
msCRUSH: fast tandem mass spectra clustering

using locality sensitive hashing

Lei Wang, Sujun Li, and Haixu Tang∗

School of Informatics, Computing and Engineering, Indiana University, Bloomington

E-mail: hatang@indiana.edu

Abstract

Large-scale proteomics projects often generate massive and highly redundant tan-

dem mass (MS/MS) spectra. Spectra clustering algorithms can reduce the redundancy

in these datasets, and thus speed up the database searching for peptide identification,

a major bottleneck for proteomic data analysis. Furthermore, the consensus spectra

derived from highly similar MS/MS spectra in the same cluster may enhance the signal

peaks while reduce the noise peaks, and thus will improve the sensitivity of peptide

identification. In this paper, we present the software msCRUSH, which implemented a

novel spectra clustering algorithm based on the locality sensitive hashing (LSH) tech-

nique. When tested on a large-scale proteomic dataset consisting of 18.4 million spectra

(including 11.5 million spectra of charge 2+), msCRUSH runs 7.6-12.1x faster than the

state-of-the-art spectra clustering software, PRIDE Cluster, while achieves higher clus-

tering sensitivity and comparable accuracy. Using the consensus spectra reported by

msCRUSH, commonly used spectra search engines MSGF+ and Mascot can identify

5% and 4% more unique peptides, respectively, comparing to the identification results

from the raw MS/MS spectra at the same false discovery rate (1% FDR) of peptides.

msCRUSH is implemented in C++, and is released as open source software.
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Introduction

With the rapid technical advancement in the past decade, liquid chromatography coupled

tandem mass spectrometry (LC-MS/MS) has achieved significantly higher throughput and

sensitivity, and thus extensive applications in large-scale analyses of complex proteomic

samples.1–3 The current mass spectrometry instruments normally acquire 104-105 MS/MS

spectra on proteome samples within a few hours in a single run, from which tens of thousands

of peptides can be identified.3 To further improve sensitivity, analytical and/or biochemical

approaches can be utilized to fractionate proteomic samples to reduce their complexity prior

to LC-MS/MS analyses. For instance, reversed-phase peptide fractionation combined with

LC-MS/MS, often referred to as the shotgun proteomics approach,4 leads to high resolution

peptide separation, resulting in the identification of a half million unique peptides from over

14,000 protein isoforms in a single human cell line.1 Biochemical fractionation approaches,

e.g., based on subcellular compartments,5 can substantially increase the identification cov-

erage of the target proteome, generating even more massive mass spectra datasets. Finally,

large-scale proteomic projects (e.g., the CPTAC project6) acquire MS/MS data from hun-

dreds to thousands of samples (e.g., collected from patients and healthy individuals), each

of which is analyzed with multiple technical replicates. As a result, these projects typically

produce datasets consisting of over 108-109 MS/MS spectra.

The whole set of spectra acquired in a large scale proteomics project is often highly re-

dundant, i.e., many spectra are from the same peptides, and thus exhibit high similarity.7

There are various reasons causing this redundancy: 1) in a single LC-MS/MS analysis, the

MS/MS may isolate and fragment the same (abundant) peptide ion multiple times (depend-

ing upon sample complexity and MS instrument setting); 2) when samples are fractionated,

some peptides may be present in multiple fractions; and 3) a majority of peptides may be

present in multiple samples analyzed in the single project. Searching redundant spectra

from highly abundant peptides could be both time and resource consuming. Notably, such

redundancy in a large set of spectra can be significantly reduced prior to peptide identifi-

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2018. ; https://doi.org/10.1101/308627doi: bioRxiv preprint 

https://doi.org/10.1101/308627
http://creativecommons.org/licenses/by-nc-nd/4.0/


cation using database search engines (e.g., Mascot,8 Sequest9 or MSGF+10) by clustering

MS/MS spectra based on their similarities such that the spectra in the same cluster are likely

generated from the same peptide and then retaining only a representative spectrum in each

cluster for subsequent database searching. This spectra clustering approach was commonly

adopted for building an MS/MS spectra library,11 in which a consensus spectrum was used

as the representative for each cluster. There are several advantages to exploit this approach

in proteomic data analyses. First, after spectra clustering, much fewer consensus spectra

(comparing to the original set of spectra) need to be identified by database searching, and

thus the processing time for peptide identification will be significantly reduced. Second, the

consensus spectra often show high signal-to-noise ratio, and are more likely to be accurately

identified. Finally, the clusters consisting of large number of spectra, even if their consensus

spectra are not identified, are worth further investigation because they are often generated

from abundant, novel molecules, e.g., the peptides containing mutations or post-translational

modifications (PTMs).

Conventional mass spectrum clustering algorithms, e.g., MS-Clustering,12 MaRaClus-

ter,13 and PRIDE Cluster,14 adopted the one-against-all approach, whereas each spectrum

is compared against other spectra of the same charge and within a precursor mass precision

using various similarity measures such as cosine similarity7 and self-defined metrics.13–15

Given a certain similarity threshold, the pair of spectra with highest similarity, higher than

the given threshold, will be grouped into a single cluster. A consensus spectrum is then

constructed from the newly formed cluster to replace the two similar spectra. The procedure

terminates if no pair of spectra remains with similarity higher than the given threshold.

For large mass spectra datasets (e.g., containing millions of spectra), this algorithm is slow

because the pairwise comparison involves each pair of spectra of the same charge and close

precursor mass. To speed up the algorithm for clustering large spectra set, heuristics were

developed to avoid pairwise comparisons. For instance, MS-Clustering12 considers only pairs

of spectra that share at least one peak among their top five strongest peaks, respectively.
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Both MS-Clustering and PRIDE Cluster14 adopt a greedy clustering strategy where they

merge first pair of spectra with similarity over the given threshold instead of merging the pair

of spectra with the highest similarity, in each round of clustering with decaying similarity

threshold.

In this paper, we present a novel spectrum clustering algorithm based on the locality

sensitive hashing (LSH) technique. We showed that our algorithm can significantly speed up

clustering by selecting a subset of highly similar spectra through one-time processing of all

spectra while retaining comparable or higher sensitivity and accuracy. We implemented this

algorithm in a software package named msCRUSH (standing for mass spectrum ClusteRing

Using locality Sensitive Hashing) in C/C++. As demonstrated on a large-scale human pro-

teomic dataset consisting of 18.4 million spectra (including 11.5 million spectra of charge

2+), it runs 7.6-12.1x faster than the state-of-the-art spectra clustering software PRIDE

Cluster,14 while our algorithm achieved higher clustering sensitivity and comparable accu-

racy. We also showed that, using the consensus spectra for the spectrum clusters reported

by msCRUSH, about 5% or 4% more unique peptides could be identified when MSGF+10 or

Mascot8 was used as the database search engine, respectively, comparing to the identifica-

tion results from the raw un-clustered spectra, and about 17% or 7% more unique peptides

comparing to the results from using the consensus spectra reported by PRIDE Cluster. Con-

sensus spectra generated by msCRUSH can also speed up database searching compared to

un-clustered original spectra, regardless of peptide search engines: 2.37x is achieved using

MSGF+ and 2.23x is achieved using Mascot, both on a large-scale dataset consisting of 11.5

million spectra of charge 2+.

Materials and Methods

The iterative clustering algorithm implemented in msCRUSH is illustrated in Figure 1. In-

stead of computing spectral similarity for each pair of spectra, which is computationally
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intensive, we adopt the locality sensitivity hashing (LSH) technique to group similar spectra

into buckets in a LSH table, and then compute the pairwise similarities between spectra

within each bucket that share the same charge and close precursor mass. The property of

LSH ensures that two similar spectra are likely to be grouped into the same bucket. Perform-

ing pairwise similarity computations in each bucket that contains a small set of potentially

similar spectra substantially reduces the computational cost. In addition, to increase the

sensitivity of the approximate LSH technique (in particular when the bucket size is large),

our algorithm uses gradually decaying similarity thresholds, starting from stringent to loose,

during the iterative process. Below, we describe the iterative clustering algorithm in details.

Measuring similarity between two tandem mass spectra.

We consider the tandem mass (MS/MS) spectra clustering problem as a high dimension

vector clustering problem: each input MS/MS spectrum consisting of hundreds of peaks is

considered as a sparse vector, in which each dimension is represented by a bin of mass-to-

charge (m/z) ratio, with the bin size representing the resolution of the mass spectrometer.

The normalized peak intensity is assigned to the vector corresponding to the m/z. The

vector clustering problem has been extensively studied in many applications including bioin-

formatics, such as for the clustering of gene expression profiles16,17 and text documents.18–20

Similar to the other applications, the similarity between two vectors (in our case, MS/MS

spectra) can be measured by different metrics. In this paper, we used the cosine similarity,

a variant of angle-based distance7 between the vector representations of MS/MS spectra,

which can be approximated using the LSH technique. The high cosine similarity between

two MS/MS spectra indicates that they are likely to result from the same peptide. The

other similarity measures, including the Pearson correlation coefficient 21 and the Euclidean

distance 22 have been shown to be highly correlated with the cosine similarity.23
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Figure 1: The workflow of msCRUSH algorithm. 1: Vector conversion: Prior to spectrum
clustering, each input MS/MS spectrum is first pre-processed and embedded into a numerical
vector. 2: Random projection: those vectors are then randomly projected into buckets by
utilizing the selected SimHash functions. 3: Merge : Within each bucket, cosine similarity
between each pair of spectra of the same charge and close precursor mass is calculated. If
the similarity is higher than the specific threshold, they will be merged into a consensus
spectrum; otherwise, they will remain separate. Iteration L: After merging and replacement,
the new spectrum (i.e. consensus spectrum) vector will proceed into next iteration of vector
conversion, random projection and merge. 4: Consensus generation: After a maximum
number of iterations, msCRUSH will generate consensus spectra as the final clustering report.
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Locality Sensitive Hashing (LSH) for spectra similarity search.

Searching similar vectors based on cosine similarity can be accelerated by using locality

sensitive hashing (LSH) algorithms as proposed previously.24,25 Notably, in computational

proteomics, an LSH technique called MinHash was adopted to speed up database searching

for peptide identification.23 However, MinHash approximates the size of intersection set

between two sets of fragment peaks (e.g., one from an experimental spectrum and the other

from the theoretical spectrum of a peptide in the database), and thus is not appropriate for

approximating the similarity between two vectors. In a brief summary, LSH utilizes hash

function y = h(x), where y is the hash value, to map objects into buckets in a hash table,

which can be indexed by their hash values (codes). Conventional hash functions are designed

to map objects to different buckets if these objects are not exactly the same, thus to reduce

the chance of collisions. In contrast, LSH functions attempt to assign similar objects (in our

case, MS/MS spectra) into the same buckets with higher probabilities than objects with low

similarity.

Generally, LSH is defined in following: Let H be a family of hash functions h that maps

objects in a metric space M to a bucket s ∈ S. The family H is called locality sensitive

under a threshold R, an approximation factor c (c > 1) and collsion probability P1 and P2

(P1 > P2), if for any two objects p, q ∈M ,

• if d(p, q) ≤ R, then Pr[h(p) = h(q)] ≥ P1,

• if d(p, q) ≥ cR, then Pr[h(p) = h(q)] ≤ P2.

, where d(p, q) is the distance between objects p and q (where p and q are vectors, d(p, q) =

‖p − q‖), and Pr[h(p) = h(q)] represents the probability that p and q collide under a hash

function. Specifically, in this paper, we used a family of LSH functions called SimHash,24,25

which aims to approximate the cosine similarity measure (i.e., the angle between two vectors

si and sj: θ(si, sj) = arccos
sTi sj
|si||sj |) using random projection,26 when searching for similar

spectra. Given two vectors si and sj, the SimHash function is defined as h(x) = sign(wTx)
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, where w is a randomly chosen vector and x is the input item; h(x) = +1 or −1 depending

on which side of the hyperplane (defined by w) x lies. For any si and sj, Pr[h(si) = h(sj)] =

1 − θ(si,sj)

π
. Hence, the higher similarity (i.e., smaller θ) between the two vectors, the more

probable they are mapped to the same bucket in a hash table by the SimHash function h.

Iterative clustering.

Previous spectra clustering algorithms such as MS-Clustering12 and PRIDE Cluster14 follow

the one-against-all strategy. These methods attempt to measure the similarity between all

pairs of spectra of the same charge and close precursor mass (within certain mass precision).

The general spectra clustering algorithm can be considered as a special case of the hierarchical

agglomerative clustering (HAC)27 , which starts from the clusters each consisting of one

spectrum (i.e., a singleton), and in successive steps merges two clusters into a single cluster

if they represent spectra of the same charge, close precursor mass and high spectra similarity.

Rigorous HAC algorithms run in time complexity of O(n3) for n items (spectra), while it can

be reduced to O(n2 log n) at the cost of using more memory.27 Due to the large number (e.g.,

11.5 million charge 2+ spectra in the test dataset) of MS/MS spectra, even the optimized

hierarchical clustering scheme runs very slow in practice. To address this issue, both MS-

Clustering and PRIDE Cluster adopted an iterative, greedy strategy to obtain approximate

hierarchical clusters: it merges an arbitrary pair of spectra with similarity above a given

threshold instead of merging two most similar spectra12,14 in each round of clustering. Only

as few as 4 rounds of clustering were performed by default in PRIDE Cluster for the sake of

running time. As a result, these algorithms did not enumerate all pairs of spectra with the

same charge and close precursor mass in each step, and thus may sacrifice some accuracy,

resulting in both false positives (i.e., spectra of different peptides that were grouped into the

same cluster) and false negatives (i.e., spectra of the same peptides that were assigned to

various clusters).

In an attempt to improve the clustering accuracy at the minimum computational cost, we
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adopted an iterative decay approach as well. Instead of performing pairwise computations

among spectra of the same charge and close precursor mass and then merging pairs of spectra

with similarity exceeding a given threshold12,14 that is particularly computationally expensive

for a set of large number of spectra, msCRUSH only computes the pairwise similarity of a

set of highly similar spectra residing in each hash bucket. As shown in Figure 1, while we

conduct multiple rounds of SimHash-based clustering, we decrease the similarity threshold

in the successive iterations. For instance, the similarity threshold is set to be stringent

(e.g., 0.9) for the first round (used interchangeably with iteration), and with the clustering

proceeding to the next rounds, we continue decreasing the threshold (e.g., to 0.85 and so on)

until it reaches a preset minimum value (e.g., 0.65).

Augmenting LSH functions.

To optimize the LSH-based clustering algorithm, we need to adjust two embedded param-

eters: the number of hash functions in one hash table and the number of hash tables

(in our case, iterations), as shown in Figure 2(a) and 2(b), respectively. When multiple

hash functions are used, the LSH algorithm amplified the gap of the collision probability

between the similar spectra and the dissimilar spectra. In particular, a compound hash

function g(x) = (h1(x), ..., hK(x)) is constructed by concatenating K SimHash functions,

h1(x), ..., hK(x), where each SimHash function hk(x) is chosen randomly from the family

H.26 Two spectra are mapped into the same bucket in a hash table of K concatenated

SimHash functions, only if their compound hash keys are same; hence for two spectra with a

collision probability p under a single SimHash function h, their collision probability under the

compound hash function becomes pK . As shown in Figure 2(a), using only one hash function

(k = 1, the blue line), the collision probability (y-axis) for two spectra to be mapped into the

same bucket in a single hash table is linearly correlated with their cosine similarity (x-axis).

When multiple hash functions are used (e.g., k = 10, the red line), the spectra similarity and

collision probability show nonlinear correlations. For example, when 10 hash functions are
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used, two similar spectra with cosine similarity of 0.7 is much more likely to be mapped into

the same bucket than two dissimilar spectra with similarity 0.2: the collision probability is

0.710 ≈ 0.03 for the two similar spectra, whereas the probability is 0.210 ≈ 10−8 for the two

dissimilar spectra. However, using multiple hash functions also decreases the collision prob-

ability of two similar spectra, and thus increases the number of false negatives in clustering

because two similar spectra are likely mapped to different buckets in the compound hash

table.

To address this issue, we performed multiple iterations of clustering, and a hash table

consisting of one compound hash function is selected in each iteration. We then attempted

to verify the similarity of two spectra if they are mapped to the same bucket from at least

one of L hash tables (i.e. from at least one iteration). In this case, the collision probability of

two spectra with similarity p becomes 1− (1− pK)L. For K = 10 and L = 100 (Figure 2(b),

green line), the collision probability is ≈ 0.94 for two similar spectra with cosine similarity

0.7, whereas ≈ 10−5 for two dissimilar spectra with cosine similarity 0.2. For each iteration,

the spectra within the same bucket that share the same charge and similar precursor mass

are retrieved as putative similar spectra, on which the similarities are computed explicitly. If

the similarity is higher than the threshold for the specific iteration, they will be merged into

a consensus spectrum (see below for details). In each iteration, we decrease the similarity

threshold based on a decay function: Maximum−Minimum
number of iterations

, where the maximum and minimum

similarity are set as 0.90 and 0.65, respectively. For instance, for a total of 100 iterations, each

iteration will decrease the threshold by 0.0025. Overall, during multiple iterations, the LSH-

based clustering algorithm can significantly reduce the running time for computing pairwise

similarity between spectra (as dissimilar spectra are not likely mapped to the same buckets

in each iteration and thus expensive pairwise similarity computations between dissimilar

spectra can be avoided) while retaining high sensitivity for grouping similar spectra (as

similar spectra are likely to be mapped to the same bucket in at least one iteration).
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 K = 1

 K = 2

 K = 10

 K = 5

 L = 10

 L = 50

 L = 100

 L = 200

(a)                                                                                           (b)

Figure 2: Illustration of the collision probability between two spectra under various com-
pound SimHash functions and various hash tables. (a) The collision probability decreases as
more hash functions are concatenated in a compound hash function, i.e. a hash table.; (b)
Augmented SimHash functions (10 hash functions are concatenated per hash table) incorpo-
rating multiple hash tables can increase the collision probability for pairs of similar spectra,
while keeping the collision probability between dissimilar spectra relatively low.

Generating consensus spectra.

A consensus spectrum is the representative mass spectrum for the (similar) spectra in each

cluster. Previous work12,28 showed that representing a cluster of highly similar spectra

by a consensus spectrum can improve the signal-to-noise ratio of the mass spectrum. In

msCRUSH, initially, each cluster consists of only one spectrum, which will be the consensus

spectrum for the cluster. For each successive iteration, if the similarity of two colliding

(consensus) spectra is above the threshold, the corresponding clusters are merged into a

single cluster, simultaneously generating a new consensus spectrum to represent the whole

cluster of spectra. Subsequently, the cosine similarity is computed between the resulting

consensus spectrum and the other consensus spectra, each representing a remaining cluster.

This simple process avoids the expensive computation of similarity between each pair of

spectra in two clusters. Note that the number of consensus spectra always decreases after

each iteration, and thus the final output of the clustering algorithm is a set of consensus
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spectra, which are much fewer than the set of raw spectra. These consensus spectra can be

used as input for database searching to reduce the computing time for peptide identification.

Given a cluster of MS/MS spectra, the consensus spectrum is computed by merging the

peaks in all input spectra: the peaks in all spectra within certain mass precision are merged

into a single peak in the consensus spectrum, for which the m/z is set as the average m/z of

all merged peaks weighted by the intensity of each peak, and the intensity is set to be the

average intensity of all merged peaks. Intuitively, the consensus spectrum representing N

MS/MS spectra in a cluster has a high signal-to-noise ratio, because the intensity of a noise

peak (occurring in only one input spectrum) is reduced by N times while the the intensity

of a signal peak (occurring in all input spectra) remains about the same.

Spectrum pre-processing.

Prior to spectrum clustering, each input MS/MS spectrum is first pre-processed to remove

putative noise peaks. Specifically, we partition the peaks in the spectrum into 100-Da wide

bins (from 200 Da to 2,000 Da), and in each bin, only the five strongest peaks are retained.

In order to reduce the influence of dominant peaks on the cosine similarity, the natural

logarithm of each peak’s intensity is considered in spectra clustering. Finally, the intensities

of all peaks are normalized such that the intensity of the strongest peak in a spectrum is set

to be the same (1,000 by default in the msCRUSH implementation).

MS/MS datasets.

We used two benchmark datasets of MS/MS spectra for testing the performance of msCRUSH

and PRIDE Cluster in this paper. Dataset A from ProteomeXchange29 (ID:PXD001197) con-

tains 903,237 spectra in total, including charges 2+, 3+ and 4+. This dataset was acquired

using the high resolution mass spectrometry LTQ Orbitrap Elite on the human cell line

HEK293.30 Dataset B from ProteomeXchange(ID: PXD000561) contains 18,405,828 spectra

in total, including charges 1+, 2+, 3+ and 4+. Detailed numbers of spectra with each
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charge state for these datasets can be found in Table 1. The MS/MS spectra were acquired

in a comprehensive human proteomic study using high-resolution Fourier-transform mass

spectrometry, while analyzed 30 histologically normal human samples, including 17 adult

tissues, 7 fetal tissues and 6 purified primary haematopoietic cells.31

Database Searching.

We used MSGF+10 and Mascot8 database search engines for peptide identification. The

parameters for database searching is set as the following to match the experimental condi-

tions:30,31 1) Instrument type: high-resolution LTQ; 2) Precursor mass tolerance: 50ppm; 3)

Isotope error range: -1, 2; 4) Modification: oxidation as variable and carboamidomethy as

fixed; 5) Maximum charge: 7; and 6) Minimum charge: 1. The false discovery rate (FDR)

is estimated by using a target-decoy search (TDA) approach,32 in which the decoy proteins

were generated by reversing the protein sequences in the target Uniprot human database.33

Evaluation Metrics.

A variety of metrics can be employed to evaluate the performance of spectra clustering al-

gorithms. We evaluated both the running time and the quality of the spectra clustering

algorithms of msCRUSH and PRIDE Cluster. To evaluate the quality of clustering algo-

rithms, we adopted several metrics defined by Enrique et al ,34 including cluster homogeneity

(purity), cluster completeness (within-cluster entropy), and peptide completeness (within-

peptide entropy), each of which focuses on one aspect of the quality of clusters. We describe

these metrics in details below. To be noted, in a typical LC-MS/MS experiment, on average,

around 25% spectra can be identified at a low false discovery rate (1%).14 Our evaluation

utilizes these identified spectra as golden standard to compute the evaluation metrics. In

reality, because a small fraction of these spectra are not correctly identified, the metrics may

not be completely accurate.

Purity. Cluster precision (CP) is defined as the frequency of the most commonly identified
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peptide (p) by the spectra in each cluster. Purity is then computed as the average of cluster

precision on all clusters weighted by the cluster size.

Purity =
∑
i

|Ci|
N

CP(Ci, p)

where CP is the cluster precision and N is the total number of identified spectra, |Ci| is the

number of identified spectra in cluster Ci. A high purity (close to 1.0) indicates the clusters

are mostly homogeneous, and thus have high sensitivity.

Within-cluster entropy. Within-cluster entropy (WCE) indicates how diversified the

identified peptides are within a cluster,

Within-cluster entropy =
∑
i

|Ci|
N

Entropy(Ci)

where N represents the number of identified spectra, |Ci| is the number of identified spectra

in the cluster Ci and Entropy(Ci) represents the entropy of the identified peptides in the

cluster Ci, which is defined as

Entropy(Ci) = −
∑
j

pj × log(pj)

where pj is the frequency of the peptide j identified by the spectra in cluster Ci. The within-

cluster entropy is 0 if this cluster contains spectra all identified as the same peptide. A high

within-cluster entropy indicates a low sensitivity of the clustering algorithm, as a variety of

peptides are grouped into the same cluster.

Within-peptide entropy. The within-peptide entropy (WPE) measures how spectra of

the same peptides distribute over diverse clusters,

Within-peptide entropy =
∑
j

|Pj|
N

Entropy(Pj)
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where N is the total number of identified spectra, |Pj| is the number of spectra identified

from the same peptide Pj across all clusters, and Entropy(Pj) represents the entropy of the

peptide Pj, which is defined as

Entropy(Pj) = −
∑
i

pi × log(pi)

where pi is the frequency of spectra identified as the peptide Pj from cluster Ci. A high

within-peptide entropy indicates a low sensitivity of the clustering algorithm, because all

spectra from the same peptides are not grouped into the same cluster.

Software availability.

We implemented our algorithm including the pre-processing and the clustering algorithm

in C++ in the software package msCRUSH, which is portable across different platforms,

e.g., Windows, Linux, Unix and Mactonish. The functionality of multi-threading was imple-

mented in msCRUSH using OpenMP35 to further speed up the spectra clustering. msCRUSH

is released as open-source software at github: https://github.com/COL-IU/msCRUSH

Results

Default parameters.

The performance of msCRUSH depends upon several parameters: the number of hash func-

tions in one hash table, the number of iterations (i.e. the number of hash tables) and the

minimum similarity threshold for merging spectra. To select the optimal default parameters,

we evaluated the performance of msCRUSH using different parameter combinations ranging

from 10 to 20 hash functions and from 25 to 150 iterations. The results from these exper-

iments are shown in Supplementary Table S1 and S2. Overall, when 15-18 hash functions

and 50-100 iterations were used, the clustering results are satisfactory in terms of purity,

15

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2018. ; https://doi.org/10.1101/308627doi: bioRxiv preprint 

https://github.com/COL-IU/msCRUSH
https://doi.org/10.1101/308627
http://creativecommons.org/licenses/by-nc-nd/4.0/


within-cluster entropy and running time. With the overall consideration of running time

and cluster metrics, we selected 15 hash functions and 100 iterations as the default pa-

rameters in msCRUSH. We also evaluated msCRUSH using different minimum similarity

thresholds, 0.5, 0.55, 0.6 and 0.65, respectively. As shown in the Supplementary Table S3,

it appears different default similarity thresholds should be selected for clustering MS/MS

spectra of different charges. Finally, we set the default values for the minimum similarity

thresholds. Those thresholds are: 0.6 for spectra of charge 1+, 0.65 for spectra of charge 2+,

0.6 for spectra of charge 3+, and 0.55 for spectra of charge 4+. The optimal threshold may

vary in different datasets. During the iterative process, msCRUSH uses a decaying function

to gradually decrease the threshold from 0.9 to the respective minimum threshold. For the

sake of consistency, we set 0.65 as the default value of minimum similarity threshold for both

datasets of all charge states, then report clustering results of msCRUSH including purity,

within-cluster entropy, within-peptide entropy and running time.

Clustering Performance.
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Table 1: Comparison of msCRUSH and PRIDE Cluster algorithms. Running time was measured in seconds using 40 threads
for both msCRUSH and PRIDE Cluster. The results were compared in terms of purity, within-cluster entropy (WCE) and
within-peptide entropy (WPE). The number of spectra was calculated in thousands. The cosine similarity threshold for merging
spectra was set to 0.65 for each dataset, and 15 hash functions, 100 iterations were used in msCRUSH.

Index No. of

spectra

No. of Clusters Time for Clustering Purity WCE WPE

Dataset PRIDE(%) msCRUSH(%) PRIDE msCRUSH PRIDE msCRUSH PRIDE msCRUSH PRIDE msCRUSH

A-2+ 415 261(62.89) 148(35.66) 237 75 0.992 0.978 0.022 0.068 2.041 0.747

A-3+ 358 292(81.56) 217(60.61) 225 67 0.996 0.991 0.012 0.027 2.779 1.248

A-4+ 111 98(88.29) 85(76.58) 83 19 0.999 0.998 0.002 0.005 2.772 1.680

B-1+ 762 677(88.85) 557(73.10) 377 32 0.996 0.993 0.011 0.021 2.234 0.538

B-2+ 11,525 7,695(66.77) 5,623(48.79) 9,480 783 0.989 0.980 0.032 0.070 2.912 1.835

B-3+ 4,981 3,714(74.56) 3,216(64.57) 2,812 301 0.995 0.993 0.014 0.022 3.231 2.121

B-4+ 1,138 942(82.78) 874(76.80) 604 80 0.997 0.997 0.009 0.011 3.179 2.569
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We evaluated the performance of msCRUSH on two testing datasets in comparison with

PRIDE Cluster, the state-of-the-art spectra clustering algorithm that has been applied to

the massive MS/MS spectra in the PRIDE data repository.29 The results are summarized

in Table 1. Overall, msCRUSH runs 3.2-12.1 times faster than PRIDE Cluster, and the

acceleration rate is higher for larger datasets. On the largest dataset tested so far, i.e., the

B-2+ dataset containing 11.5 million of doubly charged spectra, msCRUSH completed in

783 seconds (≈13 minutes) over 100 iterations, 12.1 times faster than PRIDE Cluster that

completed in 9,460 seconds (≈158 minutes), both using 40 threads. Note that due to the run-

ning time constraints, PRIDE Cluster only performed 4 iterations of clustering. As a result,

PRIDE Cluster often generated incomplete clustering results, with typically more clusters

than those reported by msCRUSH. For example, for the dataset B-2+, msCRUSH grouped

the input 11.5 million spectra into 5.6 million clusters, while PRIDE Cluster reported 7.7 mil-

lion clusters, 36.8% more than the msCRUSH results. This reduction in numbers of clusters

(and the corresponding numbers of consensus spectra) can further speed up the subsequent

step of the database searching for peptide identification, as we will discuss below.

Next, we evaluated the quality of clusters reported by msCRUSH and PRIDE Cluster

using different evaluation metrics. To compute the evaluation metrics, we used the database

searching results from MSGF+10 with the false discovery rate of 1% on peptides level for the

original datasets with un-clustered MS/MS spectra. We removed the common singletons (i.e.

clusters with only one spectrum) from clustering results of msCRUSH and PRIDE Cluster.

As shown in Table 1, msCRUSH generated spectra clusters with high purity (close to 1),

indicating the majority of spectra in each cluster are identified as the same peptides. PRIDE

Cluster generated clusters with slightly higher purity values comparing to msCRUSH. The

purity of both algorithms on the large dataset B-2+ differs only by 0.009. The results

of the within-cluster entropy demonstrated the same trends, although the within-cluster

entropy measures the diversity of peptides within one cluster that is reversely correlated with

purity measure. Interestingly, the within-peptide entropy that measures the distribution of
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spectra of the same peptides in different clusters, demonstrated significant difference between

msCRUSH and PRIDE Cluster: msCRUSH shows much lower within-peptide entropy than

PRIDE Cluster, indicating that msCRUSH has grouped the spectra from the same peptides

more effectively than PRIDE Cluster. Finally, it is worth noting, among the spectra clusters

reported by both algorithms, the majority are singletons (see Supplementary Figure S1 for

the size distribution of the clusters), which may represent the noise spectra acquired in

the LC-MS/MS experiments. However, msCRUSH outputs fewer singleton clusters than

PRIDE Cluster before removing common singletons (e.g. 5,012,516 vs. 7,001,404) on the

B-2+ dataset, again indicating msCRUSH can effectively group similar spectra into the same

cluster. We also evaluated the quality of clusters from PRIDE Cluster and msCRUSH after

removing all singletons from the clustering results, and we observed similar results to those

results on clusters removing only the common singletons (see Supplementary Table S4).

Database searching using consensus spectra.

One important application for spectra clustering is to reduce the number of spectra while

improving their quality by using the consensus spectra after spectra clustering12 for peptide

identification. To test the performance of this approach, we used peptide search engines

MSGF+ and Mascot, respectively, to identify the consensus spectra, each representing a

spectra cluster, reported by both msCRUSH and PRIDE Cluster, and compared them with

the peptide identification results from the original MS/MS datasets using the same peptide

search engines. As depicted in Figure 3(a) and 3(c), using consensus spectra generated by

msCRUSH and PRIDE Cluster, respectively, can both significantly reduce the time for data

searching through the MSGF+ search engine (see Supplementary Table S5 for similar results

of Mascot), as the number of consensus spectra is significantly smaller than that of the input

un-clustered MS/MS spectra. Note that the running time of both msCRUSH and PRIDE

Cluster are much shorter than the time of database search using MSGF+ (e.g. it takes 13

and 158 minutes for msCRUSH and PRIDE Cluster, respectively, to cluster the 11.5 million
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spectra in the B-2+ dataset, while the database searching takes 4-5 thousands of minutes on

consensus spectra reported by msCRUSH and PRIDE Cluster, respectively). For example,

on the B-2+ dataset with 11.5 million spectra, using the consensus spectra from msCRUSH

can speed up the database searching time by 2.37x (reduced from 9, 228 to 3, 894 minutes),

compared to the 1.72x speedup by PRIDE Cluster (reduced from 9, 228 to 5, 370 minutes)

when MSGF+ is used. Similar results (see Supplementary Table S5) have been obtained

for Mascot, we can achieve a 2.23x (reduced from 654 to 293 minutes) speedup using the

consensus spectra from msCRUSH, and an 1.68x (reduced from 654 to 391 minutes) speedup

using the consensus spectra from PRIDE Cluster. The maximum speedup can be achieved

on the A-2+ dataset (with 415k spectra) for both search engines: 4.26x (reduction from 301.1

to 70.7 minutes) for MSGF+, and 5.95x (reduction from 43.4 to 7.3 minutes) for Mascot.

Using the consensus spectra can indeed improve the overall peptide identification results,

and the improvement is strikingly pervasive across all charge states and search engines (ei-

ther MSGF+ or Mascot). As shown in Figure 3(b) and 3(d), on almost all tested datasets,

more unique peptides were identified through the MSGF+ search engine from the input of

consensus spectra generated by msCRUSH than those identified from the input of origi-

nal, un-clustered MS/MS spectra, when the same peptide-level false discovery rate (1%) is

applied. Though for the B-1+ dataset, when Mascot was used, the number of identified

unique peptides from consensus spectra produced by msCRUSH is less than that from the

un-clusted, raw MS/MS spectra, but is still much more than the identification result from

the input of consensus spectra reported by PRIDE Cluster (see Supplementary Figure S2).

On average, 5% more unique peptides can be identified by using MSGF+ as the search en-

gine from the consensus spectra generated by msCRUSH, while 4% such improvement when

Mascot was used as the search engine. In an extreme case, on the dataset of A-3+ (of triply

charged spectra), 26% more unique peptides can be identified (an increase from 11, 634 to

14, 684) by MSGF+ from the input consensus spectra generated by msCRUSH. It is worthy

noting, different cosine similarity thresholds for merging similar spectra, such as 0.5, 0.55,
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0.6 and 0.65, lead to similar number of identified unique peptides from consensus spectra

produced by msCRUSH when tested on all datasets, as depicted in Supplementary Table S6.

In comparison, using the consensus spectra generated by PRIDE Cluster often leads to the

reduced number of identified unique peptides (see Figure 3 and Supplementary Figure S2

and S3). For instance, on dataset A-3+, 50% less unique peptides were identified (a decrease

from 11,634 to 6,400) by MSGF+ from the input of consensus spectra reported by PRIDE

Cluster. This observation implies that the high quality of spectra clustering achieved by

msCRUSH can improve the quality of the consensus spectra generated from the clusters,

which will then improve the peptide identification results using these consensus spectra.

Finally, we investigated the difference among the identified peptides from the input of

the un-clustered spectra, and the consensus spectra generated by msCRUSH and PRIDE

Cluster, respectively. Figure 4 demonstrates that on each of the datasets A-2+, A-3+, B-2+

and B-3+, the number of unique peptides identified on the un-clustered, raw spectra overlaps

significantly with the unique peptides identified from the consensus spectra generated by

msCRUSH and those by PRIDE Cluster. On all datasets (see Supplementary Figure S2 and

S3), the results from the input of the consensus spectra generated by msCRUSH share more

identified unique peptides with the results from the input of un-clustered original spectra,

than the results from the input of consensus spectra generated by PRIDE Cluster, regardless

of which peptide search engine (MSGF+ or Mascot) is used. This result again showed that

msCRUSH algorithm can produce accurate consensus spectra representing most spectra in

the original datasets.

Discussion

We proposed a rapid algorithm msCRUSH for tandem mass spectra clustering with high

sensitivity and accuracy. msCRUSH exploits the locality sensitive hashing (LSH) technique

to speed up the similarity comparison between tandem mass spectra. To alleviate the ap-
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Figure 3: Comparison of the database searching time in minutes and unique peptide identi-
fication through the MSGF+ search engine using the raw un-clustered MS/MS spectra and
the consensus spectra generated by msCRUSH and PRIDE Cluster, respectively, as input.
(a) MSGF+ searching time on Dataset A; (b) Unique peptide identification on Dataset A;
(c) MSGF+ searching time on Dataset B; (d) Unique peptide identification on Dataset B.
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Figure 4: Venn diagrams demonstrating the overlap of the identified unique peptides using
consensus spectra (i.e., generated by PRIDE Cluster and msCRUSH, respectively) and the
original spectra in dataset A, B with charge 2+ and charge 3+, respectively, as input.
MSGF+ was used for database searching. (a) Unique peptides identified from dataset A-2+
(b) Unique peptides identified from dataset A-3+ (c) Unique peptides identified from dataset
B-2+ (d) Unique peptides identified from dataset B-3+.
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proximation incurred by LSH, which may miss some similar spectra, an iterative clustering

strategy is adopted: with more iterations, similar spectra are more likely to be grouped into

a same cluster. Fewer iterations of clustering can lead to further speedup but may reduce

sensitivity of spectra clustering. In fact, the current spectra clustering algorithms such as

PRIDE Cluster typically applied as few as four iterations because of the constraints of run-

ning time. By using LSH, msCRUSH can perform much more iterations (100 by default),

generating fewer and larger clusters, as well as more accurate consensus spectra, which can

improve the peptide identification results when using the consensus spectra as input for

database searching. Notably, these improvements were achieved simultaneously with a 3-

12 folds of speedup comparing to PRIDE Cluster, specifically on the large dataset of 18.4

million spectra.

Our evaluation showed that spectra clustering can improve peptide identification because

the consensus spectra generated from spectra clusters exhibit higher quality than the original

spectra. Nevertheless, many consensus spectra were not identified even though they represent

large clusters of spectra. For example, in the largest testing dataset B-2+, a total of 89,744

consensus spectra were generated by msCRUSH algorithm from clusters containing 10 or

more MS/MS spectra; among them, 38,246 (42.6%) consensus spectra were not identified by

either MSGF+ or Mascot through the database searching against the Uniprot human protein

database. Many of these spectra perhaps result from human peptides containing mutations

or post-translational modifications (PTMs), and thus are worth further investigation. When

applied to clinical proteomic datasets (e.g., acquired from samples of case/control subjects),

spectra clustering algorithms enable a spectrum-centric approach to quantitative biomarker

discovery, which can focus on the interpretation of the clusters of spectra corresponding to

parent ions with differential abundances in the case and control samples. For this approach

to succeed, however, it is crucial to group all spectra from the same peptides into the same

clusters; otherwise, the quantitative comparison becomes impossible. The high sensitivity of

msCRUSH clustering algorithm makes it particularly applicable for this approach.
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Although it is designed to cluster MS/MS spectra of peptides acquired from proteomic

experiments, msCRUSH can be directly applied to clustering the MS/MS spectra of other

molecules, in particular metabolites from metabolomics.36 The enhanced spectrum qual-

ity after spectra clustering may also improve the identification of MS/MS spectra in these

applications.
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