 

target bio-realm) while also incorporating potential additional spatial pattern arising from these 

neighbouring regions. 

Geographic distance is generally a very good descriptor of spatial turnover in species composition, 

but both describes the effects of biogeographical separation and acts as a proxy descriptor for the 

effects of environmental gradient. In this latter context, it is important to avoid geographic distance 

overwhelming the effects of more direct descriptors within the models. We therefore fitted our 

models in a two-staged procedure; firstly fitting to the a priori selected set of environmental 

predictor variables, and then refitting the models with an offset, allowing geographic distance to 

describe only variation not already described by the environmental covariates. Geographic distance 

was fitted using a linear function, rather than the complex splined functions used for environmental 

covariate data.  

Initial global implementation – biological inputs 

Biological data on species observations was obtained by downloading the complete GBIF database 

for vascular plants, invertebrates and reptiles. These data were paired with the entire MoL database 

for birds, amphibians and mammals for final analyses. All data were then filtered to remove 

erroneous points falling outside of our land mask (e.g points falling in the ocean) with records found 

to occur ≤ 1 km from the coastline, and belonging to terrestrial species, moved to fall within the 

nearest terrestrial cell. Following this, terrestrial species where resources are primarily obtained 

from the marine environment (e.g. procellariform seabirds and pinniped) were removed from the 

dataset. After consultation with our taxonomic experts for vascular plants (JR Croft) and 

invertebrates (D Yeates) we reduced the families within the invertebrate group to a subset of 

families where species are predominantly terrestrial (or in a terrestrial phase of their life cycle when 

sampled) and the communities of practice surrounding the recording of these species are similar 

(see list in supplementary materials). 

The final set of species records was then aggregated into individual 30-arc second resolution sites 

concordant with the spatial grain of the environmental surfaces being used in the modelling. Data 

were then filtered to contain only unique species records per unique spatial site. Filtering then 

occurred to remove sites where an extreme number of species (in relation to surrounding sites), 

likely representing the location of biological collections rather than actual species locations. The final 

pool of data resulted approximately 300,000 individual species and 100,000,000 individual records 

being included in the modelling procedure (Table 1). We sampled a maximum of 1.5 million samples 

from each of the unique realm-biome datasets. Samples further stratified so that within the broad 

biological groups, families/taxon where there existed different communities of practice of the 

collection of these data, and thus the potential for bias/skew in the distribution of these data, no 
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pair-wise samples were taken between these groups (See Table S1 for groupings). These 1.5 million 

samples were evenly sampled from each of these separate lower level biological groupings, however 

where the desired number of samples could not be drawn from the data, the remaining groups were 

not restricted to only this lesser number of samples. Additionally, to avoid a skewed influence of a 

small number of species observations within any model, each single species record was only used a 

maximum of 1 times during the development of sample pairs.  

Initial global implementation – environmental and land-use inputs 

Environmental covariate data were selected a priori from the suite of possible bioclimatic, terrain 

and soil predictors. Individual model selection of covariate sets was not performed as this would 

reduce the comparability of results between models and limit our ability to generate continuous 

surfaces of biological composition across large areas. This a priori selection, drew on significant 

variables from past GDM models fitted by the team across a range of scales and biota, and an 

attempt to capture ecologically limiting factors across the world. Additional criteria were that the 

layers were freely available with consistency of global coverage. 

A set of 15 standard candidate environmental variables were prepared as continuous global surfaces 

(Table 2). The grids comprise 5 soil variables (bare ground, bulk density, clay, pH, silt), 2 terrain 

variables (topographic roughness index, topographic wetness index) and 8 climate variables (annual 

precipitation, annual minimum temperature, annual maximum temperature, maximum monthly 

diurnal temperature range, annual actual evaporation, potential evaporation of driest month, 

maximum and minimum monthly water deficit). For climate variables it was important that they 

could be consistently projected through time, and so the WorldClim (Hijmans et al., 2005) elevation 

adjusted data set was chosen over a remotely sensed product. Adjustment for radiative shading 

based on the GMTED2010 DEM (Danielson & Dean, 2011), and derivation of evaporation, water 

balance and summary statistics was carried out as in (Reside et al., 2013a). All grids were aligned to 

the WorldClim 30s land extent, with water bodies (defined as the Global Lakes and Wetlands 

Database v3 Lakes and Reservoirs: Lehner & Doll, 2004) masked out. Where necessary for the soil 

and terrain layers, minor information gaps were filled using a combination of extrapolation and 

appropriate values drawn from the literature. All methods developed and used to create these 

layers were designed to the applicable to both present day bioclimatic data and future scenarios 

generated from General Circulation Models (GCM). 

As previously mentioned, the other method that impacts can be input into BILBI is through the use 

of condition layers that scale the local impacts of land-use and habitat protection/conversion. We 

have aggregated multiple different layers for use, depending on the desired analysis. The World 

Database on Protected Areas (WDPA) that is curated by the World Conservation Monitoring Centre 

(UNEP & WCMC, 2016) is ingested as a condition layer when running analyses to assess the 

effectiveness of protected area coverage. Loss of forest detected by the global forest loss dataset 

(Hansen et al., 2013) is used to analyse the biodiversity impacts of forest habitat loss. We have also 

developed methods and datasets for global land-use at 30-arc second resolution by downscaling 

coarse grained land-use data (Hurtt 2011). By teaming with the PREDICTS project (Projecting 

Responses of Ecological Diversity In Changing Terrestrial Systems; Hudson et al., 2014) we can 

convert these land-use layers into estimates of the loss of local species diversity (species richness; 

e.g. Gray et al., 2016; Newbold et al., 2016; Palma et al., 2017) along a 0 – 1 scale, which then allows 

us to infer regional land-use impacts (though loss of compositional similarity) to biodiversity using 

BILBI.  
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Figures and Tables 

 

Figure 1: Depiction of the problem of scale when making biodiversity assessments. (a) shows a true 

colour satellite overlay of the region surrounding Mexico city with typical resolutions for global 

analyses – a 30 km
2
 grid (black) and ecoregional boundaries (yellow) – and protected areas 

overlayed in red. Note the geographic/topographic biases in placement of both protected areas and 

urban development. (b) shows the same region but the different ecological communities (defined by 

similarity between communities in each 1 km
2
 pixel) where similar colours represent similar 

communities. (c) shows land-use from Hoskins et al. (2016) where red depicts urbanisation, yellow 

represents cropping regions and green shows natural environments – note: colours show 

proportional values of land-use for each pixel with the transparency set as the proportion of each 

land-use per cell, as such, blended colours represent pixels with mixed land-uses.  
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Figure 2: The basic structure of the BILBI modelling framework, showing how our initial modelling of 

compositional turnover can follow to separate analysis pathways to produce either indicators of 

recent change in community composition or possible future scenarios of change to composition. 
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Figure 3: Example model fitting and validation outputs showing: (a) the observed proportion of 

species mismatches for 10 bins along the predicted proportion of species mismatches from the 

model. (b) the density of observed species matches and mismatches along the predicted ecological 

distance (in logit space) from the model. (c) the observed (blue) and predicted (green) proportion of 

species mismatches for 100 bins along the predicted ecological distance (in logit space). (d) 

comparison of observed (blue) and predicted (green) compositional dissimilarity against the 

proportion of mismatches. All error bars show the observed proportion of matches and mismatches 

± the variance. 
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Table 1: Summary counts of the numbers of species and records utilised in the obs-pairGDM 

modelling 

 
Invertebrates Plants Vertebrates 

Number of Species 132761 254145 24442 

Number of Records 13244784 52489096 33549534 
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Table 2: Description of data layers used as covariates during the modelling process 

Variable Short name Notes Classification Source Reference 

Bare ground (proportion) BARE G20ESA SoilGrids1km Soil www.worldgrids.org 

Hengl, T (2005) 

through ISRIC - 

WDC Soils 

Bulk density BD BDRICM SoilGrids1km Soil www.soilgrids.org 

Hengl, T (2014) 

through ISRIC - 

WDC Soils 

Clay content mass fraction in 

% 
CLAY CLYPPT SoilGrids1km Soil www.soilgrids.org 

Hengl, T (2014) 

through ISRIC - 

WDC Soils 

pH in H2O * 10 PH PHIHOX SoilGrids1km Soil www.soilgrids.org 

Hengl, T (2014) 

through ISRIC - 

WDC Soils 

Silt content mass fraction in % SILT SLTPPT SoilGrids1km Soil www.soilgrids.org 

Hengl, T (2014) 

through ISRIC - 

WDC Soils 

Terrain Ruggedness Index 

(TRI) GMTED2010 
RUG 

Mean value of TRI, using Median Statistic, 7.5 

arc-seconds. Aggregation done at 1km (0.00833 

degree) by calculating the mean values among 

16 pixel. Calculated from the GMTED2010 7.5 

arc –second product : Data available from the 

U.S. Geological Survey. (Danielson, 2011) 

 

Terrain Yale University 
(Amatulli et al., 

2018) 

Topographic Wetness Index TWI 
TWISRE3: SAGA GIS Topographic Wetness Index 

calculated from SRTM 30+ and ETOPO DEM. 
Terrain www.worldgrids.org 

(Hengl, 2013) 

through ISRIC - 

WDC Soils 

Annual total precipitation 

(mm) 
PTA  Climate www.worldclim.org 

(Hijmans et al., 

2005) 

Mean minimum temperature 

of the month of lowest 

minimum temperature (°C) 

TNI  Climate www.worldclim.org 
(Hijmans et al., 

2005) 

Mean diurnal temperature 

range of the month of highest 

diurnal temperature range 

(°C) 

TRX Radiative adjustment of maximum temperature 
Climate (radiative 

adjustment) 
www.worldclim.org 

(Hijmans et al., 

2005) (Reside et 

al., 2013b) 
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Mean maximum temperature 

of the month of highest 

maximum temperature (°C) 

TXX Radiative adjustment of maximum temperature 
Climate (radiative 

adjustment) 
www.worldclim.org 

(Hijmans et al., 

2005) 

(Reside et al., 

2013b) 

Annual total actual 

evaporation (mm) 
EAAS 

Actual evaporation calculated as (Reside et al., 

2013b) using Budkyo bucket model. Soil bucket 

capacity taken as (“Depth to bedrock (R 

horizon) up to 200cm: www.soilgrids.org” 

*”Harmonised World Soil Database v1.2: 

Available Water Content 5km 

(FAO/IIASA/ISRIC/ISS-CAS/JRC, 2012)) 

Derived climate 

(radiative 

adjustment) 

www.worldclim.org 

(Hijmans et al., 

2005) 

(Reside et al., 

2013b) 

Mean potential evaporation 

of the month of minimum 

potential evaporation (mm) 

EPI 

Priestley-Taylor evaporation with radiative 

correction applied to maximum temperature 

and radiation. 

Derived climate 

(radiative 

adjustment) 

www.worldclim.org 

(Hijmans et al., 

2005) (Reside et 

al., 2013b) 

Mean water deficit of the 

month of minimum water 

deficit (driest) (mm) 

WDI 

Water deficit calculated as monthly 

Precipitation-Potential Evaporation so positive 

water deficit if precipitation exceeds 

evaporation. 

Derived climate 

(radiative 

adjustment) 

www.worldclim.org 

(Hijmans et al., 

2005) (Reside et 

al., 2013b) 

Mean water deficit of the 

month of maximum water 

deficit (wettest) (mm) 

WDX 

Water deficit calculated as monthly 

Precipitation-Potential Evaporation so positive 

water deficit if precipitation exceeds 

evaporation. 

Derived climate 

(radiative 

adjustment) 

www.worldclim.org 

(Hijmans et al., 

2005) (Reside et 

al., 2013b) 
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