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Abstract 6 

Temporal variation of sound envelope, or amplitude modulation (AM), is essential for auditory 7 

perception of natural sounds. Neural representation of stimulus AM is successively transformed while 8 

processed by a cascade of brain regions in the auditory system. Here we sought the functional 9 

significance of such cascaded transformation of AM representation. We modelled the function of the 10 

auditory system with a deep neural network (DNN) optimized for natural sound recognition. 11 

Neurophysiological analysis of the DNN revealed that AM representation similar to the auditory 12 

system emerged during the optimization. The better-recognizing DNNs exhibited larger similarity to 13 

the auditory system. The control experiments suggest that the cascading architecture, the data structure, 14 

and the optimization objective may be essential factors for the lower, middle and higher regions, 15 

respectively. The results were consistently observed across independent datasets. These results suggest 16 

the emergence of AM representation in the auditory system during optimization for natural sound 17 

recognition. 18 

Introduction 19 

Natural sounds such as speech and environmental sound exhibit rich patterns of amplitude envelope 20 

(Fig. 1a). Temporal variation of amplitude envelope, called amplitude modulation (AM), is one of the 21 

most important physical dimensions for auditory perception1,2. Humans can recognize speech contents 22 

and identify daily sound based on its AM patterns even if its fine temporal structure is substantially 23 

deteriorated3,4. AM patterns of a sound is usually characterized by their frequency components, AM 24 
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frequencies (Fig. 1b).  1 

Perceptual importance of AM has driven physiologists to seek neural representation of AM in the 2 

auditory system. The auditory system converts physical properties of a sound stimulus to neural 3 

activities and transmit them through a cascade of brain regions for further processes of perception5,6. 4 

In the auditory system, not only do some neurons fire synchronously to the stimulus amplitude 5 

envelope, tuning to the AM frequency is also observed both in the degree of spike synchronization and 6 

in the spike rate. This implies that the auditory system performs some kinds of frequency analysis in 7 

the AM domain by temporal and rate coding7, which means AM coding with spike temporal patterns 8 

and average spike rate, respectively. A range of studies broadly agree that the characteristics of AM 9 

coding change somewhat systematically along the processing stages from the periphery to the cortex5,7. 10 

Along the auditory neuraxis, the AM frequency to which neurons synchronize gradually decreases, 11 

and the number of neurons which performs rate coding of AM frequency gradually increases. The 12 

latter phenomenon is called temporal-to-rate conversion. 13 

An ever-growing number of physiological studies are conducted for various brain regions and animal 14 

species to expand the dataset. There are also experimental and theoretical studies that attempt to 15 

explore neural mechanisms that may realize the above observations8–12. Those approaches have 16 

revealed how the system works. However, they do not answer why the system has to be organised in 17 

that way. We would like to ask the functional significance of the systematic transformation of AM 18 

representation through the cascade of regions. Is it a consequence of evolution for efficiently extracting 19 

essential signals from natural sounds for survival, or merely a byproduct of other biological 20 

constraints? 21 

A deep neural network as a functional model of sensory systems 22 

For explaining functional significance in several sensory modalities or dimensions13–16, machine 23 

learning techniques have been proven to be effective. Modelling with such techniques are generally 24 
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not heavily based on anatomical or physiological assumptions, but the architectures and the parameters 1 

of the model can be trained to process natural stimuli for ethologically relevant objectives. Thus, the 2 

trained model is expected to express effective representation of natural stimuli for such objectives, and 3 

if the representation is similar to that observed in an actual sensory system, it is highly likely that the 4 

sensory system is also adapted to effectively processing sensory information for survival. 5 

A deep neural network (DNN) is one of the most successful machine learning techniques both for 6 

automatic data processing17–19 and for explaining neural representation of sensory information20–24. A 7 

DNN consists of multiple layers with multiple units, and a unit in a layer integrates outputs of the units 8 

in the lower layer and sends outputs to other units in the upper layer. Apart from this, the DNNs in the 9 

previous sensory studies are neither designed to reproduce any physiological or anatomical properties 10 

of the biological neurons, nor optimized to specific neural activities. Nevertheless, DNNs trained on 11 

natural recognition tasks outperform other conventional carefully-designed models in predicting the 12 

neural activities.  13 

In this study, we trained a DNN to estimate categories of non-human natural sound consisting of animal 14 

vocalizations and environmental sounds. The task is to classify 0.19-s long sound waveforms into one 15 

of 18 categories. Our DNN takes raw data (that is, amplitude waveform) as an input and estimates the 16 

category of the sound (Extended Data Fig. 1). Thus, the model covers large part of the auditory 17 

processes from the stage before carrier frequency analysis by a cochlea to that making final 18 

categorization. This make our model suitable for explaining entire cascade of the auditory system with 19 

as little assumptions as possible, unlike in the typical auditory studies which assume frequency-20 

decomposed inputs such as spectrograms. The classification accuracy of the trained DNN was 45.1% 21 

(Extended Data Fig.2). We confirmed that depth of the network is necessary to achieve high 22 

classification accuracy (Extended Data Fig. 3). Although the classification accuracy was not as good 23 

as that reported in other studies25, this difference in performance is reasonable when considering that 24 

the previous studies used longer (5 s) sound segments for categorization. 25 
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Emerging selectivity to AM frequency 1 

The aim of the present study is to understand the functional significance of the empirically-revealed 2 

AM coding scheme in the auditory system, by comparing the AM representation in the trained DNN 3 

and that in the auditory system. To enable direct comparison, we simulated experimental approaches 4 

of typical neurophysiological studies. Specifically, we conducted "single unit recording" on each unit 5 

in the DNN while presenting a sinusoidally amplitude-modulated sound stimulus (Fig. 2a, b). A single 6 

unit responded differently to the stimuli with different AM frequencies (Fig. 2c as examples). From 7 

the recorded unit activity, we calculated the degree of synchrony to the stimulus AM frequency and 8 

the average magnitude of the activity. The synchrony and the average activity as functions of the AM 9 

frequency, called a temporal modulation transfer function (tMTF; Fig. 2d, top panel) and a rate 10 

modulation transfer function (rMTF; Fig. 2d, bottom panel), characterize tuning to AM frequency in 11 

terms of temporal and rate coding, respectively7. 12 

Fig. 3a shows MTFs of representative units in the 1st (i.e., closest to the input), 5th, 9th and 13th (i.e., 13 

closest to the output) layers. As in typical physiological experiments, we classified the MTFs into low-14 

pass, band-pass, high-pass or flat types according to certain criteria (see the Methods). Most units 15 

exhibited low-pass, band-pass, or flat MTFs, and a negligible number of units exhibited the high-pass 16 

type (Fig. 3b). All MTFs in the 1st layer were flat, indicating the 1st layer did not tune to AM 17 

frequencies. In the 5th layer, units with low-pass or band-pass tMTFs appeared and a very small 18 

number of units with low-pass rMTFs were observed. In the 9th and higher layer, magnitude of tMTF 19 

generally increased and the number of units with low-pass or band-pass rMTFs also increased. 20 

Heatmaps of all tMTFs normalized by their peaks reveal downward shift of the distribution of the 21 

preferred AM frequencies from 5th layer to the highest layer, and distinct tuning in rMTFs appeared 22 

from 9th layer and above (Fig. 3c). 23 

Comparison with the auditory system 24 

As in typical neurophysiological studies, the MTF of a unit was characterized by its best modulation 25 
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frequency (BMF), the frequency at which the neuron shows the largest synchrony or average activity, 1 

and its upper cutoff frequency (UCF), the frequency at which the synchrony or average activity starts 2 

to decrease. BMF and UCF of temporal and rate coding are referred to as tBMF/tUCF and rBMF/rUCF, 3 

respectively. In the 1st and 2nd layers no BMFs or UCFs were definable since all MTFs were flat (Fig. 4 

4a, b). In the 3rd and 4th layers, units with low tBMFs and tUCFs appeared, but no rBMFs or rUCFs 5 

were definable. In the 5th layer, tBMFs and tUCFs tended to be high, and small number units exhibited 6 

definable rBMFs and rUCFs. As ascending the layer cascade from the 5th layer, the mode tBMF/tUCF 7 

decreased and the number of units with definable rBMFs/rUCFs increased. In sum, the distribution of 8 

tBMFs and tUCFs shifted towards lower AM frequencies as ascending from the middle to high layers 9 

(Fig. 4a, left panels) and that the units that code AM frequency by their average activities appear only 10 

in the higher layers (Fig. 4a, right panels, and Fig. 4b). 11 

The patterns of the BMF/UCF distributions reminds us of the well-known characteristics of the 12 

auditory pathway, i.e., decrease of synchronizing AM frequency5,7 and time-to-rate conversion of AM 13 

coding7. Fig. 4c visualizes the distributions of BMFs and UCFs in the auditory system, combining 14 

previously reported distributions in each of the 7 brain regions: auditory nerves (AN)26,27, cochlear 15 

nucleus (CN)26,28–31, the superior olivary complex (SOC)29,32, the nuclei of the lateral lemniscus 16 

(NLL)33–35, the inferior colliculus (IC)36–40, the medial geniculate body (MGB)41–43, and the auditory 17 

cortex (AC)40,44–51. In the peripheral regions tBMFs and tUCFs clustered around high AM frequencies, 18 

and as ascending towards the central, the mode frequencies decreased. RBMFs are only reported in 19 

NLL or above, and rUCFs are in SOC or above. 20 

The meta-analysis of the neurophysiological studies suggests qualitative similarity of the distribution 21 

of the BMF and UCF in the DNN and those in the auditory system. Next, we quantitatively compared 22 

those distributions. For each of the tBMF, tUCF, rBMF, and rUCF, we calculated the similarity between 23 

the distribution in each layer of the DNN and the distribution in each region in the auditory system 24 

(Extended Data Fig. 4), and averaged them to yield the layer-region pairwise similarity (Fig. 4d). Pairs 25 
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of the DNN layer and the brain region with large similarity appeared in the diagonal direction, 1 

indicating that lower, middle, higher DNN layers are similar to peripheral, middle, and central brain 2 

regions, respectively. This lower-periphery, middle-middle, and higher-central similarity is more 3 

clearly observed if we normalized the pairwise similarity by the maximum in each brain region (Fig. 4 

4e). 5 

Relationship to optimization 6 

Is the observed similarity of the entire cascade between the DNN and the auditory system due to the 7 

convolutional architecture inherent to the DNN52 or the consequence of optimization of the filter 8 

weights and biases for the classification task? To test these possibilities, we measured MTFs in the 9 

DNN before and during the optimization. Before the optimization, no unit showed clear selectivity to 10 

AM frequency, and there appeared little transformation of MTFs across layers (Extended Data Fig. 5, 11 

left panel). All layers were similar to the peripheral regions (Fig. 5a). 12 

As the optimization progressed, classification accuracy increased as expected (Fig. 5b, top panel). In 13 

parallel, auditory-system-like AM tuning gradually emerged (Extended Data Fig. 5). We evaluated the 14 

similarity over the entire cascades by measuring the degree of diagonality of the pairwise similarity 15 

matrix (Extended Data Fig. 6), and defined it as the cascade similarity. A greater value of the cascade 16 

similarity indicates that, in the pairwise similarity matrix, cells around the diagonal line exhibit large 17 

similarity and cells around left-top and right-bottom corners exhibit small similarity. The cascade 18 

similarity increased as the optimization progressed (Fig. 5b, bottom panel), and correlated with the 19 

classification accuracy very well (Spearman's rank correlation coefficient ρ = 0.84, p = 8.57×10−28). 20 

The results indicate that the AM representation in the DNN emerged during the optimization. 21 

The above results indicate that similarity to the auditory system, as well as classification accuracy, 22 

depends on the parameters of the DNN. Generally, classification accuracy of a DNN also depends on 23 

its architecture53,54, and cascade similarity, too. We trained DNNs with various other architectures and 24 
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examined them with the same physiological analysis. The classification accuracy of those DNNs 1 

varied between 28.2% and 45.1%. The patterns of the layer-region pairwise similarity also varied 2 

among the architectures (Extended Data Fig. 7), and the cascade similarity correlated with the 3 

classification accuracy (Fig. 5c; Spearman's rank correlation coefficient ρ = 0.51, p = 8.08×10−4). The 4 

results indicate that AM representation in better-performing DNNs are more similar to that in the 5 

auditory system. Taken together, similarity to the auditory system correlated with classification 6 

accuracy both across different model parameters and across different architectures, suggesting strong 7 

relationship of the auditory AM representation to parameter optimization, but not to the convolutional 8 

operation alone. 9 

Different factors for different regions 10 

The changing pattern of the layer-region pairwise similarity during optimization indicates that 11 

auditory-system-like AM tuning first emerged in the upper layers, followed by middle layers 12 

(Extended Data Fig. 5). This pattern is more clearly seen when we calculated the similarity to the 13 

auditory system in each layer, which we call layer-wise similarity (Fig. 6a, Extended Data Fig. 6). 14 

Before optimization, AM representation was similar to the auditory system only in the lower layers. 15 

As optimization progressed, similarity in the upper layers rapidly increased, and then similarity in the 16 

middle layers increased. The result implies that multiple factors can underlie these across-layer 17 

differences in the evolution patterns. To isolate the possible factors in each region, we conducted the 18 

following four control experiments, expecting to see different degrees of similarity emerges in different 19 

layers depending on the control conditions. 20 

First, we tested the effect of specific assignment of the parameters. Our DNN has two types of trainable 21 

parameters: filter weights and biases. Examination of the parameters of the optimized and pre-22 

optimized DNN reveals that the distribution of the bias values in the optimized DNN deviated largely 23 

from 0, the initial fixed values before optimization, although the distribution of the filter weights did 24 

not change very much (Extended Data Fig. 8). It is possible, for example, that overall changes in the 25 
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bias values that take place in some layers had an effect to amplify or suppress the higher representation. 1 

We tested this possibility by randomly shuffling the filter weights and biases within each layer. The 2 

resulting AM representation in all layers were similar to that in the peripheral regions in the auditory 3 

system (Fig. 6b, left top panel). A few units in the upper layers appeared to exhibit some tuning to low 4 

AM frequency, but majority of the units did not show significant AM tuning (Extended Data Fig. 9, 5 

left column). Thus, the result disproved the effect of overall distribution of the parameters, and 6 

confirmed the importance of the specific assignment of the parameters for auditory-system-like AM 7 

tuning. 8 

The second and third control experiments tested the effect of data structure. It has been shown that a 9 

DNN is capable of learning the input-output correspondence even by training on data with random 10 

category labels or data without natural statistics55. It can be argued that the process of optimization, 11 

but not the data structure, is the essential factor for inducing AM tuning. To test this possibility, we 12 

trained the DNN with unnatural data. In the second control condition, the input-output correspondence 13 

was destroyed by shuffling category labels, making accurate classification of novel data impossible. 14 

In the third control condition, the structure of the input waveform was destroyed by shuffling waveform 15 

in each sound. The DNN was able to classify the novel sounds with some accuracy probably because 16 

the waveform shuffled within each sound retained its overall amplitude distribution, although both 17 

frequency and temporal statistics are completely destroyed. The trained DNNs in these two conditions 18 

exhibited auditory-system-like AM representation only in the lower and upper layers, but the middle 19 

layers failed to exhibit AM representation similar to the middle auditory regions (Fig. 6b, right top and 20 

left bottom panels, Fig. 6c, orange triangles and green squares, Extended Data Fig. 9, second and third 21 

columns). When trained on shuffled labels, very few units in the middle layers appeared to exhibit AM 22 

tuning. When trained on shuffled waveform, units in the middle layers appeared to exhibit some AM-23 

frequency tuning but they synchronized to much higher AM frequency than neurons in the auditory 24 

system, making relatively higher layers around layers 8-10 resemble relatively peripheral regions such 25 
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as CN and SOC. The results indicate that mid-level AM representation requires natural data structure, 1 

although that low-level and high-level representation could emerge just by optimizing even to 2 

unnatural data. 3 

Finally, the fourth control experiment examined the effect of the optimization objective. A DNN may 4 

be optimized not only for an ethologically relevant objective such as sound classification, but also for 5 

unnatural objective such as the waveform following task. To test the effect of optimization objective 6 

on emerging AM representation, we trained the DNN for the waveform following task. Specifically, 7 

the DNN was trained to copy the input waveform (Extended Data Fig. 10). This task has no biological 8 

significance and is trivial in the sense of signal processing. A successful network should maintain 9 

information of the input waveform throughout the depth of layers with non-linear processes without 10 

lowpass filtering. The AM representation in middle to upper layer was to some degree similar to the 11 

middle brain regions, but no layers exhibited AM representation similar to the central brain regions 12 

(Fig. 6b, right bottom panel, Fig. 6c, red crosses, Extended Data Fig. 9, right column). In the higher 13 

layers, MTFs did not show clear tuning, and the tBMFs and tUCFs were higher than the central 14 

auditory regions, making the higher layers resembling middle auditory regions. The result indicates 15 

that emergence of auditory-system-like AM tuning in the higher layers requires natural objectives, and 16 

the waveform following task did not induce such representation even if the input data were the natural 17 

sounds. 18 

Taken together, modification of the weight and bias assignment, the category labels, the sound statistics, 19 

and the optimization objective deteriorated the auditory-system-like AM representation in some layers. 20 

Lower layers never exhibit AM tuning probably because of the nature of the cascading architecture. 21 

The middle layers exhibited auditory-system-like AM tuning when trained on the natural input sounds 22 

and the proper sound-category correspondence. The upper layers exhibited auditory-system-like AM 23 

tuning when optimized for the categorization task but not for the waveform following task (Table 1). 24 
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Generality across datasets 1 

It can be argued whether the obtained results were specific to our choice of the dataset, animal 2 

vocalizations and environmental sounds. Previous studies show positive pieces of evidence for the 3 

generality across datasets. A DNN trained on one dataset can be transferred to another task with only 4 

small modification56. Also, an efficient-code model trained for substantially different sound datasets, 5 

one consisting of human speech and the other of animal vocalizations and environmental sounds, 6 

exhibits quantitatively similar representation of carrier frequency57. To test the generality of the finding 7 

of the present study across datasets, we conducted the “physiology” in a DNN optimized for phoneme 8 

classification of speech sounds. A segment of speech sounds in the dataset was labelled with 9 

corresponding phoneme, an element of vocalization in speech. 10 

The DNN trained on the speech derived essentially the same conclusions as those shown by the DNN 11 

for the animal and environmental sounds. The layer-region pairwise similarity matrix exhibited the 12 

diagonal pattern (Fig. 6d): Lower layers were similar to peripheral regions, middle layers to middle 13 

regions, and higher layers to central regions. The similarity emerged during the optimization, and was 14 

weak in the control conditions (Extended Data Fig. 11a, b). The similarities in the DNNs with various 15 

architectures correlated with the classification accuracy (Extended Data Fig. 11c; Spearman's rank 16 

correlation coefficient ρ = 0.33, p = 3.91×10−2).  17 

Tuning to carrier frequency 18 

Other than tuning to AM frequency, one of the frequently measured characteristics of auditory neuron 19 

is tuning to carrier frequency58,59. We calculated temporal average of the activities in each unit in 20 

response to a sinusoid with various frequencies and amplitudes (Extended Data Fig. 12a). The 21 

responses generally increased as the amplitude of the input increased, but some units in higher layers 22 

showed non-monotonic responses to the input amplitude. For instance, in the layer 13, the unit shown 23 

in the right panel in Extended Data Fig. 12a exhibited large responses to ~ 30 dB, 400 Hz tone, but the 24 

response was smaller to the tone with larger amplitude. As in the neurophysiological studies, a unit 25 
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was characterized by a frequency tuning curve, the minimum stimulus amplitude which gives larger 1 

response than a certain threshold (Extended Data Fig. 12a, grey lines, Extended Data Fig. 12b). 2 

Frequency tuning curves in the lower (1st to 3rd) layers appeared to exhibit many peaks. Those in the 3 

middle layers (around 5th layer) appeared to exhibit single large peaks and multiple small peaks. The 4 

large peaks appeared to span wide range of the carrier frequency as a population (Extended Data Fig. 5 

12b), which may be interpreted as a band-pass filter bank. Frequency tuning curves in the higher (8th 6 

to 13th) layers appeared to be more complex without clear bandpass-like tunings even as a population. 7 

The results were in contrast to the auditory system. Neurons usually exhibit frequency tuning with a 8 

sharp single peak, which is likely to originate from frequency decomposition performed in the cochlea. 9 

We did not explicitly conducted spectral decomposition of the input sound but directly fed raw 10 

waveforms to the DNN. The results suggest that frequency decomposition in the cochlea may be 11 

essential for auditory-system-like carrier frequency tuning but not for auditory-system-like AM tuning. 12 

Discussion 13 

We found that a DNN optimized for sound classification exhibits AM representation similar to the 14 

auditory system throughout the entire cascade of the signal processing. The lower layers in the DNN 15 

were similar to the peripheral regions, the middle layers to the middle regions, and the higher layers to 16 

the central regions. Such representation gradually emerged during the optimization and correlated with 17 

the classification accuracy. The control experiments suggest that essential factors for AM 18 

representation in the lower layers, middle layers, and higher layers are the cascading architecture, data 19 

naturalness, and optimization objectives, respectively. Such representation was consistently observed 20 

in the DNNs trained on different datasets. The similarity of the entire cascade was demonstrated 21 

because our DNN performs sound recognition from a raw sound waveform. Since our DNN was not 22 

designed or trained to reproduce any physiological or anatomical properties of the auditory system 23 

including cochlear frequency decomposition, the results should reflect only the nature of the task and 24 

the data. It would be an important finding that the characteristics regarding AM coding, which are 25 
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essential for auditory perception, are common in a DNN and the auditory system. These results suggest 1 

that AM representation in the auditory system might also be the consequence of optimizing to the 2 

sound recognition in the real world, which could emerge during evolution and development. 3 

AM Representation in the lower, middle, and higher layers 4 

Our results suggest that AM representation in the lower layers is due to the cascading nature of the 5 

system. A DNN performs highly nonlinear operation by cascading close-to-linear operations. Perhaps 6 

this is also what happens in the auditory system. Neurons in each layer performs relatively simple 7 

operation, which may lead to little sensitivity to AM frequency in the peripheral regions. 8 

The representation in the middle and higher layers, however, depended on the optimization condition. 9 

The representation in the middle layers were similar to that of the auditory system only in the DNN 10 

with high classification accuracy, but not in the DNNs with poor classification accuracy, the DNN 11 

halfway in the optimization process, or the DNN trained with unrealistic data. This suggests that mid-12 

level AM representation is essential for effective representation of natural sounds. On the other hand, 13 

AM representation in the higher layers were similar to the auditory system in all of these conditions 14 

but the waveform following task. This suggest that task natures are determinant factors for forming 15 

high-level AM representation, perhaps because higher representation is more directly used for final 16 

decision than middle or lower representation. In other words, whatever the lower representation is, the 17 

role of the higher layers are to derive appropriate outputs for the specific task from the lower 18 

representation 19 

Decreasing temporal resolution for sound classification 20 

Both of the two prominent characteristics of the auditory AM coding, decrease of synchronizing AM 21 

frequency and time-to-rate conversion, involve decrease of temporal resolution of the transmitted 22 

signals. The above discussion regarding representation in higher layers suggests that encoding 23 

information of sound categories with low temporal resolution may be beneficial for classification tasks. 24 
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The next question is why such coding scheme is beneficial. The following discussion might explain 1 

the reason. In our setting, as in the typical classification task with a DNN, the larger the value in each 2 

unit in the classification layer (the layer above the 13th layer), the larger the score will be for the 3 

particular category. The final output category is the one assigned to the unit with the maximum value. 4 

If the units synchronize to the amplitude envelope of the input sound, which wax and wane with time, 5 

the output category would be temporally unstable. On the other hand, if the activity of an output unit 6 

is large all the time, the score for the category will be kept large. The latter case would be more 7 

preferable for classification tasks. 8 

In the real world, recognizing the stimulus category would be more important than synchronizing to 9 

the stimulus, and animals might be better at sound classification than synchronizing to the sound. This 10 

notion is supported by the well-known phenomenon that in a synchronization tapping task humans 11 

tend to respond slightly earlier than the correct timing60, suggesting that we tap according to the 12 

internally generated rhythm but not react after hearing the ongoing sound. Other animals which have 13 

the ability to act synchronously to a stimulus exhibit similar behaviour61. These animals (including 14 

humans) might first recognize the frequency of the stimulus envelope and then generate rhythm at the 15 

recognized AM frequency. Such behaviour might also be observed if a DNN optimized for sound 16 

classification is forced to perform a synchronization tapping task. 17 

A reader who is familiar with a convolutional DNN may think that low temporal resolution in the 18 

higher layer is trivial if each layer performs pooling operation, which temporally downsamples the 19 

input waveform. However, this is not the case for our DNN, in which no pooling was performed. Thus 20 

layers in our DNN does not necessarily downsample the input. Indeed the DNN trained for the 21 

waveform following task did not decrease temporal resolution very much. 22 

Frequency tuning 23 

Our DNN did not exhibit sharp single peaks in the frequency tuning curves as widely found in the 24 
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auditory system, while some studies report auditory-like frequency tuning emerging in a DNN with 1 

different architecture from ours64,65. In the auditory system, frequency tuning of a neuron is largely 2 

affected by mechanical and physical properties of the cochlea59. Although investigating what 3 

determines the shape of a frequency tuning curve in a DNN is beyond the scope of this study, some 4 

architectural constraints might be necessary for inducing similarity to the auditory system in the carrier 5 

frequency domain. 6 

Several other modelling works try to explain AM coding in the auditory system with anatomical and 7 

physiological assumption including frequency decomposition in a cochlea23,66,67. A message brought 8 

from the present study, which did not incorporate cochlear frequency decomposition, is that sharp 9 

frequency tuning may not be necessary for effective AM representation for natural sound recognition.  10 

Physiology in a DNN 11 

Our results suggest the effectiveness of analysing computational model using physiological methods. 12 

To date various methods have been proposed for analysing representation in a DNN63. Most of them 13 

rely on differentiability of the DNN, using backpropagation to estimate the optimal input for each unit 14 

assuming such an input exists. On the contrary, there is a long history of developing physiological 15 

method to elucidate brain functions. Physiologists rely on parametric search over the stimulus space, 16 

since backpropagation cannot be applied to the biological neurons5. One advantage of our method is 17 

that the results are directly comparable with the ones reported in the physiology experiments. By taking 18 

advantage of the previously-conducted vast number of neurophysiological studies, we could show the 19 

relationship between layers in the DNN and the regions in the entire cascade of the auditory system. 20 

Although DNNs have been used to explain sensory representation in several modalities20–24, to the best 21 

of our knowledge this is the first report of similarity throughout the entire cascade of the sensory 22 

processing. The success of our method indicates the future possibility of applying well-established 23 

physiological paradigms to explore the functions and mechanisms of a DNN and other complex 24 

machine learning models. 25 
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From a physiological perspective, this study implies that a DNN may become a useful tool for testing 1 

a new hypothesis. Although this study focused on representation of sound envelopes, for which large 2 

amount of physiological data are already available, any domain of stimulus parameters can be explored 3 

in the same paradigm as ours. As long as the model takes raw data as in this study, physiologists can 4 

test their hypothesis on any sensory domains with any kinds of stimuli with much lower costs than 5 

actually conducting a pilot physiology experiment. 6 

Methods 7 

Task 8 

The task of the DNN was sound classification. Specifically, the task was to estimate the sound category 9 

at the last timeframe of a sound with certain duration (0.19 s for natural sounds and 0.26 s for speech). 10 

A classification accuracy is defined as an average of the correct classification rate for each category, 11 

which is the number of timeframes correctly estimated as the particular category divided by the number 12 

of total timeframes of the category. 13 

Dataset 14 

The following two datasets were used to train DNNs. The first one consists of non-human natural 15 

sound, which is a subset of ESC-5068. The original dataset contains 50 sound categories with 40 sounds 16 

for each category. From the original dataset we used 18 categories which are not produced by human 17 

activities. Each entry in the original dataset contains a sound waveform of length less than 5 s and the 18 

category of the sound. In this study we excluded silent intervals, resulting in the total length of 53.9 19 

minutes. The original dataset is divided in 5 folds for cross validation. We used fold #5 for validation 20 

and the other fold for training. The sound format was 44.1 kHz 16 bit linear PCM. 21 

The second dataset consists of speech sound69. Each entry in the dataset contains a sound waveform 22 

of a single spoken sentence, phoneme categories, and time intervals of each phoneme. The original 23 

number of phoneme categories is 61. We merged some categories in accordance with the previous 24 
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study70,71, resulting in 39 categories. The average duration and the total duration of the sound is 3.1 s 1 

and 3.3 hours, respectively. The data is originally divided in validation set and training set. In this 2 

study we followed the original division. The validation set and training set contains speech of 24 and 3 

462 speakers, respectively. The speakers and the sentences in the two dataset did not overlap. The 4 

sound format was 16 kHz 16 bit linear PCM. 5 

Network architecture 6 

Our DNN consisted of a stack of dilated convolutional layers62 (Extended Data Fig. 1), in which 7 

convolutional filters are evenly dilated in time. Convolution is conducted along the time axis. Each 8 

layer performs dilated convolution to the output of the previous layer and applies rectification as an 9 

activation function. The activation function was an exponential linear unit72. The first layer directly 10 

took samples of raw waveforms as an input. Each layer contains multiple units. In our setting, each 11 

layer contains same number of units for simplicity. The units in the highest layer is connected to the 12 

classification layer without convolution. The number of the units in the classification layer was the 13 

number of the categories. The classification layer was omitted from the physiological analysis. 14 

We used DNNs with 13 layers, each containing 128 units, for non-human sound, and DNNs with 12 15 

layers, each containing 64 units, for speech. The number of layers and the number of units in each 16 

layer were determined based on the pilot study and fixed to the value throughout the study. In the pilot 17 

study DNNs with various number of layers and units were trained using random portion of the training 18 

set. The filter length was 2, and the dilation length was 2 to the power of the layer number62. The 19 

number of layers and the number of units in each layer that gave the best classification accuracy on 20 

the other portion of the training set were used in the following study. 21 

We tested multiple architectures with random filter and dilation length in each convolutional layer and 22 

selected the DNN which achieved the best classification accuracy on the novel dataset (Extended Data 23 

Table 1). The filter size and dilation length was randomly chosen for each layer with constraints that 24 
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the filter size does not exceed 8 and the total input length for the whole DNN, which is equal to the 1 

length of the input time window of the highest layer, does not exceed 8192 (~ 0.19 s) for non-human 2 

sound and 4096 (~ 0.26 s) for speech. The number of layers and the number of units in each layer were 3 

fixed as mentioned in the previous paragraph. 4 

Optimization 5 

The DNNs were trained on the training set, and the classification accuracy were calculated on the 6 

validation set. The initial filter weights were randomly sampled and biases were set to 0 in accordance 7 

with the previous study73. The filter weights and biases were updated using Eve algorithm74 with 8 

softmax cross entropy as the cost function. The number of iteration for parameter update was 9 

determined to the value which gave the best classification accuracy on random portion of the training 10 

set trained on the other portion of the training set. 11 

Physiological analysis of a DNN 12 

For physiological analysis of a DNN a sound stimulus was fed to the DNN and the values of each unit 13 

were recorded. The root mean square (RMS) of the input sound was adjusted to the mean RMS of the 14 

training set. Before analysis, 1 was added to the values of all units because the minimum possible value 15 

of the activation function is −172. 16 

The stimulus was 8 s of sinusoidally amplitude modulated white noise (Fig. 2b). In the physiological 17 

studies tuning to AM frequency is measured with sinusoidally amplitude-modulated tones with carriers 18 

at the neurons' best frequencies, sinusoidally amplitude-modulated white noises, or click trains. We 19 

did not use tones as carriers because many units showed multiple peaks in the tuning curves to carrier 20 

frequency or non-monotonic responses to the input amplitude (Extended Data Fig. 12), making it 21 

difficult to define the best carrier frequencies. 22 

From the values of each unit the synchrony to the stimulus and the average activity was calculated. 23 

The synchrony to the stimulus was quantified by a vector strength75. When dealing with spike timing 24 
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data recorded in biological neurons, each spike is represented as a unit vector with its angle 1 

corresponding to the modulator phase at that time, and the vector strength is defined as the length of 2 

the average of these unit vectors. Equivalent operations were applied to the continuous output of the 3 

DNN unit to derive a value of vector strength (equation 1). The vector strength takes a value between 4 

0, indicating no synchrony, and 1, indicating perfect synchrony. 5 

𝑉𝑒𝑐𝑡𝑜𝑟 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ =
√(∑ 𝑎(𝑡) cos(2𝜋𝑓𝑚𝑡 𝑓𝑠⁄ )𝑡 )2 + (∑ 𝑎(𝑡) sin(2𝜋𝑓𝑚𝑡 𝑓𝑠⁄ )𝑡 )2

∑ 𝑎(𝑡)𝑡
, (1) 

where t is an index of the timeframe, a(t) is the unit activation, fs is the sampling rate, and fm is the 6 

stimulus AM frequency. The average activity was defined as the temporal average of the values, which 7 

could be considered as the DNN version of an average spike rate. The synchrony and the average 8 

activity was averaged for 16 instances of the carrier white noise to reduce the effect of stimulus 9 

variability. A tMTF and an rMTF was defined as the synchrony and average activity as functions of 10 

AM frequency, respectively. In physiology an MTF is usually defined only at the frequencies at which 11 

the unit shows statistically significant synchrony or spike rate. Since a statistical test on the results of 12 

deterministic model such as our DNN does not make sense, we considered the synchrony or average 13 

activities less than a certain threshold as “non-significant” and excluded them from the following 14 

analysis. The threshold was arbitrarily set to 0.01 for the synchrony and to 0.01 above the average 15 

activity in response to unmodulated white noise for the average activity. 16 

An MTF was classified into one of the following 4 types: low-pass, high-pass, band-pass, or flat. The 17 

low-pass type MTF was defined as the one not having values smaller than 80% of its maximum in the 18 

frequencies smaller than the peak frequency. The high-pass type MTF were defined as the one not 19 

having values smaller than 80% of its maximum in the frequencies larger than the peak frequency. The 20 

flat MTF was defined as the one not having values smaller than 80% of its maximum or the one with 21 

the peak to peak range less than 0.1. The band-pass MTF was defined as otherwise. 22 
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BMFs were calculated from the band-pass type MTFs, and UCFs were calculated from the low-pass 1 

and the band-pass type MTFs. BMFs of low-pass, high-pass, or flat MTFs and UCFs of high-pass or 2 

flat MTFs were considered as indefinable. The BMF was defined as the modulation frequency at the 3 

peak of the MTF. If multiple peaks with the same height exist, the geometric mean of the frequencies 4 

was taken. The UCF was calculated in two different ways: one for qualitative visualization in Fig. 4a 5 

and the other for quantitative comparisons with specific physiological data of neurons in the literature. 6 

The UCF for visualization was defined as the frequency at which the value of the MTF crosses 80% 7 

of its maximum. If a MTF had multiple such frequencies, the geometric mean of the frequencies was 8 

used. The threshold of the UCF for quantitative comparison with the auditory system varied according 9 

to the reference physiology study. They were 50%35,49, 80%26,32, and 70% (−3 dB)27–29 of the maximum, 10 

90%:10% interior division of its minimum and maximum36, absolute value of 0.126,31, and the highest 11 

frequency that gives significant responses32,33,36,38,42–44,47,50. If at no frequency did the MTF cross the 12 

threshold, the UCF was considered as indefinable.  13 

Stimuli for calculating a tuning to carrier frequency were tones with various frequencies and 14 

amplitudes. The values of each unit was temporally averaged to obtain the response to the particular 15 

stimulus. The tuning curve was defined for each frequency as the smallest amplitude inducing the 16 

response larger than a certain threshold. In physiological studies thresholds are usually determined 17 

arbitrarily. In Extended Data Fig. 12 tuning curves with the thresholds of 0.001, 0.01, and 0.1 are 18 

shown. 19 

Comparison with the auditory system 20 

We extracted the distributions of BMF and UCF reported in the previous physiological studies by 21 

digitizing the printed figures in each paper. If multiple figures were available, we chose the clearest 22 

figure or the one with most number of neurons. The extracted values were used in qualitative 23 

visualization in Fig. 4c and quantitative comparison with the DNNs. For visualization the distributions 24 

of all sub-regions and all neuron types in each region in each paper were averaged. Then the 25 
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distributions of all papers were averaged for each region. The resulting distributions were smoothed 1 

with a Gaussian filter with width 0.136 in the logarithmic scale of base 10. For quantitative comparison 2 

with a DNN, the similarity of each extracted distribution to the distribution of each layer in the DNN 3 

was calculated. As the measure of similarity we employed Kolmogorov Smirnov statistic subtracted 4 

from 1 since it is nonparametric and does not depend on the bin widths of the histogram very much. 5 

For each of the BMF and UCF for each of the rate and temporal coding, the similarities in the same 6 

regions in a single paper were averaged, and then the similarities in the same region in different papers 7 

were averaged (Extended Data Fig. 4). Averaging the 4 pairwise similarities (tBMF, tUCF, rBMF, and 8 

rUCF) derived the final layer-region pairwise similarity matrix. Since no distribution of tBMF was 9 

reported in AN, no distribution of rBMF was reported in AN, CN, or SOC, and no distribution of rUCF 10 

was reported in AN or CN, the similarities to them were set to 1 if there was no unit with definable 11 

BMF or UCF and set to 0 if otherwise. Also, for the regions other than those, the similarity was set to 12 

0 if there was no unit with definable BMF or UCF. 13 

Evaluation of a pairwise similarity matrix 14 

From a matrix of pairwise similarity, similarity of the entire cascade and that of each layer were 15 

calculated. We would like to evaluate the pairwise similarity matrix in a way that a DNN with its lower 16 

layers similar to the peripheral regions, its middle layers to the middle regions, and its higher layers to 17 

the central regions gets high score. To realize this concept of evaluation, we defined the similarity of 18 

the entire cascade, which we call cascade similarity, as the weighted mean of the pairwise similarity 19 

matrix (Extended Data Fig. 6). The weight at the position (i, j) was proportional to 20 

1 − 2 |
𝑖 − 1

𝑁𝑖 − 1
−

𝑗 − 1

𝑁𝑗 − 1
|, 21 

where Ni and Nj are the number of brain regions (= 7) and the number of the DNN layers, respectively. 22 

The weight was scaled so that the squared mean of the weight matrix was 1. The weight was maximum 23 

on the diagonal line and minimum on the top left and bottom right corners. Similarity of each layer, 24 
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which we call layer-wise similarity, was defined as the mean taken in each layer. 1 

Control experiments 2 

In the first control experiment, weights and biases were shuffled across units within each layer. The 3 

weights and biases were shuffled independently. In the second control experiment, category labels of 4 

the sounds in the training set were randomly shuffled. Validation set was not modified. The parameter 5 

update was conducted for the same number of iteration as the original non-random condition. In the 6 

third control experiment, the order of waveform samples in each sound was randomly shuffled, 7 

resulting in noise-like input waveform maintaining only the marginal distribution of the amplitudes. 8 

The fourth control experiment, the waveform following task, was to copy the amplitude value of the 9 

last timeframe of the input sound segment. To make the result directly comparable with those of the 10 

classification tasks, the target amplitude was quantized and the cost function was softmax cross 11 

entropy62. The waveform was nonlinearly transformed with a μ-law companding transformation before 12 

quantization62. The number of bins was equals to the number of sound categories in the original 13 

classification task.  14 
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b 1 

 2 

Rich repertoires of amplitude envelope in natural sounds. 3 

(a) Examples of sound waveforms (grey) and their amplitude envelopes (black) of natural sound. 4 

Sounds of speech (top) and rain (bottom) are shown. Amplitude envelopes of speech and rain appeared 5 

different. (b) Modulation spectra, distributions of the AM frequency components, of the sounds in (a). 6 

The modulation spectrum was calculated as the root mean square of the filtered envelope with a 7 

logarithmically spaced bandpass filter bank. Each modulation spectrum is normalized by its maximum. 8 

The lower and the upper peak in the modulation spectrum of speech (top) probably contain the 9 

information of the speech content and the speaker, respectively. The modulation spectrum of the rain 10 

sound (bottom) appeared different from the one of the speech.  11 
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c 1 

 2 

d 3 

 4 

Single unit recording in the DNN. 5 

(a) Illustrations of single unit recording in a brain (top) and in a DNN (bottom). In physiological 6 

experiments, neural activities are recorded while presenting an AM sound stimulus to the animal. We 7 
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simulated the method and recorded unit activities of the DNN processing an AM sound stimulus. (b) 1 

Examples of AM stimuli with 1, 10, 100, and 1000 Hz AM frequency. The carrier was white noise. (c) 2 

Examples of responses to the AM stimuli in (b) in a single unit. A unit in the 8th layer is chosen as an 3 

example. Responses to the stimuli with different AM frequencies appeared different. (d) An example 4 

of tMTF (top) and rMTF (bottom) in the same unit as (c). A tMTF and an rMTF is defined as synchrony 5 

to the stimulus AM frequency and the average activity as functions of AM frequency, respectively. The 6 

unit exhibited the low-pass type tMTF and the band-pass type rMTF. 7 

Fig. 3 8 

a 9 

 10 
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b 1 

 2 

c 3 

 4 

Emergent AM tunings in the DNN. 5 

(a) Examples of tMTFs (left panels), and rMTFs (right panels) in layer 1, 5, 9 and 13. The layers are 6 

sorted vertically from bottom to top. One example of a low-pass (a solid green line), a band-pass (a 7 

dashed red line), and a flat (a dash-dotted grey line) MTF is shown for each layer. In the 1st layer, all 8 

MTFs were flat. In the 5th layer significant synchrony to the stimulus AM was observed. In the 9th 9 

and 13th layer the synchrony at the lower AM frequencies increased. The magnitude of rate-based 10 

responses, shown as the heights of the rMTFs appeared gradually increasing with ascending the layers. 11 
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(b) The number of units with the low-pass (solid green lines with circles), band-pass (dashed red lines 1 

with crosses), high-pass (dotted black lines with triangles), and flat (dash-dotted grey lines with 2 

squares) type tMTF (left panel) and rMTF (right panel). Most MTFs were low-pass, band-pass, or flat 3 

type. With ascending the layer, the number of low-pass and band-pass MTFs increased. The increase 4 

started at higher layer for rate coding than for temporal coding. (c) Heatmaps of all tMTFs (left) and 5 

rMTFs (right) in layer 1, 5, 9, and 13. MTFs are normalized by their peak values for better visualization. 6 

The units are sorted vertically by their peak AM frequencies. As ascending the layer from the layer 5, 7 

the effective AM frequency for inducing synchrony appeared to decrease, and the distinction between 8 

darker and brighter area in the rMTFs appeared to become clearer. In some layers, distinct peaks and 9 

notches appeared commonly across different units at particular AM frequencies (observed as the 10 

vertical lines in tMTFs). We have no clear explanation for this, but this is perhaps due to artefacts of 11 

discrete convolutional operation.  12 
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d 1 

 2 

e 3 

 4 

Similarity to the auditory system throughout the entire cascade. 5 

(a) Histograms of BMF (filled blue bars) and UCF (hatched orange bars) of temporal (left panels) and 6 

rate (right panels) coding in each layer. The layers are sorted vertically from bottom to top. In the 1st 7 

and 2nd layer, no units exhibited definable tBMF or tUCF. In the 3rd and 4th layer, the tBMFs and 8 

tUCFs covered wide range of the AM frequency, majority of them being low. As ascending from 5th 9 

layer, the tBMFs and tUCFs appeared to decrease. As for rate coding, in the 1st to 4th layers, no units 10 

exhibited definable rBMF or rUCF. In the 5th layer small number of high rBMFs and rUCFs appeared. 11 

As ascending from the 5th layer, the number of units with definable tBMFs and tUCFs increased. (b) 12 

The number of units with definable BMF (filled blue circles) and UCF (open orange triangles) of 13 

temporal (solid lines) and rate (dashed lines) coding. As ascending the layers, the number of definable 14 

units increased. The number of units with definable rBMF and rUCF started increasing in higher layers 15 
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than those with definable tBMF and tUCF. In other words, rate coding are performed in higher layers 1 

than temporal coding. (c) Distributions of BMF (filled blue areas) and UCF (hatched orange areas) of 2 

temporal (left panels) and rate (right panels) coding in each region in the auditory system. Regions are 3 

sorted vertically from the peripheral regions (bottom panels) to the central (top panels). No distribution 4 

of tBMF is reported in AN. The tBMFs and tUCFs gradually decrease from the periphery to the central. 5 

No distribution is reported for rate coding in the peripheral regions probably because peripheral regions 6 

do not code AM frequency by the spike rate. (d) Layer-region pairwise similarity of the AM 7 

representation in the DNN layers (horizontal axis) and that in the regions in the auditory system 8 

(vertical axis). Pairs of layers and regions with large similarity appeared in diagonal. (e) Layer-region 9 

pairwise similarity normalized by the maximum value of each brain region. The diagonal pairs with 10 

large similarity are more clearly observed. 11 

Fig. 5 12 

a 13 

 14 
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b 1 

 2 

c 3 

 4 

Similarity correlated with classification accuracy. 5 

(a) Pairwise similarity of the DNN before optimization. Other conventions are the same as in Fig. 4d. 6 

All layers in the DNN were similar to the peripheral regions. (b) The classification accuracy (top) and 7 

the similarity of the entire cascade (bottom) as functions of the progress of optimization. The progress 8 

of optimization, shown in the horizontal axis, is linearly normalized so that the value takes 1 at the end 9 

of the optimization. The classification accuracy and the similarity increased as the optimization 10 

progressed, indicating the emergence of the auditory-system-like AM coding during the optimization. 11 

Coloured markers indicates the points at which layer-wise similarities were calculated in Fig. 6a. (c) 12 

The similarities of the DNNs with various architectures, plotted against their classification accuracies. 13 

The correlation indicates that AM representation in the better-performing DNNs are more similar to 14 

the auditory system. 15 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 27, 2018. ; https://doi.org/10.1101/308999doi: bioRxiv preprint 

https://doi.org/10.1101/308999
http://creativecommons.org/licenses/by/4.0/


Takuya KOUMURA  2018.04.26 

40 / 59 

 

Fig. 6 1 

a 2 

 3 

b 4 

 5 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 27, 2018. ; https://doi.org/10.1101/308999doi: bioRxiv preprint 

https://doi.org/10.1101/308999
http://creativecommons.org/licenses/by/4.0/


Takuya KOUMURA  2018.04.26 

41 / 59 

 

c 1 

 2 

d 3 

 4 

Different factors for different regions and consistency across datasets. 5 

(a) Layer-wise similarity at the four intermediate snapshot instances during optimization. Colors, 6 

markers, and lines indicate the progress of optimization as indicated by the legend and in Fig. 5b. As 7 

optimization progresses, similarity in the higher layers rapidly increased, followed by the middle layers. 8 

(b) Pairwise similarity in the control experiments. Coloured markers and lines by the panel titles 9 

indicate the types of the control conditions as in (c). Other conventions are the same as in Fig. 4d. (c) 10 

Layer-wise similarity in the control experiments. The similarities in the original condition (yellow 11 
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diamonds and solid line) are also shown. The lower layers were similar to the peripheral regions in all 1 

conditions. The middle layers were simlar to the middle regions only in the original and fourth 2 

conditions, and the higher layers were similar to the central regions only in the original, second, and 3 

third conditions. (d) Layer-region pairwise similarity of the DNN trained on a speech dataset. Other 4 

conventions are the same as in Fig. 4e. The lower layers are similar to the peripheral regions and the 5 

higher layers are similar to the central regions, indicating auditory-system-like AM representation 6 

consistently emerged from the speech dataset. 7 

Tables 8 

Table 1 9 

Major factors for AM representation in different regions. 10 

Regions Major factor 

Lower Cascading architecture 

Middle Data naturalness 

Higher Optimization objective 

 11 
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Extended Data 1 

Extended Data Fig. 1 2 

 3 

Architecture of the DNN. 4 

Our DNN consists of a stack of 1-dimentional dilated convolutional layers. The figure shows the 5 

architecture of the DNN for natural sounds. Each layer contains 128 units, and performs dilated 6 

convolution followed by nonlinear activation function. The 1st layer takes a raw sound waveform as 7 

an input, and the highest layer is connected to the classification layer, which was excluded from the 8 

analysis. The output category is the category assigned to the unit with maximum value. We tested 9 

multiple architectures with random filter and dilation length in each convolutional layer and selected 10 

the DNN which achieved the best classification accuracy on the novel dataset. The filter length and 11 

dilation length in all layers are shown in Extended Data Table 1. The number of layers and units in 12 

each layer was chosen in the pilot experiment. The activation function was the exponential linear unit. 13 
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b 1 

 2 

Confusion matrices of classification of the validation data. 3 

(a) Confusion matrix on the validation data of the non-human natural sounds. The number of categories 4 

are 18. (b) Confusion matrix on the validation data of the speech sounds. The number of categories are 5 

39. Labels of true categories are shown in the ordinates and those of predicted categories are shown in 6 

the abscissas. The value in each cell is calculated as the fraction of timeframes classified to the 7 

particular category among the total timeframes with the true category. Cells with high classification 8 

rate are in the diagonal of the matrices, indicating the high classification accuracy. The classification 9 

accuracy was defined as the mean values in the diagonal of the matrix. 10 
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Extended Data Fig. 3 1 

 2 

Importance of the deep cascade. 3 

Classification accuracy of DNNs with various number of layers with random filter and dilation length. 4 

DNNs with 1, 3, 5, 7, 9, 11, and 13 layers were tested. The number of tested channels were 32 (blue 5 

circles), 64 (orange triangles), and 128 (green squares). DNNs with 13 layers and 32 or 64 channels 6 

were not tested because they were excluded in the pilot study. The deeper the DNN, the higher the 7 

classification accuracy, seemingly saturating around the depth of 7. The result indicates the importance 8 

of the deep cascade at least as deep as 7 layers. 9 
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Extended Data Fig. 4 1 

 2 

Layer-region pairwise similarity of each of the BMF and UCF of temporal 3 

and rate coding. 4 

Layer-region pairwise similarity of BMF (top panels) and UCF (bottom panels) of temporal (left 5 

panels) and rate (right panels) coding. The four pairwise similarities were averaged to yield the final 6 

layer-region pairwise similarity (Fig. 4d). In all of them, lower layers appeared to be similar to the 7 

peripheral regions and the higher layers to the central regions, although the similarities are not as 8 

smooth or clear as the averaged one. 9 
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Extended Data Fig. 5 1 

 2 

Development of AM representation in the DNN during optimization. 3 

From top to bottom: heatmaps of all tMTFs (left) and rMTFs (right) in layer 1, 5, 9, and 13 (as in Fig. 4 

3c); the number of units with low-pass, band-pass, high-pass, and flat MTFs (as in Fig. 3b); histograms 5 

of BMFs and UCFs of temporal (left) and rate (right) coding (as in Fig. 4a); the number of units with 6 

definable tBMF, tUCF, rBMF, and rUCF (as in Fig. 4b); and layer-region pairwise similarity (as in Fig. 7 

4d). The progress of the optimization and the classification accuracy is shown in the top of each column. 8 

Auditory-system-like AM tuning gradually emerged as optimization progressed. 9 
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Extended Data Fig. 6 1 

 2 

Calculation of the similarity of the entire cascade. 3 

Similarity of the entire cascade, which we call cascade similarity, was defined as the weighted mean 4 

of the pairwise similarity matrix. The weight was designed to be larger near the diagonal line and 5 

smaller in the left top and right bottom corners. The layer-wise similarity was defined as the mean 6 

calculated across brain regions within each layer. 7 
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Extended Data Fig. 7 1 

 2 

Layer-region pairwise similarity of the DNNs with various architectures. 3 

Heatmaps showing the layer-region pairwise similarity. The panels are sorted by the classification 4 

accuracy, shown in the top of each panel. The left top panel is identical to the one of Fig. 4d. Pairwise 5 

similarities in diagonal appeared larger in the DNNs with large classification performance. 6 
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 1 

Extended Data Fig. 8 2 

 3 
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Distributions of the filter weights and biases before and after the 1 

optimization. 2 

Distributions of the filter weights (left panels) and biases (right panels) in each layer before (solid 3 

black lines) and after (dashed orange lines) the optimization. The layers are sorted vertically from 4 

bottom to top. In most layers the distribution of the filter weights appeared similar before and after the 5 

optimization. The distribution of the biases were totally different before and after since the biases 6 

before optimization are initialized to 0. 7 

Extended Data Fig. 9 8 

 9 

AM representation in the DNN with control conditions. 10 

AM representation in the DNN with shuffled weights and biases (left column), trained on shuffled 11 

category labels (second column), on shuffled waveform (third column), and optimized for the 12 

waveform following task (right column). Other conventions are the same as in Extended Data Fig. 5. 13 
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The lower layers were similar to the peripheral regions in all conditions. The middle layers were similar 1 

to the middle regions only in the fourth condition. The higher layers were similar to the central regions 2 

only in the second and third conditions. The results indicate different factors effecting AM 3 

representation in the different regions. 4 

Extended Data Fig. 10 5 

 6 

Schematic illustration of the classification task and the waveform 7 

following task. 8 

In the both tasks the DNN operated on a short sound segment. The sound classification task was to 9 

estimate the category of the input sound. The waveform following task was to copy the amplitude 10 

value of the last timeframe of the input segment. 11 
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Extended Data Fig. 11 1 

a 2 

 3 

b 4 

 5 
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c 1 

 2 

Similarity consistently emerges from the speech dataset. 3 

(a) Layer-region pairwise similarity after and before optimization, with shuffled weights and biases, 4 

trained on shuffled category labels and shuffled waveform, and of the waveform following task. Only 5 

did the DNN optimized for the classification task with natural data exhibited auditory-system-like AM 6 

representation. (b) The classification accuracy (top) and the cascade similarity (bottom) as functions 7 

of the progress of optimization. (c) The cascade similarities of the DNNs with various architectures, 8 

plotted against their classification accuracies. All results were consistent with the results obtained from 9 

the non-human natural sound. 10 
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Extended Data Fig. 12 1 

a 2 

 3 
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Tuning to carrier frequency. 1 

(a) Tuning to carrier frequency in 4 example units in each layer. Red and blue colour indicate larger 2 

and smaller response compared to the silent stimulus, respectively. White colour indicates the response 3 

equal to the silence. Black and grey lines show the frequency tuning curves, the minimum amplitude 4 

of the stimulus which induces larger response than the thresholds. The thresholds were 0.1 (light grey 5 

lines), 0.01 (dark grey lines), and 0.001 (black lines) above the response to the silence. Frequency 6 

tuning in the lower layers appeared monotonic along the stimulus amplitude, but some units in the 7 

higher layers shows non-monotonic response along the stimulus amplitude. The frequency tuning 8 

curves did not show clear single peaks. (b) Frequency tuning curve in all units in each layer. The curve 9 

for thresholds of 0.001 (left panels), 0.01 (middle panels), and 0.1 (right panels) above the response to 10 

the silence are shown. The units in each layer are sorted by the peak frequency of the tuning curves. 11 

Peaks in the frequency tuning curves in the middle layers appeared to cover wide range of the carrier 12 

frequency, but not in the lower and higher layers. 13 

Extended Data Table 1 14 

Architecture of the DNN. 15 

Layer # # channels Dilation width Filter width 

13 128 546 6 

12 128 1189 3 

11 128 1170 8 

10 128 901 6 

9 128 1129 3 

8 128 1021 6 

7 128 281 5 

6 128 477 8 

5 128 29 8 
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4 128 19 4 

3 128 453 3 

2 128 616 6 

1 128 349 3 

 1 
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