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The adherens junctions between epithelial cells involve a protein complex formed by E-cadherin,
β-catenin, α-catenin and F-actin. The stability of this complex was a puzzle for many years, since
in vitro studies could reconstitute various stable subsets of the individual proteins, but never the
entirety. The missing ingredient turned out to be mechanical tension: a recent experiment that
applied physiological forces to the complex with an optical tweezer dramatically increased its lifetime,
a phenomenon known as catch bonding. However, in the absence of a crystal structure for the
full complex, the microscopic details of the catch bond mechanism remain mysterious. Building on
structural clues that point to α-catenin as the force transducer, we present a quantitative theoretical
model for how the catch bond arises, fully accounting for the experimental lifetime distributions.
The model allows us to predict the energetic changes induced by tension at the interface between
α-catenin and F-actin. It also identifies a significant energy barrier due to a network of salt bridges
between two conformational states of α-catenin. By stabilizing one of these states, this barrier could
play a role in how the complex responds to additional in vivo binding partners like vinculin. Since
significant conformational energy barriers are a common feature of other adhesion systems that
exhibit catch bonds, our model can be adapted into a general theoretical framework for integrating
structure and function in a variety of force-regulated protein complexes.

I. INTRODUCTION

The development and maintenance of tissues in multi-
cellular organisms requires a diverse array of structural
elements that link cells to each other and to the extracel-
lular matrix [1, 2]. For epithelial tissues the main play-
ers in cell-cell adhesion are the proteins of the adherens
junction complex: transmembrane cadherins and their
binding partners that connect the actin cytoskletons of
neighboring cells. To understand both healthy tissue ar-
chitecture and abnormalities that lead to weakening of
adhesion in epithelial tumors [3], it is necessary to deci-
pher the underlying molecular mechanisms that regulate
the stability of the junctions. Identifying the binding
partners of cadherin, their functional roles and interplay
under varying environmental conditions, has been a ma-
jor research goal over the last three decades [2].

The great challenge in achieving this goal is that bind-
ing between proteins is not a simple sum of pairwise
interactions: the strength of adhesion between any two
partners can be allosterically regulated by the presence
or absence of other proteins in the complex, as well as
conformational changes induced by external factors like
mechanical tension [4]. For example, early studies es-
tablished that the cytoplasmic domain of E-cadherin can
bind to β-catenin [5, 6], and β-catenin can in turn bind
to αE-catenin [7]. Since the latter was known to indepen-
dently bind F-actin [8], naively one would assume that
αE-catenin would be the bridge linking E-cadherin/β-
catenin to F-actin, forming a minimal recipe for an ad-
herens junction complex (see the schematic model in
Fig. 1). However subsequent in vitro experiments with
purified proteins cast doubts on this model, showing that
while E-cadherin/β-catenin/αE-catenin formed a stable
complex, it had significantly lower affinity for F-actin
than αE-catenin alone [9, 10].

This puzzling result was only clarified three years ago,

when Buckley et al. added one more ingredient into the
mix: applying physiological (pN-level) forces to the en-
tire cadherin-catenin-actin (CCA) system in an optical
tweezer [11]. Such external forces mimic the mechani-
cal loads which the complex would feel in vivo, and thus
would be a more realistic context to study complex for-
mation than the earlier experiments in the absence of
load. The results were dramatic: the mean lifetime of
the CCA complex increased by a factor of 20 as force
was increased from 0 to 10 pN (see Fig. 3), an unusual
force-induced strengthening known as catch bonding [12].
The lifetime then fell off exponentially at higher forces,
the conventional slip bond decay expected for most bi-
ological bonds under tension. The minimal CCA model
of the adherens junction gained a new dimension of dy-
namic complexity: under the right amount of external
load, the bond with actin is stabilized up to lifetimes of
∼ 1 s, perhaps long enough for vinculin, an additional
binding partner between αE-catenin and actin to attach
and strengthen the junction [13, 14].

Catch bonding has now been observed in a variety of
adhesion and receptor proteins complexed with partic-
ular ligands, among them selectins [12], integrins [15],
bacterial FimH [16], and the αβ T-cell receptor [17]. The
phenomenon is not limited to protein-ligand complexes,
but can occur even in single knotted proteins [18], α-
helices [19], and force-sensitive functional groups in poly-
meric materials [20]. One of the most recent observa-
tions has been in vinculin [14] binding to actin, where
the degree of strengthening under load also depends on
the direction of the force. While all these examples high-
light the crucial role of tension in regulating interactions,
many of them also share the common feature that the
structural and energetic details of how this regulation
occurs at the molecular level remain largely a mystery.
The force spectroscopy experiments that demonstrate
protein-ligand catch bonding reveal only the distribu-
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tions of unbinding times at different forces. We know
from very general theoretical considerations that the un-
derlying free energy landscape of a catch bond must nec-
essarily be complex: a simple landscape with a single
bound state energy well, and an end-to-end extension
that increases monotonically with force, will always yield
slip bond behavior [21]. Thus the most likely scenario for
catch bonding is a landscape with heterogeneous bound
states [22], corresponding to different molecular confor-
mations that can dynamically interconvert under force.
But for any specific catch bond system, like CCA, this
hypothesis leads to a host of difficult questions: what are
the structural differences between the different confor-
mational states? What are the energy barriers between
those states? For each state, what are the associated
changes in the interaction energies at the bond interface,
which are ultimately responsible for the catch bond be-
havior?

Modeling can assist in tackling these issues, but all
current theoretical approaches, despite their various
strengths, fall short of being able to directly answer
the above questions. The most widely used descriptions
of catch bonds are phenomenological [23–27], typically
based on a kinetic network of strongly and weakly bound
states [24, 28], with force biasing the system toward the
strong state. While these models can fit experimen-
tal data and capture the essential conceptual basis of
catch bonding—conformational heterogeneity—they are
expressed in terms of transition rates between states.
There is no direct connection between the fitted param-
eters and the structural features of those states, no way
of estimating energy barriers, and no ability to ratio-
nalize or predict the results of mutation experiments on
the bond lifetimes. Atomistic molecular dynamics sim-
ulations give important structural insights [29–32], but
have their own limitations: conformational transitions
and bond breaking in adhesion complexes at physiolog-
ical forces typically occur on timescales (ms - s) many
orders of magnitude larger than those accessible by all-
atom simulations, precluding direct comparison to force
spectroscopy experiments. Thus a compromise is needed,
an approach that is able to fit experimental data, but
with results that also have a concrete structural inter-
pretation.

A recent study on the catch bonding in P- and L-
selectin adhesion proteins pointed to a possible solution
to this problem, introducing a novel, structure-based the-
ory [33]. It provided an analytically solvable model for
the mean bond lifetime, whose parameters could be di-
rectly linked to the energetics of the interface between the
selectin protein and its ligand, as well as structural length
scales in the complex. All the fitted parameters were
physically reasonable, and in particular the extracted
energies were consistent with available crystal structure
data on the hydrogen bonding network at the interface.
Such a model could for the first time rationalize how par-
ticular interfacial energy changes due to mutations would
affect the observable bond dynamics. Unfortunately even

this approach has an important shortcoming: it assumes
the structural transition that occurs under force (in this
case the rotation of two selectin domains with respect to
each other) does not involve a significant energy barrier.
In other words, the transition occurs on timescales much
shorter than the mean bond lifetime. At any given force,
the model thus yields a probability distribution of life-
times (also known as a bond survival probability) that is
single-exponential.

While the selectin-ligand and other systems [25, 34, 35]
considered in Ref. [33] do exhibit single-exponential sur-
vival probabilities experimentally, the majority of adhe-
sion systems where data is available do not, including
CCA [11, 15, 36–39]. Thus there is a need for a model
that is structure-based, analytically tractable, and which
can account for the full complexity of bond survival prob-
abilities observed empirically. The theory developed in
the current work fulfills all these criteria. It reproduces
the experimental lifetime distributions of CCA, and also
links them to existing structural information on the con-
formations of αE-catenin. It provides the first estimates
of the energy barrier height between these conformations
as the complex remodels under force, as well as the re-
sulting energetic changes at the actin interface. These
predictions allow us to suggest a future set of experi-
ments to validate the model. They also give insights
into the role of the catenin energy barrier in physiological
contexts, where a specific conformation of CCA may be
required for efficient binding of vinculin to further sta-
bilize the complex [14]. While our focus is on a single
system, the theory framework itself is quite general, and
can be be readily adapted to other cases. It subsumes
earlier models of bond dynamics as special cases in cer-
tain limits, including both the barrier-less selectin model
and conventional Bell model for slip bonds. It thus has
the potential to provide a unified analytical formalism
for interpreting data from the entire spectrum of force-
regulated adhesion complexes seen in nature.

II. THEORY

Structure-based model: The key structural hypoth-
esis underlying our theory is that conformational changes
in the CCA complex induced by force allosterically reg-
ulate the interaction strength between F-actin and the
C-terminal F-actin binding domain (FABD) [8] of αE-
catenin (see schematic model in Fig. 1). In the absence
of a crystal structure of the FABD-actin interface, many
questions remain about its molecular details [40, 41], and
among the goals of our approach is to elucidate the over-
all actin-FABD bond energy and how it varies between
different CCA conformations. The precise nature of the
conformational changes that occur under tension is also
not definitively established, though various lines of ev-
idence point to the central role played by αE-catenin
as the force transducer [42, 43], including recent dy-
namic FRET visualization of reversible conformational
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FIG. 1. A schematic diagram showing hypothetical conformational changes of the cadherin-catenin-actin complex under force.
A) A cartoon of the complex. In the absence of a crystal structure of the entirety, the diagram is drawn from the following
PDB structures of various components: 3Q2V (E-cadherin), 3L6X (p120 catenin), 1I7W (β-catenin), 4IGG (αE-catenin), 1M8Q
(F-actin). The arrangement of the structures relative to one another is a guess for the purposes of illustration. The theoretical
model described in the text is independent of the details of this arrangement. B) The M region of αE-catenin, showing a
conformation with small angle α between the M2 and M3 domains, favored at lower forces. The interactions (red dashed lines)
between the adjacent F-actin binding domain (FABD) and F-actin depend on the conformational state of αE-catenin. C) Same
as B, but in the large angle conformation, favored at larger forces. This results in an enhancement of FABD-actin interactions,
leading to catch bond behavior.

changes in the central domains of αE-catenin in a CCA
complex under tension in living cells [44]. Fragmentary
crystal structures of these central domains [43] suggest
the potential of two alpha-helical bundles known as M2
and M3 (residues 396-506 and 507-631 respectively) to
adopt different angles with respect to each other. The
angle between the bundles (denoted by α in Fig. 1) is
likely to alter under applied tension, and thus the rota-
tion of M3 with respect to M2 is a natural candidate for
the main force-sensitive conformational change [32, 43].
For a catch bond to exist, conformations with small α
should be associated with weaker FABD-actin binding,
and those with larger α with stronger FABD-actin bind-
ing. As applied tension biases the system toward the
latter conformations, this will lead to a regime where the

effective bond lifetime increases with force. This rotation
mechanism of catch-bond formation, where the relative
orientation between two protein domains is coupled to
the bond strength, has proven successful in explaining
both experimentally and theoretically the catch bonds in
several selectin systems [33, 45], and has recently been
suggested as the underlying mechanism in catch bonds
between the Notch receptor and certain ligands [36]. One
important complication for αE-catenin, not present in
the selectin cases, is the existence of a significant energy
barrier to rotation: crystal structures [41, 43] and molec-
ular dynamics simulations [32] highlight a number of salt
bridges among the M-domains that stabilize the small-α
orientation of M2 and M3. This will prove a crucial in-
gredient in explaining the dynamics and functional role
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of the bond, as we will discuss in more detail later.
Synthesizing all these structural considerations into

an analytically tractable model, we will posit a mini-
mal Hamiltonian U(r, θ) for the FABD-actin bond. The
conformation-dependence of the bond is encoded in two
structural variables (see Fig. 1): i) the magnitude r = |r|
of the vector r between the rotation pivot point (i.e. the
junction of the M2 and M3 domains) and the FABD-actin
interface; ii) the angle θ between r and the applied force
F ẑ acting on the bond through the actin. The overall
geometry of αE-catenin relative to actin in Fig. 1 mimics
the optical tweezer experimental setup of Ref. [11], whose
bond lifetime results we will analyze. That setup was in
turn inspired by electron tomographic images showing
the organization of actin filaments near the membrane
relative to CCA complexes. Fixing ẑ as the actin direc-
tion, the M2 domain could have an offset angle φ relative
to z, making the relationship between the M2-M3 domain
angle α and θ have the form: α = π − θ − φ. Because
of steric effects between the domains and the nature of
their junction, we assume the angle α can only take on
values in some range αmin ≤ α ≤ αmax, which means θ
is restricted to the corresponding range θmax ≥ θ ≥ θmin,
where θmax(min) ≡ π − αmin(max) − φ. The Hamiltonian
U(r, θ) has the form:

U(r, θ) =
1

2
k(θ)(r − r0)2 − Fr cos θ + C(θ) (1)

where

k(θ) = k0 + k1(1 + cos θ),

C(θ) =


H(cos θ−cos θmax)
cos θc−cos θmax

, θ ≥ θc

(H−G)(cos θ−cos θmin)
cos θc−cos θmin

+G, θ < θc

.
(2)

Let us consider each of the terms in Eq. (1) in turn. The
first term in the Hamiltonian U is an effective bond elas-
tic energy with angle-dependent spring constant k(θ) and
natural bond length r0. The distance r serves as an effec-
tive reaction coordinate for the bond, with bond rupture
occurring if r > r0 + d, where d is the transition state
distance. Thus the free energy barrier to bond rupture
is k(θ)d2/2, which depends on the conformation through
k(θ). Any angular function k(θ) can be expanded in Leg-
endre polynomials Pl(cos θ), and for our purposes it is
sufficient to keep the two lowest-order terms (l = 0, 1)
in the expansion, k(θ) = k0 + k1(1 + cos θ), with co-
efficients k0, k1 > 0. This function describes the key
feature of the allosteric coupling between the αE-catenin
conformation and the bond strength: as θ decreases un-
der force, k(θ) increases, leading to a higher energy bar-
rier to rupture. The extent of the bond strengthening is
determined by the magnitude of k1. In analyzing the
bond energetics later, it will be useful to express the
role of k0, k1 equivalently through two energy param-
eters E0, E1 that have simpler physical interpretations.
E0 is the free energy barrier to rupture at α = αmin when
F = 0, given by E0 = (k0 + k1(1 + cos θmax))d2/2, and

4

8

16

1.2

1.4

1.6

1.8

2.0

2.2

51 57 63 70 78 86 95 106 117 130 145 160

22

44
40
36

32

26

22 16 8

    [deg]

   
[n

m
]

FIG. 2. Energy landscape of the Hamiltonian U from Eqs. (1)-
(2) in terms of r and α = π − θ − φ at force F = 0, with the
parameters given in Table I and described in the text. Energy
contour labels are in units of kBT . The vertical dashed line
corresponds to the transition angle αc, the horizontal dashed
line to the natural bond length r0, and the top edge to the
distance r0 + d beyond which the bond ruptures. The energy
barriers to rupture are smaller in the region α ≤ αc on the
left, relative to the region α > αc on the right. Since applied
force F > 0 tilts the landscape toward larger inter-domain
angles α, the mean bond lifetime will initially increase with
force.

E0 +E1 is the free energy barrier to rupture at α = αmax
when F = 0. The difference in barrier heights from
αmin to αmax (responsible for the bond strengthening)
is E1 = k1(cos θmin − cos θmax)d2/2.

The second term in U describes the coupling of the
Hamiltonian to the external applied force of magnitude
F . It tilts the energy landscape toward larger r (increas-
ing the chances of rupture at a given θ) and smaller θ
(or equivalently larger α). The final term C(θ) in U de-
scribes a free energy barrier between the angular confor-
mational states located at a particular transition angle
αc = π − θc − φ. This effectively subdivides the angu-
lar conformational space into two basins: a small inter-
domain angle region (α ≤ αc or θ ≥ θc) and a large
inter-domain angle region (α > αc or θ < θc). The bar-
rier passing from small to large α has height H, and
the barrier returning from large to small α has height
H −G, with a possible free energy offset G between the
two basins. As in the case of k(θ), we keep only terms up
to linear order in cos θ, and make the barrier between the
two regions cusp-like for analytical convenience. Using a
more complicated form of C(θ), with a smooth rather
than cusp-like barrier, would not significantly alter the
results of the model (i.e. it would only lead to small
corrections ∼ kBT in the fitted results for the energy
barriers, where kB is the Boltzmann constant and T the
temperature). A representative energy landscape for U
at F = 0 is drawn in Fig. 2 in terms of r and α, showing
the two wells corresponding to the small α and large α
conformational states.

The dynamics on this landscape is assumed to be de-
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Physical interpretation Value
E0 Free energy barrier to rup-

ture at small α
21.8(2) kBT

E1 Extra free energy barrier to
rupture at large α

5.8(2) kBT

H Free energy barrier for small-
to-large α transition

25(2) kBT

G Free energy offset between
angular basins

5(2) kBT

d Transition state distance 0.56(1) nm
r0 Distance from hinge to

FABD-actin interface
1.7(2) nm

αmin Minimum angle between M2-
M3 domains

48◦

αc Transition angle between
small and large α wells

53(3)◦

αmax Maximum angle between
M2-M3 domains

169(9)◦

TABLE I. Model parameters. Parentheses after the values
denote the uncertainty in the last digit.

scribed by diffusion of the vector r obeying a Fokker-
Planck equation with potential U and diffusivity D =
kBT/6πηr0, since the motion corresponds to a rearrange-
ment of a protein domain with characteristic size r0. Here
η is the viscosity of water, and for simplicity we ignore
any prefactor due to the details of the domain shape in
the diffusivity. The corrections due to such a prefac-
tor are small, since it contributes only logarithmically to
the fitted energies [33]. Reflecting boundary conditions
are assumed at θmin and θmax. The two main dynami-
cal quantities of experimental interest are: (i) the mean
bond lifetime τ(F ), defined as the average time it takes
to reach bond rupture, r = r0 + d, after the onset of an
applied force of magnitude F . Prior to the force onset,
the system is assumed to have equilibrated at zero force,
in accordance with the experimental analysis in Ref. [11];
(ii) the survival probability distribution ΣF (t), defined as
the probability that a bond has not yet ruptured by time
t for a given F . The two quantities are related through
τ(F ) =

∫∞
0
dtΣF (t).

Calculating either τ(F ) or ΣF (t) analytically is non-
trivial for a multi-dimensional potential like U , but we
can take advantage of the double-well structure of the
energy landscape. As shown in detail in the Supplemen-
tary Information (SI), we first find approximate analyti-
cal expressions for four individual transition rates: cross-
ing the barrier from the small to large α well, the reverse
transition, bond rupture directly from the small α well,
and bond rupture directly from the large α well. We then
combine these expressions into analytical results for τ(F )
and ΣF (t) in terms of the Hamiltonian parameters.

The final expressions for τ(F ) and ΣF (t) in the SI are
rather complex. But as described in the next section,
ΣF (t) can be readily incorporated into a maximum like-
lihood estimation approach to find best-fit Hamiltonian

parameters given an experimental data set, i.e. measure-
ments of bond lifetimes at various forces. Moreover τ(F )
reduces to earlier, simpler models of bond dynamics in
certain limits. When H = G = 0, θmin = 0, θmax = π,
we exactly recover the expression for τ(F ) in the ab-
sence of an angular barrier (and a corresponding ΣF (t)
which is approximately single-exponential), used to de-
scribe selectin-ligand catch bonds in Ref. [33] (see de-
tails in the SI). If in addition we set k1 = 0, so that
k(θ) = k0 becomes independent of θ, we do not have
any force-enhancement of the bond lifetime. In this limit
τ(F ) ∝ exp(−Fd/kBT ), the classic Bell model for con-
ventional slip bonds [46]. The fact that we can smoothly
interpolate between different regimes in parameter space,
describing qualitatively different modes of force regula-
tion, is one of the strengths of our approach. This al-
lows us, for example, to make predictions for possible
mutation experiments that alter the system parameters,
and see to what extent the dynamics are robust to such
changes.

III. RESULTS AND DISCUSSION

Maximum likelihood estimation of the model
parameters from force spectroscopy data: To esti-
mate the Hamiltonian parameters and gain insights into
the structural mechanisms of catch bonding in the CCA
complex, we fit the model to the raw data from the op-
tical tweezer force spectroscopy experiment in Ref. [11].
This data consists of 803 measurements of the bond life-
time under varying force conditions from F = 0.7−33 pN,
the same dataset whose histogram is depicted in Fig. 4A
of Ref. [11]. For a given parameter set and force F , the
probability to observe a bond lifetime between t and t+dt
is −dt dΣF (t)/dt. We could thus construct an overall
likelihood function for the data set given the parameters
(details in the SI), and maximize it to find the best esti-
mate for the parameters.

For numerical convenience, it was useful to do the fit-
ting in two stages: in the first stage we fixed values for
the minimum M2-M3 inter-domain angle αmin and angle
offset φ, and then maximized the likelihood function over
the remaining parameters for these fixed values. In the
second stage we then repeated this procedure for different
choices of αmin and φ, to find the overall optimum. The
largest likelihoods occurred in the range αmin = 40− 50◦

and φ = −5 to 5◦, yielding results for the remaining
parameters identical to within error bars. The best-fit
values reported in Table I are for αmin = 48◦ and φ = 0◦.

The predicted αmin range is consistent with available
structural information. Though the experiment [11] was
done using monomeric zebrafish αE-catenin, for which
there is no crystal structure, we can compare to known
homologous structures from other species and computa-
tional structure prediction results. 47◦ was the smallest
angle observed in an analysis of available crystal struc-
ture fragments of the M2-M3 domains from mouse and
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human αE-catenin [43], and 48◦ is the M2-M3 angle ob-
served in the individual monomers of the full-length hu-
man αE-catenin homodimer (PDB: 4IGG) [41]. Plugging
the zebrafish αE-catenin sequence into the I-TASSER
structure prediction server [47, 48] yields an M2-M3 angle
of 45± 1◦ among the five best structures.

The theoretical mean bond lifetime τ(F ) is compared
to the experimental results from Ref. [11] in Fig. 3, and
the analogous comparison for the survival probabilities
ΣF (t) at different F is shown in Fig. 4. The agree-
ment between theory and experiment is excellent, with
the model capturing not only the catch bond trend in
τ(F ), but also the clear double-exponential behavior in
ΣF (t). As we will discuss in more detail below, the ob-
servation of two exponential regimes is closely connected
to the presence of a significant energy barrier between
the small α and large α conformations.

Interpretation of the model parameters, and
corroboration from structural data: The value of
the model comes not just from the fact that it can fit

the experimental data, but that its parameters have a
direct physical interpretation that illuminates the struc-
tural mechanism of the CCA catch bond. The energy
barrier at the transition angle αc = 53◦ divides the pa-
rameter space into two basins: a narrow basin between
αmin = 48◦ to αc, and a much wider basin between αc
and αmax = 169◦. The narrow range suggests the M3 do-
main is held rigidly in place relative to M2 in the small α
case, with limited rotational mobility, but once the sta-
bilizing interactions at the hinge between M2 and M3 are
broken, M3 can swing out to a larger angle. Of course
the idea of solid body rotation about a hinge is a sim-
plification: the protein domains are plastic objects that
can continuously deform under tension, but picturing an
overall rotation is still a useful first approximation. The
parameter r0 = 1.7 nm, in the simple picture the dis-
tance between the hinge and the FABD-actin interface,
can more accurately be interpreted as the effective size of
the protein regions undergoing reorientation under force.

The strength of the interactions in the hinge region is
reflected in the angular energy barrier height H = 25
kBT , whose full significance we will explore below. The
existence of this barrier is supported by corroborating ev-
idence from a crystal structure [41] of αE-catenin (PDB:
4IGG), which shows five inter-domain salt bridges in the
hinge region where the M1, M2, and M3 domains meet
(Fig. 5). If each salt bridge roughly contributes 4 − 8
kBT to the overall barrier [49], this is consistent with
the magnitude of H. Molecular dynamics simulations
also point to the stabilizing role of the salt bridges. Li
et al. [32] compared trajectories measuring the M2-M3
angle for the wild-type structure, initially starting in the
small α state, to trajectories of mutants where one of
the salt bridges is disrupted (i.e. E521A or R551A). The
latter show the system venturing more readily to larger
angles relative to the wild-type, as expected for a smaller
barrier H.

Having two conformational states at small and large α
in itself does not guarantee catch bond behavior. What
leads to lifetime enhancement under force is the fact that
these states are allosterically coupled to the strength of
the FABD-actin bond, which changes from E0 = 21.8
kBT at small α to E0+E1 = 27.6 kBT at large α. Though
we do not have any crystal structure of the FABD-actin
interface, it is instructive to compare the value of E0+E1

to a different catch bond system: the P-selectin complex
with the ligand PSGL-1, where E0 + E1 = 27 kBT [33]
in the extended state favored at larger forces. The peak
bond lifetime in P-selectin/PSGL-1 (∼ 1.1 s) is also very
similar to CCA (∼ 1.1 s in Fig. 3). Conveniently we do
have the crystal structure of P-selectin-PSGL-1 in the
extended conformation (PDB: 1G1S) [50], showing that
20 hydrogen bonds contribute to E0+E1, consistent with
a contribution of 1.2− 1.5 kBT per hydrogen bond, typi-
cal for hydrogen bonds in proteins [51]. We thus predict
a similar number of hydrogen bonds at the FABD-actin
interface in the large angle state (or fewer if salt bridges
are involved). The allosteric change between the angu-
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lar states translates into an interface energy difference
of E1 = 5.8 kBT , about 4-5 hydrogen bonds or one salt
bridge.

The energy offset parameter G = 5 kBT plays the im-
portant role of biasing the system toward small α when
the force is small. The equilibrium probability p0S of hav-
ing α < αc at F = 0 is p0S = 0.77 (see SI for the deriva-
tion). As F is increased, the energy landscape is tilted
toward higher α, and the barrier to FABD-actin bond
rupture shifts from E0 to E0 + E1, causing the lifetime
enhancement. But the fact that the system is equili-
brated at F = 0 before the application of force means
that both large and small angle conformations are ini-
tially populated. The significant angular barrier H and
the finite bond lifetime means that these populations do
not necessarily have a chance to fully re-equilibrate once
F > 0 is applied, during the time before rupture occurs.

These two populations, one with a smaller barrier to
rupture than the other, explain the distinct double expo-
nential behavior of ΣF (t) that exists even at the highest
forces investigated in the experiment (Fig. 4). To un-
derstand this more concretely, a useful quantity is the
probability of being in the small α state at the moment
of rupture, the so-called splitting probability πS (details
given in the SI). In the hypothetical scenario of arbitrar-
ily long-lived bonds, where there is time for many transi-
tions between the small and large α states, πS ≈ pS, the
equilibrium probability of being in the small α state. But
in many cases the bond lifetime is too short for equilibra-
tion, and πS may be very different from pS. For example
at F = 15.1 pN (the last panel in Fig. 4), pS = 10−4,
but πS = 0.47. The tiny value of pS means that, given
enough time, the initial fraction, p0S = 0.77, of systems
that start at small α should eventually transition to the
large α state preferred at high forces, and almost never
return. If that were actually the case, the survival prob-
ability at F = 15.1 pN would have been to very good
approximation a single exponential, since rupture would
occur almost entirely from the large α state. In reality,
because of the barrier H slowing down angular transi-
tions, the majority of those small α systems do not have
enough time to transition. They thus stay in the small
α state until rupture, giving a sizable πS. This leads to
a short lifetime exponential regime in ΣF (t), in addition
to the longer lifetime exponential regime corresponding
to ruptures from large α.

The final parameter in the model, the transition state
distance d = 0.56 nm, represents how much the FABD-
actin bond interface can be deformed before rupture. The
value is within the range expected of most proteins (< 2
nm) [52]. Putting everything together, we thus see that
the fitted model parameters are all within physically real-
istic ranges, and consistent with all the available evidence
both from the Buckley et al. experiment and earlier stud-
ies.

Mutations to the angular barrier H, and its po-
tential biological role: Disrupting the stability of the
hinge region (Fig. 5) with mutations at the M2-M3 inter-
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FIG. 5. The salt bridge network in the hinge region be-
tween the M1, M2, and M3 domains of αE-catenin (PDB:
4IGG) [41].
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FIG. 6. The effects of mutating the angular barrier height H
from the original value of 25 kBT down to zero, in increments
of 5 kBT , leaving all other model parameters fixed at their
Table 1 values: A) the mean bond lifetime τ(F ); B) the mean
lifetime τL(F ) of remaining in the large angle conformational
state, α > αc, measured from the initial time of entry into
the state; C) the survival probability ΣF (t).

face (R551A) or M1-M3 interface (E521A) has been ex-
perimentally investigated to probe the role of the hinge
in vinculin binding [43]. The underlying presumption
is that the large α conformation, which is more accessi-
ble when the hinge is destabilized, exposes the vinculin
binding site in the M1 domain. This would explain the
enhanced binding affinity of the R551A and E521A mu-
tants to the D1 domain of vinculin seen in the experi-
ments. Of course in nature, access to the large α con-
formation is controlled not by mutations to the hinge,
but by application of force, leading to the speculation
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that the αE-catenin system acts like a force-dependent
“switch” [43], with tension favoring a large α conforma-
tion, which in turn enhances both vinculin and F -actin
bond strengths.

In the context of the model, there are two scenarios
for what might occur when the salt-bridge network at
the hinge is disrupted: (i) the angular barrier energy H
is decreased, since this is the parameter most directly
related to the stability of the hinge, but other param-
eters in the model remain unaffected; (ii) the decrease
of H is allosterically coupled to changes in the FABD-
actin interfaces energies E0, E1 or other structural pa-
rameters. The latter would be reminiscent of the case
of L-selectin, where experimental mutations at the hinge
between the lectin and EGF domains [25] led to allosteric
changes in energies at the ligand-binding interface [33].
The possibility of scenario (ii) will have to await future
experimental data, but we can explore scenario (i) theo-
retically. This also allows us to investigate the biological
significance of the angular barrier H.

Fig. 6A shows what happens to the mean bond lifetime
τ(F ) when H is decreased from its wild-type value of 25
kBT in increments of 5 kBT (roughly corresponding to
removal of individual salt bridges), while all other param-
eters are fixed at their Table 1 values. The catch bond
behavior is preserved, but with opposite trends at small
and large forces: at small forces τ(F ) generally decreases
with decreasing H, while at larger forces it initially in-
creases by about a factor of two at the maximum, and
then decreases gradually. These changes are due to the
fact that transitions between the small and large α states
become easier with decreasing barrier heights. At smaller
forces, where the weaker small α states are preferred,
some fraction of systems that would have ruptured from
the stronger large α state can now transition to small α
before rupturing. The converse is true at larger forces,
where we now allow more small α states to transition to
the preferred large α state before rupture.

Consistent with this, the lifetimes within each angular
domain are drastically affected by the mutation. Fig. 6B
shows τL(F ), the mean duration of the large α state (from
initial entry into the state until either rupture occurs or
a transition to small α; see SI for details). For the wild-
type value H = 25 kBT , there is a broad force region,
F ≈ 4 − 18 pN, where the large angle state survives
for macroscopic times comparable to the maximum bond
lifetime, τL(F ) > 1 s. When H = 20 kBT this region is
decreased to F ≈ 12− 18 pN, and then vanishes entirely
at smaller H. With a decreasing barrier, the time spent
at large α becomes significantly briefer, reduced by 4-
6 orders of magnitude at H = 0. At H = 25 kBT a
typical system trajectory may have involved zero or one
transition across the angular barrier, and then rupture.
In contrast at smallerH the system makes a large number
of angular transitions before the bond breaks. The result
is that the double-well nature of the energy landscape is
averaged out, and the survival probability ΣF (t) switches
from double-exponential atH = 25 kBT to mainly single-

exponential at H ≤ 20 kBT , as seen in Fig. 6C.
Thus while the presence of a large H barrier is not nec-

essary for catch bonding, it is necessary to stabilize the
large α conformational state so that it persists for long
durations. A larger τL(F ) over a wide force range comes
at the price of a somewhat smaller maximum τ(F ). But
this may be biologically preferred if the macroscopic du-
ration of the large α state is necessary to allow time for
additional binding partners (like vinculin) to dock before
rupture or the transition to small α. Indeed two poten-
tially fruitful future lines of experimental inquiry would
be: a) to first study the CCA catch bond under different
mutations to the αE-catenin hinge region. The muta-
tions would have a clear signature of their effect on H by
the change in the nature of the survival probability dis-
tribution [Fig. 6C]. Whether the response of τ(F ) would
follow the trend in Fig. 6A would determine if scenario
(i) were true, or whether additional allosteric effects like
in scenario (ii) are also present; b) to study the binding
affinity or bond lifetime of vinculin to the CCA com-
plex under these same mutations. This would elucidate
whether the increased lifetime of the large α state, facili-
tated by the angular barrier, is also required for effective
vinculin binding. One can also imagine an alternative
vinculin binding mechanism like induced fit, where its
affinity might be independent of the lifetimes or relative
populations of the αE-catenin conformational states.

IV. CONCLUSIONS

The model presented here is the first quantitative,
structural model for the catch bond in the cadherin-
catenin-actin complex. It provides a full interpreta-
tion of the force spectroscopy data from the Buckley et
al. experiment [11], highlighting the central role of αE-
catenin as a force-transducing conformational switch [42–
44]. The switch mechanism, based on small and large
angle catenin conformations with different FABD-actin
bond strengths, is to date the most plausible molecu-
lar explanation of the CCA catch bond. Force induces
a small-to-large angle transition over a substantial en-
ergy barrier resulting from a network of salt bridges.
This energy barrier, captured in the parameter H in our
model, leads to the double-exponential survival probabil-
ities seen experimentally. Additionally, once the system
transitions to the large α conformation, the barrier allows
it to remain there a significant fraction of the bond life-
time, perhaps facilitating the binding of other proteins
like vinculin which play major roles in the physiologi-
cal complex. While the model parameters are consistent
with all the available evidence, including structural in-
formation about the αE-catenin hinge region, full cor-
roboration of the mechanism will require further exper-
iments to check whether alterations in the αE-catenin
conformational stability have the posited effects on bond
observables. Moreover, future crystal structures of the
FABD-actin interface would allow verification of the E0
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and E0 + E1 energy scales predicted by our approach.
Of course it is always possible that an alternative

conformational mechanism will emerge for the CCA
catch bond. Any competing explanation will still have
to include a conformational change whose dynamics
are slowed down by an energy barrier � kBT , since
this is the only way to have a catch bond with double-
exponential survival probabilities. One of the attractive
features of our model is that it can be readily adapted
for such an eventuality. The current Hamiltonian is
expressed in terms of bond distance and inter-domain
angle, but analogous Hamiltonians can be formulated,
replacing the angle with another conformational coordi-
nate. The model can even generalize to more than two
conformational basins in the energy landscape, separated
by different barriers, if the structural evidence points
in that direction. The basic approach stays the same,
and analytical expressions for the bond lifetimes and
distributions can always be derived to fit to experimental
data. Given the ubiquity of multi-exponential lifetime
distributions in catch bonding systems [11, 15, 36–39],
implicating conformational transitions with non-trivial

energy barriers, our approach thus might provide a
universal framework for structural modeling of catch
bonding. And it is not only limited to multi-exponential
distributions, since single-exponential behaviors (for
both catch and slip bonding) are just special cases of the
model parameters. The usefulness of our theory starts
at the cadherin-catenin-actin system, but hopefully will
not end there.
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Supporting Information for
“Unraveling the mechanism of the cadherin-catenin-actin catch bond”

Shishir Adhikari, Jacob Moran, Christopher Weddle, and Michael Hinczewski
Department of Physics, Case Western Reserve University, Cleveland OH, 44106, U.S.A.

I. DERIVATION OF MEAN LIFETIME τ(F ) AND SURVIVAL PROBABILITY ΣF (t)

The following sections contain a full derivation of the main observable quantities of interest, the mean bond lifetime
τ(F ) and survival probability ΣF (t). Since the derivation involves a large number of individual components, Table
S1 summarizes the main analytical quantities, their meaning, and the equations where they are defined.

Quantity Meaning Equation(s)
U(r, θ) bond Hamiltonian (S1)-(S2)
V (r, θ) effective Fokker-Planck potential energy (S6)
k10 transition rate from state 1 to 0 (rupture) (S15)-(S17)
k20 transition rate from state 2 to 0 (rupture) (S18)-(S19)
k12 transition rate from state 1 to 2 (S26)-(S27)
k21 transition rate from state 2 to 1 (S28)
τi mean first passage time from state i to rupture (S35)
p0i probability of state i at time t = 0 (S36)
τ mean bond lifetime (S37)
ΣF survival probability (S38)-(S39)
τL mean duration of large α conformation (state 2) (S42)

TABLE S1. Summary of main analytical results in the Supporting Information, with corresponding equation numbers.

A. Fokker-Planck equation describing the bond dynamics

The theoretical model of the bond dynamics is based on diffusion of the bond vector r = (r, θ, φ) on an energy
landscape defined by the Hamiltonian U(r, θ) in Eqs. 1-2 in the main text:

U(r, θ) =
1

2
k(θ)(r − r0)2 − Fr cos θ + C(θ) (S1)

where

k(θ) = k0 + k1(1 + cos θ),

C(θ) =

{
H(cos θ−cos θmax)

cos θc−cos θmax
, θ ≥ θc

(H−G)(cos θ−cos θmin)
cos θc−cos θmin

+G, θ < θc
.

(S2)

To restrict the dynamics to the angular region θmin ≤ θ ≤ θmax, we assume U(r, θ) = ∞ for θ < θmin and θ > θmax.
Note that U(r, θ) depends on the applied force F on the system, so every observable derived from U(r, θ) below also
implicitly depends on F , even if the dependence is not explicitly indicated in the notation.

Given a diffusivity D = kBT/6πηr0, the probability Ψ(r, t) to find the system with vector r at time t obeys a
Fokker-Planck equation in spherical coordinates of the form:

∂Ψ

∂t
=
D

r2

∂

∂r

[
r2e−U

∂(eUΨ)

∂r

]
+

D

r2 sin θ

∂

∂θ

[
sin θe−U

∂(eUΨ)

∂θ

]
+

D

r2 sin2 θ

∂

∂φ

[
e−U

∂(eUΨ)

∂φ

]
, (S3)

Note that throughout the supporting information we will work in units where β = (kBT )−1 = 1, so that all energies
are effectively measured in units of kBT . Since U(r, θ) is independent of φ, we can define a marginal probability
P (r, θ, t) by multiplying Ψ with the spherical Jacobian and integrating over the angle φ,

P (r, θ, t) ≡ r2 sin θ

∫ 2π

0

dφΨ(r, t), (S4)
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allowing us to write Eq. S3 as a 2D Fokker-Planck equation in terms of P (r, θ, t),

∂P

∂t
= D

∂

∂r

[
e−V

∂(eV P )

∂r

]
+
D

r2

∂

∂θ

[
e−V

∂(eV P )

∂θ

]
. (S5)

Here V (r, θ) is an effective potential defined by

V (r, θ) ≡ U(r, θ)− kBT ln(r2 sin θ). (S6)

We will not be interested in solving Eq. (S5) directly, but rather answering a closely related question: the mean first
passage time (MFPT) to escape from a region in parameter space. Consider a region R of the (r, θ) space, with
boundary ∂R, and let us focus on some subset A ⊆ ∂R of this boundary. Let τRA(r, θ) denote the MFPT to any
point on A, given that we started at some point (r, θ) in the interior of R at t = 0. We assume we have chosen R
such that there are reflecting boundaries on the portion of ∂R not in A, namely U(r, θ) =∞ for (r, θ) ∈ ∂R \A. This
guarantees that τRA(r, θ) is finite, and satisfies the backward Fokker-Planck equation [1],

D
∂

∂r

[
e−V

∂τRA
∂r

]
+
D

r2

∂

∂θ

[
e−V

∂τRA
∂θ

]
= −e−V , (S7)

with absorbing boundary conditions τRA(r, θ) = 0 for (r, θ) ∈ A. To directly solve for the main experimental
observable of interest, the mean bond lifetime, we would set R to be the entire parameter space region where the bond
is intact, r < r0 + d ≡ b, θmin ≤ θ ≤ θmax, and set the absorbing boundary A to be the line r = b, θmin ≤ θ ≤ θmax.
Unfortunately, given the complicated form of the energy landscape, Eq. (S7) does not easily lend itself to an analytical
solution for this choice of R and A. We will work around this problem by describing the escape dynamics from smaller
portions of the parameter space, where Eq. (S7) is more amenable to approximation, and then piece together the
various results to get a good estimate of the mean bond lifetime. This same approximate piece-wise approach will
also yield the survival probability.

B. Partitioning the parameter space into conformational regions

1.2

1.4

1.6

1.8

2.0

2.2

51 57 63 70 78 86 95 106 117 130 145 160

1 2

FIG. S1. The energy landscape from Fig. 2 of the main text, partioned into regions of the (r, α) parameter space that reflect
different conformational states: state 0 corresponding to the bond ruptured, state 1 corresponding to the bond intact with
angle αmin ≤ α < αc, and state 2 corresponding to the bond intact with angle αc ≤ α ≤ αmax. The arrows depict the transition
rates k10, k20, k12, and k21 between the various states, described in the text.

The energy landscape of Eqs. (S1)-(S2) allows us to partition the (r, θ) parameter space, or equivalently the space
of (r, α = π − θ), into domains representing different conformational states, as illustrated in Fig. S1. The region
where the bond is intact (r < b) and the angle α is small (αmin ≤ α < αc) is denoted as state 1, the corresponding
region with an intact bond and large angle (αc ≤ α ≤ αmax) is denoted as state 2, and the region where the bond is
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ruptured (r ≥ b) as state 0. If the bond is intact at time t = 0, the dynamics of the system will consist of diffusion
on the energy landscape, possibly making a number of transitions between states 1 and 2, before eventually the r = b
boundary is crossed and bond rupture occurs upon entry to state 0.

The diffusive dynamics exhibit a separation of time scales: the time to equilibrate within each state is typically
< r2

0/D ∼ 20 ns for the biologically relevant parameter ranges we consider, which is orders of magnitude smaller than
the typical times to escape each state (which can be as large as ∼ 1 s for the energy barriers in our case). We can
thus assume that upon entering either state 1 or state 2, the system will rapidly be driven toward the bottom of the
corresponding energy well, and spend considerable amounts of time in the vicinity of the local energy minimum, with
brief excursions up the slopes of the well (eventually one of which will carry it into the bond rupture region, or a
transition to the other angular state).

Given this partitioning of the parameter space, we can define escape rates from the different states through different
boundaries, related to the reciprocal of the escape MFPT introduced in the previous section. These rates (k10, k20,
k12, and k21) are depicted as transition arrows in Fig. S1. Let k10 be the probability per unit time to escape state
1 to state 0 through the bond rupture (r = b) boundary, conditioned on not passing through state 2. We set
k10 = 1/τ10(r1, θ1), where τ10 is the solution to Eq. (S7) with the region R corresponding to state 1, an absorbing
boundary A at the border with state 0 (r = b) and a reflecting boundary condition imposed at the border with state 2
(α = αc). The starting position (r1, θ1) is the position of the local minimum of the effective potential V (r, θ) in state
1. Using any other starting position in the vicinity will not substantially alter the result, given the fast equilibration
time in the well. We define the escape rate from state 2 to state 0, conditioned on not passing through state 1, as
k20 = 1/τ20(r2, θ2), with R being state 2, an absorbing boundary A at the border to state 0, and a reflecting boundary
at the border to state 1. The position (r2, θ2) corresponds to the local minimum of V (r, θ) in state 2. The interwell
transition rates k12 and k21 are defined analogously: k12 = 1/τ12(r1, θ1) is the escape rate from state 1 to state 2,
conditioned on the bond not rupturing (reflecting boundary at r = b), and k21 = 1/τ21(r2, θ2) is the reverse rate from
state 2 to state 1.

In the next two sections (1.3 and 1.4) we will find approximate expressions for k10, k20, k12 and k21 from Eq. (S7),
and then in section 1.5 we will show how we can put these together to get analytical results for the mean bond lifetime
τ(F ) and survival probability ΣF (t).

C. Deriving expressions for k10 and k20

To find an expression for k10 = 1/τ10(r1, θ1), we note that τ10 satisfies Eq. (S7) with the region R corresponding to
r < b, αmin ≤ α < αc. The α angular range is equivalent to θc < θ ≤ θmax. We impose reflecting boundary conditions
at θc and θmax, and there is a natural reflecting boundary condition at r = 0 because of the logarithmic term in the
definition of V (r, θ) in Eq. (S6). The absorbing boundary A is r = b, the border with state 0. We will reduce the
dimensionality of the problem by integrating both sides of Eq. S7 over the θ range of R,

D
∂

∂r

∫ θmax

θc

dθ e−V (r,θ) ∂

∂r
τ10(r, θ) = −

∫ θmax

θc

dθ e−V (r,θ). (S8)

The second term on the left hand side in Eq. S7 vanishes after the integration because exp(−V (r, θ)) = 0 at θ = θc
and θ = θmax because of the reflecting boundary conditions.

Because of the e−V (r,θ) terms inside the integrals on both sides of Eq. (S8), the dominant contribution to the
integrals at any particular value of r occurs when V (r, θ) reaches a minimum with respect to θ inside the state 1 range
θc < θ ≤ θmax. This happens at some value of θ = θm1(r) for a given r. Thus we can treat Eq. (S8) as an equation
for τ10(r, θm1(r)), which we will write in condensed notation as just τ10(r). Note that we are interested in τ10(r1),
since θ1 = θm1(r1) is just the position of the well minimum at r1. In this approximation Eq. (S8) becomes

D
∂

∂r

[
e−Ṽ1(r) ∂

∂r
τ10(r)

]
= −e−Ṽ1(r), (S9)

where the effective 1D potential Ṽ1(r) is given by

Ṽ1(r) = − ln

[∫ θmax

θc

dθe−V (r,θ)

]
. (S10)

With the absorbing boundary condition τ10(b) = 0, Eq. S9 can be solved for τ10(r),

τ10(r) =
1

D

∫ b

r

dr′ eṼ1(r′)

∫ r′

0

dr′′e−Ṽ1(r′′). (S11)
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The function Ṽ1(r′) is a monotonically increasing function of r′ at large r′. Due to the presence of the exp(Ṽ1(r′))
term, the integral over r′ in Eq. S11 gets its dominant contribution from r′ near the upper limit b. Conversely because

of the exp(−Ṽ1(r′′)) term, the integral over r′′ gets its dominant contribution near r̃1, the position where Ṽ1(r) reaches

a minimum. To simplify Eq. (S11), we thus make two approximations: (i) expand Ṽ1(r′) ≈ Ṽ1(b) + Ṽ ′1(b)(r′ − b); (ii)
assume b � r̃1, so the upper limit in the integral over r′′ can be replaced by ∞. Along similar lines, if the starting
position is r = r1, the precise value of the lower limit on the r′ integral has a negligible effect on the result, so we can
replace it with 0. Eq. (S11) can then be evaluated to yield an expression for τ10(r1),

τ10(r1) ≈ eṼ1(b)

DṼ ′1(b)

∫ ∞
0

dr′′ e−Ṽ1(r′′), (S12)

where we have kept the largest contributions to the result. The right-hand side does not have a dependence on the
value of the starting position r1, consistent with the assumption of fast equilibration within the well. We denote the
integral in Eq. S12 as

Z̃1 ≡
∫ ∞

0

dr′′e−Ṽ1(r′′), (S13)

which needs to be evaluated to get a closed form expression for τ10(r1). Because this cannot be done exactly, we will

use a saddle-point approximation by expanding Ṽ1(r) around its minimum at r = r̃1,

Z̃1 ≈ e−Ṽ1(r̃1)

√
2π

Ṽ ′′1 (r̃1)
≈ e−Ṽ1(r̃1)

√
2π

k0
, (S14)

where we have used the fact that Ṽ ′′1 (r̃1) ≈ k0 in the limit of large k0 (which is valid when the barrier to rupture
E0 � kBT , since E0 = (k0 + k1(1 + cos θmax))d2/2).

Putting everything together from Eqs. (S12)-(S14), we can find τ10(r1) explicitly. This requires carrying out Ṽ1

integrals using the definition of Eq. (S10), and approximating r̃1 ≈ r0. This leads to a final expression for k10:

k10 =
1

τ10(r1)
=
β1

α1
, (S15)

where

α1 ≡
√
π(dr0)2(∆1(2bF − Ẽ1)− 2H)

(
e
cFr0(c−2µ)+2Hµ

∆1 − e
cH+µ(H−Fr0µ)

∆1

)
e
c(−2F (bc+dµ)+Ẽ1∆3+2Ẽ0+Ẽ1)

2∆1 ,

β1 ≡ 4b2DẼ
3/2
0 (H − Fr0∆1)

(
e
c2(Ẽ1−2bF )+2H∆3+µ(µ(Ẽ1−2bF )+2Ẽ0+Ẽ1)

2∆1 − e
µ(2c(Ẽ1−2bF )+4H+2Ẽ0+Ẽ1)

2∆1

)
.

(S16)

In the above expressions, as well as the ones for the other rates below, we will use a set of abbreviated notations, as
follows:

c ≡ cos θc, µ ≡ cos θmax, ν ≡ cos θmin,

∆1 ≡ c− µ, ∆2 ≡ c− ν, ∆3 ≡ c+ µ, ∆4 ≡ µ+ ν,

Ẽ0 ≡ E0 −
1 + µ

ν − µ
E1, Ẽ1 ≡

2E1

ν − µ
.

(S17)

For k20 = 1/τ20(r2, θ2), the derivation proceeds exactly analogously to the one for k10, except that the region R
now corresponds to r < b, θmin ≤ θ ≤ θc. The final expression for k20 is:

k20 =
1

τ20(r2)
=
β2

α2
, (S18)

where

α2 ≡ dr2
0

√
π

Ẽ0

(∆2(Ẽ1 − 2bF )− 2(G−H))2
(
1− eFr0∆2+G−H) e c(ν(Ẽ1−2dF )+E2)−ν(2Fr0ν+E2−2(G−H))

2∆2 ,

β2 ≡ 4b2DẼ
3/2
0 (Fr0∆2 +G−H)

(
e
ν(ν(Ẽ1−2bF )+2(G−H))

2∆2 − e−
c((Ẽ1−2bF )(c−2ν)−2(G−H))

2∆2

)
.

(S19)
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D. Deriving expressions for k12 and k21

Let us first consider the transition rate k12 = 1/τ12(r1, θ1) from state 1 to state 2, conditioned on the bond not
rupturing. The starting point (r1, θ1) is at the local energy minimum in state 1, and we will place the absorbing
boundary at some angle θ < θc, beyond the angular energy barrier at θc that defines the border with state 2. Once we
are not in the immediate vicinity of the barrier top, the precise location of the absorbing boundary within state 2 does
not significantly change the value of τ12. This is because once the system has overcome the barrier to transition from
state 1 to state 2, it rapidly descends into the state 2 energy well. Using this freedom, we will choose the absorbing
boundary A at θ = θ2, the position of the local energy minimum in the state 2 well.

We choose the region R to have an r range between 0 and b, with a reflecting boundary imposed at r = b. The
logarithmic term in V (r, θ) in Eq. (S6) provides another reflecting boundary at r = 0. Integrating both sides of Eq. S7
over this r range gives:

D
∂

∂θ

∫ b

0

dr
1

r2
e−V (r,θ) ∂

∂θ
τ12(r, θ) = −

∫ b

0

dr e−V (r,θ). (S20)

The first term in Eq. S7 vanishes under integration because of the reflecting boundary conditions.
The dominant contribution to the integral on the left-hand side of Eq. S20 for a given angle θ occurs at r = rm(θ),

where V (r, θ) is minimal with respect to r at that θ. To a good approximation rm(θ) ≈ r0 for the force and parameter
ranges we consider. We can thus treat Eq. (S20) as an effective equation for τ12(r0, θ), which we will denote compactly
as τ12(θ). We are ultimately interested in getting an expression for k12 = 1/τ12(θ1). Using this approximation, we
can rewrite Eq. (S20) as:

Dθ
∂

∂θ

[
e−Ṽ (θ) ∂

∂θ
τ12(θ)

]
= −e−Ṽ (θ), (S21)

where Dθ ≡ D/r2
0, and the effective 1D potential Ṽ (θ) is given by

Ṽ (θ) = − ln

[∫ b

0

dr e−V (r,θ)

]
≈ V (r0, θ) (S22)

In the second expression on the right, we have kept only the most significant contribution from the saddle-point
approximation of the integral.

With the absorbing boundary condition τ12(θ2) = 0, Eq. S21 can be solved for τ12(θ):

τ12(θ) =
1

Dθ

∫ θ

θ2

dθ′ eṼ (θ′)

∫ θmax

θ′
dθ′′ e−Ṽ (θ′′). (S23)

Substituting Ṽ (θ) ≈ V (r0, θ) = U(r0, θ) − kBT ln(r2
0 sin θ) allows us to rewrite Eq. (S23) in terms of integration

variables cos θ′ and cos θ′′. The MFPT τ12(θ1) from starting position θ1 is then

τ12(θ1) =
1

Dθ

∫ cos θ2

cos θ1

d(cos θ′) eU(r0,θ
′)−ln sin2 θ′

∫ cos θ′

µ

d(cos θ′′) e−U(r0,θ
′′),

≈ 1

Dθ

∫ cos θ2

cos θ1

d(cos θ′) eU(r0,θ
′)

∫ cos θ′

µ

d(cos θ′′) e−U(r0,θ
′′),

≡ 1

Dθ

∫ cos θ2

cos θ1

d(cos θ′) eU(r0,θ
′)Z12(cos θ′).

(S24)

In the second line we have neglected the − ln sin2 θ contribution in the first exponential, since it does not significantly

change the value of τ12(θ1), and in the third line we have introduced the function Z12(cos θ′) ≡
∫ cos θ′

µ
d(cos θ′′) e−U(r0,θ

′′).

The final approximation is to note that θ1 is close to θmax, and θ2 is close to θmin, so we can replace cos θ1 in the
integration bounds with µ = cos θmax, and replace cos θ2 with ν = cos θmin. Thus the final integral for τ12(θ1) takes
the form,

τ12(θ1) ≈ 1

Dθ

∫ ν

µ

d(cos θ′) eU(r0,θ
′)Z12(cos θ′). (S25)
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Since the angular dependence of U(r0, θ
′) from Eqs. (S1)-(S2) is explicitly in terms of cos θ′, the integration variable,

it turns out the integral in Eq. (S25) can be evaluated exactly, to yield a rather complex (but closed form) expression
for k12,

k12 =
1

τ12(θ1)
=

D(H − Fr0∆1)2

r2
0

(
αa3
(
βa3 + βb3 + βc3 + βd3

)
+ αb3

(
γa3 + γb3 + γc3

)) , (S26)

where,

αa3 ≡
∆2 (Fr0∆1 −H) e−

cH
∆1
− ν(Fr0∆2+G)

∆2

(Fr0∆2 +G−H) 2
+ ∆2

1

(
eH−Fr0∆1 + Fr0∆1 −H − 1

)
,

αb3 ≡
∆2 (H − Fr0∆1) e−

cFr0∆2+c(G−H)+Hν
∆2

− cH∆1

(Fr0∆2 +G−H) 2
,

βa3 ≡ c2Fr0

(
Fr0νe

cH
∆1

+Fr0ν+Gν
∆2 + e

cG
∆2

+ cH
∆1

+Fr0µ − ecFr0+ cG
∆2

+Hµ
∆1 + e

cFr0∆2+c(G−H)+Hν
∆2

+ cH
∆1

)
,

βb3 ≡ Hνe
cH
∆1

+Hν
∆2

(
ecFr0+

c(G−H)
∆2 + (Fr0ν −G+H) e

ν(Fr0∆2+G−H)
∆2

)
,

βc3 ≡ µ
(

(G−H − Fr0ν) ecFr0+ cG
∆2

+Hµ
∆1 + (Fr0ν −G+H) e

cG
∆2

+ cH
∆1

+Fr0µ

+Fr0ν (Fr0ν −G+H) e
cH
∆1

+Fr0ν+Gν
∆2 + Fr0νe

cFr0∆2+c(G−H)+Hν
∆2

+ cH
∆1

)
,

βd3 ≡ −c
(
Fr0ν (Fr0∆4 −G+ 2H) e

cH
∆1

+Fr0ν+Gν
∆2 + (G−H − Fr0∆4) ecFr0+ cG

∆2
+Hµ

∆1

+ (Fr0∆4 −G+H) e
cG
∆2

+ cH
∆1

+Fr0µ + (Fr0∆4 +H) e
cFr0∆2+c(G−H)+Hν

∆2
+ cH

∆1

)
,

γa3 ≡ e
c(G−H)

∆2

(
c2Fr0

(
(cFr0 + 1) ecFr0+ cH

∆1
+Hν

∆2 + e
cH
∆2

+ cH
∆1

+Fr0µ − ecFr0+ cH
∆2

+Hµ
∆1

)
(S27)

+H (cFr0ν − c(G−H) + cmax) ecFr0+ cH
∆1

+Hν
∆2

)
,

γb3 ≡ µe
cG
∆2

(
(G−H − Fr0ν)

(
ecFr0+Hµ

∆1 − e
cH
∆1

+Fr0µ
)

+ Fr0 (cFr0ν − c(G−H) + ν) e
cFr0∆2−cH+Hν

∆2
+ cH

∆1

)
,

γc3 ≡ −ce
c(G−H)

∆2

((
cF 2r2

0∆4 + Fr0(−cG+ 2cH + ∆4) +H
)
ecFr0+ cH

∆1
+Hν

∆2

+ (G−H − Fr0∆4) ecFr0+ cH
∆2

+Hµ
∆1 + (Fr0∆4 −G+H) e

cH
∆2

+ cH
∆1

+Fr0µ
)
.

To get the transition rate k21 from state 2 back to 1, we note that a physically consistent model should relate k12

and k21 to each other through detailed balance. The quasi-equilibrium probability ratio of being in state 1 relative
to state 2 (in the long-time limit, conditioned on the bond not rupturing), is approximately Z12(c)/Z21(c), where

c = cos θc and Z21(cos θ′) ≡
∫ ν

cos θ′
d(cos θ′′) e−U(r0,θ

′′). Thus we can write:

k21 = k12
Z12(c)

Z21(c)
= k12

∆1

(
eFr0∆1−H − 1

)
(Fr0∆2 +G−H) e

cG+Fr0µ∆2−Hν
∆2

∆2 (Fr0∆1 −H)

(
e
ν(Fr0∆2+G−H)

∆2 − e
c(Fr0∆2+G−H)

∆2

) . (S28)

Eq. (S28), together with the expressions in Eqs. (S26)-(S27), gives a complete closed form result for k21.

E. Survival probability and mean bond lifetime

The final part of the derivation involves expressing the survival probability ΣF (t) and mean bond lifetime τ(F ) in
terms of the four rates k10, k20, k12, and k21, following a standard approach to first passage problems in discrete state
kinetic networks [1]. As mentioned earlier, all these four rates are themselves functions of F , as can be seen in the
results of the previous two sections, but for simplicity we do not show the F dependence explicitly.

Consider the probability Si(t) that the bond survived intact until time t, given that the system started in state
i = 1, 2 at time t = 0. If we discretize time in infinitesimal steps of δt, with t = nδt, then the probability S1(t) can
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be written as

S1(nδt) = [1− (k10 + k12)δt]
n

+
n∑

m=0

[1− (k10 + k12)δt]
m
k12δt S2((n−m)δt). (S29)

The right-hand side of Eq. (S29) can be understood as follows: k10δt is the probability to transition from 1 to 0 in
time step δt, and k12δt is the probability to transition from 1 to 2 in time step δt. Thus we see that the first term on
the right-hand side of Eq. (S29) is the probability that the bond survived without either rupturing or transitioning to
state 2 for the entire n time steps. This is one contribution to S1(nδt). However there is another contribution, since
the bond could still survive, but make at least one transition to state 2 during those n steps. The sum in Eq. (S29) is
this second contribution, consisting of the cases where the bond does not leave state 1 for m time steps, then makes a
transition to state 2, and survives the remaining n−m time steps. The last probability is just S2((n−m)δt). Taking
the limit δt→ 0, n = t/δt→∞, we can rewrite Eq. (S29) as

S1(t) = e−(k10+k12)t +

∫ t

0

dt′e−(k10+k12)t′k12S2(t− t′). (S30)

An exactly analogous argument for S2(t) yields a second integral equation,

S2(t) = e−(k20+k21)t +

∫ t

0

dt′e−(k20+k21)t′k21S1(t− t′). (S31)

The system of equations, Eq. (S30)-(S31), can be solved by first applying a Laplace transform, S̃i(s) ≡
∫∞

0
dt e−stSi(t).

This gives

S̃1(s) =
1

k10 + k12 + s
+

k12S̃2(s)

k10 + k12 + s
,

S̃2(s) =
1

k20 + k21 + s
+

k21S̃1(s)

k20 + k21 + s
.

(S32)

The solutions for S̃1(s) and S̃2(s) are then:

S̃1(s) =
k12 + k20 + k21 + s

k10k20 + k12k20 + k21k10 + (k10 + k20 + k12 + k21)s+ s2
,

S̃2(s) =
k21 + k10 + k12 + s

k10k20 + k12k20 + k21k10 + (k10 + k20 + k12 + k21)s+ s2
.

(S33)

Before going further, note that if the system started in state i at time t = 0, the probability to rupture between
times t and t+ δt is just Si(t)− Si(t+ δt) ≈ −δt dSi(t)/dt. Hence the mean time to rupture τi given starting state i
is just

τi = −
∫ ∞

0

dt t
dSi
dt

=

∫ ∞
0

dt Si(t) = S̃i(0). (S34)

The second equality follows from integration by parts, and the fact that Si(0) = 1, Si(∞) = 0. Plugging s = 0 into
Eq. (S33) thus gives

τ1 =
k12 + k20 + k21

k10k20 + k12k20 + k21k10
,

τ2 =
k21 + k10 + k12

k10k20 + k12k20 + k21k10
.

(S35)

To get the final expression for the mean bond lifetime τ , we need the initial probabilities p0
i of being in state i at time

t = 0. Since we assume the system has quasi-equilibrated at F = 0 before the application of force at t > 0, the ratio
p0

1/p
0
2 is just Z12(c)/Z21(c) evaluated at F = 0. From this we get the following probabilities:

p0
1 =

∆1

(
eH − 1

)
(G−H)e

cG
∆2

∆1 (eH − 1) (G−H)e
cG
∆2 + ∆2H

(
e
Gν
∆2

+H − e
c(G−H)+H(∆2+ν)

∆2

) , p0
2 = 1− p0

1. (S36)
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For the best-fit parameters given in Table 1 of the main text, these probabilities are p0
1 = 0.77, p0

2 = 0.23. The initial
small α probability was denoted as p0

S ≡ p0
1 in the main text. The mean bond lifetime, weighting over all possible

starting states, is given by

τ = p0
1τ1 + p0

2τ2. (S37)

Eq. (S37), supplemented by Eqs. (S35)-(S36) and the expressions for k10, k20, k12, and k21 from the previous two
sections (Eqs. (S15)-(S19), (S26)-(S28)), constitutes the complete theoretical result for τ .

Similarly the survival probability ΣF (t) is just the weighted sum of S1(t) and S2(t),

ΣF (t) = p0
1S1(t) + p0

2S2(t), (S38)

where Si(t) can be found by inverse Laplace transforming the solutions from Eq. (S33),

Si(t) = e−σt/2

[
cosh

(
t

2

√
σ2 − 4ρ

)
+

2λi − σ√
σ2 − 4ρ

sinh

(
t

2

√
σ2 − 4ρ

)]
. (S39)

Here ρ ≡ k10k20 + k12k20 + k10k21, σ ≡ k10 + k20 + k12 + k21, λ1 ≡ σ− k10, λ2 ≡ σ− k20. Note that because the cosh
and sinh share the same argument, Eq. (S39) can also be expressed in terms of two distinct exponential contributions
with different prefactors. This is what leads to the double-exponential behavior seen in the survival probabilities in
the main text.

Another aspect mentioned in the main text is the final conformational state of the system at the moment of rupture,
whether it is state 1 (small α) or state 2 (large α). If the system could quasi-equilibrate at the applied force F before
rupture occurred (i.e. if the rupture rates k10 and k20 were sufficiently small), the probability of being in state 1 at
rupture would be pS = k21/(k12 + k21). For the case F = 15.1 pN, discussed in the main text, pS = 10−4 for the
parameter values of Table 1. In reality, however, the system does not have time to fully quasi-equilibrate, and the
actual probability of being in state 1 at rupture is 0.47 for this particular value of F . To derive this number, we define
the splitting probability πi1, the probability that the system will rupture in state 1, given a starting state i at time
t = 0. The splitting probabilities π11 and π21 satisfy the identities [1]:

π11 =
k10

k10 + k12
+

k12

k10 + k12
π21, π21 =

k21

k20 + k21
π11. (S40)

The first identity states the π11 involves two contributions: starting in state 1, the system can either rupture before
jumping to state 2 (probability k10

k10+k12
) or jump to state 2 first (probability k12

k10+k12
) and then eventually make it back

to state 1 to rupture (probability π21). Similarly for the second identity, π21 is equal to the probability of jumping to
state 1 before rupture ( k21

k20+k21
) times π11. Eq. (S40) can be solved for π11 and π21,

π11 =
k10(k20 + k21)

ρ
, π21 =

k10k21

ρ
. (S41)

The probability of rupturing from state 1 independent of initial state is π1 = π11p
0
1 + π21p

0
2. For F = 15.1 pN we get

π1 = 0.47, which was denoted as πS ≡ π1 in the main text.
The final quantity discussed in the main text is τL, the mean duration of the large α conformation (state 2),

measured from the first entrance into the state until either rupture occurs or the system transitions to state 1. Since
the total escape rate from state 2 is k20 + k21, the probability of leaving state 2 between times t and t + δt, where
t = 0 is the time of entrance, is: δt(k20 + k21) exp(−(k20 + k21)t). Thus the mean duration is:

τL =

∫ ∞
0

dt t(k20 + k21)e−(k20+k21)t =
1

k20 + k21
. (S42)

II. CONSISTENCY WITH AN EARLIER CATCH BOND MODEL

One of the nice features of our approach is its generality: even though we focus in the main text on a system with
a substantial angular barrier H, the theoretical model continues to hold even in the absence of such a barrier. In
this section we show that the τ(F ) expression for an earlier, barrier-less model for catch bonds in selectin systems,
introduced and numerically verified in Ref. [2], is just a special case of our more general τ(F ).

For the selectin case, the full angular range was used, so θmin = 0◦ and θmax = π. There was no angular barrier
or energy offset, so H = G = 0, and we can take θc = 90◦, since the border between state 1 and state 2 is arbitrary
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without a barrier present. In this case from Eq. (S17) we see that Ẽ0 = E0 and Ẽ1 = E1. Plugging all these values
into the expressions for the transition rates derived above, we find relatively simple results:

k10 =
4DE

3/2
0 F (r0 + d)2e−E0−E1/2−dF (eE1/2 − eF (r0+d))√

πr0d2(eFr0 − 1)(E1 − 2F (r0 + d))
,

k20 =
4DE

3/2
0 F (r0 + d)2e−E0−E1(eE1/2 − eF (r0+d))√
πr0d2(eFr0 − 1)(E1 − 2F (r0 + d))

,

k12 =
DF 2e2Fr0

1 + e2Fr0(2Fr0 − 1)
,

k21 =
DF 2eFr0

1 + e2Fr0(2Fr0 − 1)
.

(S43)

Without an angular barrier the transitions between angular regions are many orders of magnitude faster than the
transitions to rupture, as can be seen from the fact that k10 and k20 both include a factor of e−E0 in the numerator
that is not present in k12 and k21. Typically the factor e−E0 � 1 since E0 sets the overall energy scale for rupture,
and E0 ∼ 17 − 26 (units of kBT ) for the systems considered in Ref. [2]. Hence we can assume in this case that k10,
k20 � k12, k21. This simplifies the expressions for τ1 and τ2 in Eq. (S35), so that τ1 ≈ τ2 ≈ (k12+k21)/(k12k20+k21k10).
Hence the mean bond lifetime is also the same as τ1 and τ2,

τ(F ) ≈ k12 + k21

k12k20 + k21k10
=

√
πr0(E1 − 2F (r0 + d))eE0+dF (e2Fr0 − 1)

4DE
3/2
0 F (1 + r0/d)2

(
1− e2F (r0+d)−E1

) . (S44)

This is in complete agreement with the τ(F ) from Eq. (2) in Ref. [2]. The survival probability in this limit becomes
a single exponential, ΣF (t) ≈ exp(−t/τ(F )), with τ(F ) from Eq. (S44).

Our derivation of τ(F ) and ΣF (t) in the previous section also allows us to make a comparison to another catch bond
model. By partitioning the parameter space into two angular states, and focusing on four transition rates (k10, k20,
k12, k21), our approach on the surface seems analogous to the phenomenological two-state catch bond model [3, 4].
However in this phenomenological model each transition rate kij is assumed to have a simple Bell-like dependence
on the force, kij = k0

ij exp(Fxij), for coefficients k0
ij and distances xij . Our general expressions for the transition

rates in the previous sections, and even the simplified versions of Eq. (S43) in the barrier-less limit, are quite different
from Bell models. This is because these rates are derived from an underlying energy landscape based on a structural
model. Our parameters thus directly connect to structural / energetic features of the system, in contrast to the k0

ij ,
xij parameters of the phenomenological model.

III. MAXIMUM LIKELIHOOD FITTING TO THE EXPERIMENTAL DATA

The experimental data D (Ref. [5] Fig. 4A) consists of N = 803 points, D = {(ti, Fi), i = 1, . . . , N}, where ti is the
measured bond lifetime, and Fi is the applied force. Let Λ be the set of free parameters in the model other than F .
The probability P(ti|Fi,Λ) of observing the ith bond lifetime, given force Fi and particular set of parameter values
Λ, is:

P(ti|Fi,Λ) = −δt dΣFi(ti)

dt

∣∣∣∣
Λ

, (S45)

where ΣF (t) is the survival probability at force F . Since we have an analytical expression for ΣF (t) from Eqs. (S38)-
(S39), we also can get an analytical form for dΣF (t)/dt, which allows us to evaluate P(ti|Fi,Λ). The joint probability
of the entire data set, given the model parameters, is

P(D|Λ) =

N∏
i=1

P(ti|Fi,Λ). (S46)

To find the best-fit parameter set Λ, we maximize the log-likelihood function L = lnP(D|Λ),

L =
N∑
i=1

ln
dΣFi(ti)

dt

∣∣∣∣
Λ

, (S47)

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306761doi: bioRxiv preprint 

https://doi.org/10.1101/306761
http://creativecommons.org/licenses/by-nc-nd/4.0/


10

where we have neglected an additive constant dependent on δt that does not affect the fitting.
To prevent the maximization algorithm, implemented in Mathematica, from veering into unphysical regions of

parameter space, the parameters were constrained to vary over physically sensible ranges: E0, H, G, d, r0 ≥ 0,
αmax > αc > αmin + γ. Here the buffer angle γ was set to 5◦, to put a constraint on the minimum possible angular
range for the small α conformational state. This choice of γ was based on the magnitude of fluctuations in molecular
dynamics trajectories of α in Ref. [6], though other choices of γ within a few degrees also lead to similar maximum
log-likelihoods and best-fit parameter sets Λ.
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