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Abstract  28 

Growing recognition of the pivotal role microglia play in neurodegenerative and 29 

neuroinflammatory disorders has accentuated the need to better characterize their 30 

function in health and disease. Studies in mouse, have applied transcriptome-wide 31 

profiling of microglia to reveal key features of microglial ontogeny, functional profile 32 

and phenotypic diversity. Whilst similar in many ways, human microglia exhibit clear 33 

differences to their mouse counterparts, underlining the need to develop a better 34 

understanding of the human microglial profile. On examining published microglia 35 

gene signatures, little consistency was observed between studies. Hence, we set out 36 

to define a conserved microglia signature of the human central nervous system 37 

(CNS), through a comprehensive meta-analysis of existing transcriptomic resources. 38 

Nine datasets derived from cells and tissue, isolated from different regions of the 39 

CNS across numerous donors, were subjected independently to an unbiased 40 

correlation network analysis. From each dataset, a list of coexpressing genes 41 

corresponding to microglia was identified. Comparison of individual microglia clusters 42 

showed 249 genes highly conserved between them. This core gene signature 43 

included all known markers and improves upon published microglial signatures. The 44 

utility of this signature was demonstrated by its use in detecting qualitative and 45 

quantitative region-specific alterations in aging and Alzheimer’s disease. These 46 

analyses highlighted the reactive response of microglia in vulnerable brain regions 47 

such as the entorhinal cortex and hippocampus, additionally implicating pathways 48 

associated with disease progression. We believe this resource and the analyses 49 

described here, will support further investigations in the contribution of human 50 

microglia towards the CNS in health and disease. 51 
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Table of Contents: Main points 61 

• Published microglial transcriptional signatures in mouse and human show 62 

poor consensus. 63 

• A core transcriptional signature of human microglia with 249 genes was 64 

derived and found conserved across brain regions, encompassing the CNS. 65 

• The signature revealed region-dependent microglial alterations in Alzheimer’s, 66 

highlighting susceptible CNS regions and the involvement of TYROBP 67 

signaling. 68 
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Introduction 70 

Microglia are the most abundant myeloid cell type in the central nervous system 71 

(CNS), accounting for approximately 5-20% of the brain parenchyma depending on 72 

region (Lawson, Perry, Dri, & Gordon, 1990; Mittelbronn, Dietz, Schluesener, & 73 

Meyermann, 2001).  These cells are phenotypically plastic and exhibit a wide 74 

spectrum of activity influenced by local and systemic factors (Cunningham, 2013; 75 

Perry & Holmes, 2014). Through development into adulthood, microglia influence the 76 

proliferation and differentiation of surrounding cells while regulating processes such 77 

as myelination, synaptic organization and synaptic signaling (Colonna & Butovsky, 78 

2017; Hoshiko, Arnoux, Avignone, Yamamoto, & Audinat, 2012; Paolicelli et al., 79 

2011; Prinz & Priller, 2014). As the primary immune sentinels of the CNS, microglia 80 

migrate towards lesions and sites of infection, where they attain an activated state 81 

that reflects their inflammatory environment (Leong & Ling, 1992). In these states, 82 

they can support tissue remodeling and phagocytose cellular debris, toxic protein 83 

aggregates and microbes (Colonna & Butovsky, 2017; Li & Barres, 2017). During 84 

neuroinflammation these cells coordinate an immune response by releasing 85 

cytokines, chemoattractants and presenting antigens, thereby communicating with 86 

other immune cells locally and recruited from the circulation (Hanisch & Kettenmann, 87 

2007; Hickey & Kimura, 1988; Scholz & Woolf, 2007). 88 

In common with mononuclear phagocyte populations throughout the body, recent 89 

studies have begun to reveal the diversity of microglial phenotypes in health, aging 90 

and disease states, as well as their unique molecular identity in relation to other CNS 91 

resident cells and non-parenchymal macrophages (Durafourt et al., 2012; Hanisch, 92 

2013; Li & Barres, 2017; McCarthy; Salter & Stevens, 2017). The application of 93 

transcriptomic methods has been integral to these advances by enabling an 94 

unbiased and panoramic perspective of the functional profile of microglia. In addition 95 

to an  improved understanding of the variety of context-dependent microglial 96 

phenotypes, other key benefits have arisen from these studies, notably the 97 

development of new tools to label, isolate and manipulate microglia (Bennett et al., 98 

2016; Butovsky et al., 2014; Hickman et al., 2013; Satoh et al., 2016). Although most 99 

studies have been conducted in mice, a considerable body of data is now emerging 100 

from human post-mortem and biopsy tissue (Darmanis et al., 2015; Galatro et al., 101 

2017; Gosselin et al., 2017; Olah et al., 2018; Y. Zhang et al., 2016). Whilst there are 102 
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many conserved features between rodent and human microglia, the importance of 103 

further refining our understanding specifically of human microglia is underscored by 104 

important differences that have been observed between them (Butovsky et al., 2014; 105 

Galatro et al., 2017; Miller, Horvath, & Geschwind, 2010). 106 

Recent transcriptomic studies have sought to characterize the human microglial 107 

transcriptomic signature from the CNS of non-neuropathologic individuals using data 108 

derived from either cells or tissue isolated from different brain regions (Darmanis et 109 

al., 2015; Galatro et al., 2017; Hawrylycz et al., 2012; Oldham et al., 2008). These 110 

analyses have been crucial in expanding our knowledge of their functional biology, 111 

however, our preliminary analyses found there to be little inter-study agreement 112 

across the published microglia gene signatures. Such inconsistency may have arisen 113 

due to technical differences in tissue sampling, brain areas analyzed, differences in 114 

patient characteristics and biological variance including the heterogeneity of different 115 

microglia populations (Grabert et al., 2016; Lai, Dhami, Dibal, & Todd, 2011; Lawson 116 

et al., 1990; Vincenti et al., 2016; Yokokura et al., 2011). This highlighted a need to 117 

derive a refined human microglial signature that would enable a more precise 118 

characterization of these cells in the healthy and diseased human brain. We 119 

therefore set out to define the core transcriptional signature of human microglia, i.e. 120 

shared by all microglial populations of the human CNS. To achieve this, we have 121 

performed an extensive meta-analysis of nine human cell and tissue transcriptomics 122 

datasets derived from numerous brain regions and donors. Secondly, we have used 123 

this signature to investigate region-dependent changes, while highlighting the 124 

influence of microglial numbers and activation in human tissue transcriptomics for 125 

Alzheimer’s and aging. 126 

Methods 127 

Comparison of published microglial signatures 128 

Ten publications that defined microglial signatures, four in human and six in mouse, 129 

were identified (Table 1). To compare across studies, genes from each signature 130 

were converted to a common identifier i.e. HGNC (Povey et al., 2001) or MGI (Shaw, 131 

2009) for human and mouse, respectively, using the online tool g:Profiler (Reimand 132 

et al., 2016). Subsequently, the tool was also used for interspecies comparison 133 

based on the MGI homology database, identifying human orthologues of mouse 134 
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genes. At the time of analysis g:Profiler used Ensembl v89 and Ensembl Genome 135 

v36(Hubbard et al., 2002). 136 

Transcriptomics data acquisition and pre-processing 137 

Tissue and cell transcriptomic datasets derived from the CNS were acquired for the 138 

derivation of the human microglial signature. These included data from the 139 

Genotype-Tissue Expression (GTEx) project (Lonsdale et al., 2013), Allen Brain 140 

Atlas (ABA)(Hawrylycz et al., 2012)(http://www.brain-map.org/) and from a study by 141 

Zhang et al.(Y. Zhang et al., 2016). The GTEx data comprised of two datasets, one 142 

generated on Affymetrix microarrays (n = 207) and a second by RNA-Seq (version 6, 143 

n = 1,259). In both cases, tissue samples were isolated from thirteen regions of the 144 

CNS at post-mortem, from individuals with no known neuropathology. The ABA data, 145 

generated on the Agilent microarray platform, consisted of 3,702 tissue samples 146 

taken from six individuals with up to 411 unique anatomical regions of the brain. Data 147 

from Zhang et al.(Y. Zhang et al., 2016) consisted of RNA-Seq data (n = 41) 148 

generated from different human CNS cell types (neuronal, glial and endothelial). For 149 

downstream analysis, data (n = 132) from immune (myeloid and lymphoid) and brain 150 

cell types (neuronal and glial) was downloaded (GSE49910) from the Gene 151 

Expression Omnibus (GEO)(Mabbott, Baillie, Brown, Freeman, & Hume, 2013). 152 

Lastly, for the analysis of microglia in aging and Alzheimer’s, data was derived from 153 

post-mortem samples of Alzheimer’s patients and controls from four cortical and 154 

hippocampal brain regions of 85 individuals (n = 235)(Berchtold et al., 2013). Further 155 

details of these datasets are provided in Table S1.  156 

Transcriptomics data was downloaded from the appropriate sources and underwent 157 

stringent quality control. The unprocessed microarray data from GTEx (GSE45878) 158 

and the Alzheimer’s dataset (GSE48350), were downloaded from GEO. Data quality 159 

was assessed using the ArrayQualityMetrics package (Kauffmann, Gentleman, & 160 

Huber, 2008) in Bioconductor, and samples failing more than one of three metrics 161 

(between arrays comparison, array intensity distribution and variance mean 162 

difference) were removed. Subsequently, data was normalized using robust multi-163 

array average from the oligo package (Carvalho & Irizarry, 2010) and where multiple 164 

probesets represented the same gene, the probeset with the highest average 165 

expression across donors was selected to represent the respective gene. GTEX and 166 

ABA preprocessed RNA-Seq data was downloaded directly from the GTEx portal 167 
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and the ABA website, the latter consisting of six pre-normalized datasets from the 168 

brains of separate donors. Furthermore, quality control was conducted by inspecting 169 

sample-to-sample correlation networks using Graphia Professional (Kajeka Ltd, 170 

Edinburgh, UK), revealing outlier samples or batches effects. Evident from the GTEx 171 

RNA-Seq data, early batches (LCSET-1156 to LCSET-1480) poorly correlated with 172 

other samples, forming a highly connected group separate from other samples within 173 

the network. For downstream analysis, genes were filtered from the Affymetrix 174 

microarray, with a normalized expression level <20 and <1 FPKM or RPKM for RNA-175 

Seq.  176 

Gene annotation through coexpression networks analysis 177 

To define a core microglial gene signature, the tissue and cell transcriptomics 178 

datasets described above were analyzed using the coexpression network analysis 179 

tool Graphia Professional. For each dataset, Pearson correlations (r) were calculated 180 

between all genes to produce a gene-to-gene correlation matrix. From this matrix, a 181 

gene coexpression network (GCN) was generated, where nodes represented genes 182 

and genes correlating greater than a defined threshold were connected by edges. 183 

Coexpressed genes formed highly connected cliques within the overall topology of 184 

the graph, which were defined as clusters using the Markov clustering algorithm 185 

(MCL), with the default inflation value of 2.2 (Van Dongen, 2000). All Pearson 186 

threshold values used for individual datasets were above r ≥ 0.7 and thereby graphs 187 

included only correlations that were highly unlikely to occur by chance (Figure S1). 188 

For each dataset, the threshold for correlations was further adjusted to achieve a 189 

single microglial cluster containing the three canonical marker genes for microglia, 190 

CX3CR1, AIF1 and CSF1R (Elmore et al., 2014; Mittelbronn et al., 2001). The final 191 

microglial gene signature was defined by genes present in at least three of the nine 192 

dataset derived microglial signatures (Table S2 and S3).  193 

Validation of the core human microglial signature 194 

Various lines of evidence were investigated to validate the conserved nature of the 195 

derived human microglial signature. Firstly, the average expression of signature 196 

genes was compared between myeloid and other cell types from an atlas of primary 197 

human cells (Mabbott et al., 2013), using the Mann-Whitney U test. Similarly, the 198 

average expression of signature genes in the GTEx RNA-Seq data and donor one of 199 

the microarray ABA data was also compared with the microglial cell densities in 200 
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mouse, for comparable regions (Lawson et al., 1990). Where available, 201 

immunohistochemical (IHC) staining of proteins encoded by signature genes were 202 

examined in the Human Protein Atlas (HPA)(Nilsson et al., 2005) across different 203 

regions of the human CNS. Enrichment analysis for Gene Ontologies (GO), 204 

pathways and transcription factor binding sites were conducted using ToppGene 205 

(Table S4)(Chen, Bardes, Aronow, & Jegga, 2009). In order to annotate the function 206 

of signature genes with relevance to myeloid and immune cells, the GeneCards 207 

database and literature were consulted (Table S3)(Safran et al., 2010).  208 

Signature genes were then compared with other published mouse and human 209 

microglial signatures. The largest signature reported by Galatro et al. (Galatro et al., 210 

2017), comprising of 1236 genes, included many genes from other microglia 211 

signatures and largely overlapped with the proposed signature. Therefore, to 212 

evaluate the specificity of the two signatures, we examined the expression of their 213 

respective genes in the GTEx RNA-Seq dataset. A GCN constructed (r ≥ 0.7) from 214 

the GTEx RNA-Seq dataset revealed five gene clusters enriched in Galatro et al. 215 

signature genes, representing various region-specific expression profiles (Table S5). 216 

Subsequently, for each cluster, the average expression of Galatro et al. genes was 217 

compared between the region with the highest expression versus the remaining 218 

samples, using the Mann-Whitney U test. 219 

Analysing microglia in aging and Alzheimer’s 220 

To study microglia in aging and Alzheimer’s, samples from the study by Berchtold et 221 

al.(Berchtold et al., 2008) were binned into four age groups, 20-39, 40-59, 60-79 and 222 

80-99 yr. The average expression level of microglial signature genes was calculated 223 

for samples in each age group and comparisons were made between Alzheimer’s 224 

samples (80-99 yr) with age-matched controls, and between older groups (80-99 yr) 225 

against younger control using the Mann-Whitney U test, corrected for multiple 226 

testing. To identify genes that represent microglial activation specifically in 227 

Alzheimer’s, a GCN (r ≥ 0.7) was constructed from only those samples derived from 228 

Alzheimer’s patients. The Fischer’s exact test was used to identify clusters enriched 229 

(adjusted P < 0.01) in core signature genes. Two such clusters were identified, 230 

clusters 5 and 67, containing 333 and 18 genes, respectively. Of these genes, 165 231 

were not part of the derived signature and were considered as potential microglial 232 

associated genes (MAGs) in Alzheimer’s (Table S6). To aid the interpretation of the 233 
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MAGs, their enrichment of pathways, GO annotations and associated transcription 234 

factor binding sites, were calculated using ToppGene (Table S7)(Chen et al., 2009). 235 

Following this, differentially expressed core genes and MAGs across brain regions, 236 

were identified for the superior frontal gyrus, between old (< 60 yr) and young 237 

controls (≥ 60 yr), and also between Alzheimer’s (≥ 60 yr) and age-matched controls, 238 

using the limma package in R (Table S6)(Smyth, 2005). A similar enrichment 239 

analysis was conducted for genes differentially expressed between Alzheimer’s 240 

samples and age-matched controls (Table S8). 241 

Results 242 

Heterogeneity of existing microglial signatures from human and mouse 243 

To examine the human microglia gene signature, previous signatures from human 244 

brain tissue or cells were compared (Table 1, Figure 1). Four such studies varied 245 

considerably in the number of genes they defined, ranging from 21 to 1,236 genes. 246 

Of the 1,464 unique genes identified in all these studies, only a fraction (15%, 214 247 

genes) were present in two or more signatures, with only 10 genes reported by all 248 

four publications. To verify that these results were not purely attributed by the 249 

individual variation in humans, the six publications reporting mouse-microglial 250 

signatures were also compared. Altogether these listed 690 genes (ranging from 47 251 

to 433 genes) with 300 orthologues common to studies in human. Similar to the 252 

comparison of human signatures, only 26% (179 genes) of genes were reported by 253 

more than one study, with only 9 genes common to all. These observations highlight 254 

the discordance between existing microglia marker lists and a need to develop a 255 

robust and validated human microglial gene signature. 256 

Derivation of a conserved core human microglial signature 257 

Observing the variability across published studies, we set out to define a human 258 

microglia gene signature from human tissue and cell data using a GCN (Figure 2A, 259 

Table S1). For this meta-analysis, tissue datasets including the GTEx project and 260 

ABA data were chosen, which cover a broad spectrum of sampling, across 261 

numerous CNS regions and donors (Hawrylycz et al., 2012; Lonsdale et al., 2013; 262 

Shen, Overly, & Jones, 2012). Additionally, Cell transcriptomic data from Zhang et al. 263 

reporting the top 20 marker genes for different brain cell types, was also included in 264 

the analysis (Y. Zhang et al., 2016). Post QC, the data amounted to a total of 5,020 265 
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samples isolated from 197 donors and 440 anatomical regions of the brain. To 266 

extract a microglial cluster from individual datasets, each was analyzed 267 

independently using a GCN (Tom C Freeman et al., 2007; Theocharidis, Van 268 

Dongen, Enright, & Freeman, 2009). This method exploits the inherent variability 269 

amongst samples due to variation in sampling, donors and cellular diversity across 270 

different CNS regions. In this case, genes expressed specifically by microglia in the 271 

context of the CNS, will vary in expression according to the regional abundance of 272 

these cells and therefore correlate in their expression, e.g. the poorly populated 273 

cerebellum presents a low expression of these genes relative to other regions. For 274 

constructing GCNs, genes are represented by nodes, and connected by an edge 275 

based on the similarity between their expression profiles, as quantified by the 276 

Pearson correlation coefficient (Figure S1). In this network, correlated genes form 277 

highly connected cliques within the overall topology of the GCN, and are defined as 278 

clusters using the MCL algorithm (Enright, Van Dongen, & Ouzounis, 2002; B. B. 279 

Shih et al., 2017). Using this approach on individual datasets, a microglial cluster 280 

containing the known marker genes CX3CR1, AIF1 and CSF1R, was identified for 281 

each dataset (Table S2)(Elmore et al., 2014; Mittelbronn et al., 2001). The final high 282 

confidence microglia gene signature was defined by 249 genes, which were present 283 

in three or more dataset-derived clusters, so as to avoid biases towards individual 284 

datasets. However, it should be noted that the 395 genes observed in at least two 285 

dataset-derived microglial clusters also showed a strong enrichment for genes with a 286 

known immunobiological function (Table S3).  287 

Validation and description of the core human microglial signature 288 

To validate the microglial signature genes, various lines of evidence were examined. 289 

First, a comparison of the average expression of core signature genes across cell 290 

types revealed a significantly higher (P < 0.001) expression in myeloid cells relative 291 

to other immune (most of which are scarce within non-neuropathologic brain tissue) 292 

and CNS cell types (Figure 2B)(Ginhoux et al., 2010). Second, the average 293 

expression of core genes across brain regions in the GTEx and ABA datasets 294 

correlated with regional microglial densities as measured in the mouse (Figure 295 

2C)(Lawson et al., 1990). Third, where data was available, the IHC staining of 296 

proteins encoded by signature genes was examined in the CNS. This confirmed the 297 

microglial expression of known markers e.g. AIF1, as well as less characterized 298 
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proteins in the core set,  e.g. APBB1IP, ABI3, FCER1G and ARHGDIB, which 299 

specifically stained for microglia across the four regions analyzed by the HPA 300 

resource (Figure 3A)(Nilsson et al., 2005). Finally, GO enrichment analysis was 301 

performed and complemented by manual annotation of the core human microglial 302 

gene signature. Literature mining showed most genes in the list to have some 303 

association with microglial/macrophage biology and overall there was a significant 304 

enrichment in genes known to be associated with microglial processes (Table S3, 4). 305 

These include TLR signaling (TLR1, TLR2), complement pathway (C3AR1, C1QA 306 

and C2), TYROBP signaling (TREM2, TYROBP), and cytoskeletal organization 307 

(AIF1, CAPG and WAS) (Figure 3C)(Hong et al., 2016; Marinelli et al., 2015; Yeh, 308 

Hansen, & Sheng, 2017). Genes recently identified as highly enriched in human or 309 

mouse microglia, relative to other macrophages and CNS cells, were also present in 310 

the signature (e.g. GPR34, P2RY12, P2RY13, TMEM119)(Butovsky et al., 2014). 311 

The core signature was then compared to the published microglial signatures from 312 

both human and mouse (Figure 3B). The majority of genes (248 genes) overlapped 313 

with signatures from earlier works, with HLA-DRB3 being unique to this study. Over 314 

half of the core signature genes included those overlapping between published 315 

human and mouse signatures, while the remaining genes were specific to previous 316 

signatures in human (113 and 134 respectively). A majority of the core signature 317 

genes (64%, 142 genes) were identified in two or more human studies, whilst 99 318 

genes overlapped solely with the Galatro et al. signature. To further validate the 319 

specificity of the current microglial signature, the coexpression of these genes was 320 

compared with that of the Galatro et al. signature (1,236 genes), which included the 321 

majority of genes in other signatures. On constructing a GCN from the GTEx RNA-322 

Seq dataset, genes of the current signature were strongly coexpressed with one 323 

another within the network graph (Figure 4A). Many Galatro et al. signature genes 324 

were similarly coexpressed, however, many others were scattered across the 325 

network, indicative of an overall poor correlation between them in comparison to the 326 

current signature (Figure 4B). Cluster analysis showed a contrast in the expression 327 

profiles of clusters enriched in Galatro et al. signature genes relative to the microglial 328 

cluster as defined by marker genes (cluster 6, Figure 4C, D, and E). The expression 329 

pattern of these clusters deviated from the microglial cluster 6 and presented 330 

significant (FDR < 0.001) region-specific expression (Table S5). For instance cluster 331 
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1 containing 94 genes from the Galatro et al. signature were highly expressed in the 332 

cerebellum, a brain region having a low number of microglia. On comparing these 333 

genes with a recently published list of cerebellum-specific mouse microglial genes 334 

(Grabert et al., 2016), only three genes coincided and analysis of HPA IHC data 335 

suggested that whilst some were specifically expressed in microglia in other regions, 336 

they were not microglial specific in the cerebellum (Figure S2). 337 

Microglia in Alzheimer’s disease 338 

We next used the 249 gene signature to assess the human microglial profile in aging 339 

and Alzheimer’s through analysis of a transcriptomics dataset derived from cortical 340 

and hippocampal regions of Alzheimer’s patients and non-neuropathic controls 341 

(Berchtold et al., 2013)(Table S1). As a preliminary analysis, the average expression 342 

of signature genes was used as a proxy measure of microglial number and 343 

calculated for all 20 yr age groups across regions (Figure 5A). Apart from the 344 

entorhinal cortex, a significant increase in expression of core genes was observed 345 

with aging. For example, in the hippocampus, a 1.6 fold change (FC) in expression 346 

(FDR < 0.01) was observed between the oldest and youngest control age groups. 347 

The lack of significance for the entorhinal cortex is likely attributed to the significant 348 

variation between samples across the different age groups. On comparing the 349 

average expression of core genes in Alzheimer’s with age-matched controls, the 350 

superior frontal gyrus showed a significant increase in Alzheimer’s samples (FC = 351 

1.2, FDR < 0.05), a region known to be significantly affected in both aging and 352 

Alzheimer’s, based on neuronal connectivity studies (Bakkour, Morris, Wolk, & 353 

Dickerson, 2013; Stam, 2014). Although non-significant, other regions also showed a 354 

consistent increase in expression of the signature genes relative to age-matched 355 

controls. 356 

Based on the hypothesis that microglia in Alzheimer's not only increase in number 357 

but are also phenotypically altered by the presence of misfolded beta-amyloid protein 358 

and other potential biochemical stressors, we sought to identify other genes which 359 

were specifically coexpressed with the core signature genes across in brain samples 360 

from Alzheimer’s patients (Manocha et al., 2016). A GCN was generated using only 361 

those samples derived from Alzheimer’s patients (r ≥ 0.7), and two clusters were 362 

found enriched in core microglial genes based on a Fisher's exact test (adj. P < 363 

0.01). The 165 non-core genes were also present in these clusters, i.e. coexpressed 364 
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with the core genes and used for downstream analyses (Figure 5B, Table S6). 365 

Enrichment analyses of these MAGs conducted using ToppGene (Chen et al., 2009) 366 

revealed GO terms associated with cell activation, wound healing, angiogenesis, 367 

apoptosis and immune defense response (Table S7). These analyses were 368 

complemented by an enrichment in the MAGs for pathways linked to platelet 369 

activation, NFKB signaling, TGFB-SMAD signaling and VLDL metabolism. 370 

Additionally, an enrichment of the ETS2 binding site was observed in these genes, a 371 

transcription factor implicated in Alzheimer’s and a known transactivator of the APP 372 

promoter (Wolvetang et al., 2003).  373 

In order to identify quantitatively, genes specifically associated with microglia in 374 

Alzheimer’s but not aging, a differential expression analysis was conducted based on 375 

the MAGs and core genes, to compare the response of microglia in aging and 376 

Alzheimer’s. Thus, the expression fold change between the old (≥60 yr) and young, 377 

was compared with that of Alzheimer’s and age-matched controls (Figure 5C, Table 378 

S6). Reinforcing our preliminary analysis in estimating microglial numbers in 379 

Alzheimer’s versus age-matched controls, the majority of differentially expressed 380 

genes (FDR < 0.05) were restricted to the superior frontal gyrus. Interestingly, the 381 

trends in expression for each region (represented by the regression line) matched 382 

the degree to which each region undergoes neurodegeneration in Alzheimer’s, e.g. 383 

the post-central gyrus, which is comparatively unaffected in Alzheimer’s relative to 384 

other regions of the brain (Thompson et al., 2003), showed the least upward trend 385 

(intercept = -0.01, slope = 0.23). In contrast gene expression in the entorhinal cortex 386 

and hippocampus, regions considered vulnerable to Alzheimer’s showed an upward 387 

trend, highlighting the significance of these genes in Alzheimer’s and not only aging. 388 

Although the genes differentially expressed across regions were not all the same, 389 

certain genes such as SAMSN1 (superior frontal gyrus: FC = 1.48, FDR < 0.003) 390 

and CX3CR1 (superior frontal gyrus: FC = 0.88, FDR < 0.707) had a consistent 391 

expression pattern across regions when comparing the expression fold change in 392 

Alzheimer’s and aging. To better characterize the microglial response in Alzheimer’s, 393 

we focused on the superior frontal gyrus, having the most number of differentially 394 

expressed genes and a significantly affected region in Alzheimer’s. In identifying 395 

genes likely representing changes in activation state rather than cell number, we 396 

considered the 52 genes differentially expressed only in Alzheimer’s versus age-397 
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matched controls. Here, genes also differentially expressed in aged versus young 398 

were excluded as they are known to be influenced by microglia abundance. 399 

Enrichment analysis of these genes highlighted processes related to cell activation 400 

(PYCARD and PIK3CG), wound healing (A2M and SERPING1), innate immune 401 

response (TLR5 and ITGAM), and pathways associated with phagocytosis, TLR 402 

cascade, and cell activation linked with neuronal survival (Table S8). Moreover, 403 

several members of TYROBP signaling pathway were differentially expressed 404 

(SAMSN1, SIRPβ2, CD37, IL10RA, PIP3CG and BIN2), a pathway dysregulated in 405 

microglia during Alzheimer’s (Keren-Shaul et al.; Ma, Jiang, Tan, & Yu, 2015; B. 406 

Zhang et al., 2013).  Of the differentially expressed genes, eleven were MAGs 407 

including LYZ, RPS6KA1 and SLA, with known associations to Alzheimer’s (Ellison, 408 

Bradley-Whitman, & Lovell, 2017; Hu, Xin, Hu, Zhang, & Wang, 2017; Tuppo & 409 

Arias, 2005). Interestingly, certain classical microglial marker genes were 410 

differentially upregulated in Alzheimer’s e.g. ITGAM and PTPRC, while others 411 

showed a downward trend, including CX3CR1 and P2RY12; the latter consistent 412 

with a loss of homeostatic microglial genes observed in Alzheimer’s mouse models 413 

(Keren-Shaul et al.). Alternatively, whilst tissue gene expression can be influenced 414 

by cell activation and cell numbers, certain genes found differentially upregulated in 415 

both Alzheimer’s and aging, such as TSPO, MS4A6A and MHC class 2 genes, are 416 

known contributors of microglial activation based on previous studies (Bergen, 417 

Kaing, Jacoline, Gorgels, & Janssen, 2015; Hamelin et al., 2016; Hu et al., 2017). 418 

Overall, these observations demonstrate the value of the refined microglial signature 419 

we have derived in deducing changes in microglial profile (numbers and functional 420 

status) in Alzheimer’s and are consistent with the region-specific vulnerability and 421 

progression of Alzheimer’s pathology.    422 

Discussion 423 

Recent transcriptomic studies, majority of which have been conducted in mice, have 424 

greatly advanced our knowledge of the functional profile of microglia (Butovsky et al., 425 

2014; Darmanis et al., 2015; Galatro et al., 2017; Hickman et al., 2013; Zeisel et al., 426 

2015), their regional heterogeneity in the CNS (Grabert et al., 2016), and altered 427 

profile associated with neurodegeneration (Keren-Shaul et al.; Miller et al., 2010; 428 

Vincenti et al., 2016). Additionally, key differences between mouse and human 429 

microglia have been suggested (Galatro et al., 2017; Olah et al., 2018), emphasizing 430 
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the importance of better characterizing the functional profile of human microglia in 431 

health and disease. Our initial investigations demonstrated that published microglia 432 

gene signatures vary considerably in their size and composition relative to one 433 

another. Contributors of the observed discrepancy are likely the differing 434 

experimental objectives, p-value thresholds or fold-change enrichment in defining 435 

signature genes, donor variability, differing analysis platforms/methods, regions 436 

examined and cell isolation methodologies (Okaty, Sugino, & Nelson, 2011). Indeed, 437 

there appears to be little consensus amongst current studies over the functional 438 

profile of microglia beyond a few well-known markers, e.g. AIF1, CSF1R and 439 

CX3CR1 (Elmore et al., 2014; Mittelbronn et al., 2001).  440 

To identify a conserved human microglial signature, we used an unbiased correlation 441 

network analysis, harnessing the power of cell and tissue transcriptomics data 442 

including two large studies; namely the GTEx and ABA datasets. Together they 443 

provide the largest publicly available transcriptomic datasets covering a 444 

comprehensive range of brain regions, collected from numerous donors (Hawrylycz 445 

et al., 2012; Lonsdale et al., 2013). GCNs were constructed to identify groups of 446 

genes with similar expression profiles, corresponding to cells or pathways, as has 447 

been shown possible using this approach (Tom C. Freeman et al., 2012; Mabbott et 448 

al., 2013; B. B. Shih et al., 2017). From each dataset, a microglia cluster was 449 

identified, based on the presence of canonical marker genes for these cells. The 450 

consensus from these dataset derived signatures, provided 249 genes 451 

representative of human microglia across datasets. To our knowledge, this is the first 452 

study to deconvolute a microglia signature from the current GTEx and ABA tissue 453 

data. The derived signature included all known markers of microglia, including 454 

TMEM119, P2RY12, and CD68 (Bennett et al., 2016; Perego, Fumagalli, & De 455 

Simoni, 2011; Wes, Holtman, Boddeke, Möller, & Eggen, 2016) and many other 456 

genes known to be associated with microglial/macrophage biology. This includes 457 

representatives of the TLR, complement, and MHC class 2 antigen-presenting 458 

immune pathways. 459 

Validation of the signature, included an examination of HPA immunostaining of 460 

proteins encoded by the signature genes, demonstrating that they were significantly 461 

expressed in myeloid cell types relative to other neuronal and immune cells, and 462 

comparison with published microglial signatures. This final step revealed 463 
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approximately half of the core genes as conserved between species, reaffirming the 464 

widely accepted idea that many constitutively expressed microglial genes are 465 

conserved between mouse and human. Although their response to processes like 466 

aging may diverge (Bennett et al., 2016; Galatro et al., 2017). To examine the 467 

specificity of the core signature, a comparison was made with the Galatro et al. 468 

(Galatro et al., 2017) signature, derived by comparing the fold expression of 469 

microglia isolated from the parietal cortex of post-mortems, relative to whole tissue. 470 

The signature provides an insight into human microglial functionality under 471 

homeostasis and has a high degree of overlap with current signatures, although 472 

being significantly larger. Using the GTEx brain atlas data the coexpression and 473 

regional expression of both signatures were investigated. Many of the Galatro el al. 474 

signature genes showed poor coexpression while displaying a range of region-475 

specific expression patterns, deviating from those of canonical marker genes like 476 

CSF1R, AIF1 and CX3CR1. Whilst these genes are likely to be expressed in 477 

microglia (as originally identified), these results underscore the regional 478 

heterogeneity of microglia, suggesting that certain genes specific to cortical microglia 479 

may not be solely expressed by microglia in other regions. Indeed, certain of the 480 

Galatro signature genes, also common to other studies,  expressed highly in the 481 

cerebellum presenting a multi-cell type expression in this region based on IHC data 482 

from the HPA, making them poor markers of microglia. Additionally, these genes did 483 

not agree with cerebellum-specific genes identified in mouse (Grabert et al., 2016). 484 

In contrast, our core signature exhibited a well-defined and condensed coexpression 485 

pattern corresponding to the known regional CNS variation in microglial abundance. 486 

Therefore, while isolated cells have provided fundamental insight into microglial 487 

identity, coexpression analysis of the employed datasets aids in defining the 488 

microglial specific profile in the CNS. 489 

Evidence for the central role microglia play in the pathogenesis of neurodegenerative 490 

disease continues to grow, however, the cellular and molecular changes that occur 491 

in human brain pathologies are poorly understood. Furthermore, using the core 492 

signature we conducted various analysis, to discern the influence of cell number and 493 

activation state in both healthy aging and Alzheimer’s, across a number of brain 494 

regions using the dataset generated by Berchtold et al. (Berchtold et al., 2013). 495 

Given that the majority of microglial genes maintain their expression with age 496 
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(Galatro et al., 2017; Jyothi et al., 2015; Poliani et al., 2015), we made the 497 

assumption that the average expression of the signature genes, can be used as a 498 

proxy for microglia number through aging. Supporting this, the increased average 499 

expression of signature genes with age was substantiated by studies directly 500 

measuring cell numbers with age (Damani et al., 2011; Peters, Josephson, & 501 

Vincent, 1991; Tremblay, Zettel, Ison, Allen, & Majewska, 2012). The largest 502 

changes were observed in the hippocampus, a region particularly vulnerable to aging 503 

and where greater microglial activation and neuronal loss have been observed with 504 

age relative to other cortical regions (Bartsch & Wulff, 2015; Galatro et al., 2017; 505 

Kumar et al., 2012; Raz et al., 2005). Therefore, these analyses support the idea that 506 

microglial numbers change in a region-dependent manner and that these changes 507 

correlate with age-associated regional atrophy and inflammation. When comparing 508 

Alzheimer’s to age-matched controls, a similar trend towards increased expression 509 

levels of signature genes was also observed. However, a significant increase was 510 

only observed in the superior frontal gyrus, a region known to be highly susceptible 511 

to the effects of both aging and Alzheimer’s, based on neuronal connectivity studies 512 

(Bakkour et al., 2013; Stam, 2014). Interestingly, the entorhinal cortex and 513 

hippocampus, whose atrophy characterize Alzheimer’s pathology, showed the 514 

greatest differences between Alzheimer’s and controls, although lacking statistical 515 

significance, likely due to the relatively small number of samples and large variability 516 

between them (Khan et al., 2014; Velayudhan et al., 2013). In contrast, the post-517 

central gyrus, a region shown to maintain its grey matter content and functional 518 

connectivity with other regions in late-onset Alzheimer’s, showed little change in 519 

Alzheimer’s versus controls (Adriaanse et al., 2014; Thompson et al., 2003). 520 

Strikingly, these findings are consistent with regional Alzheimer’s progression based 521 

on tau burden, neuroinflammation and neuronal loss, which are prominent in the 522 

entorhinal cortex and hippocampus (Cope et al., 2017; Freer et al., 2016; Kreisl et 523 

al., 2016). Overall, these data demonstrate the utility of the signature in assessing 524 

quantitative differences in microglial numbers from tissue-level expression datasets.    525 

To gain insight into molecular pathways specifically affected in Alzheimer’s, 526 

qualitative changes in the profile of microglia were examined. Coexpression analysis 527 

identified a set of 165 MAGs correlating with the core gene signature in samples 528 

isolated from Alzheimer’s patients. The MAG list was enriched in various pathways 529 
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associated with innate immune signaling, consistent with the inflammatory 530 

environment within Alzheimer’s brain tissue and the reactivity of microglia within this 531 

environment, namely TSPO (Kumar et al., 2012). It was particularly interesting to 532 

note that genes involved in lipid regulation and wound healing, associated with 533 

Alzheimer’s, were over-represented in the MAGs set (Cervantes et al., 2011; Lorenzl 534 

et al., 2003; Petit-Turcotte et al., 2001; Y.-H. Shih et al., 2014). Members of the 535 

APOC gene family and ECHDC3 are known to regulate levels of certain lipids, linked 536 

with Alzheimer’s progression (Adunsky et al., 2002; Desikan et al., 2015; Lane & 537 

Farlow, 2005). Additionally, these factors are part of the wound healing cascade, 538 

including proteins such as TIMP1 and PROS1, which are key in regulating tissue 539 

integrity and plasticity, altogether pointing towards the vulnerable blood-brain barrier 540 

in Alzheimer’s (Bennett et al., 2016; Duits et al., 2015). These results provide some 541 

insight and support for the complexity of microglia involvement in Alzheimer’s 542 

through not only inflammatory mechanisms but also through upregulation of 543 

metabolic and tissue homeostasis/repair functions (Vincenti et al., 2016). 544 

Investigating quantitative alterations of microglial differentiation in Alzheimer’s, we 545 

focussed on genes differentially expressed in Alzheimer’s compared to age-matched 546 

controls. Although for all regions, the majority of genes presented an upward trend of 547 

expression, most lacked significance, excluding those of the superior frontal gyrus 548 

which we further investigated. Genes relating to TYROBP signaling, which is 549 

implicated in Alzheimer’s and together regulates phagocytosis, cell proliferation, 550 

activation and survival were significantly upregulated (Keren-Shaul et al.; Landreth & 551 

Reed-Geaghan, 2009; Ma et al., 2015). Substantiating these findings TYROBP 552 

knockout mice models have proven to suppress inflammation in neurodegenerative 553 

models including Alzheimer’s, thereby minimizing neuronal dystrophy, implicating a 554 

failure in the resolution of inflammation in Alzheimer’s (Bakker et al., 2000; Haure-555 

Mirande et al., 2017). Interestingly mutations and expression of downstream 556 

members are also linked with Alzheimer’s including CD33, TREM2 and CR3 557 

(Hamerman, Tchao, Lowell, & Lanier, 2005; Takahashi, Rochford, & Neumann, 558 

2005).  559 

In summary, we have employed a coexpression analysis approach to derive a core 560 

human microglial signature under non-neuropathologic conditions that is robust to 561 

potential artifact generated by technical and biological variation (e.g. donors and 562 
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CNS regions) that can influence other approaches in signature derivation. 563 

Furthermore, we present the utility of this signature, demonstrating its sensitivity to 564 

detect region-specific changes in microglial alterations in aging and Alzheimer’s 565 

disease, while appreciating the influence of cell numbers and activation in tissue 566 

transcriptomics data. We found that these responses were aligned with the known 567 

neuropathological trajectory of Alzheimer’s. We propose the conserved signature 568 

described here as a specific and robust resource of gene markers that reflect the 569 

core functional profile of these cells and aid future studies of microglial biology in the 570 

human CNS, including bulk and single cell transcriptomics.   571 
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Table  859 

Species Publication 
Total 

samples 
Brain region 

analyzed 
Sample 

type 

Sample 
isolation 
method 

Transcriptomics  
platform 

Analysis 
method 

Human 
Darmanis et al. 
(2015) 332 Region(s) Cell Single cell RNA-Seq Clustering 

  Oldham et al. 
(2008) 

160 Region(s) Tissue Dissection Microarray Clustering 

  Hawrylycz et al. 
(2012) 

911 
Regions 
spanning 
whole brain 

Tissue Dissection Microarray Clustering 

  
Galatro et al. 
(2017) 

39 Region(s) Cell 
Pooled 
cells 

RNA-Seq 
Fold 
enrichment 

Mouse 
Zhang et al. 
(2014) 17 Region(s) Cell 

Pooled 
cells RNA-Seq 

Fold 
enrichment 

  
Chiu et al. 
(2013) 42 Region(s) Cell FACS RNA-Seq 

Fold 
enrichment 

  
Hickman et al. 
(2013) 

17 Whole brain Cell FACS RNA-Seq 
Fold 
enrichment 

  
Benette et al. 
(2016) 11 Whole brain Cell 

Pooled 
cells RNA-Seq 

Fold 
enrichment 

  
Butovsky et al. 
(2013) 

77 Whole brain Cell FACS Microarray 
Fold 
enrichment 

  Zeisel et al. 
(2015) 

3005 Region(s) Cell Single cell RNA-Seq Clustering 

 860 

Table 1. Experimental design of previous studies defining the microglial signature. 861 

Table S1. Metadata of datasets used in the analysis.  862 

Table S2. Dataset derived microglial clusters 863 

Table S3. Core human microglial signature with annotation 864 

Table S4. ToppGene enrichment analysis of core microglial genes 865 

Table S5. Clusters from figure 4 866 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 26, 2018. ; https://doi.org/10.1101/308908doi: bioRxiv preprint 

https://doi.org/10.1101/308908
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Table S6. Fold change in core and MAG for aging and Alzheimer's across regions 867 

Table S7. ToppGene enrichment analysis of MAG. 868 

Table S8. ToppGene enrichment analysis of genes differentially expressed in 869 

Alzheimer's and not in aging. 870 

 871 

Figure Legends 872 

Figure 1. Comparison of published human and mouse microglial signatures. 873 

Comparison of signature size and gene overlaps amongst microglial signatures 874 

defined by studies in (A) human and (B) mouse (left panel). Plot (right panel) of gene 875 

overlap considering all microglial genes identified in all studies for the respective 876 

species  877 

Figure 2 Microglial signature derivation, comparison and validation. (A) A 878 

diagram showing steps in the derivation of the core microglial signature. From each 879 

dataset (upper panel) a microglial-specific cluster was identified using coexpression 880 

network analysis (blue sectors). In comparing these gene clusters, 395 overlapped 881 

across more than one dataset (green sector). From this set of overlapping genes, 882 

green lines connect a specific gene to all datasets in which it was identified. Of the 883 

overlapping genes, those co-occurring in three or more datasets were taken to 884 

represent the core microglial signature (red sector). (B) Average expression of core 885 

signature genes in various neuronal and immune cell types selected from an 886 

expression atlas of primary cells (Mabbott et al., 2013). (C) Comparison of the 887 

average expression across tissue transcriptomics data and microglial cell numbers in 888 

mouse, for regions common to the respective studies (Lawson et al., 1990). 889 

Abbreviations - AU: Arbitrary units; sig: Signature; ABA: Allen Brain Atlas; Ctx F: 890 

Frontal cortex; Ctx: Cortex; SN: Substantia Nigra; Cbm: Cerebellum. *** significant at 891 

P < 0.001. 892 

Figure 3. Supporting evidence for core microglial signature. (A) IHC staining of 893 

proteins of signature genes taken from the HPA, specifically staining for microglia 894 

within CNS sections from various regions (Nilsson et al., 2005). (B) Comparison of 895 

published human microglial signatures (inner circles) with reference to all the genes 896 

identified in both mouse and human studies (outer most circle), including the current 897 
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core microglial signature (red segment). (C) Annotation of the derived microglial 898 

signature genes based on GeneCards, with relevance to myeloid and immune cells 899 

(Safran et al., 2010).  900 

Figure 4. Coexpression of Galatro et al. signature and core microglial 901 

signature in the CNS. (A) Coexpression of Galatro et al. microglial signature (blue) 902 

and the current microglial signature (red) within the GTEx RNA-Seq data. (B) 903 

Histogram of the genes based on their median correlation with other genes of the 904 

same signature. Note the overall lower correlation between genes of the Galatro 905 

signature compared to the current signature. (C) Cluster analysis of the GTEx data, 906 

showing five clusters enriched in Galatro et al. signature genes.  (D) Profile of cluster 907 

6 having 463 genes of which 404 are present in Galatro et al. signature, also 908 

containing majority of the current list.  (E) Expression profile of Galatro et al. 909 

signature from the clusters identified. Abbreviations - Sig: Signature; Ctx: Cortex; 910 

BG: Basal ganglia; Hip: Hippocampus; Cbm: Cerebellum. *** significant at P < 0.001. 911 

Figure 5. The microglial response to Alzheimer’s disease. (A) Average 912 

expression of core signature genes in normal and Alzheimer’s samples from different 913 

age groups. (B) Coexpression network highlighting core (red) and microglial 914 

associated genes (green) in Alzheimer’s samples. (C) Comparison between all the 915 

MAGs and core genes of the fold change in Alzheimer’s versus age-matched 916 

controls (y-axis) and between old versus young controls (x-axis), across regions. For 917 

each comparison differentially expressed genes are shown, in the process of aging 918 

(yellow), in Alzheimer’s (purple) or differentially expressed in both processes (blue). 919 

The trend in expression of these in Alzheimer’s and aging is represented by the 920 

regression line (dashed line) with their slope, intercept and R2. Abbreviations - Sig: 921 

signature; AD: Alzheimer’s disease. * significant at FDR < 0.05, *** significant at FDR 922 

< 0.001. 923 

Figure S1. Distribution of Pearson correlations for each dataset analyzed. Plots 924 

show the distribution of positive Pearson correlations (edges) between genes 925 

(nodes) for Pearson correlations between 0 and 1 observed for each dataset (red), 926 

relative to the distribution of correlations for the equivalent randomized dataset 927 

(blue).  The dotted line shows correlation threshold used for analyses and figures 928 
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quoted list the number of edges one would expect by chance (random) versus those 929 

observed (real). 930 

Figure S2. IHC of Galatro et al. signature genes coexpressed in the cerebellum. 931 

IHC staining for a number of proteins from the Galatro et al. gene signature found to 932 

be significantly expressed in the cerebellum relative to other regions. IHCs were 933 

taken from the HPA resource (Nilsson et al., 2005), and show that in the cerebellum 934 

their expression is not restricted to microglia. 935 

 936 
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