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Abstract 

The simplicity and cost-effectiveness of CRISPR technology have made high-throughput pooled 

screening approaches available to many. However, the large amount of sequencing data derived from 

these studies yields often unwieldy datasets requiring considerable bioinformatic resources to deconvolute 

data; a feature which is simply not accessible to many wet labs. To address these needs, we have 

developed a cloud-based webtool CRISPRCloud2 that provides a state-of-the-art accuracy in mapping 

short reads to CRISPR library, a powerful statistical test that aggregates information across multiple 

sgRNAs targeting the same gene, a user-friendly data visualization and query interface, as well as easy 

linking to other CRISPR tools and bioinformatics resources for target prioritization. CRISPRCloud2 is a 

one-stop shop for labs analyzing CRISPR screen data.  
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Introduction 

Genetic screens approaches are unbiased and rapid hypothesis generating tools allowing for the 

identification of novel and important biological findings. Initially, these screens were performed using 

chemical mutagenesis or in an arrayed manner using RNA inference (RNAi) approaches and yielded 

several important biological findings1–6. However, the advent of microarray and next-generation 

sequencing (NGS) technologies have rapidly moved the field towards large-scale, pooled approaches7–11. 

In earlier cases, pooled shRNA (short-hairpin RNA) libraries are barcoded and packaged into viruses, 

infected in a population of cells and selected for a given phenotype (e.g. growth or fluorescence). Then, 

hit identification was performed by hybridizing microarray12. In later iterations of this approach, this 

deconvolution step was performed using NGS13. 

The development and optimization of CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic 

Repeats and CRISPR-associated protein 9) systems have since propelled pooled screens approach to a 

whole new level. For instance, the robustness of hit identification has reduced the requirement for higher 

order redundancy in the number of targeting sgRNAs (single-guided RNAs), thus allowing for greater 

library diversity. Moreover, the availability of these pooled libraries on repositories such as Addgene 

(https://www.addgene.org/) have promoted their widespread implementation by the scientific 

community. Thus, the simplicity and cost-effectiveness of CRISPR technology have put pooled screens 

within the technical reach of most biomedical researchers14. While great strides that have been made on 

the experimental side, biologists are left with a drawback: bioinformatics complexity. To wit, the 

simultaneous testing of thousands of genetic perturbations demands considerable bioinformatics resources 

that are simply not accessible to many wet labs. Therefore, for an experimentalist to undertake such a 

screening project, they must first identify and collaborate with a computational biologist who is adept at 

analyzing such screens.  

Before the CRISPR pooled screening era, several methods were proposed to ease deconvoluting data of 

RNAi pooled screening15–18, but most of those methods were not sufficient to CRISPR/Cas9 pooled 

screening data analysis19. MAGeCK (Model-based Analysis of Genome-wide CRISPR/Cas9 Knockout) 

was the first tool which was developed to provide CRISPR/Cas9 pooled screening data using a negative-

binomial model and a modified robust ranking aggregation (RRA) algorithm19, and this allows 

deconvolution of the analysis from the beginning. HitSelect20, ScreenBEAM (Screening Bayesian 

Evaluation and Analysis Method)21, BAGEL (Bayesian Analysis of Gene Essentiality)22, sgRSEA (single-

guide RNA Set Enrichment Analysis)23, PBNPA (Permutation based non-parametric analysis of 

CRISPR/Cas9 screen data)24, and MAGeCK-VISPR25 proposed to provide a more accurate deconvolution 

of the data with different statistical models. However, those analysis tools tend to be script-based because 

they were developed for bioinformaticians or scientists who are very computationally savvy. Of the 

newly-developed tools, the most user-friendly are CRISPRAnalyzeR26, CRISPRcloud27, and PinAPL-

Py28, as they have web-based interfaces and represents as a first-step toward enabling scientists who are 

actually generating the CRISPR/Cas9 screen data to analyze these large dataset.  However, each of these 

tools have various of rate-limiting steps such as requiring intricate tuning of parameters for trimming and 

mapping data, long transfer times and file copying errors in the transfer of a large amount of sequence 

data over the internet, lack of fast and powerful statistical tools etc. Overall, the promise of an online tool 

for researchers is still unfulfilled.     

In light of those challenges, we have developed CRISPRCloud2 (CC2, http://crispr.nrihub.org). CC2 is a 

one-stop shop for researchers with zero programming background to pre-process, perform quality checks, 

apply statistical analyses, query, and visualize their data (Table 1).   
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Features CRISPRCloud2 caRpools29 CRISPRAnalyzeR26 

MAGeCK-

VISPR25 

PinAPL-

Py28 

Web interface ✓  ✓  ✓ 

Cloud service ✓     

Parameter free trimming ✓   ✓  

Installation free ✓  ✓  ✓ 

Web-based FASTQ file processing ✓  ✓  ✓ 

Automatic reverse complement 

FASTQ file detection 
✓   ✓  

Gene-level statistics ✓ ✓ ✓ ✓ ✓ 

sgRNA-level statistics ✓ ✓ ✓ ✓ ✓ 

Multiple group studies ✓ ✓ ✓ ✓ ✓ 

Quality control ✓ ✓ ✓ ✓ ✓ 

sgRNA mapping algorithm ✓ ✓ ✓ ✓ ✓ 

Table 1. Feature table of CRISPRCloud2 as compared with existing methods. HitSelect, 

ScreamBEAM, PBNPA, and sgRSEA are not listed in this table because they are script-based and do not 

provide the non-statistical features listed below. 

Results 

Architecture of CRISPRCloud2 
Building web-based analysis platform for big data analysis is a challenging task. The first challenge lies 

in that large files has to be transferred over the Internet. Raw FASTQ files from CRISPR/Cas9 pooled 

screening can be substantial (about 1~10 GB per a sample) and sending those large files through the 

Internet is not practical. Indeed, other web-based platforms which require uploading FASTQ files are 

having an issue with the large size datasets30. Furthermore, and perhaps more importantly, uploading raw 

data has data-privacy implications, which is becoming a major concern recently31.  

To overcome these challenges, we developed CC2 using the Amazon Web Service (AWS) environment 

(Fig. 1). It is compatible with most modern web browsers. The fast client-side gRNA mapping program 

implemented can reduce input files of several gigabytes into a single megabyte-size file. By transferring 

the much smaller count file through the Internet, CC2 decreases the transfer time and prevents the sharing 

of raw input files. Our adaptive mapping algorithm implemented using Angular (https://angular.io/) and 

TypeScript (https://www.typescriptlang.org) provides an open-source front-end web application platform.  

Another challenge is the huge demand on computing power. Platforms built with a centralized server 

solution will have load-balancing problems when many users are submitting their requests 

simultaneously, resulting a much longer user waiting time and even system-wide failure. To address this 

challenge, CC2 provides a decentralized and a cloud-computing based scalable service through the 

combination of  AWS infrastructure (Fig. 1) including Amazon Elastic Compute Cloud (EC2) 

(https://aws.amazon.com/ec2/), Amazon Simple Storage Service (S3) (https://aws.amazon.com/s3/) and 

Amazon Simple Queue Service (SQS) (https://aws.amazon.com/sqs/). 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 27, 2018. ; https://doi.org/10.1101/309302doi: bioRxiv preprint 

https://angular.io/
https://www.typescriptlang.org/
https://aws.amazon.com/ec2/
https://aws.amazon.com/s3/
https://aws.amazon.com/sqs/
https://doi.org/10.1101/309302
http://creativecommons.org/licenses/by-nd/4.0/


 

Figure 1. The illustration of CRISPR/Cas9 pooled screening experiment, workflow diagram, and 

configuration for CRISPRCloud2. (a) The schematic illustration of a CRISPR/Cas9 pooled screening 

experiment. Each dotted arrow line links between an experimental step and an input of CRISPRCloud2. 

(b) The workflow of CRISPRCloud2. This entire workflow runs on Amazon web services (AWS), and 

various web-based technologies were used to build this web-based cloud computing platform. 

 

The adaptive hash-mapping algorithm provides a fast and accurate 

alignment  

To map CRISPR/Cas9 screen data to a reference library accurately, we introduced an adaptive hash-

mapping algorithm that is both fast and extremely accurate. We tested the algorithm on five published 

datasets (Supplementary Table 1), and our results demonstrate better mappability than MAGeCK and 

PinAPL-Py (Fig. 2), at comparable speeds. Our scalable cloud-based architecture, coupled with the binary 

presentation-based algorithm, processes millions of reads in a matter of minutes. CC2 is a few seconds 

slower than MAGeCK which is a stand-alone application, but it is more accurate than other methods. CC2 

is currently the only CRISPR/Cas9 online screen analysis tool with parameter-free guide RNA (gRNA) 

level quantification.  

To understand the performance differences, we studied the reads that are mapped by CC2 but not 

MAGeCK or PinAPL-Py (Fig. 3). We observed that only 64% of the reads were mapped by MAGeCK 

compared to CC2 in Evers RT112 dataset (Fig. 2). This is primarily due to the fact that MAGeCK 

estimates the trimming window using the first N reads from the input (N is 100,000 by default).  There is 

no guarantee that these windows are optimal for the rest of the input files (Fig. 3b). PinAPL-Py uses 

cutadapt32 for the read trimming and bowtie233 for the mapping using the local alignment mode. We 

observed that the local alignment of bowtie2 failed due to the incorrect trimming from cutadapt (Fig. 3b).  
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Figure 2. CRISPRCloud2 outperforms MAGeCK and PinAPL-Py in the percentage of mapped 

reads in six benchmark datasets.  

 

 

Figure 3. Examples of mapping results of CC2, MAGeCK, and PinAPL-Py. Examples are taken from 

Evers et al.'s CRISPR RT112 cell line screening data. (a) All three methods successfully detect sgRNA 

sequences. (b) Only CC2 successfully identifies sgRNA sequences while MAGeCK and PinAPL-Py 

failed to identify the correct sgRNA sequences from the reference library. 
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CRISPRCloud2 offers robust target identification 

Identifying candidates by statistical hypothesis-testing is the second key component in any screen 

analysis. In CC2, we have adopted a beta-binomial model34 with a modified Student’s t-test to measure 

differences in single-guide RNA (sgRNA) levels, followed by Fisher's combined probability test to 

estimate the gene level significance.  In this regard, CC2 is five hundred times faster than CRISPRcloud 

for a genome-wide CRISPR/Cas9 screening dataset (Supplementary Table 2). To evaluate the statistical 

power of CC2, we compared it with six state-of-the-art methods on three benchmark datasets evaluating 

gene essentiality35 using CRISPRn (CRISPR nuclease gene knockout via Cas9and CRISPRi (a 

CRISPR/Cas9 system with an inactive Cas9 fused to the transcriptional repressor KRAB which results in 

gene repression) technologies (Table 2). These benchmark datasets were constructed based on 46 genes 

that are essential for cell survival and 47 genes that are non-essential. As shown in Fig. 4 and 

Supplementary Fig. 1 and 2, CC2 outperforms all other methods at every FDR cut-off level. All 
methods demonstrated a small type-I error due to the strong lethality phenotype of the CRISPR assay, but 

CC2 demonstrated a significantly lower type-II error than all the other methods (Supplementary Fig. 2). 

Furthermore, we also find that other methods are not able to detect some of the essential genes (i.e. 

COPS8, RPL5, and RPL27, except COPS8 and RPL5 in CRISPRi-RT112 screening) even when more 

than half of sgRNAs for these genes showed differential negative abundance between the two-time points 

(Fig. 5 and Supplementary Figs. 3 and 4). Across datasets from two cell lines and two 

CRISPR/CRISPRi libraries, with false discovery rates (FDR) ranging from 10% to 0.01%, CC2 had a 

much larger F1-score and recall. CC2 is thus both accurate and sensitive. 

Name 

sgRNA-level 

statistics 

gene-level 

statistics Statistical models 

CRISPRCloud2 ✓ ✓ Beta-binomial, Fisher’s method 

HitSelect20  ✓ Stochastic multi-objective ranking 

MAGeCK19,25 ✓ ✓ Negative-binomial, αRRA, MLE 

PBNPA24  ✓ Non-parametric test 

ScreenBeam21  ✓ Bayesian hierarchical modeling 

sgRSEA23  ✓ Non-parametric test 

PinAPL-Py28 ✓ ✓ Negative-binomial, αRRA, STARS 

Table 2. Statistical models used by CRISPRCloud2 and existing methods. All of the methods were 

used in the target identification benchmarking. 
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Figure 4. CC2 offers robust target identification with high precision and recall. (a) Heatmaps 

illustrate FDRs of gene statistics from each of six leading high-complexity pooled screen analysis tools. 

The color of the cells indicates gene essentiality (black color for essential genes, white color for non-

essential genes). (b) F1-score measurements at different FDR cut-offs across all methods. At various 

commonly used FDR cut-off, CC2 was able to identify most of the essential genes with high precision 

and recall rate.  
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Figure 5. CRISPRCloud2 detects essential genes missed by other leading methods: the case of 

RPL5.  sgRNA quantification for RPL5 in cell line RT112 (a), UMUC3 (b) using CRISPR and RT112(c) 

using the CRISPRi library.  The FDR value for RPL5 in each screen is plotted across all the methods.  A 

horizontal line at FDR=0.01 is used as a threshold for statistical cutoff.  CC2 outperforms all other 

methods of identifying RPL5 as an essential gene across all benchmark datasets. 

Discussion 

The advent of CRISPR-Cas9 systems as powerful and refined genome manipulation techniques has 

heralded a new era of large-scale screening approaches. Indeed, over the past three years, there has been 

exponential growth in the number of pooled genetic screens. The number of datasets for CRISPR/Cas9 

screens in Gene Expression Omnibus have more than tripled each year (39 datasets in 2015, 121 datasets 

in 2016, and 408 datasets in 2017). Much of this has been due to the widespread availability of large-scale 

genome-wide perturbation libraries via the non-profit repository Addgene (https://www.addgene.org/) and 

resource sharing between labs. Cheaper and faster sequencing options have also improved the 

accessibility of this type of approach to virtually any lab. However, while the major limitations of these 

first two aspects have been lifted, the computational toll that data deconvolution takes has rendered these 

approaches daunting to many. In this study, we lifted this last barrier by providing a framework – 
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CRISPRCloud2 – that is straightforward, multifunctional and does not require heavy computation. This 

pipeline is a one-stop-shop for individuals performing CRISPR-based screens and outperforms, to the 

best of our knowledge, all other current CRISPR-screen deconvolution programs.  

Because we intend CC2 to be accessible to researchers with no background in programming, we designed 

the interface to guide the user through each step of the analysis, from uploading raw data to selecting 

target hits based on summary statistics. We have also developed a suite of cloud-based solutions for data 

query and visualization (Supplementary Methods). Moreover, we complement the site with a video 

tutorial as well as a step-by-step guide to running one’s data through the pipeline. Importantly, results 

obtained from CC2 (i.e. “hits” identified in the screen) can then be immediately linked to other 

CRISPR/Cas9 screen analysis tools such as GenomeCRISPR36, CRISPRTools37, as well as MARRVEL38. 

The latter approach allows the user to query the identified hits for their human disease relevance and 

functional annotation in model organisms, thus promoting functional prioritization. With the increasing 

applications of CRISPR/Cas9 systems proliferating, particularly in regard to multiplexing/pooled 

approaches, the need for accessible bioinformatics tools grows more pressing. With CC2, the research 

community has a robust and user-friendly online tool to mine this data with ease. 

Methods 

Statistical hypothesis testing using beta-binomial distribution for 

sgRNA-level differential analysis 

We adopted a beta-binomial model proposed for Serial Analysis of Gene Expression (SAGE) by Baggerly 

et al.34.  Specifically, let 𝑝𝑖 be the true proportion of an sgRNA in sample 𝑖. We assume the value of 𝑝𝑖 can 

vary from sample to sample and follows a beta distribution, 𝑝𝑖~𝐵𝑒𝑡𝑎(𝛼, 𝛽). Let 𝑋𝑖  denote the number of 

read counts for a sgRNA in the 𝑖𝑡ℎ sample.  We assume 𝑋𝑖  follows a binomial distribution, 

𝑋𝑖|𝑝𝑖~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛𝑖 , 𝑝𝑖), where 𝑛𝑖 is the total number of mapped reads in sample 𝑖. To combine the 

estimated 𝑝̂𝑖 across multiple samples of the same treatment group, a linear model is proposed  𝑝𝐴 =
∑𝑤𝑖𝑝𝑖, where i is the index for samples and w is the weight vector for samples in group A.  Baggerly et 

al. proved that as long as 𝑤𝑇1 = 1, the expectation of 𝐸(𝑝𝐴) is unbiased. The value of w is estimated 

through gradient descent methods by minimizing the variance on  𝑝𝐴.  Baggerly et al. showed that 𝑤𝑖 ∝

[
1

𝛼+𝛽
+

1

𝑛𝑖
]

−1
.  

CRISPRCloud2 performs the sgRNA-level differential analysis between two groups using a Student t-test 

like statistic proposed by Baggerly et al.:   

𝑡 =
𝑝𝐵 − 𝑝𝐴

√𝑉𝐵 + 𝑉𝐴

 

where 𝑝𝐴 and 𝑝𝐵 are the proportion of sgRNA, and 𝑉𝐴 and VB are the group variance of sgRNA, for 

groups A and B, respectively. Test statistic 𝑡 represents the strength of the difference of sgRNA 

abundance between groups 𝐴 and 𝐵. In other words, a large positive 𝑡-value indicates that the quantity of 

sgRNA in group 𝐵 is more than in group 𝐴, and a large negative 𝑡-value indicates that the quantity of 

sgRNA in group 𝐵 is less than in group 𝐴.  

The variance is estimated by 
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 𝑉̂ = max [
∑𝑤𝑖

2𝑝𝑖
2−(∑𝑤𝑖

2) 𝑝2 

1−(∑𝑤𝑖
2)

,

∑𝑋𝑖
∑𝑛𝑖

(1−
∑𝑋𝑖
∑𝑛𝑖

) 

∑𝑛𝑖
 ]. 

To measure the statistical significance of the difference, we approximate the 𝑝-value of a given 𝑡 in a 

Student’s 𝑡-distribution with a degree of freedom (𝑑𝑓) defined by 

𝑑𝑓 =
(𝑉𝐴+𝑉𝐵)2

𝑉𝐴
2

𝑛𝐴−1
+

𝑉𝐵
2

𝑛𝐵−1

  , 

where 𝑛𝐴 and 𝑛𝐵  are the numbers of replicates in groups 𝐴 and 𝐵.  

A sgRNA log2 fold-change in abundance between A and B (log2 𝐹𝐶) is estimated by  

log2 𝐹𝐶 = log2
𝑝𝐵

𝑝𝐴
 . 

sgRNA 𝒑-value aggregation for gene-level statistics 

Because multiple significant sgRNAs targeting the same gene hold greater biological significance than a 

single significant sgRNA, we must aggregate p-values to increase confidence in target identification. To 

do so, we combine 𝑝-values of sgRNAs for a target gene using Fisher’s method39 to assess overall 

differences at the gene level. The combined chi-square statistical test is used: 

χ2𝑘
2 ∼ −2 ∑ 𝑙𝑛(𝑝𝑗)𝑘

𝑗=1 , 

where 𝑘 is the number of sgRNAs targeting a gene in the screen and 𝑝𝑗 is the 𝑝-value of 𝑗-th sgRNA for 

the gene. 𝜒2 follows a chi-squared distribution with 2𝑘 degrees of freedom. To correct for multiple 

hypothesis testing, we adopted the Benjamini-Hochberg procedure40 to estimate the False Discovery Rate 

(FDR). 

Gene-level statistics benchmarking on existing methods 

We used three different CRISPR/CRISPRi pooled screen datasets from Evers et al.11(RT112 and UMUC3 

cell line screens with CRISPR; RT112 cell line screen with CRISPRi), which provide ground-truth labels 

of essentiality for each gene. With those screening datasets and labels, we benchmarked the accuracy of 

essential gene detection by CC2 with six other published methods (Table 2). We computed the False 

Discovery Rate (FDR) for each gene from each method in the benchmark and set five different levels of 

FDR cut-off (0.1, 0.05, 0.01, 0.005, 0.001) for essential gene classification. For example, if we set FDR 

cut-off to 0.1, then a gene is predicted to be essential in the cell line if the FDR of the gene falls below the 

cut-off value. We calculated recall (a recall value close to 1 indicates a prediction with a low false 

negative rate), precision (a precision value close to 1 indicates a prediction with a low false positive rate), 

and F-measure (the harmonic mean of precision and recall) of all the methods at each FDR level. All of 

the data and scripts for the benchmarking are available at https://github.com/hyunhwaj/CC2-bench. 

Parameters used in these experiments are described below. 

CRISPRCloud2 

Benchmarking of CRISPRCloud2 was performed without parameter tuning since CC2 is parameter-free. 

FDR values for negative changes between two different time points (T0 and T1) from CC2 statistical 

analysis were used for benchmarking. 
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MAGeCK 

MAGeCK version 0.5.6 was used for benchmarking. We ran MAGeCK with the ‘mageck test’ command 

with the following parameters: --norm-method and --adjust-method. We performed 100 permutations for 

the modified robust ranking aggregation (RRA) algorithm to estimate the gene-level statistics on the 

benchmark datasets. 

ScreenBEAM 

ScreenBEAM R package (version 1.0.0, https://github.com/jyyu/ScreenBEAM) was used for 

benchmarking ‘data.type’ parameter was set as ‘NGS,’ and ‘do.normalization’ was set as TRUE, ‘nitt’ 

and ‘burnin’ parameters for Bayesian computing were set at 15000 and 5000. ScreenBEAM does not 

provide the one-sided 𝑝-value for negative selection, so for the FDR comparison with other methods, we 

changed the FDR of a gene to 1 if the 𝛽 of the gene is greater than 0. 

sgRSEA 

sgRSEA R package (version 0.1, https://cran.r-project.org/web/packages/sgRSEA/) was used for 

benchmarking. we set the multiplier at 30. 

PBNPA 

PBNPA R PACKAGE (version 0.0.2, https://cran.r-project.org/web/packages/PBNPA/) was used for 

benchmarking. We set the sim.no parameter at 10. 

HitSelect 

We ran HitSelect MATLAB package (https://github.com/diazlab/HiTSelect). Normalization by 

Sequencing depth option was selected for benchmarking. 

PinAPL-py 

We used the PinAPL-py website (http://pinapl-py.ucsd.edu) to perform the benchmarking. For the sgRNA 

read counting, we used ‘GGCTTTATATATCTTGTGGAAAGGACGAAACACCG, 

GCTTTATATATCTTGTGGAAAGGACGAAACACCG,’ and 

‘CTTTATATATCTTGTGGAAAGGACGAAACACCG,’ were used for ‘seq_5_end’ parameters of 

‘CRISPR-RT112’, ‘CRISPR-UMUC3’, and ‘CRISPRi-RT112’ datasets. We used CPM normalization 

and set the GeneMetric parameter as ‘aRRA’ to perform a modified robust ranking aggregation (RRA). 

We used the combined FDR values for each gene in the benchmarking. 

 

Algorithm for quantifying sgRNA abundance  

Previous methods and limitations of CRISPRCloud1 

Recently published tools for CRISPR pooled screen analysis, including CRISPRcloud (CC1)27, 

MAGeCK25, CarRpools29, CRISPRAnalyzeR26, and PinAPL-Py28, provide different methods for 

estimating the abundance of sgRNAs in each sample from pooled libraries. In most cases, input data 

consist of raw FASTQ-format sequencing result files. CC1 is the first tool to offer an online user-defined, 

light-weight quantification method which proceeds on the user-client side. In contrast, CRISPRAnalyzeR 

and PinAPL-Py run their quantification methods on the server-side. As a result, CC1 minimizes 

information passed through the Internet by transferring only the processed count matrix to the cloud 

storage. However, the quantification algorithm of CC1 is limited in that it could have a reduced sgRNA 

coverage if the location patterns of sgRNAs in raw-sequencing files is ‘staggered,’ as pointed out by 
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Spahn et al.28. This problem happens because CC1 extracts sgRNA sequence for each read at a fixed 

location28. Another limitation of CC1 is the fact that the user must decide where the extraction site is. 

Nevertheless, CC1 does not require tuning and is thus arguably more user-friendly than other tools. For 

instance, in CRISPRAnlyzer and PinAPL-Py, users are required to set many tuning parameters for 

sgRNA quantification, such as adapter sequence, sgRNA sequence length, and whether sgRNA sequence 

reads are reverse-complement. Improperly setting these mandatory parameters can hinder non-

bioinformaticians from using these tools. 

In CC2, we performed extensive software engineering to address these issues. As a result, users no longer 

need to perform complicated parameter tuning for the sgRNA abundance quantification; one must simply 

provide the input files to CC2. 

The binary representation of sgRNA sequence lowers the cost of computation 

We used a binary representation for sgRNA sequence. This approach is memory-efficient and improves 

the user experience at the client-side41. It only needs 𝑚𝑎𝑥(2𝐾, 𝑀) bits to store an sgRNA-sequence, 

where M is the length of the sequence and K is the bit size to store a primitive integer in the machine 

(usually 64 bits) because we only need two bits to save a nucleotide (i.e., ‘A’ is ‘00’, ‘C’ is ‘01’, ‘G’ is 

‘11’, and ‘T’ is ‘10’). The memory size is about half of that required for storing a character string of the 

sequence, i.e., 160 bits are needed to store a 20nt sgRNA sequence. Another benefit of binary 

representation is that it lowers the time complexity for the shift operator when comparing all k-mers of an 

sgRNA read using a sliding window. This is an essential function for the quantification algorithm in CC2. 

Compared to the string shift operator functions, such as string copy, substring extraction, and 

concatenation, the binary representation produces dramatically shorter running times.  

Sliding window-based algorithm gives a high-resolution quantification with comparable 

running time 

With a binary representation, we run the quantification algorithm as follows: First, we build a hash table 

for the reference library, with each key of the library in the hash table converted to the binary 

representation. Second, for each read, we scan the sequence of the read from 5′ to 3′ with the sliding 

window. In the 𝑖-th iteration, the sliding window contains a substring of the read sequence from i to 𝑖 +
𝑘 − 1, where 𝑘 is the length of the sgRNAs. The substring is also converted to a binary sequence, and the 

hash table is quickly checked to see if the sequence in the sliding window exists in the reference library. If 

the sequence is found in the hash table, then the count of the sequence is increased by one, and then the 

algorithm proceeds to the next read. Otherwise, it moves to 𝑖 + 1-th iteration and the bit-shift method will 

be applied to take the next sliding window.  

For the case of a reverse complement sequenced sample, the entire procedure is repeated on the reverse 

complement reference sgRNA library and scanning the read from 3' to 5'. After both assays are performed 

(5' to 3' and 3' to 5' with the reverse complement reference sequences), mapping results between both 

sequences are compared.  The one with a larger count corresponds to the correct sequence mapping.  We 

compared the mappability and running time of CC2 to those of MAGeCK19 and PinAPL-Py28 across 

multiple datasets from previous studies (Figure 2).  To perform a judicious comparison, we re-

implemented every algorithm in javascript, except the cutadapt adaptive trimming of PinAPL-Py. While 

not the fastest of the test cohort, the processing speed of CC2 is comparable to that of MAGeCK. 
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