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Abstract

Mutational correlation patterns found in population-level sequence data for the Human
Immunodeficiency Virus (HIV) and the Hepatitis C Virus (HCV) have been
demonstrated to be informative of viral fitness. Such patterns can be seen as footprints
of the intrinsic functional constraints placed on viral evolution under diverse selective
pressures. Here, considering multiple HIV and HCV proteins, we demonstrate that
these mutational correlations encode a modular co-evolutionary structure that is tightly
linked to the structural and functional properties of the respective proteins. Specifically,
by introducing a robust statistical method based on sparse principal component
analysis, we identify near-disjoint sets of collectively-correlated residues (sectors) having
mostly a one-to-one association to largely distinct structural or functional domains.
This suggests that the distinct phenotypic properties of HIV/HCV proteins often give
rise to quasi-independent modes of evolution, with each mode involving a sparse and
localized network of mutational interactions. Moreover, individual inferred sectors of
HIV are shown to carry immunological significance, providing insight for guiding
targeted vaccine strategies.

Author summary

HIV and HCV cause devastating infectious diseases for which no functional vaccine
exists. A key problem is that while immune cells may induce individual mutations that
compromise viral fitness, this is typically restored through other “compensatory”
mutations, leading to immune escape. These compensatory pathways are complicated
and remain poorly understood. They do, however, leave co-evolutionary markers which
may be inferred from measured sequence data. Here, by introducing a new robust
statistical method, we demonstrated that the compensatory networks employed by both
viruses exhibit a remarkably simple decomposition involving small and near-distinct
groups of protein residues, with most groups having a clear association to biological
function or structure. This provides insights that can be harnessed for the purpose of
vaccine design.
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Introduction 1

HIV and HCV are the cause of devastating infectious diseases that continue to wreak 2

havoc worldwide. Both viruses are highly variable, possessing an extraordinary ability 3

to tolerate mutations while remaining functionally fit. While individual residue 4

mutations may be deleterious, these are often compensated by changes elsewhere in the 5

protein which restore fitness [1, 2]. These interacting residues form compensatory 6

networks which provide mutational escape pathways against immune-mediated defense 7

mechanisms, presenting a major challenge for the design of effective vaccines [3]. 8

The compensatory interaction networks that exist for HIV and HCV—and for other 9

viruses more generally—are complicated and far from being well understood. Resolving 10

these by experimentation is difficult, due largely to the overwhelming number of possible 11

mutational patterns which must be examined. An alternative approach is to employ 12

computational methods to study the statistical properties of sequence data, under the 13

basic premise that the residue interactions which mediate viral fitness manifest as 14

observable mutational correlation patterns. For HIV, recent analytical, numerical and 15

experimental studies [4–7] provide support for this premise, indicating that these 16

patterns may be seen as population-averaged evolutionary “footprints” of viral escape 17

during the host-pathogen combat in individual patients. This idea has been applied to 18

propose quantitative fitness landscapes for both HIV [8,9] and HCV [10] which are 19

predictive of relative viral fitness, as verified through experimentation and clinical data. 20

Fitness is a broad concept that is ultimately mediated through underlying 21

biochemical activity. For both HIV and HCV, experimental efforts have provided 22

increased biochemical understanding of the constituent proteins, leading in particular to 23

the discovery of small and often distinct groups of residues with functional or structural 24

specificity (Table 1 and S1 File). These include, for example, sets of protein residues 25

lying at important structural interfaces, those involved with key virus-host 26

protein-protein interactions, or those found experimentally to directly affect functional 27

efficacy. An important open question is how these biochemically important groups 28

relate to the interaction networks formed during viral evolution. 29

Some insights have been provided for a specific protein of HIV [11] and HCV [12]. 30

The main objective of these investigations was to identify potential groups of 31

co-evolving residues (referred to as “sectors”) which may be most susceptible to immune 32

targeting. In each case, a sector with potential immunological vulnerability was inferred, 33

and this was found to embrace some residues with functional or structural significance. 34

It is noteworthy that the employed inference methods were designed to produce strictly 35

non-overlapping groups of co-evolving residues, which may hinder identification of 36

inherent co-evolutionary structure and associated biochemical interpretations. 37

In a parallel line of work, computational methods have been used to understand 38

co-evolution networks for various protein families, with compelling results (reviewed 39

in [13]). Notably, for the family of S1A serine proteases [14], a correlation-based method 40

termed statistical coupling analysis (SCA) uncovered a striking modular co-evolutionary 41

structure comprising a small number of near-independent groups of co-evolving residues 42

(again referred to as sectors), each bearing a clear and distinct biochemical association, 43

in addition to other qualitative properties. Sectors have also been obtained for other 44

protein families using SCA, and the functional relevance of these has been confirmed 45

through experimentation [14–17]. A natural question is to what extent such modular, 46

biochemically-linked co-evolutionary organization exists for the viral proteins of HIV 47

and HCV? This is not obvious, particularly when one considers the evolutionary 48

dynamics of these viruses, which are complex and very distinct to those of protein 49

families. Specifically, they involve greatly accelerated mutation rates, and are shaped by 50

effects including intrinsic fitness, host-specific but population-diverse immunity, 51

recombination, reversion, genetic drift, etc. The sampling process is also complicated 52
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Table 1. Experimentally identified biochemical domains of the viral proteins under study.

a Only reasonably large domains (of 8 or more residues) are presented here; for an extended list, see Supplementary dataset S1.
b The first and last position in the sequence is shown in bold for each protein.

and subject to potential biases, making inference of co-evolutionary structure difficult. 53

In this paper, considering multiple proteins of HIV and HCV, we identify in each 54

case a sparse and modular co-evolutionary structure, involving near-independent sectors. 55

This is established by introducing a statistical method, which we refer to as “robust 56

co-evolutionary analysis (RoCA)”, that learns the inherent co-evolutionary structure by 57

providing resilience to the statistical noise caused by limited data. Strikingly, the sectors 58

are shown to distinctly associate with often unique functional or structural domains of 59

the respective viral protein, indicating clear and well-resolved linkages between the 60

evolutionary dynamics of HIV and HCV viral proteins and their underlying biochemical 61

properties. Our results suggest that distinct functional or structural domains associated 62

with each of the viral proteins give rise to quasi-independent modes of evolution. This, 63

in turn, points to the existence of simplified networks of sparse interactions used by 64

both HIV and HCV to facilitate immune escape, with these networks being quite 65

localized with respect to specific biochemical domains. The insights provided by the 66

inferred sectors also carry potential importance from the viewpoint of immunology and 67

vaccine design, which we demonstrate for a specific protein of HIV. 68

Results 69

Modular and sparse co-evolutionary structure of HIV/HCV 70

proteins 71

By employing available sequence data, we investigated the co-evolutionary interaction 72

networks for various viral proteins. Specifically, we considered the Gag and Nef proteins 73

of HIV and the NS3-4A and NS4B proteins of HCV. Our proposed approach, RoCA, 74

resolves co-evolutionary structures by applying a spectral analysis to the mutational 75

(Pearson) correlation matrices and identifying inherent structure embedded within the 76
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principal components (PCs). The RoCA algorithm is designed to be robust against 77

statistical noise, which is a significant issue since the number of available sequences for 78

each protein is rather limited, being comparable to the protein size (Fig 1). After an 79

initial screening step to isolate PCs which carry correlation information from those 80

which are supposedly dominated by statistical noise, as a key component of RoCA, we 81

developed a suitably adapted version of a statistical technique [18], which provides 82

robust estimates of the PCs. To summarize, this procedure involves: (i) a thresholding 83

step that distinguishes, for each PC, the significantly correlated residues from those 84

residues whose correlations are consistent with statistical noise, and (ii) an iterative 85

procedure that tries to robustly estimate the correlation structure between the selected 86

residues across different PCs (see Fig 1 and Materials and methods for details). Based 87

on the resulting PCs, the RoCA algorithm directly infers co-evolutionary sectors, 88

representing groups of residues whose mutations are collectively coupled. Importantly, 89

other than applying a suitable data-driven thresholding step to remove statistical noise, 90

the method makes no structural imposition on the inferred sectors, and it is therefore 91

designed to reveal inherent co-evolutionary networks as reflected by the data. 92

For each viral protein, the RoCA method identified a small number of sectors 93

(Fig 2A and S1 Fig) which together embraced a rather sparse set of residues (i.e., 94

between 35%–60% of the protein; see S2 File for the complete list). In some cases the 95

sector residues were localized in the primary sequence, while in others they were quite 96

well spread (Fig 2B and S1 Fig). Importantly, while each sector was identified from a 97

distinct PC, they were found to be largely disjoint (Fig 2A and S1 Fig). This suggests 98

that the co-evolutionary structures are highly modular, with the different modules 99

(sectors) being nearly uncorrelated to each other. In fact, further statistical tests 100

demonstrated that the inferred sectors are nearly independent (Fig 2C and S1 Fig). 101

This identified modular co-evolutionary structure is in fact reminiscent of 102

‘community structure’ that has been observed in numerous complex networks, e.g., 103

metabolic, webpage, and social networks [20]. In such applications, the identified 104

modules or communities have been shown to represent dense sub-networks which 105

perform different functions with some degree of autonomy. For our co-evolutionary 106

sectors, in line with previous studies on the fitness landscape of HIV [6–8] and 107

HCV [10], they appear to represent groups of epistatically-linked residues which work 108

together to restore or maintain viral fitness when subjected to strong selective pressures 109

during evolution (e.g., as a consequence of immune pressure). In light of this, one 110

anticipates that the co-evolutionary sectors should afford an even deeper interpretation 111

in terms of the underlying biochemical properties of the viral proteins, which 112

fundamentally mediate viral fitness. 113

Modularity in HIV/HCV is tightly coupled to biochemical 114

domains 115

To explore potential correspondences between the identified RoCA sectors and basic 116

biochemical properties, we compiled information determined by experimental studies for 117

each of the viral proteins. This consists of residue groups having prescribed functional 118

or structural specificity (see Table 1; also S1 File for a more extensive list including 119

small groups). These groups, which are seen to occupy sparse and largely distinct 120

regions of the primary structure (Table 1), are collectively referred to as “biochemical 121

domains”. (This should not be confused with the term “domain”, as classically used for 122

a folding unit in structural biology and biochemistry.) For each viral protein, structural 123

domains were defined based on spatial proximity of residues in the available protein 124

crystal structure; they include, for example, residues which lie on critical interfaces 125

needed to form stable viral complexes, or those involved in essential virus-host 126
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Fig 1. Inferring co-evolutionary structure using the RoCA method. Illustration of the RoCA algorithm for a
simple toy model involving two non-overlapping sectors of co-evolving residues. (A) Data pre-processing that involves
computation of the mutational Pearson correlation matrix from a multiple sequence alignment. (B) (Top panel) A spectral
analysis on the correlation matrix is performed to distinguish true correlations, encoded in the dominant spectral modes
(shown here in red and blue colors), from those which seemingly reflect statistical noise. The observed eigenvalue spectrum is
reminiscent of that generally observed in spiked correlation models [19], which includes a bulk of small eigenvalues
representing largely statistical noise and a few big eigenvalues (referred to as spikes) representing the true underlying
correlations. (Bottom panel) The dominant PCs are estimated to identify the co-evolutionary structure using the proposed
robust method. This involves an intelligent data-driven thresholding step based on random matrix theory to identify the set
of all correlated residues (those present in both sectors) from statistical noise, followed by an iterative procedure to determine
the correlated residues associated with each PC from the set of all correlated residues. Based on the resulting PCs, the groups
of co-evolving residues (sectors) are accurately identified. Note that these groups are not necessarily contiguous in the
primary sequence, as assumed in this toy model construction. (C) Sectors, inferred using the robustly estimated PCs, are
generally closely placed in the 3D structure.

protein-protein interactions. Functional domains, on the other hand, were typically 127

identified using site-directed mutagenesis or truncation experiments, and they include 128

groups of residues found to have a direct influence on the efficacy of specific protein 129

functions. It is important to note, however, that while structural domains are typically 130

clearly specified, functional domains are expected to be less so, due to experimental 131

limitations. Results reported based on truncation experiments, for example, may 132
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Fig 2. Co-evolutionary sectors revealed by RoCA for HIV Gag. (A) Biplots of the robustly estimated PCs that are
used to form RoCA sectors. The sector residues are represented by circles according to the specified color scheme, while
overlapping residues (belonging to more than one sector) and independent (non-sector) residues are represented as gray and
white circles, respectively. The heat map of the cleaned correlation matrix (Materials and methods), with rows and columns
ordered according to the residues in the RoCA sectors, shows that the sectors are notably sparse and uncorrelated to each
other. (B) Location of RoCA sector residues in the primary structure of HIV Gag. The sector residues are colored according
to the specifications in (A) while remaining residues are shown in gray color. The vertical axis of each plot shows the negative
log-frequency of mutation for each residue i. (C) Statistical independence of sectors using the normalized entropy deviation
(NED) metric. It is a non-negative measure which is zero if two sectors are independent, while taking a larger value as the
sectors become more dependent (see Materials and methods for details). For each possible pair of sectors, the inter-sector
NED is very small and generally close to the randomized case, while being substantially lower than the maximum intra-sector
NED of any individual sector in the considered pair, reflecting that sectors are nearly independent. Corresponding results for
the other three proteins are presented in S1 Fig.
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comprise false positives due to the coarse nature of the experimental procedure. 133

Despite potential limitations of the compiled biochemical domains, contrasting these 134

domains with the RoCA sectors (for all four viral proteins) revealed a striking pattern, 135

with most sectors showing a clear and highly significant association to a unique 136

biochemical domain (Fig 3). This is most marked for the HIV Gag protein, where there 137

is a one-to-one correspondence. These observations carry important evolutionary 138

insights. Not only are the co-evolutionary networks of both HIV and HCV proteins 139

modular, but the modules (sectors) seem to be intimately connected to distinct 140

biological phenotype. Our results suggest that the fundamental structural or functional 141

domains of these viral proteins spawn quasi-independent co-evolutionary modes, each 142

involving a simplified sparse network of largely localized mutational interactions. The 143

observed phenomena is seemingly a natural manifestation of immune targeting against 144

residues within the biochemical domains, since mutations at these residues likely lead to 145

structural instability or functional degradation, necessitating the formation of 146

compensatory mutations to restore fitness and facilitate immune escape. 147

Fig 3. Individual associations of RoCA sectors with the biochemical domains of the studied viral proteins.
The sectors are colored according to the scheme in Fig 2A. The area of each bubble reflects the statistical significance of the
associated result, measured as −1/ log10 P , where P is the P -value computed using Fisher’s exact test, and the black circles
indicate the conventional threshold of statistical significance, P = 0.05; any P -value lower than that (bubble inside the black
circle) is considered statistically significant. The star symbols indicate those RoCA sectors with unknown biochemical
significance. Note that the involved structural interfaces were defined based on a contact distance of less than
d = 7Å between the alpha-carbon atoms. Similar qualitative results are obtained for d = 8Å or d = 9Å (S2 Fig).
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Co-evolutionary structure identified with previous sectoring 148

methods 149

We investigated whether our main findings could also be revealed by other (previous) 150

sectoring methods. We first investigated a method which we proposed previously based 151

on classical PCA [12] (a slight variant of the approach in [11]), which sought to identify 152

groups of collectively-correlated viral residues which may be susceptible to immune 153

targeting. An important feature of the algorithm was the imposition of a structural 154

constraint in the inferred sectors, enforced to be disjoint [12], which may compromise its 155

ability to infer natural co-evolutionary structure (S1 Text). Despite the imposed 156

constraints, the sectors produced by this method for the studied viral proteins tended to 157

be larger than the RoCA sectors (S3 Fig), and they collectively embraced a larger set of 158

residues (covering 40%–80% of the protein). In many cases, they included a mix of 159

residues from multiple RoCA sectors (Fig 4A), a fact that was also reflected in the 160

biochemical associations of the sectors, where much of the resolved (unique) 161

sector/domain associations shown by RoCA (Fig 3) were indeed no longer revealed (S3 162

Fig). We found that these key differences were also attributed to the sensitivity of the 163

approach to sampling noise (limited sequence data), as reflected by the noisy and 164

significantly overlapping principal components (Fig 4B). This was corroborated with a 165

ground-truth simulation study, through which the ability to infer co-evolutionary 166

structure was tested in synthetic model constructions (S2 Text). The RoCA method 167

resolved all the individual (true) sectors with high accuracy, whereas our previous 168

method [12] inferred comparatively large sectors, which often included false positives 169

and merged residues from different true sectors (S3 Fig). 170

Fig 4. Sectors revealed by the PCA-based method [12] for HIV Gag. (A) Bar plots showing the merging of
multiple RoCA sectors in the sectors revealed by the method in [12] (only the first four are shown). The vertical axis of each
plot shows the percentage of residues within the different RoCA sectors that fall into the prescribed sector. (B) Biplots of the
PCs which are post-processed to form sectors in [12]. The sector residues are represented by circles according to the specified
color scheme, while independent (non-sector) residues are represented as white circles. The PCs can be seen to be severely
affected by statistical noise. Note the substantial overlap in the support (relevant entries) of the PCs; such overlap is however
not present in the formed sectors, as the method in [12] applies heuristic post-processing steps to enforce disjoint sectors.
Corresponding results for the other three proteins are presented in S4 Fig.
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Our main findings were neither established with other co-evolutionary methods, 171

which tended to return very different results to RoCA, and generally revealed little 172

biochemical association for the studied viral proteins (S5 Fig). Most notable is the 173

benchmark SCA method [14] which has shown much success in resolving co-evolutionary 174

structure for certain protein families [15,21] (S5 Fig). Aside from the noise sensitivities 175

shared by both SCA and classical PCA-based methods (S5 Fig), the surprising disparity 176

in this case appears due to the weighted covariance construction employed by SCA (as 177

opposed to the Pearson correlation) which, while being suited to the analysis of certain 178

protein families data [14–17], does not seem suitable for identifying the co-evolutionary 179

structure in the considered HIV and HCV proteins (see S3 Text for details). 180

Detailed analysis of the biochemical associations of the inferred 181

sectors 182

In the following, we provide details on the biochemical associations of the identified 183

RoCA sectors for each of the four viral proteins. 184

HIV Gag 185

Gag poly-protein encodes for the matrix (p17), capsid (p24), spacer peptide 1 (SP1), 186

nucleocapsid (p7), spacer peptide 2 (SP2), and p6 proteins. Being a core structural 187

poly-protein of HIV, the experimentally identified domains in Gag consist of critical 188

structural interfaces involving either virus-host or virus-virus protein interactions 189

(Table 1). 190

Strikingly, five of the six identified RoCA sectors were individually associated to 191

distinct structural domains (Fig 5A). Sector 1 was enriched (52%) with N-terminal 192

residues of p17 involved with virus-host protein interaction—binding of Gag with 193

plasma membrane—critical for viral assembly and release [22]. The remaining sectors 194

were associated with virus-virus protein interactions. In particular, sector 2 consisted of 195

a large proportion of residues (56%) that form the p24-SP1 interface, which is 196

considered to be important for viral assembly and maturation [23]. Sector 3 was 197

dominated by the residues belonging to the capsid protein p24. The HIV capsid exists 198

as a fullerene cone with 250 hexamers and 12 pentamers that cap the ends of the cone. 199

The monomer-monomer interface formed in the oligomerization of p24 (in both the 200

hexamer and pentamer structures) has been shown to be important for structural 201

assembly of the HIV capsid [24, 25]. Sector 3 was enriched with ∼50% of the residues in 202

the largely overlapping interfaces of these p24 oligomers (S1 File). In addition to these 203

residues, the hexamer-hexamer interface in p24 has been shown to be important for 204

proper capsid formation [26]. Sector 6 was found to comprise 36% of the residues within 205

this interface. Sector 5 consisted of a large proportion (40%) of residues involved in a 206

critical functional domain—two zinc finger structures separated by a basic domain—in 207

p7, important for packaging genomic RNA [27]. 208

We found that sector 4 (indicated as a star in Fig 3) was not significantly associated 209

with any of the large biochemical domains identified for HIV Gag (listed in Table 1). 210

This sector comprised the complete SP2 protein and a few N-terminal residues of the p6 211

protein, for which little experimental information is available. To our knowledge, only 212

five of these residues were experimentally studied previously [28, 29], wherein mutations 213

were shown to alter protein processing and abolish viral infectivity and replication. 214

While the biochemical implications for the remaining residues in sector 4 are not known, 215

our result suggests that they could also be important for the mentioned functions. 216

These residues thus serve as potential candidates for further experimental studies. A 217

similar comment applies for each of the proteins discussed below in relation to those 218

sectors with as yet unspecified biochemical association. 219
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Fig 5. Details of the different biochemical domains of viral proteins associated with the respective inferred
RoCA sectors. Sectors are shown as diagonal blocks in the heat map of cleaned correlations with rows and columns
re-ordered accordingly (Materials and methods); the heat map is restricted to sector residues only. For each sector, the crystal
structure of the associated domains are depicted, when available. The protein chains are shown in gray (in case of dimer
structures, chains A and B are depicted in gray and cyan colors, respectively), the relevant domain residues present in the
sector are represented as red spheres, and the remaining domain residues are shown as blue spheres; the side chains of all the
atoms are excluded for clarity of presentation. (A) For HIV Gag, sector 1 residues are associated with the membrane-binding
domain of p17 (PDB ID 2LYA); sector 2 residues with the p24-SP1 interface (PDB ID 1U57); sector 3 residues with the
intra-hexamer and intra-pentamer interface of p24 (PDB ID 3GV2 and 3P05, respectively); sector 5 residues with the two
zinc-finger structures of p7 (PDB ID 1MFS); and sector 6 residues with the inter-hexamer interface of p24 (PDB ID 2KOD).
No crystal structure is available for the SP2-p6 interface residues that comprise sector 4. (B) For HIV Nef, relevant residues
of the biochemical domains are shown on the dimer crystal structure (PDB ID 4U5W). Note that this crystal structure only
includes residues 68-204 of Nef. Sector 1 residues are associated with the viral infectivity enhancement function; sector 3
residues with HLA1 down-regulation function (note that four residues (62-65) of this biochemical domain cannot be shown in
this crystal structure); and sector 4 residues with both the CD4 down-regulation function and oligomerization (for the latter
domain, the residues present in the sector are represented as green spheres and the remaining domain residues are shown as
purple spheres). (C) For HCV NS3-4A, sector 1 residues are associated with the interface between NS3 and NS4A proteins
(PDB ID 4B6E) important for activation of the NS3 protease function (this crystal structure only includes NS4A residues
21-36); sector 3 residues with the motif critical for enzymatic and helicase activities of NS3 (PDB ID 4B6E; no blue sphere is
visible as sector 3 comprises all the residues in this motif); and sector 4 residues with the helicase-helicase interface of the NS3
dimer (PDB ID 2F55).
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HIV Nef 220

Nef is an accessory protein which is a critical determinant of HIV pathogenesis and is 221

involved in multiple important functions. 222

Of the four RoCA sectors revealed for Nef, two of these (sectors 1 and 3) were 223

associated with distinct biochemical domains, while one (sector 4) was associated with 224

two domains (Fig 5B). Specifically, sector 1 was enriched (90%) with residues in a 225

functional domain consisting of the proline-x-x repeat, shown to be critical for the 226

enhancement of viral infectivity [30], while sector 3 consisted of a large proportion 227

(44%) of residues considered to be crucial in virus-host protein interactions that 228

down-regulate the surface expression of HLA1 molecules [31]. In contrast, sector 4 229

comprised (i) 33% of the residues involved in the virus-host protein interaction that 230

results in the down-regulation of CD4 surface expression [32], and (ii) 44% of the 231

residues involved in the virus-virus protein interaction critical for Nef dimerization [33]. 232

Although the residues in these two biochemical domains are close in the primary 233

structure (Table 1), they are largely distinct with only one residue in common. The 234

association of a single co-evolutionary sector with these two domains suggests, however, 235

that they may be biochemically related, with mutations in one domain influencing the 236

other. Interestingly, this is corroborated by a recent study [34] which shows that 237

mutations disrupting the Nef dimer structure highly affect the CD4 down-regulation 238

function. Further experimental work is still required to more finely resolve the 239

dependencies between these domains. Nonetheless, the association of viral infectivity 240

enhancement and CD4 down-regulation with distinct sectors (1 and 4) is remarkably in 241

line with the experimentally reported dissociation of these two functions [30]. 242

We found a single sector (sector 2) that was not associated with any known 243

biochemical domain (Fig 3 and Fig 5B). The available crystal structure suggests that 244

these residues are predominantly located away from the dimer interface, yet the 245

biochemical significance of these residues remains unknown. 246

HCV NS3-4A 247

NS3 is a large protein involved with performing serine protease and helicase functions. 248

Based on these functions, NS3 is divided into two domains: the protease domain, 249

consisting of N-terminal one-third protein residues, and the helicase domain, comprising 250

the remaining C-terminal two-third protein residues. NS4A is a very short protein that 251

functions as a co-factor for the serine protease activity of NS3. 252

Of the four RoCA sectors, two (sectors 3 and 4) were individually associated with 253

distinct biochemical domains, while one (sector 1) was associated with multiple domains 254

(Fig 5C). Specifically, the small sector 3 contained all the residues of a relatively 255

conserved motif in the NS3 helicase domain, considered to be important for ATPase and 256

duplex unwinding activities [35], while sector 4 comprised 31% of the residues involved 257

in dimerization of NS3, important for helicase activity and viral replication [36]. In 258

contrast, sector 1 was a mixture of the NS3 protease domain and NS4A residues, 259

encompassing multiple functional domains. In particular, the N-terminal residues of the 260

NS3 protease domain have been reported to be involved in three virus-virus protein 261

interactions with NS4A to mediate multiple functions including: (i) activation of the 262

NS3 protease function [37]; (ii) membrane association and assembly of a functional HCV 263

replication complex [38]; and (iii) NS5A hyper-phosphorylation [39,40]. Sector 1 264

comprised 40%–52% of the residues associated with these functions. The association of 265

a single sector with these multiple domains (Table 1) in NS3-4A suggests that they may 266

be functionally coupled. Interestingly, this is in line with experimental studies which 267

report the dependence of NS3-4A membrane association and NS5A 268

hyper-phosphorylation on an active NS3 protease [38, 40]. Further work is still required 269
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to more finely resolve these dependencies. 270

For NS3-4A, sector 2 was not associated with any known biochemical domain (Fig 3 271

and Fig 5C). This sector included residues that are well-distributed in the NS3 protease 272

and helicase domains as well as in NS4A. 273

HCV NS4B 274

NS4B is a small hydrophobic membrane protein which is involved in multiple functions 275

including viral replication and assembly. Compared to other HCV proteins, NS4B is 276

relatively poorly characterized and its full-length crystal structure is still not available. 277

Of the four RoCA sectors, two were associated with known biochemical domains 278

(Fig 3). Sector 3 was strongly associated with a functional domain comprising the 279

C-terminal α-helix 1 (H1), shown to be important for HCV RNA replication and viral 280

assembly [41]. This sector consisted of all H1 residues, but none of the α-helix 2 (H2) 281

residues. This is in agreement with [41] which reported a comparably higher impact of 282

H1, as compared with H2, on viral replication and assembly. 283

Sector 4 comprised half of the residues considered to be involved in virus-host 284

protein interaction between a basic leucine zipper (bZIP) motif at the N-terminal of 285

NS4B and the central part of the human protein ATF6beta (activating transcription 286

factor 6 beta) [42]. Moreover, this sector also contained residues within a region that, at 287

a coarse level, was identified to be sufficient for NS4B oligomerization by a truncation 288

procedure [43]. Thus, while the specific residues involved in NS4B oligomerization 289

remain unknown, sector 4 may assist in a more accurate identification of these residues, 290

thereby refining the coarse analysis of [43]. The bZIP motif residues completely overlap 291

with this biochemical domain (Table 1) and thus both were associated with the same 292

sector. 293

With the limited current understanding of the functional and structural 294

characteristics of NS4B, sectors 1 and 2 could not be associated to any known 295

biochemical domain (Fig 3). Nonetheless, we examined the predicted secondary 296

structure of the NS4B protein [44] to gain some insight. Both sectors consisted of 297

residues present in the central part of NS4B that contains the trans-membrane (TM) 298

segments. Specifically, sector 1 comprised the majority of residues in TM3, while 299

sector 2 consisted of residues in TM1 and TM2. These TM segments are considered to 300

be important for mediating the membrane-association of NS4B [44]. However, the 301

specific residues involved with this function are still unresolved, and therefore the 302

corresponding association with sectors 1 or 2 could not be clearly established. 303

Association of sectors with viral control and disease progression 304

of HIV 305

Our main results carry potential immunological significance, which may provide useful 306

input for vaccine design. To demonstrate this, we considered the HIV Gag protein, and 307

contrasted the sectors with the epitope residues targeted by T cells of HIV “long-term 308

non-progressors” (LTNP) and “rapid progressors” (RP). LTNP correspond to rare 309

individuals who keep the virus in check without drugs, whereas RP are individuals who 310

tend to progress to AIDS in less than 5 years (compared to the population average of 10 311

years [45]). Our analysis revealed that LTNP elicit immune responses strongly directed 312

towards residues in sector 3, whereas RP elicit responses against residues in sector 2 (S1 313

Table and Fig 6). Recalling the sector biochemical associations (figures 3 and 5), these 314

observations seem to promote the design of T-cell vaccine strategies which target sector 315

residues lying on the p24 intra hexamer interfaces, while avoiding targeting residues on 316

the p24-SP1 interface. In the former case, such targeting seemingly compromises viral 317

fitness by disrupting the formation of stable HIV capsid [24], which appears quite 318
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difficult to restore through compensatory mutations. In contrast, restoring fitness costs 319

associated with destabilization of the p24-SP1 interface appears less difficult. 320

BA

Fig 6. Immunological significance of HIV Gag sectors obtained using
RoCA. Association of sectors to (A) viral control and (B) rapid disease progression.
The vertical axis of each plot shows the statistical significance of the association,
measured as − log10 P , and the black dashed line corresponds to the conventional
threshold of statistical significance, P = 0.05; any value above this line is considered
statistically significant.

These results were contrasted against a previous analysis of HIV Gag [11], in which 321

an inferred sector based on a classical PCA approach (a slight variant of the 322

approach [12], discussed earlier) was also found to associate with LTNP. Scanning this 323

sector against the Gag biochemical domains (Table 1) revealed a significant association 324

with the p24 intra-hexamer interfaces (as pointed out in [11]), but also with the p24-SP1 325

interface (S6 Fig). Hence, while reaffirming the importance of targeting interfaces 326

within p24 hexamers, different conclusions were established regarding p24-SP1, 327

suggesting that this interface should be targeted, rather than avoided. This important 328

distinction arises as a consequence of the methodological differences between RoCA and 329

the previous methods [11,12], as discussed previously. 330

By integrating our observations with population-specific HLA allele and haplotype 331

information, candidate HIV immunogens eliciting potentially robust T cell responses 332

can be proposed [11,12]. A more detailed investigation along these lines, as well as 333

broadening the analysis to other viral proteins, is planned to be carried out in future 334

work. 335

Discussion 336

Characterizing the co-evolutionary interactions employed by HIV and HCV is an 337

important problem. These interactions reflect the mutational pathways used by each 338

virus to maintain fitness while evading host immunity. However, they are not well 339

understood and pose a significant challenge for vaccine development. By applying 340

statistical analysis to the available cross-sectional sequence data, we showed that for 341

multiple HIV/HCV proteins the interaction networks possess notable simplicity, 342

involving mainly distinct and sparse groups of interacting residues, which bear a 343

strikingly modular association with biochemical function and structure. Essential to 344

unraveling this phenomena was the introduction of a robust inference method. 345

Our approach is particularly well motivated for the “internal” proteins of chronic 346

viruses such as HIV and HCV that are subjected to broadly directed T cell responses. 347

For such proteins, and for HIV in particular, recent experimental and computational 348

work has provided evidence that the population-averaged mutational correlations are 349

reflective of intrinsic interactions governing viral fitness. This was shown to be a 350

consequence of multiple factors which influence the complex evolutionary dynamics of 351
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HIV, including the extraordinary diversity of HLA genes in the human population 352

which place selective pressures on diverse regions of the protein, thereby promoting wide 353

exploration of sequence space, in addition to the tendency of mutations to revert upon 354

transmission between hosts [4–6]. An additional important evolutionary factor is that of 355

recombination, which introduces diversity through template switching during viral 356

replication. A consequence of recombination is that it breaks mutational correlations 357

between residues that are distant in the primary structure. That is, higher rates of 358

recombination should lead to shorter-range correlations and vice-versa. This fact is 359

reflected by our inferred co-evolutionary sectors for HIV and HCV. Specifically, the HIV 360

protein sectors are quite localized, with a median separation in the primary structure of 361

up to 140 residues (sector 6 of HIV Gag), while those of the HCV proteins are well 362

separated with a median separation of up to 480 residues (sector 1 of HCV NS3-4A). 363

These observations are consistent with the fact that HIV has recombination rates which 364

are substantially higher than those of HCV [46]. 365

In general, the predicted sectors primarily comprise residues within the 366

corresponding biochemical domains and a few other residues which are close in either 367

primary or tertiary structure. However, these sectors also include a small proportion of 368

residues which are distant from those within the respective biochemical domains (S8 369

Fig) and thus, appear to influence the associated structure or function by an allosteric 370

mechanism. Such long-range interactions have been reported to play a role in 371

maintaining viral fitness and facilitating immune evasion [47–49]. Allosteric interactions 372

have also been observed in the co-evolutionary sectors of different protein families 373

obtained previously with the SCA method [14–17]. 374

The identified sectors for each viral protein together comprise between 35%–60% of 375

the total residues in the protein (Fig 2A and S1 Fig). This is consistent with the sparse 376

sectors of co-evolving residues observed in different protein families using the SCA 377

method [14–17]. One may ask however about the role of non-sector residues, i.e., those 378

not allocated to any sector. Similar to the observations in other proteins [14–17], our 379

analysis suggests that non-sector residues evolve nearly independently, with associated 380

biochemical domains being impacted only by individual mutations at these residues. 381

While our analysis has focused primarily on viral proteins, the proposed RoCA 382

approach is general and may be applied more broadly, provided that the studied 383

proteins are reasonably conserved. As an example, we computed sectors for the S1A 384

family of serine proteases and compared these with results obtained previously with the 385

SCA algorithm [14,15]. Similar to SCA, RoCA yielded three co-evolutionary sectors 386

which had statistically-significant associations with distinct phenotypic properties; 387

namely thermal stability, enzymic activity, and catalytic specificity (S9 Fig). We point 388

out however that the very notion of a “sector” as defined previously for protein 389

families [14–17] has some conceptual differences to that considered for the viral proteins 390

in this work. Specifically, while for the HIV/HCV proteins, sectors are seen to reflect 391

the mutational pathways employed to facilitate immune escape; for the protein families, 392

they were interpreted quite broadly as representing general features of protein structures 393

that reflect evolutionary histories of conserved biological properties. That is, the concept 394

of a “sector” was defined as extending the classical notion of conservation to incorporate 395

higher order constraints by embracing correlations between protein positions. With this 396

objective in mind, employing a conservation-weighted correlation measure, as specified 397

by SCA, seems appropriate. Nonetheless, the RoCA sectors produced for the serine 398

proteases, based on an unweighted Pearson correlation measure, further attest to the 399

importance of residue interactions in mediating fundamental protein functions. 400

For the HIV/HCV viral proteins under study, the relation between the biologically 401

important residues (reflected by the biochemical domains) and conservation was not 402

clearly apparent (S10 Fig). In fact, a significant and particularly surprising aspect of 403

April 18, 2018 14/29

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 25, 2018. ; https://doi.org/10.1101/307033doi: bioRxiv preprint 

https://doi.org/10.1101/307033
http://creativecommons.org/licenses/by-nc-nd/4.0/


our analysis is the substantial extent to which the correlation patterns, with no regard 404

for conservation, encode information regarding qualitatively distinct phenotypes 405

including structural units—virus-host and virus-virus protein interactions—and 406

functional domains. The identified sectors may therefore also be seen as predictors of 407

important biochemical domains. For each of the four viral proteins under study, there is 408

at least one sector with unknown biochemical significance. Subsequent experimentation, 409

such as mutagenesis experiments targeted at the identified sector residues, could 410

therefore provide new insight which furthers the current understanding of HIV and 411

HCV. Particularly interesting is the poorly understood NS4B protein of HCV, for which 412

any biochemical activity underpinning the leading two sectors—representing the 413

strongest co-evolutionary modes—have yet to be resolved. 414

Materials and methods 415

Sequence data: Acquisition and pre-processing 416

The sequence data for HIV-1 clade B Gag and Nef was obtained from the Los Alamos 417

National Laboratory HIV database, http://www.hiv.lanl.gov/. We restricted our 418

analysis to drug-naive sequences and any sequence marked as problematic on the 419

database was excluded. To avoid any patient-bias, only one sequence per patient was 420

selected. After aligning the sequences based on the HXB2 reference, they were 421

converted to a N ×M amino acid multiple sequence alignment (MSA) matrix, where N 422

denotes the number of sequences and M denotes the number of amino acid sites 423

(residues) in the protein. The downloaded sequences may include a few outliers due to 424

mis-classification (e.g., sequences assigned to an incorrect subtype or clade) in the 425

database. Such outlying sequences were identified and removed using a standard PCA 426

clustering approach. This yielded N = 1897 and N = 2805 sequences for HIV Gag and 427

Nef, respectively. Moreover, the fully conserved and problematic residues (with blanks 428

or gaps greater than 12.5%) were eliminated, resulting in M = 451 variable residues for 429

Gag and M = 202 for Nef. Similarly, the sequence data for HCV subtype 1a NS3-4A 430

and NS4B was downloaded from the Los Alamos National Laboratory HCV database, 431

http://www.hcv.lanl.gov/. The downloaded HCV sequences were then aligned based 432

on the H77 reference and converted to the amino acid MSA. Applying the 433

above-mentioned pre-processing resulted in N = 2832 sequences for NS3-4A and N = 434

675 sequences for NS4B, with an effective length of M = 482 for NS3-4A and M = 190 435

for NS4B. 436

The processed amino acid MSA matrix A = (Aij) was converted into a binary 437

matrix B, with (i, j)th entry 438

Bij =

{
0 if Aij is the consensus amino acid at residue j,
1 otherwise.

(1)

Thus, ‘0’ represents the most prevalent amino acid at a given residue and ‘1’ represents 439

a mutant (substitution). This is a reasonable approximation of the amino acid MSA, 440

given the high conservation of the internal viral proteins under study (S7 Fig). 441

The binary sequences in B are generally corrupted by the so-called phylogenetic 442

effect, which represents ancestral correlations. A comparatively large eigenvalue is 443

observed in the associated correlation matrix due to these phylogenetic 444

correlations [11,12]. Following previous ideas [11,12], such effects are reduced using 445

standard linear regression. The resulting data matrix, denoted by B̂, was the base for 446

computing the correlations used to infer sectors. Specifically, we computed the M ×M 447
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Algorithm 1 Corr-ITSPCA Method

Inputs:

1. Correlation matrix of size M ×M , C;

2. Number of PCs to be estimated, α;

3. Noise threshold, γk, k = 1, 2, · · · , α.
Output: Robust estimates of the PCs, pk, given as columns of the M × α matrix P = Q(∞),
where Q(∞) denotes Q(i) at convergence.

1: Initialization: i = 1;
2: Initial orthonormal matrix of size M × α, Q(0) = Qα; here Qα is a matrix whose columns

are the α leading eigenvectors of C, i.e., Qα = [q1 q2 · · · qα].
3: repeat
4: Multiplication: T(i) = (T

(i)
`k ) = CQ(i−1);

5: Thresholding: T̂(i) = (T̂
(i)
`k ), with T̂

(i)
`k = T

(i)
`k 1{

|T (i)
`k
|>γk

},
where 1{E} is the indicator function of an event E;

6: QR Factorization: Q(i)R(i) = T̂(i);
7: i = i+ 1;
8: until convergence

sample correlation matrix, along with its spectral decomposition, given by 448

C , V−
1
2SV−

1
2 =

M∑
k=1

λkqkq
T
k . (2)

Here, S is the sample covariance matrix with entries 449

Sij = 1
N

∑N
k=1(B̂ki − B̄i)(B̂kj − B̄j) where B̄i = 1

N

∑N
k=1 B̂ki is the sample mean, while 450

V is a diagonal matrix containing the sample variances, i.e., Vii = Sii, and λk and qk 451

are the kth-largest eigenvalue of C and its corresponding eigenvector, respectively. The 452

superscript T denotes vector transposition. 453

RoCA method 454

We introduced an approach based on robust PCA methods to accurately estimate the 455

PCs (i.e., the leading eigenvectors) of the correlation matrix, which were then directly 456

used to identify sectors. In particular, we considered the iterative thresholding sparse 457

PCA (ITSPCA) method which, in short, is a combination of the standard orthogonal 458

iteration method [50], used to compute the eigenvectors of a given matrix, and an 459

intermediate thresholding step which filters out noise in the estimated PCs. However, 460

the original ITSPCA method was not directly applicable to our correlation-based 461

sectoring problem, since it was designed primarily for covariance matrices, and it 462

involved a variance-dependent coordinate pre-selection algorithm which is no longer 463

suitable. As such, for RoCA, we developed a version (called Corr-ITSPCA, see 464

Algorithm 1) which is appropriately adapted to operate on correlation matrices, and we 465

designed automated methods for tuning the relevant parameters; specifically, the 466

number of significant PCs α and the noise threshold γk. 467

Such automated design is crucial to obtain accurate results, as these parameters 468

control respectively the number of sectors that we infer and the number of residues 469

included in each sector. Note that this is a rigorous and principled design approach, as 470

opposed to an ad hoc approach considered previously by the authors to uncover vaccine 471

targets against the NS5B protein of HCV [51]. These parameters are designed as follows: 472
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Number of significant PCs, α 473

The design relies on the observed deviations from a null model. Specifically, we generate 474

randomized alignments under the null hypothesis that no genuine correlations are 475

present in the data. This is simply obtained by randomly shuffling the entries of each 476

column of B̂, effectively breaking any existing genuine correlation in the data set, and 477

yielding a randomized (null-model) alignment. This shuffling procedure is repeated 105 478

times and, for each randomized alignment, the maximum eigenvalue of the sample 479

correlation matrix is recorded. The maximum of the recorded eigenvalues, denoted by 480

λrndmax, is used as an upper bound of statistical noise so that any eigenvalue of C 481

exceeding it is identified as a relevant spectral mode, i.e., as a genuine contribution to 482

the correlation. Thus, the number of significant eigenvectors is set to 483

α = max{k ∈ {1, . . . ,M} : λk > λrndmax} . (3)

Noise threshold, γk 484

During the initial iteration, the matrix T subject to the thresholding step in Algorithm 485

1 is given by 486

[t1, t2, . . . , tα] = [λ1q1, λ2q2, . . . , λαqα] . (4)

Our design looks for a suitable threshold which eliminates variables that appear 487

uncorrelated (i.e., non-sector variables), for which the corresponding entries of qi 488

correspond purely to sampling noise for every i = 1, . . . , α. (Note that Eq (4) only holds 489

for the first iteration of Algorithm 1. However, from [18], coordinates that are set to 490

zero in the first iteration remain zero in subsequent iterations.) Assume that there are 491

Mns (unknown) non-sector residues, which we denote by NS, and let 492

qNSk = (qNSk (i))Mns
i=1 represent qk but restricted to the coordinates in NS only. The 493

proposed threshold design is based on a statistical description of the worst-case 494

non-sector coordinate; such description relies on the observation that the sample 495

correlation matrices generated with HCV and HIV sequence data have spectral 496

characteristics that are reminiscent of so-called “spiked” correlation models of random 497

matrix theory (Fig 1). To be more specific, we exploit theoretical properties derived for 498

spiked models (Theorems 4 and 6 in [52]) concerning the asymptotic distributions of 499

sample eigenvalues and eigenvectors. Upon particularizing those results to the specific 500

eigenvector structure conveyed by the sectors, they indicate that the coordinates of qNSk 501

are distributed, up to scaling, as those of a vector that is uniformly distributed on the 502

(M − α)-dimensional unit sphere. Such a vector is well-known to admit an equivalent 503

representation as a rescaled vector of independent standard Gaussians (i.e., scaled to 504

unit norm). Hence, with N and M both sufficiently large, M � α, and η = M/N , 505

these results along with some basic arguments lead to 506

qNSk,max , max
i∈{1,...,Mns}

|qNSk (i)| d∼
√

1− c2k
M

max
i∈{1,...,Mns}

|yk,i| (5)

for each k = 1, . . . , α, where the yk,i are independent standard Gaussian random 507

variables, and where the notation
d∼ represents “equivalence in distribution”. Here, 508

ck =

√(
1− η

(`k − 1)2

)/(
1 +

η

`k − 1

)
which is a function of the quantity 509

`k = [(λk + 1− η) +
√

(λk + 1− η)2 − 4λk]/2 .
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The factor 1− c2k in Eq (5) stems from a complex statistical analysis given in [52], and 510

represents the total statistical noise variance accumulated across all non-sector 511

coordinates NS of qk. This quantity increases with increasing η = M/N , and its value 512

may be quite large, particularly for scenarios in which the number of samples N are not 513

substantially greater than the number of protein residues M (i.e., the relevant case for 514

our viral data sets). [As a technical aside, we note that there is a condition on the 515

minimum value of `k (equivalently λk) in order for the above relations to hold (see [52]); 516

though, this condition will typically be obeyed as a consequence of the shuffling 517

procedure used to infer α, which selects “sufficiently strong” spectral modes.] 518

Based on Eq (5), by standard arguments from order statistics, the cumulative 519

distribution function of qNSk,max is given by 520

Fk,max(x) =

{
[Fk(x)]Mns , x ≥ 0

0, otherwise
(6)

where 521

Fk(x) = erf

(
x√

2(1− c2k)/M

)
(7)

with erf the Gaussian “error function”. Note that all parameters of this distribution are 522

functions of observable quantities (e.g., λk, M , and N), with the exception of the 523

number of non-sector coordinates, Mns. To account for this, we invoke a worst-case 524

assumption, replacing Mns with its upper bound, M . We may then set a threshold for 525

the coordinates of qk based on this distribution, considering a suitable percentile. Here, 526

taking a 95% cut-off, 527

γ̃k = F−1k,max(0.95). (8)

Numerical simulations (S2 Text) demonstrate that this choice of γ̃k serves as a good 528

compromise between the ability to accurately capture the sector residues of interest (i.e., 529

a high true positive rate), while rejecting most of non-sector residues (i.e., a low false 530

discovery rate). Finally, since the threshold is applied to the column vectors tk (Eq (4)), 531

rather than the qk, the noise threshold γk is chosen as 532

γk = λkγ̃k . (9)

The iterative procedure in the Corr-ITSPCA method (Algorithm 1) is similar to the 533

standard orthogonal iteration procedure used to obtain the eigenvectors of a matrix [50]. 534

However, addition of the intermediate thresholding step helps to identify a subspace 535

spanned by the significant PCs such that there is no contribution from the non-sector 536

residues in the estimated PCs. Moreover, in the process of obtaining an orthogonal 537

subspace, this iterative procedure accurately infers the coordinates contributing to each 538

PC by resolving spurious overlap between the support (non-zero components) of all the 539

significant PCs, as demonstrated by ground-truth simulations (S11 Fig). 540

From the sample correlation matrix C, the robust estimate of the PCs was obtained 541

using the Corr-ITSPCA method (Algorithm 1), with α and γk designed as above. The 542

estimated PCs pk, k = 1, . . . , α, produced by Algorithm 1, were then used to form α 543

sectors as 544

Sector k := {m ∈ {1, . . . ,M} : |pk(m)| > 1/
√
M }, (10)

where |pk(m)| is the absolute value of the mth coordinate of pk. Note that the 545

estimated pk do not generally have strict zero entries in the non-sector coordinates, but 546

may contain very small values due to residual noise. As such, a small threshold was 547

applied (Eq (10)) to form sectors in an automated way. The spurious entries were 548
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generally quite distinguishable from the relevant coordinates, even from simple visual 549

inspection of pk (Fig 2A and S1 Fig). 550

As mentioned above, all fully conserved residues in the MSA were initially excluded 551

from our analysis, as the Pearson correlation involving these residues was not defined. 552

Given the lack of information regarding their potential interactions with other residues, 553

and considering the tendency of neighboring residues in the primary structure to 554

interact with each other, any fully conserved residue in the immediate neighborhood of 555

a sector residue was incorporated into that sector. 556

Heat map of cleaned correlations for visualization 557

In figures 2 and 5, we used heat maps to illustrate the computed sample correlation 558

matrix C. As discussed above, the sample correlations were generally corrupted by 559

statistical noise due to the finite number of available sequences. Thus, for a better 560

visualization and, in particular, to appreciate the strong correlations within the inferred 561

sectors, the sample correlation matrix was cleaned from statistical noise by thresholding 562

the sample eigenvalues in such a way that the significant α spectral modes (Eq (3)) 563

were kept unaltered, while the remaining eigenvalues (which do not appear to contribute 564

genuine correlations) were collapsed to a constant. Specifically, the cleaned sample 565

correlation matrix was obtained as 566

Ĉ∗ =
M∑
k=1

λ∗kqkq
T
k , (11)

where 567

λ∗k =

{
λk if k ≤ α,
ζ otherwise,

with ζ a constant value such that the trace of Ĉ∗ remained normalized (equal to M). 568

Note that Ĉ∗ is not a standard correlation matrix as Ĉ∗kk 6= 1. A standardized version 569

was then computed as 570

Ĉ = D−
1
2 Ĉ∗D−

1
2 , (12)

where D is a diagonal matrix with Dkk = Ĉ∗kk, and used to depict the cleaned 571

correlations as a heat map. 572

Statistical independence of inferred sectors 573

We introduced a metric called “normalized entropy deviation (NED)” to quantify the 574

extent to which two groups of residues are statistically independent of each other. The 575

NED between two sectors i and j is defined as 576

NEDinter(i, j) =
(Hsi +Hsj )−Hsi∪sj

Hsi∪sj
, (13)

where si is a set comprising the five residues with largest correlation magnitude of 577

sector i and Hsi is the entropy of si computed from the binary MSA matrix. 578

Specifically, this entropy is computed over all κ = 1, 2, · · · , 2#(si) combinations of the 579

residues in set si as follows 580

Hsi = −
2#(si)∑
κ=1

fκ ln fκ, fκ > 0 (14)

where fκ is the frequency of the combination κ in the MSA and #(si) is the cardinality 581

of set si. In theory, if two given sectors are perfectly independent, the sum of the 582
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entropies of the individual sectors must be equal to the entropy of both sectors taken 583

together, resulting in NEDinter = 0. In practice however, a small non-zero value of 584

NEDinter is expected due to finite-sampling noise, even if the sectors are independent. 585

We obtain an estimate of it by constructing a null case, where the entries of the MSA 586

corresponding to the sets si and sj are randomly shuffled in such a way that any 587

correlation between the two sets is essentially eliminated, while the correlations between 588

residues in an individual set remain unaltered. Using Eq (13), NEDinter is computed for 589

500 such randomly shuffled realizations of the MSA and the average value (referred to as 590

NEDrandom) represents the null (lower) reference value for NEDinter which is expected if 591

the two sectors are independent. Substantial deviations from NEDrandom should reflect 592

correlation between the sectors. In order to quantify the extent of such deviations in a 593

clearly correlated case, we computed an upper reference NEDintra, obtained when the 594

residues in both sets si and sj belong to the same sector. It is defined as 595

NEDintra(i, j) = max

(
(Hsi +Hs′i)−Hsi∪s′i

Hsi∪s′i
,

(Hsj +Hs′j )−Hsj∪s′j

Hsj∪s′j

)
, (15)

where s′i is the set comprising the five residues with largest correlation magnitude of 596

sector i with the residues in si excluded. 597

Clinical data used in the immunological study 598

The HLA alleles associated with control and progression of HIV Gag were reported 599

in [53]. A list of Gag epitopes associated with either control or progression was 600

compiled using the data from the Los Alamos HIV Molecular Immunology Database 601

(http://www.hiv.lanl.gov/content/immunology) and is presented in S1 Table. 602

Data and code availability 603

Accession numbers of all the sequences used in this work are provided in S3 File. Source 604

code for the proposed RoCA method along with the code for reproducing all figures is 605

available at https://github.com/ahmedaq/RoCA. 606

Supporting information 607

S1 Text. Details of the PCA inference method [11,12]. 608

S2 Text. Simulation study: Statistical robustness of RoCA. 609

S3 Text. Analysis of the SCA method. 610

S1 Fig. Co-evolutionary sectors revealed by RoCA for (A) HIV Nef, (B) 611

HCV NS3-4A, and (C) HCV NS4B proteins. The first row of each panel shows 612

the biplots of the estimated sparse PCs that are used to form RoCA sectors. The sector 613

residues are represented by circles according to the specified color scheme, while 614

overlapping residues (belonging to more than one sector) and non-sector (independent) 615

residues are represented as gray and white circles, respectively. The heat map of the 616

cleaned correlation matrix, with rows and columns ordered according to the residues in 617

the RoCA sectors, shows that the sectors are notably sparse and uncorrelated to each 618

other. The second row of each panel plots the location of RoCA sector residues in the 619

primary structure. The sector residues are colored according to the specifications in 620
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Fig 2A. The third row of each panel shows the statistical independence of the RoCA 621

sectors, quantified using the normalized entropy deviation metric. 622

S2 Fig. Robustness of the association of HIV Gag sectors 3 and 6 to the 623

respective structural (interface) domains for different values of the 624

contact-defining distance d between the alpha-carbon atoms. The protein 625

chains in all structures are shown in gray. The structurally important residues (i.e., 626

interface residues) present in a sector are shown as red spheres and the remaining 627

residues of the interface are shown as blue spheres. The first, second, and third column 628

show the interface residues obtained with d = 7, 8, and 9Å, respectively. Crystal 629

structure of (A) the p24 hexamer (PDB ID 3GV2), (B) the p24 pentamer (PDB ID 630

3P05), and (C) the p24 inter-hexamer interface (PDB ID 2KOD). All the associated 631

results in the main text were shown for d = 7Å. The association of sector 3 and sector 6 632

to the corresponding interfaces remains statistically significant for different values of d. 633

S3 Fig. Comparison of the PCA-based method [12] and the proposed 634

RoCA method. (A) Comparison of sector sizes obtained using PCA and RoCA for 635

the studied viral proteins. The y-axis shows the number of residues present in each 636

sector. (B) Associations of sectors produced by the PCA-based method [12] with the 637

biochemical domains of the studied viral proteins. Only the sectors having statistically 638

significant association with any biochemical domain are presented. The sectors are 639

colored according to the scheme in Fig 2A. The area of each bubble reflects the 640

statistical significance of the associated result, measured as −1/ log10 P , and the black 641

circles indicate the conventional threshold of statistical significance, P = 0.05; any 642

P -value lower than that is considered statistically significant. The P -values associated 643

with non-significant associations (P > 0.05) are displayed inside the black circle. (C) 644

Comparison of the robustness of RoCA and PCA [12] methods to finite sampling using 645

binary synthetic data. The parameters used in the simulation were M = 500 residues 646

and r = 5 non-overlapping units Si of size 12%, 10%, 8%, 6%, and 4% of M , 647

respectively for i = 1, . . . , 5. The corresponding `i were set to equally spaced values 648

between `1 = 6 and `5 = 4, and to model the phylogenetic effect, we set `0 = 8. To test 649

the finite-sampling effect, results are presented for varying number of samples N = 650

1000, 2000, and 4000 corresponding to N
M = 2, 4, and 8, respectively. The sectors 651

inferred using RoCA and PCA [12] are compared using mean TPR, mean FDR, and the 652

maximum percentage mismatch PMmax. In each box plot, the black circle indicates the 653

median, the edges of the box represent the first and third quartiles, and whiskers extend 654

to span a 1.5 inter-quartile range from the edges. 655

S4 Fig. Sectors revealed by the PCA-based method [12] for (A) HIV Nef, 656

(B) HCV NS3-4A, and (C) HCV NS4B proteins. The first column displays the 657

bar plots showing the merging of multiple RoCA sectors in the sectors revealed by the 658

method in [12]. The vertical axis of each plot shows the percentage of residues within 659

the different RoCA sectors that fall into the prescribed sector. The second column 660

shows the biplots of the PCs which are post-processed to form sectors in [12]. The 661

sector residues are represented by circles according to the specified color scheme, while 662

independent (non-sector) residues are represented as white circles. 663

S5 Fig. Comparison with other co-evolutionary methods. (A) Comparison of 664

the biochemical association of the sectors inferred by the three sectoring methods: 1) 665

The proposed RoCA method, 2) the PCA method [12], and the SCA method [14]. (B) 666

Biochemical association of HIV Gag sectors inferred using alternative co-evolution 667

methods available in the literature (reviewed in [13]). Specifically, the inferred sectors 668
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were based on: 1) Direct coupling analysis (DCA) [54], 2) a mutual information (MI) 669

based method [55], 3) McLachlan based substitution correlation (McBASC) method [56], 670

4) observed minus expected square (OMES) method [57], and 5) evolutionary trace 671

(ET) method [58]. The MI and DCA methods were implemented using the code 672

provided in [54]. For a fair comparison, the similarity-based sequence weighting of DCA 673

was not applied; however, a pseudo-count value of 0.5 was used (as specified in [54]) to 674

avoid singularity issues during inversion of the covariance matrix in DCA. The 675

McBASC [56] and OMES [57] methods were implemented using the code provided 676

in [59]. The ET method was run from the web-based server provided at 677

http://mammoth.bcm.tmc.edu/ETserver.html. None of these methods, except the 678

ET method, were originally designed to explicitly produce sectors of co-evolving 679

residues, but to simply assign a score to each pair of residues in the protein, with a high 680

score indicating a high probability of the associated pair to be in contact in the tertiary 681

structure. Nonetheless, we formed a single sector based on these pairwise scores. This 682

was done by aggregating those pairs of residues deemed to be significantly interacting, 683

corresponding to pairs with an associated score larger than β = 2 standard deviations 684

above the mean of the overall distribution of scores. Different choices of β yielded 685

qualitatively similar results (not shown). The ET method combines information of the 686

cross-sectional conservation (single-residue conservation in the MSA) and the conserved 687

residues in different branches of the phylogenetic tree (associated with the input MSA) 688

to assign a score to each protein residue. In this algorithm, a lower score reflects higher 689

importance of the residue. Thus, we formed a sector by including those 20% of residues 690

with the lowest scores (as mentioned in [58]). The sector predicted by these methods, 691

except the ET method, showed no statistically significant association to any biochemical 692

domain in HIV Gag. The sector predicted by the ET method was found to be associated 693

with the P7-Zinc-Finger domain. Note that we also tested the multiple correspondence 694

analysis (MCA) based S3det co-evolution method [60] using the web-based server 695

provided at http://treedetv2.bioinfo.cnio.es/treedet/index.html. However, no 696

results could be obtained due to its high computational complexity when applied to the 697

(large) Gag protein. (C) Biplots of all possible pairs of the top six PCs—after discarding 698

the leading eigenvector representing the phylogenetic effect—of the SCA matrix, used to 699

form HIV Gag sectors with SCA. Sector residues, overlapping residues, and non-sector 700

residues are represented with the same color scheme of Fig 2A. 701

S6 Fig. Biochemical association of the HIV Gag sectors reported in [11]. 702

For all structural interfaces, the contact-defining distance between the alpha-carbon 703

atoms was set to d = 7Å. The inference method in [11] is similar to the PCA 704

approach [12] tested in this paper, mainly differing in the procedure to form sectors 705

from eigenvectors; specifically, the method in [11] formed sectors from visual inspection 706

of eigenvector biplots, whereas an automated procedure was applied in [12]. Similar 707

to [12], the method in [11] produced relatively large sectors that did not show the highly 708

resolved and modular biochemical association revealed by RoCA (Fig 3). Importantly, 709

no sector reported in [11] was found to be associated with rapid progression to AIDS. 710

This was due to the fact that the residues in the biochemical domain important in this 711

case (p24-SP1 interface; see Results) were mixed up with the control-associated residues 712

in sector 3. 713

S7 Fig. Comparison of the entropy per residue of the amino acid MSA 714

and that of the binarized MSA for each studied viral protein. A high positive 715

Pearson correlation r (close to 1) with very high statistical significance (very small P ) is 716

obtained between the entropy per residue of the amino acid MSA (Hi) and that of the 717

binarized MSA (Hbin
i ) in all cases; for details on the entropy computation, see [12]. This 718
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demonstrates that the binary MSA is a good approximation of the amino acid MSA for 719

the considered viral proteins. 720

S8 Fig. Presence of long-range interactions in the predicted sectors. 721

Circular plots showing both the short and long-range mutational interactions in the six 722

sectors predicted for HIV Gag. The interactions among residues in a sector are 723

represented with colored lines following the scheme specified in Fig 2A. For better 724

visualization, only the strong interactions (|Ĉij | > 0.1) involved in each sector are 725

shown. 726

S9 Fig. Biochemical association of the RoCA sectors obtained for the S1A 727

serine protease family, in comparison with the SCA sectors produced 728

by [14]. The RoCA sectors were inferred from the same sequence data used by [14]. 729

The relevant biochemical domains in this case were identified as distinct sets of residues 730

involved with thermal stability [61,62], basic chemical function of this enzyme family, 731

and catalytic specificity [63, 64]. An important distinction here with respect to the HIV 732

and HCV proteins is that the leading eigenvector obtained in the estimation of the SCA 733

and RoCA sectors was associated with two biochemical functions; thermal stability and 734

enzymic activity. In [14], two sub-sectors were formed from this eigenvector based on 735

the sign of its elements; specifically, the red sub-sector was formed using the positive 736

elements, while the blue sub-sector was formed using the negative elements. The same 737

strategy was applied for RoCA, resulting in the corresponding sector 1 being divided 738

into two sub-sectors, 1a and 1b. 739

S10 Fig. Analyis of the conservation of the residues within the 740

biochemical domains of each studied viral protein. We categorize the residues 741

in each protein into fully conserved and variable residues. The variable residues are 742

further divided into five conservation quantiles Q1, Q2, ..., Q5, with quantile Q1 743

consisting of the 20% most-conserved residues, Q2 the next 20% most-conserved 744

residues, and so on. The y-axis represents the fraction of biochemically important 745

residues present in each conservation group for each protein. This result shows that the 746

residues within the biochemical domains of each studied viral protein are well-mixed 747

with respect to conservation. 748

S11 Fig. Effect of Corr-ITSPCA iterations on the RoCA sector inference 749

using binary synthetic data. The parameters used in the simulation study (see S2 750

Text for details) were M = 500 residues and r = 5 non-overlapping units Si of size 12%, 751

10%, 8%, 6%, and 4% of M , respectively for i = 1, . . . , 5. The corresponding `i were set 752

to equally spaced values between `1 = 6 and `5 = 4, and to model the phylogenetic 753

effect, we set `0 = 8. The ratio of the number of samples to the number of residues was 754

fixed at N
M = 4 and the simulation was run for 500 Monte Carlo realizations. (A) The 755

maximum percentage mismatch PMmax between sectors formed using the PCs 756

estimated at a particular Corr-ITSPCA iteration and the corresponding units. PMmax 757

decreases as the number of iterations increases, demonstrating that the iterative 758

procedure in Corr-ITSPCA helps to accurately predict the true units. Here, the 759

intermediate iteration corresponds to half of the total number of iterations 760

Corr-ITSPCA took to converge in each Monte Carlo realization. (B-D) Illustration of 761

the convergence of RoCA sectors to the corresponding units in a single Monte Carlo 762

realization for the simulation setting of (A). Snapshot of (B) PCs representing the true 763

units (here, the first PC represents phylogeny while the subsequent five PCs represent 764

the five units), (C) PCs of the sample correlation matrix (constructed using the 765
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phylogeny-filtered MSA) used in forming PCA sectors, and (D) PCs at first, fourth, and 766

eight (last) iteration of the Corr-ITSPCA method. 767

S1 Table. List of HLA class I restricted epitopes associated with 768

long-term non-progressors (LTNP) and rapid progressors (RP) in HIV 769

Gag. 770

S1 File Detailed list of experimentally-identified biochemical domains of 771

the studied viral proteins. 772

S2 File. List of residues in the sectors inferred using RoCA for all four 773

viral proteins. 774

S3 File. List of accession numbers of all the protein sequences. 775
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