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Multi-omic profiling of TKI resistant K562 cells suggests metabolic reprogramming to 

promote cell survival 

 

Key Points: 

• Alterations to metabolism are a common feature of target-mutation-independent 

resistance in CML cells across multiple clinically relevant TKIs. 

• Carbonic anhydrase 1 (CA1) and α-synuclein (SNCA) are novel functional markers of 

metabolic reprogramming in TKI resistant CML cells. 

 

Abstract 

Resistance to chemotherapy can occur through a wide variety of mechanisms. Typically, 

resistance tyrosine kinase inhibitors (TKIs) is thought to arise from kinase mutations or signaling 

pathway reprogramming—however, “off-target” adaptations enabling survival in the presence of 

TKIs without resistant mutations are poorly understood. Previously, we established cell line 

resistance models for the three most commonly used TKIs in chronic myeloid leukemia 

treatment, and found that their resistance to cell death was not attributed entirely to failure of 

kinase inhibition. In the present study, we performed global, integrated proteomic and 

transcriptomic profiling of these cell lines to describe the mechanisms of resistance at the protein 

and gene expression level. We used whole transcriptome RNA sequencing and SWATH-based 

data-independent acquisition mass spectrometry (DIA-MS). This MS approach does not require 
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isotopic labels and provides quantitative measurements of proteins in a comprehensive, unbiased 

fashion: a significantly greater proportion of proteins are reliably quantified with this method, in 

comparison to traditional MS methods. The proteomic and transcriptional data were correlated to 

generate an integrated understanding of the gene expression and protein alterations associated 

with TKI resistance. We identified mechanisms of resistance that were unique to each TKI. 

Additionally, we defined mechanisms of resistance that were common to all TKIs tested. 

Resistance to all of the TKIs was associated with the oxidative stress responses, hypoxia 

signatures, and apparent metabolic reprogramming of the cells. Metabolite profiling and glucose-

dependence experiments showed that the resistant cells relied on glycolysis (particularly through 

the pentose phosphate pathway) more heavily than the sensitive cells, which supported the idea 

that metabolism alterations were associated with resistant cell survival. These experiments are 

the first to report a global, integrated proteomic and transcriptomic analysis of TKI resistance. 

These data suggest that targeting metabolic pathways along with TKI treatment may overcome 

pan-TKI resistance.  

 

Introduction 

CML is characterized by translocation of chromosomes 9 and 22 to form the Philadelphia 

chromosome, which generates a fusion between the breakpoint cluster region (BCR) gene and the 

ABL1 gene. The product of this fusion is the Bcr-Abl protein, in which several of the 

autoregulatory features of the Abl protein tyrosine kinase are disrupted, leading to its constitutive 

activity. Tyrosine kinase inhibitors (TKIs) inhibit Abl activity and are the major treatment 

modality for chronic myelogenous leukemia (CML). The first blockbuster TKI, imatinib, was 

introduced in the 1990s and provided a transformational improvement in outcomes for CML 
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patients, increasing the five year survival rate from ~45% to >80% and launching a new 

paradigm for molecularly targeted cancer therapy that has resulted in development of additional 

inhibitors for second, third, and further lines of therapy in CML and other cancers.1  

However, and perhaps inevitably, resistance or failure to respond has emerged as a significant 

clinical problem affecting about 33% of CML patients and leading to disease progression. 

Increasing clinical evidence is accumulating that sequential treatment with first, then second, 

then third line kinase inhibitors (starting with imatinib) does not result in better survival, and in 

fact, increases the risk of multidrug resistance.2 Suboptimal response to imatinib is associated 

with lack of Bcr-Abl inhibition by 1 month,3 and is observed at 18 months in up to 40% of CML 

patients.4 Second line dasatinib and/or nilotinib is effective for about half of imatinib-resistant 

patients, but third line TKIs do little to improve the long term outlook: patients who fail to 

respond to two TKIs are unlikely to achieve durable responses with a third TKI.5,6 ABL mutation 

(e.g. T315I in BCR-ABL) is a clinically significant mechanism of early first line response failure, 

with incidence between 40-90% (depending on definitions and detection methods),4 however 

second line failure is mutation-independent in 40-70% of cases.5,6 

In general, mutation-independent resistance can arise from several potential mechanisms, 

including amplification of the target protein (through copy number increases, increased 

transcription or translation, and/or decreased turnover), increased drug efflux or decreased drug 

influx through transporter proteins, or alteration in dependence on other signaling pathways 

(often termed “kinome reprogramming”7,8). Increasing evidence is also accumulating that 

metabolic reprogramming (relying more heavily on glycolysis as a response to oxidative stress) 

can enable cancer cells to adapt to stress (including chemotherapeutic stress) and survive in the 

presence of apoptotic signaling.9 Despite a breadth of literature on the role of metabolic 
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reprogramming in solid tumors and other leukemias and lymphomas,9,10 there has been less 

exploration of the potential for metabolic reprogramming to influence sensitivity of CML cells to 

kinase inhibitors. Evidence for imatinib resistance dependent on metabolic reprogramming 

through HIF1α has been reported,11 however no global evaluation of markers or comparisons to 

resistance to other TKIs has been performed so far. 

Because CML patients that fail two TKIs face dismal outcomes, it is imperative to find new 

avenues for therapy. Understanding the cooperating molecular pathways that allow CML cells to 

survive TKI treatment could be instrumental in guiding therapy for these patients. Several studies 

have examined mechanisms of TKI resistance in CML, typically for one or at most two TKIs, 

using either RNA sequencing (RNAseq) or protein analyses. However, without complex 

algorithmic normalization, there is often surprisingly little correlation between transcript and 

protein levels in the cell.12 While gene expression data is highly informative, the absence of 

protein-level data in TKI resistance severely limits our ability to understand the role of kinome 

and metabolic reprogramming. To our knowledge, combined comparisons of RNA and protein 

resistance profiles for all three of commonly used TKIs have not previously been performed. In 

this report, we sought to define these relationships to obtain a comprehensive characterization of 

resistance common to multiple TKIs. We performed transcriptomic and proteomic analyses of 

the TKI-sensitive human CML cell line K562 and three TKI-resistant derivatives developed in 

our laboratory: K562-IR (imatinib resistant), K562-NR (nilotinib resistant), and K562-DR 

(dasatinib resistant).13 These cell lines were generated by continuous, increasing dosage exposure 

to kinase inhibitors over >90 days until a resistant population was generated. Quantitative, whole 

transcriptome RNAseq and data-independent acquisition (DIA) SWATH-MS datasets were 

generated. SWATH-MS combines the best features of both narrowly targeted (e.g. multiple 
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reaction monitoring, MRM) and broad, unbiased protein profiling mass spectrometry methods, 

which enabled label-free quantitative analysis of relative protein abundance on a global proteome 

level. Each dataset was analyzed to identify differential gene and protein abundance between 

cells lines. An integrated analysis of the transcriptomic and proteomic data revealed common 

features of resistance to these kinase inhibitors: downregulation of Myc targets, engagement of 

hypoxia-related signaling, alteration of post-transcriptional/translational regulation, and 

metabolic reprogramming. Labeled glucose feeding experiments confirmed differences in 

metabolism for the resistant vs. sensitive cells, including increased glycolysis and shunting to the 

pentose phosphate pathway. Phenotypic experiments testing the ability of the cells to grow in 

galactose vs. glucose provided evidence that the resistant cells were more dependent on 

glycolysis as their major metabolic pathway than the sensitive cells, which were able to adapt 

and grow using other energy sources e.g. OXPHOS. Overall, these data suggest that targeting 

metabolic adaptation may provide valuable targets for avoiding and/or overcoming target 

mutation-independent resistance in CML. 

	

Figure 1. Developed resistance of a CML cell line to three different clinically-relevant 
tyrosine kinase inhibitors (TKIs) is associated with metabolic reprogramming that alters 
dependence on glycolysis and metabolic plasticity. Carbonic anhydrase 1 (CA1/CA1) and α-
synuclein (αSyn/SNCA) protein and mRNA levels emerged as a potential mechanistic 
biomarker signature for this type of metabolic reprogramming in K562 CML cells. 
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Materials and Methods 

 

Cell culture 

K562 cells were purchased from ATCC. Imatinib resistant (IR), nilotinib resistant (NR), and 

dasatinib resistant (DR) K562 cells were generated in the lab as described in our previous report 

of these cells13 by culturing K562 cells in the presence of low, but increasing concentrations of 

TKIs for 90 days, followed by a constant concentration from then on (1µM imatinib or 10nM 

nilotinib or 1nM dasatinib supplemented IMDM with 10% fetal bovine serum and 1% 

penicillium/streptomycin). Cells were grown to 7.5 x 105 cells/mL and split into two equal parts 

for RNAseq analysis and SWATH-MS.  

 

RNA sequencing sample preparation and analysis 

Cellular RNA was extracted in triplicate for each sample with the RNEasy kit (Qiagen) 

following manufacturer’s instructions. RNA concentration was measured, diluted to 100ng/µL, 

and submitted to the University of Minnesota Genomics Center (UMGC) for paired-end RNA 

sequencing. Twelve barcoded TruSeq RNA v2 libraries (four cell lines, triplicate RNA samples) 

were created from the samples and combined for sequencing on a HiSeq 2500 using rapid mode 

with 50bp reads, for a total of ~5-7 million reads per sample. Data format was converted to 

FASTQsanger and mapped to human reference genome (hg19_canonical) using TopHat2 on the 

Galaxy platform installed on the high performance cluster in the Minnesota Supercomputing 

Institute (MSI) at the University of Minnesota. Differential expression testing between the wild 

type K562 cells and K562-IR, K562-NR, and K562-DR cells, respectively, was computed using 

both Cuffdiff (via comparison of FKPM values generated using CuffQuant), a transcript 
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computation program available as a package through Cufflinks,14 and edgeR (using raw read 

counts from featureCounts). Subsequently, fusion transcripts were detected using DeFuse,15 a 

software package used to detect fusion transcripts from paired-end RNA-seq data.  

 

Proteomics sample preparation and mass spectrometry analysis 

Cells were washed three times with ice-cold PBS and re-suspended in lysis buffer (50mM 

ammonium bicarbonate pH 7.0, 4mM EDTA, Roche phosphatase inhibitors cocktail) and 

immediately incubated at 95°C for five minutes to seize all enzymatic activities. Subsequently, 

cells were sonicated for 30 minutes in a water bath and the insoluble fraction was separated from 

the cell lysate by centrifugation at 1.5 x 103 RPM for 20 minutes at 4°C. Each sample was 

reduced (20mM dithiothreitol for 1 hour at 60°C), and alkylated (40mM iodoacetamide for 30 

minutes at room temperature in dark.) Reactions were quenched by adding dithiothreitol to a 

final concentration of 10mM. The samples were then trypsin digested overnight at 37°C at a ratio 

of 1:50 (w/w). Subsequently, samples were cleaned up using MCX-type stage tips16 and re-

suspended in 90% water/10% acetonitrile/0.1% formic acid to a final concentration of 0.16 

mg/mL. Samples (800ng tryptic digest) were separated on a LC/MS system which included an 

Eksigent NanoLC 400 system and an AB SCIEX 5600 TripleTOF mass spectrometer. Samples 

were analyzed using a “trap and elute” configuration on the Eksigent nanoFlex system. Samples 

were loaded at 2 µL/min for 10 minutes onto a trap column (200 µm x 0.5 mm ChromXP C18-

CL chip column) and resolved on an analytical column (75 µm x 15 cm ChromXP C18-CL 

3µm.) Mobile phase of the liquid chromatography systems are: 0.1% (v/v) formic acid in LCMS 

grade water (solvent A) and 0.1% (v/v) formic acid in LCMS grade acetonitrile (solvent B). The 

LC method was over 90 min with a gradient from 5% to 35% solvent B at a flow rate of 300 
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nL/min. The mass spectrometer was set to acquire SWATH data (i.e. data independent 

acquisition, DIA).17 In a cycle time of about 1.8 sec, one survey scan and thirty-four 26 Da 

SWATH scans were performed. These 26 Da-wide scan events sequentially cover the mass range 

of 400 – 1250 Da, with a 1 Da for the window overlap. The collision energy for each SWATH 

scan was increased sequentially to better fragment peptide ions.  

 

Metabolite profiling  

A total of 21 million of both the wild type (WT) and imatinib-resistant (IR) K562 cells were 

diluted to 800,000 cells per mL in glucose-free RPMI 1640 medium (Thermo Fisher Scientific) 

with 5% fetal bovine serum and 1% penicillin-streptomycin, which was supplemented with 25 

mM 6-13C labeled D-glucose (Cambridge Isotope Laboratories). The cells were subjected to this 

treatment for 12.5 h, and then the metabolites were extracted in triplicate (7 million cells per 

replicate) from both the WT and IR lines according to instructions and with materials provided 

by Human Metabolome Technologies, Inc. (HMT). Briefly, the cells were first centrifuged down 

at 1,200 rpm for 5 min at room temperature and the culture medium was removed by aspiration. 

10 mL of a 5% (w/w) solution of D-mannitol in Milli-Q water was added to each sample and the 

pellets were resuspended and centrifuged as before. The supernatant was removed by aspiration 

and then 800 µL of LC-MS grade methanol was added to each cell pellet and vortexed for 30 

seconds. Then, 550 µL of an internal standard solution (provided by HMT and diluted 1:1000 in 

Milli-Q water) was added to each sample and vortexed for 30 seconds. A total of 1000 µL of this 

mixture was transferred to microtubes which were centrifuged at 2,300 g for 5 min at 4° C. Next, 

350 µL of the supernatant was transferred to pre-washed centrifugal filter units in duplicate (due 

to volume constraints of the filter units) and centrifuged at 9,100 g for 3 h at 4° C. The filtered 
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solutions were then evaporated to dryness using a SpeedVac. The samples were then stored at -

80° C until they were shipped to HMT for analysis. The metabolite profiling measurements 

(HMT’s “F-Scope” service) were performed on each of the 6 samples (3 WT and 3 IR) using 

capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS).  

 

Results  

 

Whole transcriptome analysis: Resistance is mediated by pathway alterations and not 

BCR-ABL1 gatekeeper mutations 

In order to detect differences in gene expression associated with TKI resistance, we performed 

whole transcriptome RNA sequencing analysis on parental K562 human chronic myeloid 

leukemia cells and three drug-resistant derivatives, K562-IR (imatinib-resistant), K562-NR 

(nilotinib-resistant), and K562-DR (dasatinib-resistant). Sequencing was performed for three 

replicate samples from each cell line. Fusion transcripts were detected using the DeFuse 

package15 in Galaxy. The BCR-ABL1 t(9;22) fusion transcript was validated in each cell line, and 

several other fusions were also observed (including e.g. the known fusion NUP214-XKR3 

t(9;22)18,19) (Supplementary Table S1). To examine the BCR-ABL1 transcripts for potential drug-

resistant point mutations, a custom version of the human hg19 genome was built to incorporate 

the BCR-ABL1 fusion gene, map the specific fusion transcripts and identify whether point 

mutations in the gatekeeper residue were associated with inhibitor resistance. Using IGV 

Browser (Broad Institute) to view the mapped reads of each TKI-resistant derivative against this 

custom genome, we did not identify any point mutations that were significantly different in the 

resistant vs. the sensitive cell lines. In particular, the gatekeeper residue T315 was not modified, 
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strongly suggesting that gatekeeper mutations 

were not contributing to drug resistance in 

these cell line models (Supporting information 

Fig S1).  

 

We compared the differentially expressed 

genes of each TKI resistant cell line relative to 

the parental, sensitive cell line 

(Supplementary Tables S2-S5). Each TKI 

resistant cell line differentially expressed a 

unique set of genes (227 for the imatinib-

resistant cells, 327 for the dasatinib-resistant 

cells, and 1930 for the nilotinib-resistant 

cells). However, we also found 370 genes that 

were differentially expressed in common 

across all three TKI resistant cell lines (Fig. 

2A,B) Of these, 117 were downregulated and 

253 were upregulated by log2 fold-change of 

at least at least -1 or 1, respectively in each 

TKI resistant sample, with 97% concordance 

of log2 fold-change direction per transcript 

across all three cell lines (Table S7). Because 

we were most interested in the mechanisms 

 
Figure 2. Differential gene and protein 
expression summary. A) Heatmap of 
expression levels (FKPM) for all genes observed 
by RNAseq. K = control K562 cells, IR = 
imatinib-resistant, DR = dasatinib-resistant, NR 
= nilotinib resistant. B) Venn diagram showing 
number of overlapping and unique differential 
gene expression (calculated as log2 fold change) 
observed in RNAseq data from the different TKI 
resistant cell lines relative to the control K562 
cells. C) Heatmap for all proteins detected in 
resistant cells with log2 fold change >1 and 
OneOmics confidence of >75% for differential 
expression relative to control K562 cells. IR = 
imatinib resistant, DR = dasatinib resistant, NR = 
nilotinib resistant. D) Venn diagram showing 
number of overlapping and unique proteins 
observed as differentially expressed (by log2 
fold change) in the SWATH-MS data for the 
TKI resistant cell lines relative to the control 
K562 cells. 
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that might be common targets in TKI resistance, we focused on genes that were commonly 

differentially expressed in all the drug resistant cell lines. Several of these transcripts have 

previously been identified as associated with TKI resistance, including MDR1/ABCB1, CD36, 

CD44, β-catenin, FYN, and AXL (Fig. S2, S5), indicating that our models were comparable to 

others developed in the literature.20-24 Additionally, Ingenuity Pathway Analysis and Gene Set 

Enrichment Analysis (Fig. S3 and S4) identified alterations to Myc programming, activation of 

HIF1α pathways, and oxidative stress processes in the TKI resistant cells. These represent novel 

pathways associated with TKI resistance. Interestingly, all of these alterations involve metabolic 

changes. 25, 26 

 

Quantitative protein level profiling: Proteome-level pathway alterations are consistent with 

gene expression-level pathway observations 

 

To define mechanisms of TKI-resistance at the protein level, we also performed quantitative 

proteomics (on the same set of samples as for RNAseq) using SWATH-MS data on a 5600+ 

TripleTOF® instrument (SCIEX). Protein extracts were analyzed using a fixed window (25 Da) 

in SWATH mode, which allowed for recording of fragment ion spectra from all detectable 

peptides in the samples and enabled unbiased label-free quantitative comparisons of the 

proteome (Tables S8 and S9). These analyses detected a set of uniquely differentially expressed 

proteins in each TKI-resistant cell line relative to the parental control (8, 7, and 33 for the 

imatinib-resistant, dasatinib-resistant and nilotinib-resistant cell lines, respectively). 81 proteins 

were differentially expressed in common amongst the three drug resistant cell lines compared to 

the sensitive parental control cells, with 70% concordance of log2 fold-change direction (Figure 
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2C,D). Ingenuity Pathway Analysis (Figure S4) supported the gene expression analyses that 

oxidative stress and metabolic processes were different (relative to the TKI-sensitive cells) in all 

three of the TKI resistant cell lines. As discussed below, the protein-level data provided 

important information about whether transcripts observed in the RNAseq experiment actually 

gave rise to altered levels of proteins, and illustrate how even with substantial mRNA log2 fold-

change concordance, proteins alterations were more variable between the different cell lines.  

 

Combined analysis: Relationships between gene expression and protein level patterns in 

kinase inhibitor resistance 

 

We performed an analysis to integrated transcriptomic and proteomic datasets to examine the 

relationships between mRNA and protein alterations in TKI-resistant cells. RNAseq and 

SWATH-MS datasets were aligned using the OneOmics MultiOmics tool to identify transcript 

observations that had corresponding protein observations (Supplementary Table S10). 588 were 

matched in common across all cell lines with sufficient confidence at both the mRNA and 

protein levels. The relationship between mRNA and protein fold changes was examined for 

transcripts and their associated proteins that were observed in both. Overall, there was a 

moderate, but statistically significant, correlation between mRNA and protein level fold changes 

in each resistant cell line relative to the control (Fig. 3A). In general, the magnitude of 

differential expression for proteins varied more widely than it did for mRNAs between the TKI 

sensitive vs. the TKI resistant cells: in many cases for a gene, the protein levels exceeded the 

fold change cutoff (log2FC >1 or  log2FC<-1) but the respective mRNA levels did not (log2FC = 

-1 to 1). These findings are consistent with the enriched GO annotations observed for the 
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Figure 3. Correlations between mRNA and protein. 
A) Relationship between mRNA and protein log2 fold 
change levels from RNAseq and SWATH-MS. IR = 
imatinib resistant, NR = nilotinib resistant, DR = 
dasatinib resistant. B) FKPM values plotted for selected 
gene transcripts showing upregulation at both mRNA 
and protein levels: CA1 and SNCA (-Synuclein). Error 
bars represent SEM for three replicate sequencing runs. 
K = control K562 cells, I = imatinib resistant, N = 
nilotinib resistant, D = dasatinib resistant. C) SWATH-
MS quantitation values from the OneOmics workflow 
plotted as log2 fold change for resistant lines relative to 
K, with unchanged K column shown for reference. D) 
ProteinSimple SimpleWestern chemiluminescence 
pseudo-blots showing immunodetection of these three 
proteins. Full SimpleWestern traces and pseudo-blot 
images available in the Supporting Information.	

SWATH-MS results suggesting that 

post-transcriptional or translational 

regulation may be an important 

mechanism in TKI resistance and 

highlight the importance of matched, 

protein-level analysis in the study of 

TKI resistance.  

 

 We identified two proteins with large 

difference of expression at both the 

mRNA and protein level in all of the 

resistant samples: carbonic anhydrase 1 

(CA1) and α-synuclein (αSyn) (Fig. 3B-

C). CA1 is an enzyme that aids in 

maintaining pH balance both intra- and 

extracellularly in many systems, and 

participates in H+/lactate co-transport. 

Given the requirement for increased 

carbonic anhydrase activity for cells’ 

adaptation to increased lactate levels in 

response to high rates of 

glycolysis,25,27,28, its upregulation in 

these cell lines may be related to 
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metabolic changes arising from mitochondrial dysfunction suggested by IPA (Fig. S4). A role for 

αSyn in K562 cells has not been previously described; this protein has been described primarily 

in the setting of Parkinson’s disease. However, αSyn interacts with the mitochondrial membrane 

and is required for mitochondrial fission in response to mitochondrial stress,29 and plays a role in 

mitochondrial membrane depolarization (and thus might affect ROS generation)30,31 implicating 

a role for this protein in the metabolic alterations detected in the transcriptional analysis. 

Additionally, αSyn upregulation has been observed in myelodysplastic syndrome and 

megakaryoblastic leukemias,32 and given that myeloid progenitor cells give rise to 

megakaryocytes33 it is possible that αSyn induction in these cell lines may be related to 

functional changes in the differentiation state of the resistant cells. αSyn is also associated with 

extracellular vesicle release from platelets34 (which arise from the megakaryocyte lineage), 

however examination of media from cultures of the K562 and resistant cell lines showed no 

significant increase in exosome secretion in the drug resistant cells relative to the control cells 

(Fig. S6).  

 

Metabolic reprogramming in TKI resistance: increased dependence on glycolysis and 

shunting through the pentose phosphate pathway 

 

Our integrated proteomic and transcriptional data suggest that metabolic reprogramming may be 

an important mechanism of survival in TKI resistant cells. To test this possibility, we performed 

a 13C-labeled glucose feeding experiment to compare glucose metabolism in IR cells relative to 

TKI sensitive cells. The cells were passaged into media containing 6-13C-labeled glucose and 

allowed to grow for 12.5 hours. After this treatment, the metabolites were harvested and 
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analyzed to study the differences in relative abundance of a panel of metabolites. IR cells showed 

a consistent and significant increase of relative abundance of glycolysis and pentose phosphate 

pathway (PPP) metabolites in comparison to the parental line (Figure 4).  

 

As for many cancers, K562 cells exhibit increased glycolytic activity (relative to non-leukemia 

cells), commonly known as the Warburg effect.35,36 Prior evidence from the literature suggests 

that this is initially suppressed by imatinib exposure (creating the “reverse Warburg effect”, in 

which metabolism in cancer cells shifts away from glycolysis).35,36 Those studies showed that 

  

Figure 4. Metabolite profiling and glucose dependence. Metabolite profiling via labeled 
glucose feeding, comparing “WT” (parental control) with imatinib-resistant (IR). (A) 
Comparisons for six metabolites involved in the glycolysis pathway of energy production; (B) 
Comparisons for four metabolites involved in the pentose phosphate pathway (PPP) or, in the 
case of phosphoribosyl pyrophosphate, synthesized downstream from the PPP intermediate 
ribulose 5-phosphate. Values are expressed as Relative Area (x-axis) compared to internal 
standard. Error bars represent standard error of the mean for three technical replicates. (C) Cell 
growth curves for untreated control (DMSO only), imatinib-resistant, nilotinib-resistant and 
dasatinib-resistant cells. Cells were grown in duplicate in either glucose-containing (solid lines) 
or galactose-containing (dashed lines) media for a total of four passages over 16 days. Growth 
curves for each set of four days after a passage from both duplicates were averaged, and error 
bars represent standard error of the mean (SEM).  
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glucose uptake and lactate production (by glycolysis) were suppressed and mitochondrial 

oxidative phosphorylation through the citric acid cycle was enhanced by imatinib treatment. In 

other words, imatinib treatment of TKI-sensitive K562 cells leads to a shift of metabolism 

towards that of a non-malignant cell. Our data reveal that longer-term IR cells reverse this effect: 

these cells display elevated levels of metabolites generated by glycolysis (Figure 4A) and PPP 

(Figure 4B). These data suggest that imatinib resistance is associated with a reversion to 

increased glycolysis, using glycolysis to an even higher degree than observed in untreated K562 

cells. Accordingly, citric acid cycle intermediates, such as α-ketoglutarate, were either not 

changed or slightly decreased (Supplemental folder “Metabolite Profiling.zip”). Furthermore, the 

proportion of G6P containing all six 13C-labeled carbons was higher in the IR than in the control 

cells (Supplemental folder “Metabolite Profiling.zip”), indicating that the resistant cells more 

readily take up glucose and have reversed the suppression of glucose uptake that has been 

reported with imatinib exposure in sensitive cells.  

 

The relative abundance and nearly comprehensive 13C-labeling of metabolites in the PPP in IR 

cells (Figure 4B) also suggests that the resistant cells processed the labeled glucose rapidly 

through that pathway as well. Activation of the PPP has previously been identified in the cellular 

redox response.37 Separately, it also has been associated with decreased pyruvate kinase (PKM) 

activity38 which causes accumulation of phosphoenolpyruvate (PEP), which in turn inhibits 

triosephosphate isomerase (TPI). TPI is a glycolytic enzyme that interconverts dihydroxyacetone 

phosphate (DHAP) to glyceraldehyde-3-phosphate, and its inhibition would lead to accumulation 

of DHAP and absence of glyceraldehyde-3-phosphate. While we did not detect increased PEP 

levels in IR cells, we did see a marked increase in DHAP levels (from none detected in control 
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cells to a clearly detectable level in the IR cells, Figure 3A) and did not detect any 

glyceraldehyde-3-phosphate (in either cell type), consistent with TPI inhibition. Therefore, these 

13C-labeling experiments also suggest increased PPP activity in IR cells. Together, these data 

confirm our transcriptomic and proteomic findings and demonstrate that TKI-resistance is 

associated with metabolic reprogramming towards reliance on glycolytic metabolism and a shift 

into the pentose phosphate pathway. Interestingly, these data show that TKI resistance is 

associated with the reversion of the metabolic changes associated with TKI treatment in sensitive 

cells. This shift in metabolism has been associated with a variety of malignant phenotypes in 

cancer cells, including drug resistance.39  

 

Next, we tested whether TKI-resistant cells were glycolysis-dependent and defective in oxidative 

phosphorylation. Cells that are grown in high glucose are known to suppress oxidative 

phosphorylation and use glycolysis through a phenomenon known as the Crabtree effect.40 When 

switched to galactose-containing medium, cells that are competent for oxidative phosphorylation 

adapt quickly and use galactose as a more efficient energy source through that pathway; cells 

with defects in galactose metabolism or intrinsic downregulation of oxidative phosphorylation 

grow slowly or not at all since they rely heavily on glycolysis (which is extremely inefficient 

with galactose) and are unable to adapt to galactose metabolism through oxidative 

phosphorylation.41 Pathway analysis of the protein expression data detected downregulation of 

pathways that are required for metabolism of galactose via conversion to a UDP-galactose 

intermediate,42 including proteins responsible for uridine-5’-phosphate biosynthesis and 

pyrimidine ribonucleotide de novo biosynthesis (Figure S4). These analyses suggested that the 

TKI resistant cells would not be competent for galactose metabolism. To test this pathway in 
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TKI resistance cells, we compared the growth of IR, NR and DR cells in glucose- or galactose-

containing medium. While the control cells grew equally well in both media, the TKI resistance 

cells exhibited a marked decrease in growth rate in galactose (Figure 4C), indicating that the TKI 

resistant cell lines are unable to efficiently switch between glycolysis and oxidative 

phosphorylation: they rely on glycolysis and are unable to effectively use galactose for oxidative 

phosphorylation metabolism. These data demonstrate the pan-TKI resistance is associated with 

metabolic reprogramming that renders these cells reliant on glycolysis. These data imply that 

pharmocological interventions that target this effect may be effective in preventing the 

development of TKI resistance. 

 

Discussion 

 

This study used transcriptomic, proteomic and metabolite profiling of in vitro models to broadly 

evaluate potential mechanisms of TKI resistance in CML. Overall, the gene expression and 

protein level data from our study suggest that K562 CML cells adapt at multiple levels to grow 

in the presence of the three commonly used kinase inhibitor drugs, but that metabolic changes 

underlie many aspects of these levels. Several markers previously found in clinical and animal 

model-based studies of TKI resistance were observed suggesting that this model does 

recapitulate well-validated features of TKI-resistance. These features included MDR1/ABCB1,20 

the β-catenin/CD44 pathway,22 and Axl kinase.24,43 We also observed features of metabolically-

related resistance mechanisms, including apparent induction of hypoxia signaling and PI3K 

signaling (observed by GSEA and Ingenuity Pathway Analysis), enrichment of proteins related 

to myo-inositol biosynthesis (part of the pentose phosphate pathway), upregulation of CA1 
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(indicative of increased need for management of lactate in the cell), as well as the fatty acid 

transporter CD36, a metabolism-related protein that previously had only been found in TKI 

resistant CML cells residing in an adipose niche in vivo, and a fatty acid binding protein FABP5 

(family member of FABP4, which was part of the CD36-related mechanism).21 The observations 

of MYC, HIF1 and PI3K pathways is consistent with what is known about tumor metabolic 

reprogramming and drug resistance,44 including in BcrAbl-dependent cells,11 providing further 

support for the likelihood that these cells have undergone changes to their metabolism in order to 

evade cell death in the presence of these TKIs.9 While there are many caveats to using such a 

model, including the lack of bone marrow niche or other relevant in vivo microenvironment, and 

the differences in dosages present in suspension culture vs. the drug concentration fluctuations 

and gradients that would be present in vivo, this collection of literature-corroborated observations 

also suggests that despite the limitations of in vitro culture of long-established cell lines, these 

models provide a reasonable degree of relevance to the systems they are intended to mimic. 

Based on that, the multi-omic changes reported in this work should be of value for considering 

potential alternative therapeutic mechanisms to pursue for TKI resistant CML. 

 

Metabolic reprogramming as a general drug resistance strategy for K562 CML cells 

 

Multi-drug resistance through metabolic reprogramming and imbalance of the redox equilibrium 

is increasingly being recognized as an important consideration in chemotherapy for leukemias. 

45,46 While TKIs have been very successful in managing CML for about 70-80% of patients, non-

response and/or resistance are still significant problems. Drugs such as ponatinib have been 

developed to address the most common BcrAbl mutations, but these do not solve the problems of 
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metabolic and redox-related multi-drug resistance. Finding ways to combat more general forms 

of resistance could have broad utility for off-target TKI resistance in CML and other cancers. 

Our studies identified these types of metabolic reprogramming and redox features associated 

with resistance to all three commonly used TKIs, imatinib, nilotinib and dasatinib, indicating that 

they could play a role in multi-drug resistance in CML.  

 

In particular, the upregulation of CA1 and αSyn could be mechanistically linked markers of 

metabolic dysregulation in TKI resistance (Figure 5). CA1 is important for buffering cells in the 

presence of increased lactate concentrations, which result from increased flux through glycolytic 

pathways. αSyn is involved in mitochondrial dysfunction and handling increased ROS, both of 

 
Figure 5. Functional markers of metabolic adaptation in TKI resistant cells. Pan-TKI 
resistant K562 cells exhibit increased glycolysis and PPP metabolism, with alternate use of 
dihydroxyacetone-phosphate (presumably re-routed for triglyceride synthesis) and a 
disconnection of the glycolysis-citric acid cycle cross-talk that is normally mediated through 
pyruvate. Carbonic anhydrase 1 is upregulated, likely to help buffer excess lactic acid from the 
increased glycolysis rate, and α-synuclein is upregulated, perhaps to modulate mitochondrial 
membrane polarization and mitochondrial stress related to the metabolic alterations. 
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which are related to metabolism and redox balance in the cell.30,31,47,48 CA1 and αSyn 

upregulation in these TKI resistant CML cell models could thus be part of a protective response 

to metabolic shifts, enabling the cells to better manage the increased lactate and ROS and avoid 

apoptosis. Although αSyn has been observed in certain cell lines (but not in K562) in a small 

study looking at synucleins in hematological malignancies,32 to our knowledge it has not 

previously been linked to metabolic reprogramming or drug resistance in leukemias.  Ultimately, 

these metabolic adaptations seem to be relatively independent of the specific kinases or cancer 

type,49,50,51 and are not consistent with recently proposed models in which OXPHOS (and not the 

apparent lack of ability to adapt to use OXPHOS, as in our case) is a marker of non-response to 

chemotherapies.46,52,53 The mechanisms reported in our work identify mechanisms of resistance 

in TKI-treated CML cases where no BCR-ABL1 mutations are observed. Further work is ongoing 

with these resistant model systems to investigate opportunities to block key metabolic processes 

that could prevent resistance or resensitize cells to TKIs.  
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