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Abstract

This technical report presents the Automatic Temporal Registration Algorithm (ATRA) for

symmetric rigid-body affine registration of longitudinal T1-weighted three-dimensional magnetic

resonance imaging (MRI) scans of the human brain. This is a fundamental processing step in

computational neuroimaging. The notion of leave-one-out consistent (LOOC) landmarks with

respect to a supervised landmark detection algorithm is introduced. An automatic algorithm is

presented for identification of LOOC landmarks on MRI scans. Using this technique, multiple

sets of LOOC landmarks (around 150) are identified on each of the volumes being registered.

Then, a Generalized Orthogonal Procrustes Analysis of the identified landmarks is used to find a

rigid-body transformation of each volume into a common space where the transformed volumes

are precisely aligned. In addition, a new approach is introduced for quantitative assessment of

registration accuracy in the absence of a gold standard. Qualitative and quantitative evaluations

of ATRA registration accuracy are performed using 2012 volumes from 503 subjects (4 longitu-

dinal volumes/subject) from the Alzheimer’s Disease Neuroimaging Initiative database, and on

a further 120 volumes acquired from 3 normal subjects (40 longitudinal volumes/subject). The

algorithm is symmetric, in the sense that any permutation of the input volumes does not change

the resulting transformation matrices, and unbiased, in the sense that all volumes undergo one

and only one interpolation operation, which precisely aligns them in a common space. There is

no interpolation bias and no reference volume. All volumes are treated exactly the same. The

algorithm is fast and highly accurate. The software is publicly available.

Keywords: Brain; Image Registration; Landmark Detection; Longitudinal MRI; Symmetric Regis-

tration; Unbiased Registration; Inverse-consistent Registration.

1 Introduction

Medical image registration is the process of estimating a one-to-one mapping between physically

corresponding points within the fields-of-view (FOVs) of a pair of scans. The scans can be from

different imaging modalities (e.g., PET and MRI) obtained from the same individual (Ardekani

et al., 1995), from the same modality (e.g., MRI-MRI) obtained from different individuals (Klein

et al., 2009), or from the same modality and individual (e.g., longitudinal MRI) (Hajnal et al., 1995).

Most registration algorithms between pairs of images have been designed asymmetrically (Nestares

and Heeger, 2000; Holland and Dale, 2011) whereby, somewhat arbitrarily, one scan is taken as the
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target (also referred to as the reference or template scan) and the other as the source (also referred

to as the moving or subject scan). The objective is to find a transformation from within a class of

transformations that, when applied to the source image, would match it as closely as possible to

the target image in some sense. A problem with this approach is that the resulting registrations

are not necessarily inverse-consistent, that is, if the roles of the target and source images were

reversed, the algorithm would not necessarily yield the inverse transformation. Another major

problem with asymmetric registration is the so-called interpolation bias, whereby the target image

remains fixed while the source image undergoes an interpolation with associated smoothing. This

can be detrimental, for example, in applications where a pair of serial MRI volumes are matched

in order to detect subtle atrophic changes over time (Liu et al., 2003).

To resolve these issues, researchers have been working on designing inverse-consistent and un-

biased registration techniques (Smith et al., 2002; Johnson and Christensen, 2002; Reuter et al.,

2010; Ardekani et al., 2016) between pairs of scans. There have also been efforts to extend sym-

metric registration to the problem of matching multiple (greater than two) scans (Reuter et al.,

2012; Ashburner and Ridgway, 2012). Although, to avoid high computational cost, Reuter et al.

(2012) suggest a compromised implementation, whereby first the registration of each image to a

randomly selected image is computed. Therefore, this approach is not truly symmetric; it merely

randomizes the asymmetry. The method described by Ashburner and Ridgway (2012) is similarly

computationally expensive.

In this technical report, we introduce the Automatic Temporal Registration Algorithm (ATRA),

a new approach to rigid-body affine registration which is truly symmetric regardless of the number

of scans being registered and computationally efficient. Although ATRA has been trained for the

registration of T1-weighted three-dimensional (3D) structural MRI brain scans (volumes), the same

process of training can in principle be applied to registering other modalities (e.g., T2-weighted

volumes). Rigid-body registration of serial volumes acquired from the same individual at different

times is a fundamental processing step in computational neuroimaging. Multiple independent

scans may be acquired during the same scanning session or longitudinally separated in time by

days, months or years. For example, several structural scans with short acquisition times are

sometimes obtained in the same scanning session to reduce motion artifacts (Marcus et al., 2007).

The volumes are then retrospectively registered and averaged to obtain a single volume with higher
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signal-to-noise ratio (SNR). The structural MRI protocol in the Alzheimer’s Disease Neuroimaging

Initiative (ADNI) calls for back-to-back structural MRI scans within the same session to reduce

the number of image acquisition sessions that must be repeated due to poor image quality (Jack

et al., 2008). Registration of the back-to-back scans may be necessary in some applications, e.g., in

studying the reproducibility of automated hippocampal volumetry software (Bartel et al., 2017).

Comparison of longitudinally acquired scans is a powerful tool for diagnosis, monitoring disease

progression, evaluation of treatments and research. For example, registration and subtraction of

serially acquired brain MRI pre- and post-surgery significantly increases the sensitivity of radiolo-

gists in finding new ischemic lesions following cardiac surgery (Patel et al., 2017). The subtraction

technique is also extremely useful in monitoring new lesion activity in multiple sclerosis (Sweeney

et al., 2013). Registration of longitudinal MRI from the same individual is also a prerequisite for

subsequently more sophisticated methods that are designed to automatically measure regional or

global brain volume change (Freeborough and Fox, 1997; Smith et al., 2002).

A problem with using the rigid-body model for the registration of longitudinal data is that there

are regions in the imaging FOV where this model does not hold. Firstly, there are moving parts

such as the jaw, eyes, tongue, neck and scalp that cannot be expected to be rigid. Secondly, there

may be subtle changes in the structure of the brain over time, such as ventricular enlargement,

expanding or new white matter lesions, and brain atrophy. Therefore, registration methods have to

be designed to handle departures from the rigid-body motion model. For this purpose, Reuter et al.

(2012) proposed using robust estimation methods designed to automatically reduce the influence

of outlier regions from the registration process. Ashburner and Ridgway (2012) propose a scheme

which combines non-linear diffeomorphic and rigid-body registrations along with correction for the

intensity inhomogeneity artifacts.

Here we postulate that there exist “stationary landmarks” within the brain which we refer to

as anchor points whose relative positions remain constant over the time periods typically covered

in longitudinal imaging. Well known examples of these points are the intersections of the anterior

and posterior commissures with the mid-sagittal plane of the brain. We present a method for

automatically and rapidly identifying a large number of these points (about 150) across all brain

volumes being registered and finding rigid-body transformations that would match these points on

a common space in a fully symmetric manner. We will show this method to be highly accurate.
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In the material presented in this paper, we make a distinction between landmark identification

and landmark detection. The distinction is best described in the context of a supervised landmark

detection algorithm. In the training phase, the algorithm is provided with a set of prototype

landmarks on multiple training volumes. In most previously published work, these prototype

landmarks are identified manually on the training set of volumes by expert raters (Ardekani and

Bachman, 2009; Ghayoor et al., 2017). This is a time-consuming, tedious, and error-prone process

for which we use the term landmark identification. On the other hand, once the algorithm is trained,

we refer to the process of using the algorithm for estimating the location of the same landmark on

a test volume as landmark detection.

A problem with manual landmark identification is that it is very difficult for humans to define

large numbers of homologous points that can be called landmarks. Usually it is difficult to define

more than a few dozen different landmarks across the brain. Even when a landmark is clearly

defined, it is often an extremely difficult task to locate it manually across multiple individuals.

Furthermore, a point that humans can recognize and reliably locate as a brain landmark is not

necessary ideal for automatic detection.

A major contribution of this work is an algorithm for automatic landmark identification which

can be used for training landmark detection algorithms. Furthermore, since the algorithm is fast

and fully automatic, it can be used to identify a large number of homologous points across scans

that can then be used for image registration.

Specific contributions of this paper are as follows: (1) the notion of leave-one-out consistent

(LOOC) landmarks is introduced; (2) a simple but very useful algorithm for automatically and

rapidly identifying multiple sets of LOOC landmarks is presented; (3) a truly symmetric and

computationally efficient intra-subject intra-modality image registration algorithm based on LOOC

landmarks is presented; (4) a novel method for assessing the accuracy of image registration in the

absence of a gold standard is introduced; and finally (5) an implementation of the algorithm (ATRA)

has been made freely available to the research community (www.nitric.org/projects/art).
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2 Methods

Assume that we have a set of 3D structural MRI volumes V (m) (m = 1, 2 . . . ,M) acquired from

the same individual at different times. It is useful to think of these volumes as functions V (m) :

R3 × {1} → R that map real-world coordinates [x y z 1 ]T in the imaging FOV, expressed in

homogeneous coordinates notation as four dimensional column vectors, to real numbers representing

the image values. The objective of ATRA is to find M corresponding rigid-body transformations

T (m) : R3 × {1} → R3 × {1} that transform the M volumes to a common space in which they are

precisely registered. ATRA is symmetric in the sense that any permutation of {V (1), V (2), . . . , V (M)}

results in the same permutation of {T (1), T (2), . . . , T (M)} (Ashburner and Ridgway, 2012). In the

ensuing discussion, we will drop the superscript m whenever convenient.

The affine transformations T are expressed as 4× 4 matrices of the form:

T =



t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

0 0 0 1


along with the rigid-body constraint |T | = ±1. These transformations map real-world coordinates

q = [x y z 1 ]T in the domain (FOV) of V to real-world positions T (q) = w in the common

space. Accordingly, we can denote a transformed volume in the common space by the composite

function Ṽ = V ◦T−1 defined by Ṽ (w) = V (T−1w). In practice, since the MRI FOV is discretized,

evaluations of function V at arbitrary points T−1w requires spatial interpolation. Throughout this

work, we have used linear interpolation for this purpose.

In ATRA, the solution transformations are expressed as: T (m) = T
(m)
δ ◦ T (m)

∆ , where the trans-

formation T
(m)
∆ is found separately for each volume using intrinsic characteristics of the volume and

represents a coarse rigid-body transformation to an intermediate standard space. The algorithm for

obtaining T
(m)
∆ is described in Section 2.1. The transformations T

(m)
δ are found simultaneously and

symmetrically for all M volumes to correct for small residual misalignments that remain between

volumes following transformation to the intermediate standard space. The algorithm for obtaining

T
(m)
δ is presented in Section 2.7.
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2.1 Alignment to standard orientation

In this section we present a fast and fully automated algorithm for computing T∆ which transforms

an arbitrarily oriented volume V to an intermediate standard orientation. The transformation is

computed independently for each of the M volumes to be registered. The algorithm for computing

T∆ is based on intrinsic characteristics of the MRI volume V alone and does not require a reference

volume. Without loss of generality, we defined the standard space such that:

1. The z = 0 plane closely coincides with the the brain’s mid-sagittal plane (MSP).

2. The origin (FOV center) is approximately the mid-point between the intersection points of

the anterior commissure (AC) and the posterior commissure (PC) on the MSP.

3. The x axis is on the MSP, approximately parallel to the AC-PC line and points posteriorly.

4. The y axis is on the MSP, perpendicular to the x axis and points inferiorly.

5. The z axis is perpendicular to the MSP and points from subject’s right to left.

We refer to this as the posterior-inferior-left (PIL) orientation. The z = 0 plane of an MRI volume

after transformation to PIL space is shown in Fig. 1.

Transformation of an arbitrarily oriented volume to the PIL standard space is accomplished

in three steps as shown in Fig. 2. Each step involves a rigid-body transformation. The final

transformation is obtained by combining the three transformations. In step 1, the mid-sagittal

plane (MSP) is estimated automatically using the algorithm described by Ardekani et al. (1997).

Using the estimated MSP, a transformation matrix Tmsp is determined so that the z = 0 plane of

the transformed volume V ◦ T−1
msp coincides with the estimated MSP.

In step 2, the mid-sagittal intersection points of the AC and the PC are automatically de-

tected on the MSP using the algorithm described by Ardekani and Bachman (2009). Based on

this information, a second rigid-body transformation is obtained which maps the center of the

transformed volume’s FOV to the mid-point between the detected AC and PC points, and rotates

the transformed volume so that the x axis points posteriorly parallel to the AC-to-PC line and

the y axis points inferiorly perpendicular to the AC-to-PC line. The corresponding transformation

matrix is denoted by Tacpc (Fig. 2). Following this step, a transformed volume V ◦ (Tacpc ◦ Tmsp)−1
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would be approximately in the desired PIL orientation. However, since the AC and PC points are

only approximately an inch apart on the MSP, and because the accuracy of automated AC/PC

detection algorithms has been reported to be on the order of 1 mm (Ardekani and Bachman, 2009;

Bhanu Prakash et al., 2006; Verard et al., 1997; Liu and Dawant, 2015), errors in AC/PC detection

could result in a large variance in the head’s pitch angle (Arndt et al., 1996; Evans et al., 1992; Li

et al., 2003).

Therefore, in step 3, to stabilize the PIL transformation further, eight additional landmarks

{q1, q2, . . . , q8} are located automatically on the MSP and a third rigid-body transformation Tlm is

computed so that the 8 landmarks are mapped as closely as possible to 8 corresponding previously

determined target locations {q̄1, q̄2, . . . , q̄8} (Arun et al., 1987). More precisely, Tlm is found as

follows:

Tlm = argmin
T

8∑
i=1

||q̄i − Tqi||2 (1)

subject to the constraint |Tlm| = 1. Methods used for identification and detection of landmarks qi

and their target locations q̄i are described in Sections 2.4 and 2.5.

To summarize, given an arbitrarily oriented volume V , ATRA fully automatically and rapidly

determines a rigid-body transformation given by T∆ = Tlm ◦Tacpc ◦Tmsp such that Vpil = V ◦T−1
∆ is

in the standard PIL orientation. For short, we will refer to the procedure described in this section

as the PIL transformation. As an example, Fig. 3 shows the z = 0 plane after PIL transformation

of 4 longitudinal volumes along with the projections of the eight landmarks {q1, q2, . . . , q8} detected

independently for each volume.

2.2 Intra-cranial space probability map

The non-brain regions in MRI volumes are problematic for brain image registration algorithms.

For example, there are moving parts such as the jaw, eyes and neck that cannot be modeled by

rigid-body motion. Subcutaneous fat has much shorter T1 relaxation time than brain tissue which

would result in high signal intensities that could dominate computation of similarity measures

such as sum of squared differences between voxel intensities. For these and other reasons, such

as computation efficiency, it is very beneficial to remove or reduce the influence of the non-brain

regions during image processing. To address this problem, Reuter et al. (2010) used robust statistics
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to automatically reduce the influence of outlier voxels which mostly reside in non-brain regions.

In this work, we employ a very simple and effective alternative method for limiting the image

processing to the intra-cranial space. In an offline processing step, we utilized M volumes acquired

from different individuals denoted by V (m) (m = 1, 2, . . . ,M). In each volume, we isolated the

intra-cranial region using the brainwash module of the Automatic Registration Toolbox (ART)

(www.nitrc.org/projects/art) resulting in a binary intra-cranial space mask which we denote by

U (m) : R3 × {1} → {0, 1}, where:

U (m)(q) =

 1 if q belongs to the intra-cranial space

0 otherwise

Next, we obtained PIL transformation matrices T
(m)
∆ for V (m) using the procedure described in

Section 2.1. Finally, an intra-cranial space probability map was obtained by applying the transfor-

mations T
(m)
∆ to the binary masks U (m) and averaging over all M cases as follows:

Pic(w) =
1

M

M∑
m=1

U (m)((T
(m)
∆ )−1w)

The intra-cranial space probability map Pic : R3×{1} → [0, 1] was saved as an auxiliary volume.

During the registration process, after transformation of a given volume to PIL space, ATRA recalls

Pic and limits landmark identifications to regions where the intra-cranial probability map values

are greater than a prescribed level as shown in Fig. 4.

2.3 Leave-one-out consistent (LOOC) landmarks

Consider a supervised landmark detection algorithm D, which given a set of M example correspond-

ing landmarks Q = {q(1), q(2), . . . , q(M)} identified on M training volumes V = {V (1), V (2), . . . , V (M)},

estimates the corresponding landmark q(t) on a given test volume V (t) /∈ V. The nature of the

landmark detection algorithm is not important for the discussion in this section. The particular

algorithm used in ATRA is described in Section 2.5. Other examples are described in Ardekani

and Bachman (2009) and Ghayoor et al. (2017). If we denote the estimated landmark on V (t) as

q̂(t), the landmark detection algorithm can be thought of as a function of V (t) as well as training
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data Q and V such that q̂(t) = D(V (t),V, Q).

Next, consider the case where we remove the mth training volume V (m) from the training set V

and, accordingly, the mth landmark from Q. Let V−m = V\{V (m)} and Q−m = Q\{q(m)} denote

the resulting reduced sets, where the notation X\Y indicates the relative complement of set Y in

set X. For example, V\{V (m)} means the set of all elements of V except V (m), which for short we

denote by V−m.

Now we let our landmark detection algorithm D estimate the left-out landmark point q(m) on

the left-out volume V (m) based in the remaining M − 1 training data pairs (V−m, Q−m). Using the

notation above, the estimated landmark is given by q̂(m) = D(V (m),V−m, Q−m).

Definition. A set of corresponding landmarks Q = {q(1), q(2), . . . , q(M)} identified on volumes

V = {V (1), V (2), . . . , V (M)} are leave-one-out consistent (LOOC) with respect to landmark detection

algorithm D if and only if q̂(m) = D(V (m),V−m, Q−m) = q(m) for all m.

Thus, to determine whether a set of landmarks are LOOC, we compute the leave-one-out esti-

mates q̂(m) = D(V (m),V−m, Q−m) and check to see if q̂(m) = q(m) for all m ∈ {1, 2, . . . ,M}. If this

is true, then by the above definition, the set of landmarks Q is LOOC with respect to algorithm D.

2.4 LOOC landmark identification

Supervised landmark detection algorithms such as the one described in Section 2.5 rely on a set of ex-

ample landmarks {q(1), q(2), . . . , q(M)} identified on a set of training volumes {V (1), V (2), . . . , V (M)}.

Often these landmarks are identified manually by expert raters (Ardekani and Bachman, 2009;

Ghayoor et al., 2017). This process, however, is tedious and time-consuming, and suffers from

poor inter and intra-rater reliability. Furthermore, we have noticed that manually identified land-

marks are almost never LOOC. Also, the manual identification requirement precludes their use

in landmark-based automatic registration algorithms such as ATRA. In addition, what humans

consider a “good landmark” is not necessarily ideal for machine learning.

In this section, we present a simple but extremely useful algorithm for fully automatic identifi-

cation of LOOC landmarks that can then be used to train landmark detection algorithms and for

automatic image registration. Suppose that a set of training volumes V = {V (1), V (2), . . . , V (M)}

are given after having been transformed to a standard space, for example, to PIL orientation by
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using the procedure outlined in Section 2.1. Since these volumes are in a standard space, a given

point s in the standard space roughly corresponds to the same anatomical location on all V (m).

The LOOC landmark identification algorithm proceeds as follows:

1. Initially set q(m) = s for all m ∈ {1, 2, . . . ,M}. That is, at the begining, all landmarks are

set to the same seed position s in the standard space.

2. Repeat the following steps until convergence or until a predefined maximum number of iter-

ations is reached:

2.1. Estimate the leave-one-out predictions q̂(m) = D(V (m),V−m, Q−m). If the landmarks are

LOOC, that is, q̂(m) = q(m) ∀ m, then set a convergence flag and go to step 3.

2.2. If the maximum number of iterations has been reached, then set a non-convergence flag

and go to step 3.

2.3. Set q(m) = q̂(m) and return step 2.1.

3. End.

If the above algorithm converges within the given maximum number of iterations, then a set of

LOOC landmarks has been identified. If convergence is not reached within the prescribed number

of iterations, then the algorithm may be repeated with a new seed point s. In general, the seed

point s can be varied systematically and the above algorithm repeated to find multiple sets of

LOOC landmarks on the same set of training volumes V. These can be used to train a supervised

landmark detection algorithm, such as the one described in Section 2.5, to detect the corresponding

landmark on a new test volume V (t). This is the method we used for training ATRA to detect the

8 mid-sagittal landmarks used for finding Tlm in Section 2.1 (Fig. 3). For this purpose, the V (m)

were 30 volumes acquired from different individuals. In addition, if many sets of LOOC landmarks

are found on longitudinal volumes, that is, when V (m) are acquired from the same individual over

time, then they can be used for symmetric intra-subject registration as described in Section 2.7.

2.5 Landmark detection

Assume that we have a set of M training volumes V = {V (1), V (2), . . . , V (M)} in a standard space

and that the location of a given landmark is known on each volume. Let these points be represented
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by set Q = {q(1), q(2), . . . , q(M)} where q(m) denotes the location of the landmark on the mth

training volume. Points q(m) can be manually identified on V (m) by a trained observer, or identified

automatically using the method described in Section 2.4. For now, we just assume that q(m) are

known.

This section describes a method for estimating the location of the landmark on a new test

volume V (t) also in the standard space given the training data (V, Q). The landmark detection

algorithm can be thought of as a function q̂(t) = D(V (t),V, Q), where q̂(t) denotes the estimated

location of the landmark on the test volume V (t).

Based on the training data Q, the expected location of the landmark in the standard space can

be estimated by averaging q(m):

q̄ =
1

M

M∑
m=1

q(m) (2)

Let Ω(q̄) denote a spherical neighborhood centered at point q̄. The landmark detection algorithm

assumes that q̂(t) ∈ Ω(q̄), that is, the location of the landmark on the test volume is within some

radius of the average location q̄.

Furthermore, the landmark detection algorithm relies on a feature vector that can be obtained

for any point q on a volume V . The feature vector can be considered a vector-valued function

f(V, q) ∈ Rl that defines an l-dimensional vector extracted from volume V at point q. Given these

definitions, the landmark detection algorithm can be written as:

q̂(t) = argmax
q∈Ω(q̄)

[
1

M

M∑
m=1

f(V (t), q) ∼ f(V (m), q(m))

]
(3)

where f(V (t), q) ∼ f(V (m), q(m)) denotes the degree of similarity of the feature vector at point

q on the test volume V (t) and the feature vector at point q(m) on the training volume V (m).

Thus, the landmark detection algorithm (3) calculates the average similarity between f(V (t), q)

and f(V (m), q(m)) for m = 1, 2, . . . ,M and estimates the landmark on the test volume to be the

point in the neighborhood Ω(q̄) that maximizes the average similarity.

In our current implementation, as feature vector f(V, q), we simply take the gray levels of V in

a spherical neighborhood ω(q) of point q and normalize them so that the elements of vector f(V, q)

have zero mean and unit variance. It is possible to include other information in the feature vector
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function f(V, q), for example, intensity gradient and/or Laplacian values measured at different

resolution levels. However, this line of research has not been pursued in the current work.

As the similarity measure “∼” in (3) we simply use the dot product between the feature vectors

f(V (t), q) and f(V (m), q(m)) which measures the degree of alignment between them. The advantage

of this choice is that, because the dot product is a linear operation, (3) simplifies to:

q̂(t) = argmax
q∈Ω(q̄)

[
f(V (t), q) · f̄

]
(4)

where

f̄ =
1

M

M∑
m=1

f(V (m), q(m)) (5)

The computational advantage of (4) is that it depends on the average feature vector (5) obtained

from the training set. The average feature vector f̄ can be computed offline once along with the

average landmark location q̄. These quantities can then be recalled during landmark detection as

auxiliary inputs to the supervised landmark detection algorithm and used in (4) in a computation-

ally efficient manner to detect the landmark location q̂(t) on V (t).

2.6 Generalized Orthogonal Procrustes Analysis

Assume that we have a set of N landmarks on each of M volumes represented by q
(m)
n (n =

1, 2, . . . , N ;m = 1, 2, . . . ,M), where q
(m)
n denotes the location of landmark n on volume m given

in terms of its real-world coordinates. The objective of the Generalized Orthogonal Procrustes

Analysis (GP) (Devrim, 2003) is to estimate M rigid-body transformations T
(m)
δ , one for each of

the M volumes, so as to transform them to an average position which is itself unknown. The

algorithm is as follows:

1. Compute the N centroids q̄n as the average landmark positions across the M volumes as

follows:

q̄n =
1

M

M∑
m=1

q(m)
n for n = 1, 2, . . . , N
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2. Using the algorithm described by Arun et al. (1987) find M transformations T
(m)
δ such that

T
(m)
δ = argmin

T

N∑
n=1

||q̄n − Tq(m)
n ||2 for m = 1, 2, . . . ,M

subject to constraints |T (m)
δ | = 1. These rigid-body transformations map the N landmarks

in each volume m as closely as possible to the centroids q̄n.

3. Update q
(m)
n := T

(m)
δ q

(m)
n for all n and m.

4. Repeat steps 1–3 until convergence, when the centroid q̄n, and hence T
(m)
δ , do not change

from the previous iteration.

2.7 The Automatic Temporal Registration Algorithm (ATRA)

To reiterate, our main objective in this paper is to perform a symmetric registration of a set of

volumes V = {V (1), V (2), . . . , V (M)} acquired from the same individual over time. For this purpose,

we would like to find rigid-body transformations of the form T (m) = T
(m)
δ ◦T (m)

∆ that would register

the corresponding volumes to a common space. The transformations T
(m)
∆ are found individually

for each volume using the procedure described in Section 2.1. They transform the volumes into an

intermediate PIL space in which the M volumes become closely aligned; however, small residual

misalignments remain. These small misalignments are corrected by the residual transformations

T
(m)
δ which are found symmetrically using the procedure described in the current section. The

ATRA algorithm is as follows:

1. Determine M transformations T
(m)
∆ using the method described in Section 2.1.

2. Initialize T
(m)
δ = I4×4, where I4×4 denotes the 4× 4 identity matrix.

3. Repeat steps 3.1–3.3 until the number of anchor points (N∗) as defined in 3.2 reaches a

maximum:

3.1 Apply transformations T (m) = T
(m)
δ ◦T (m)

∆ to transform V (m) to a common space where

the set of transformed volumes is denoted by: Ṽ = {Ṽ (1), Ṽ (2), . . . , Ṽ (M)}.
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3.2 Identify N sets of LOOC landmarks Qn = {q(1)
n , q

(2)
n , . . . , q

(M)
n } (n = 1, 2, . . . , N) on Ṽ

using the LOOC landmark identification algorithm given in Section 2.4. Here, the LOOC

landmark identification algorithm is run multiple times using different seed points s. The

seed points s are selected at an equally spaced 3D grid of points in the region Pic(s) > 0.5

(Fig. 4), where Pic is the intra-cranial space probability map described in Section 2.2.

In addition, the seed points s are selected to be symmetric with respect to the MSP.

Note that at each iteration, the number N may, and usually does, vary depending on

the number of seeds that result in convergence to a set of LOOC landmarks. Usually

this number increases with increasing number of iterations as the volumes Ṽ become

more closely registered. Consider a set of LOOC landmarks Qn = {q(1)
n , q

(2)
n , . . . , q

(M)
n }

obtained in the current step of the algorithm. If volumes Ṽ are precisely aligned, then in

addition to being LOOC, the landmark locations q
(m)
n in the common space will likely

have the property of being independent of m, that is, q
(1)
n = q

(2)
n = . . . = q

(M)
n = qn. In

other words, points q
(m)
n on all M volumes Ṽ (m) would be represented by the same point

qn in the common space. We refer to these as anchor points. Let N∗ ≤ N be equal to

the number of identified LOOC landmark sets with this additional property.

3.3 Apply the GP algorithm described in Section 2.6 to the LOOC landmark sets Qn =

{q(1)
n , q

(2)
n , . . . , q

(M)
n } (n = 1, 2, . . . , N) identified in step 3.2 to obtain a set of updated

T
(m)
δ .

4. Save transformations T (m) = T
(m)
δ ◦ T (m)

∆ obtained at the iteration where the maximum

number of anchor points N∗ was attained and end.

2.8 Practical implementation details

In this section we present the parameters used in our implementation of ATRA which is freely

available at www.nitrc.org/projects/art.

2.8.1 Alignment to standard orientation

For PIL transformation (Section 2.1), in the third step of the algorithm in Fig. 2, we find transfor-

mation Tlm based on the detection of 8 mid-sagittal landmarks near the MSP. The search centers
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q̄n (n = 1, 2, . . . , 8) and mean feature vectors

f̄n =
1

M

M∑
m=1

f(V (m), q(m)
n ) (n = 1, 2, . . . , 8) (6)

were computed offline and stored in an auxiliary file. This file is uploaded by ATRA during

the registration process and used for estimating q̂n on the volumes being registered. The eight

landmarks were found using the LOOC landmark identification algorithm described in Section 2.4

by using M = 30 training volumes V = {V (1), V (2), . . . , V (M)} acquired from normal individuals on

a 3 Tesla scanner. These volumes were transformed to a standard PIL space using transformations

Tacpc ◦ Tmsp. Note that the standard transformations did not include Tlm. To identify the 8 sets

of LOOC landmarks, multiple seed points s were suggested (manually specified) to the LOOC

landmark identification algorithm. Then in those runs where the algorithm converged, we visually

inspected the landmarks q
(m)
n on all 30 volumes to ensure that they point to homologous anatomical

points on all brains.

2.8.2 Intra-cranial space probability map

To construct Pic, the intra-cranial space probability map described in Section 2.2, we applied the

brainwash module of ART to M = 152 T1-weighted volumes obtained from adults of all ages using

both 1.5 T and 3 T scanners. Minor manual corrections were performed on some of the images

before transformation of the binary masks to the PIL space and averaging to obtain Pic. The

probability map is distributed with ATRA as an auxiliary volume. In this application, it is used to

limit the seed points s used by the LOOC landmark detection algorithm to the intra-cranial space.

In addition, in the landmark detection algorithm described in Section 2.5, Pic is used to limit the

search region Ω(q̄) to the intra-cranial space.

2.8.3 LOOC landmark identification

We have defined a set of landmarks to be LOOC when their leave-one-out estimates q̂(m) equal the

left-out values q(m). In our implementation of the LOOC landmark identification algorithm (Section

2.4), we reorient all images to PIL space and then discretized at a resolution of 1 × 1 × 1 mm3.

Therefore, in practice, points q̂(m) and q(m) are not in R3×{1}, but belong to a discretized grid and
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can be described in homogeneous coordinates as [ i j k 1 ]T belonging to I×J×K×{1} where

I = {0, 1, . . . , nx − 1}, J = {0, 1, . . . , ny − 1}, K = {0, 1, . . . , nz − 1}, and nx, ny and nz are the

number of voxels in the x, y and z directions, respectively. Therefore, equality of q̂(m) = q(m) in the

context of LOOC landmark identification means that the points have the exact same [ i j k 1 ]T

representation. In our implementation, the default matrix dimensions nx×ny×nz are 255×255×189.

2.8.4 Landmark detection algorithm

The discretization described in Section 2.8.3 also applies to the landmark detection algorithm.

In particular, the search represented by Eq. 4 is performed over the discrete domain Ω(q̄) which

approximates a spherical search region. In our implementation, the search radius of Ω(q̄) was set

to 3 mm (i.e., 3 voxels). The feature vectors f(V, q) and the average template f̄ defined in Eq. 5 are

also computed in the same discrete domain over the spherical patch ω(q). In our implementation,

the default patch radius of ω(q) is set to 7 mm or (i.e., 7 voxels).

2.8.5 The Automatic Temporal Registration Algorithm (ATRA)

In the final registration algorithm presented in Section 2.7, the LOOC landmark identification

algorithm is initialized by multiple seeds s. The seeds were selected so that: (1) they are 20 mm

apart on a regular 3D grid; (2) they belong to the intra-cranial space with a probability of greater

than 0.5, i.e, Pic(s) > 0.5); and (3) they are symmetric with respect to the MSP. With these

conditions, ATRA starts with a fixed set of 188 seeds points s. However, the number of seeds for

which landmark identification converges (N) varies depending on the problem, as does the number

of anchor points (N∗ ≤ N).

2.9 MRI data

The MRI data that we used in this study for evaluating ATRA were obtained from two differ-

ences sources. Data from 503 subjects were obtained from the ADNI Phase 2 (ADNI-2) database

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by Princi-

pal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial

MRI, positron emission tomography (PET), other biological markers, and clinical and neuropsy-

chological assessment can be combined to measure the progression of mild cognitive impairment
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(MCI) and early Alzheimer’s disease (AD). For up-to-date information, see www.adni-info.org.

Four 3D structural T1-weighted MRI scans, 2 at baseline and 2 at one-year follow-up, were

downloaded for each of 503 ADNI-2 subjects, for a total of 2012 volumes. Images had been acquired

using a harmonized pulse sequence on 3 Tesla scanners across 42 different imaging centers. At the

time of baseline scans, there were 123 cognitively normal (CN) subjects, 63 subjects with AD

dementia, 191 subjects diagnosed with early MCI (EMCI), 112 subjects with late MCI (LMCI),

and 14 subjects with subjective memory complaints (SMC). Subjects included 233 females and 270

males. Subjects’ ages ranged from 55 to 92.5 years (average: 72.8).

To evaluate ATRA’s accuracy and speed in handling relatively long time-series of 40 longitudinal

scans, we also downloaded a unique publicly available dataset from Stanford University (Maclaren

et al., 2014) comprised of 120 T1-weighted volumes from 3 subjects (40 volumes/subject) acquired

over 20 MRI acquisition sessions using the ADNI protocol on a GE MR750 3 Tesla scanner. Each

subject had been scanned twice within each session, with repositioning between the two scans.

2.10 Performance evaluation

We registered the 4 volumes within each of the 503 ADNI subjects and the 40 volumes within

each of the 3 Stanford subjects. We recorded the execution time of the algorithm in each case and

visually inspected the results for accuracy.

The absence of ground truth registration makes it difficult to quantify the accuracy of regis-

tration algorithms on real data. Nevertheless, it is possible to devise a procedure by means of

which one can state that the average registration accuracy is at least better than a given prescribed

amount.

Since the ground truth registrations are unknown in our data, we devised a novel method

for showing that ATRA’s registration accuracy is at least better than 0.5 mm translation or 0.5◦

rotation. In this method, in each of 20 ADNI subjects selected at random (5 CN, 5 EMCI, 5 LMCI,

and 5 AD), after registration of the 4 longitudinal volumes by ATRA , we randomly selected one

of the 4 volumes, randomly selected one of the 3 axes, and deliberately added either a 0.5 mm

translation along the axis or a 0.5◦ rotation about the axis to the solution transformation before

transforming all 4 volumes to the common space. Then, while being blind to the identity of the

deliberately misaligned volume, we attempted to identify it by visual inspection of all 4 volumes
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side-by-side in the common space. The idea here is that if the average accuracy of the algorithm is

on the order of the prescribed motion, then we will only be able to identify the misaligned volume

at chance level with 0.25 probability of success. This experiment could then be considered as a

Bernoulli process with the number of successes modeled as a binomial distribution B(20, 0.25). If

the number of successes achieved in this experiment is significantly larger than the expected value

of 4 out of 20, one can infer that the accuracy of registration is better than the prescribed motion.

3 Results

We first inspected the 2012 ADNI volumes for accuracy of the PIL transformation method described

in Section 2.1. The algorithm failed for 44 volumes (2.2%). Twenty-three of the failed cases

were due to the failure of the MSP detection algorithm (step 1, Fig. 2). The remaining 21 failed

cases were due to the failure of the AC/PC detection algorithm (step 2, Fig. 2). There were

no failures in the detection of the 8 mid-sagittal landmarks (step 3, Fig. 2). For these cases we

manually specified the AC, PC, and a third point (the vertex of the superior pontine sulcus)

(VSPS) on the MSP and ran ATRA again while disabling the automatic MSP/AC/PC detection

steps, using the manually specified landmarks instead. More specifically, the first two steps in the

PIL transformation algorithm (Fig. 2) that finds matrices Tmsp and Tacpc were performed using the

manually specified AC/PC/VSPS landmarks.

Following this step, the registrations from all 503 subjects were visually inspected by displaying

the 4 aligned volumes for each subject side-by-side. The registrations in all cases were deemed to

be accurate by visual inspection. The average processing time in these 503 cases was less than

30 seconds running on a MacBook Pro with a 2.7 GHz Intel Core i7 processor.

In quantitative analysis, we attempted to detect a deliberately misaligned volume post-registration

by visual inspection, and were able to correctly identify the misaligned volume in 16 out of 20 cases.

Under the null hypothesis of a Bernoulli process with 0.25 success probability, the probability of

16 successes is p < 10−6. An example is shown in Figure 5 in which image (c) was correctly judged

to be the misaligned volume. In this case, the misaligned volume could be discerned by examining,

for example, the fastigium of the 4th ventricle.

The 40 volumes in each of the 3 Stanford subjects were also registered. There were no MSP or
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AC/PC detection failures. The post registration aligned volumes were visually inspected and the

registrations where deemed to be accurate in all 3 subjects. Figure 6 shows the post registration

average of the 40 volumes (right column) in one subject along with a randomly selected post

registration volume (volume 20) in the same subject (left column). The average processing time

for these cases was 5 minutes and 22 seconds.

4 Discussion

In this technical report, we presented details of an algorithm for fully automatic symmetric registra-

tion of serial 3D T1-weighted structural MRI scans of the brain obtained from the same individual

either as independent scans acquired during the same scanning session or longitudinally over an

extended period of time. Along the way, we introduced the notion of LOOC landmarks with respect

to a supervised landmark detection algorithm. We also presented a simple but extremely useful

algorithm for automatically identifying LOOC landmarks on a set of training volumes. ATRA

applies this algorithm to identify a large number of LOOC landmarks across the volumes to be

registered; and uses the GP algorithm for aligning the volumes to a common space.

In Section 2.1, we presented an algorithm that can be used to fully automatically realign a

given volume to a standard orientation independently based on its intrinsic characteristics. This

part of the algorithm is itself a novel contribution to the problem of automatically standardizing

the orientation of an MRI scan with numerous applications. Multiple approaches to this problem

has been reported in the literature (Arndt et al., 1996; Evans et al., 1992; Li et al., 2003). There

are clear advantages of our algorithm over these proposed methods. As an example, Arndt et al.

(1996) showed that by locating multiple landmarks on the MSP and using them to estimate a

rotation of the MSP into a standard orientation, it is possible to achieve better results than two-

point registrations based on AC/PC alone. The third step of our PIL transformation algorithm

(Fig. 2) uses a similar idea albeit with several additional innovations. Arndt et al. (1996) relied

on manually locating landmarks on the MSP which is time-consuming, requires neuroanatomical

knowledge, and can be adversely affected by poor inter-rater reliability. Our method overcomes

these issues by detecting the additional MSP landmarks fully automatically. Another innovation

of our approach is that we detected the MSP automatically which almost always involves image
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rotation specified by Tmsp in step 1 of the algorithm outlined in Section 2.1, whereas Arndt et al.

(1996) select the “middlemost sagittal slice.” Finally, Arndt et al. (1996) use a suboptimal and

heuristic method for finding the required translations and rotation of the MSP landmarks to target

locations, while we used the procedure described in (Arun et al., 1987) to directly find the Tlm

which minimizes the optimality criterion in Eq. (1).

We also formalized an approach for assessing the accuracy of registration whereby one of several

volumes post registration is intentionally misaligned by a small prescribed motion. Then, while

being blind to which of the volumes was misaligned, we attempt to identify it by visual inspection. If

the misaligned volume is correctly identified at a significantly greater rate than what can be expected

by chance, then we can conclude that the registration accuracy is better than the prescribed motion.

Using this procedure on 20 ADNI cases, we were able to identify 16 cases correctly (p < 10−6) for

a prescribed motion of either a 0.5 mm translation along, or a 0.5◦ rotation about a randomly

selected axis. Thus, we were able to conclude that ATRA achieves sub-millimeter accuracy. It is

important to note that the data used for this assessment were from the ADNI database and included

subjects with AD (n=5) and MCI (n=10) as well as CN (n=5). We have recently shown (Ardekani

et al., 2017) that the brain structure in all these groups undergoes significant atrophy even in the

one-year follow-up period of the longitudinal volumes utilized in this work. In many cases, the

atrophy results in enlargement of ventricles and expansion of sulci to a degree that is greater than

0.5 mm (half voxel). Nevertheless, we were able to identify such levels of misalignment in these

subjects. We attribute this to the presence of anchor points in the brain whose relative positions

remain stationary over time even though other brain structures may be undergoing changes. ATRA

registers longitudinal scans by identifying and aligning a large number of these points.

Our software implementation which has been made freely available relies on setting a number of

parameters. These include a 3 mm radius for the search region Ω(q̄) about the expected landmark

location q̄, and a 7 mm radius for the spherical patch ω(q) used to construct the feature vector

f(V, q) at a point q on a volume V . In addition, in identifying multiple LOOC landmark sets to

be used for finding the residual registration matrices Tδ using GP, we used 188 seeds located on a

3D grid of points 20 mm apart in each direction. In the current version of ATRA, none of these

parameters was chosen in a systematic way. Changing these parameters from their default value

could positively or negatively impact the performance of the algorithm both in terms of accuracy
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and speed. A systematic study of the impact of these parameters on the algorithm remains a topic

of future study.

Decreasing the distance between seeds points s from the default value of 20 mm will dramatically

increase the number of seed points from 188. Although this is likely to positively affect the accuracy

and robustness of the algorithm, it will significantly increase the processing time. On the other

hand, the LOOC landmark identification algorithm (Section 2.4), which is the most time-consuming

part of ATRA, can be run in parallel for multiple seed points s, for example, using multi-core

computation. That is, multiple processing units can run in parallel each seeking a set of LOOC

landmarks starting from different seed points. Increasing the search area radius from the default

value of 3 mm will also increase the processing time but may lead to improvements. Again, to

compensate for the additional computation time that will be required to increase the search radius,

the search may be accelerated, for example, by GPU computation. Predicting the effect of changing

the spherical patch ω(q) radius is less intuitive. Smaller radii will increase the computation efficiency

of the algorithm but may result in deteriorating performance.

We found that the AC/PC or MSP detection algorithm failed in about 2.2% of cases. In all

these cases, when we manually supplied to the program three landmarks: the AC, PC, and VSPS,

the program proceeded correctly with all subsequent processing steps and resulted in accurate

registrations. We used the MSP detection algorithm described in Ardekani et al. (1997) and the

AC/PC detection algorithm described in Ardekani and Bachman (2009) because of our familiarity

and experience with these methods. Future research may further reduce the already quite small

failure rate of these algoirhtms. In addition, other existing algorithms for MSP (Hu and Nowinski,

2003; Prima et al., 2002; Jayasuriya et al., 2013; Volkau et al., 2006) and AC/PC (Bhanu Prakash

et al., 2006; Verard et al., 1997; Liu and Dawant, 2015) detection should be evaluated and considered

as alternatives if they show reduced failure rates with an acceptable execution time.

A limitation of our current implementation of ATRA is that it was designed for registering T1-

weighted volumes. However, the approach can be extended to other modalities such as T2-weighted

or FLAIR if the training-based methods for MSP, AC/PC and mid-sagittal landmark detection are

extended to these modalities. In addition, the ideas may be extended to non-human MRI volumes.

Indeed, the automatic LOOC landmark identification algorithm may be applicable to non-medical

image processing such as locating landmark points on face images for face recognition.
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Figure 1: The z = 0 plane of a volume after transformation to PIL space. In this standard space,
the x axis points to the posterior direction, the y axis points to the inferior direction, and the z
axis (not shown) points from subject’s right to left.
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Figure 2: Flowchart for rigid-body transformation of an arbitrarily orientated volume V to the
standard PIL space. The transformation is comprised of three steps that are combined into a single
transformation T∆ = Tlm ◦ Tacpc ◦ Tmsp to obtain the transformed volume Vpil = V ◦ T−1

∆ .
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Figure 3: The z = 0 plane in four longitudinal volumes acquired from the same individual after PIL
transformation V ◦T−1

∆ . In each volume, the “+” marks indicate projections of the eight landmarks
{q1, q2, . . . , q8} detected independently for each volume. Note that after PIL transformation of the
4 volumes a coarse registration has been achieved. However, small residual misalignments remain
that will be corrected by applying Tδ.
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Figure 4: Regions where the intra-cranial probability map Pic(w) > 0.5 are shown in red superim-
posed on a coronal slice of a volume in PIL space. This method is used to to remove almost all
non-brain regions from the analyses.
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Figure 5: Sagittal sections from 4 longitudinal volumes from an ADNI subject after registration
with ATRA. After registration, one of the volumes (c) was deliberately misaligned by adding a
0.5 mm translation to the registration matrix before realignment into a common space. We were
then able to distinguish the deliberately misaligned volume by visual inspection, while being blind
to its identity. In this example, the misaligned volume could be clearly discerned by examining, for
example, the fastigium of the 4th ventricle.
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Figure 6: Sections through volume #20 of Stanford subject #3 (left column) and the average of
all 40 volumes (right column) after ATRA registration. There is no perceptible loss of resolution
in the average images, while the noise level has clearly reduced due to averaging of the 40 volumes.
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