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Abstract 

 

Reinforcement learning models are excellent models of learning in a variety of tasks. 

Many researches are interested in relating parameters of reinforcement learning models to 

psychological or neural variables of interest. However, these parameters are difficult to estimate 

reliably because the predictions of the model about choice change slowly with changes in the 

parameters. This identifiability problem has a large impact on power: we show that a researcher 

who wants to detect a medium sized correlation (r = .3) with 80% power between a 

psychological/neural variable and learning rate must collect 60% more subjects in order to 

account for the noise introduced by model fitting. We introduce a method that exploits the 

information contained in reaction times to constrain model fitting and show using simulation and 

empirical data that it improves the ability to recover learning rates.  
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1 Introduction 

 

 In 1972, Rescorla and Wagner first specified how animal learning could be understood 

using a computational model in which learning is driven by the difference between expectations 

and outcomes (Rescorla & Wagner, 1972). In the nearly fifty years since this seminal work, there 

has been an explosion of interest in using computational reinforcement learning (RL) models to 

understand behavior and to characterize the functions of neural systems (Niv, 2009). These 

models are parameterized by the learning rate, which controls the relative weighting of recent 

versus older information. This parameter is of considerable experimental interest as a dependent 

variable in experiments that influence learning (Behrens, Woolrich, Walton, & Rushworth, 

2007), or as a means to understand inter-individual variability (Frank, Moustafa, Haughey, 

Curran, & Hutchison, 2007) or neural function (Gläscher & O'Doherty, 2010; Schönberg, Daw, 

Joel, & O'Doherty, 2007). However, the learning rate and other parameters of reinforcement 

learning models are difficult to faithfully estimate (S. Gershman, 2016), increasing probability of 

both type I and type II errors. Methods for improving the reliability of these estimates would 

increase the utility of applying reinforcement learning models to the study of behavior, neural 

data, and disease (Maia & Frank, 2011).  

 Parameters of reinforcement learning models are difficult to estimate for several reasons. 

First among these is that there is a tradeoff between the learning rate and decision noise, which 

specifies how noisily subjects choose the higher-valued option. Any sequence of choices can be 

roughly equally described as an agent who learns quickly but decides noisily or a subject who 

learns slowly but decides more deterministically. Our approach is to harness reaction times to 

help constrain estimates of learning rate and reduce this tradeoff between parameters. Variability 

in reaction times can provide insight into hidden psychological variables such as how subjects 

integrate information, are influenced by frames or context, or navigate a speed/accuracy tradeoff 

(Ratcliff & McKoon, 2008; Stone, 1960). Further, reaction times have been used to fit a 

reinforcement learning model in a task without value-based choice (Bornstein & Daw, 2012). 

Because subjects should respond more slowly when the values of the options are more similar, 

reaction times can provide additional information about the values learned by the subject and 

constrain the estimate of parameters that govern the learning of those values. We derive a 
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method for optimally weighting predictions from choice and reaction times in order to fit 

reinforcement learning models.  

 A second reason that parameters are difficult to estimate is that there are constraints on 

the amount of data that can be reasonably collected from an individual subject. When 

experimenters fit flexible models such as RL to limited data, they tend to overfit to noise in the 

data, resulting in parameter estimates that do not generalize. The use of Bayesian priors can 

prevent overfitting by rendering certain parameter unlikely, which reduces the effective 

complexity of the model and also reduces the tradeoff between correlated parameters (S. 

Gershman, 2016). We compare our reaction time method to the use of Bayesian priors and assess 

whether they can have an additive effect on the improvement of parameter identifiability.  

 

2 Materials and Methods 

 

2.1 Task specification 

 

 Code for all simulations and analyses can be found at https://github.com/iancballard/RL-

Tutorials. We consider a 2-armed bandit task in which the agent decides between two options 

that independently vary in their probability of reward. Bandits were initialized with a bad arm 

(35% chance of reward) and a good arm (65% chance of reward). On each trial, the probability 

of reward for each arm was updated independently from a Gaussian distribution with mean 0 and 

a standard deviation .025, with reflecting upper and lower boundaries at 75% and 25% reward, 

respectively. This type of design is used to encourage learning over the course of many trials 

(Daw, Gershman, Seymour, Dayan, & Dolan, 2011).  

 We simulated trajectories of a reinforcement learning agent through the task. The agent 

tracked values V for each of the bandits si. On each trial, the agent updates the value of the 

chosen bandit: 

������������	 �  ����������� �  �	� 

 

Where � is the learning rate and 	� is the prediction error: 

 

	� �  
� � ����������� 
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and 
� is the reward received on trial t. Values were initialized at .5, as there are no negative 

rewards in this task and this allows for symmetric learning about reward and no-reward 

outcomes early in the task. Values were transformed into choice probabilities according to a 

softmax decision rule. If �� is the choice on trial t, 

 

��� � �
� �  �����

∑ �������	
�

�

  

 

Where  � is the inverse temperature parameter controlling choice stochasticity. 

 

2.2 Simulation procedures 

 

Because researchers are often interested in relating learning rates to a psychological or 

neural variable of interest, we assessed the extent to which it was possible to recover known 

learnings rates from a population of simulated subjects. For each simulation run, we drew 

parameter settings for each subject and generated behavior using the reinforcement learning 

agent described above. We then fit the parameters of this agent to the synthetic data using the 

Scipy’s minimize function. We fit the data using four different approaches: 

1) Maximum likelihood (ML). This standard technique maximizes the likelihood of the 

synthetic choice data. 

2) ML with reaction times. This technique jointly maximizes the likelihood of the choice 

and reaction time data. 

3) Maximum a posteriori (MAP). This technique uses Bayesian priors to maximize the 

posterior probability of the choice data. 

4) MAP with reaction times. This technique maximizes the posterior probability of the 

choice and reaction time data. 

 

Finally, we then assessed the fitted parameter estimates against the ground truth parameters using 

a Pearson correlation. 
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We assessed these correlations for each modeling technique and for different numbers of 

subjects and bandit trials. For each of these bins, we ran 1,000 simulations. We drew parameters 

from distributions that matched the expected distribution expected in the population, based on 

previous literature (Figure 1, (Daw et al., 2011). A learning rate equal to 0 indicates no learning, 

whereas a learning rate of equal to 1 indicates a win-stay loose shift strategy. However, low 

alpha does not necessarily indicate bad performance; rather, it indicates that subjects have a 

smaller recency bias in weighting information over past trials (Bayer & Glimcher, 2005). We 

therefore allowed alpha to span its entire range of values, with a median of  .41. We allows the 

inverse temperature to vary from fairly stochastic ( ) to deterministic ( , with the 

median of the distribution,  = 2.78, corresponding to a choice rule that is roughly equivalent to 

probability matching. Our lower bound on m was meant to exclude completely noisy subjects 

because we allowed for subjects with no learning. Including too many of these subjects 

represents an overly pessimistic view of the subject population. These priors were used to 

generate simulated subjects and also as the Bayesian priors in MAP fitting. 

Figure 1 Prior distributions on RL parameters. A) Learning rates were drawn from a beta 
distribution with shape 1.5 and scale 2. B) Choice noise parameters were drawn from a beta 
distribution with shape 2 and scale 6, stretched by a factor of 10, and shifted to the right by .5. 
 

2.2 Reaction time modeling 

 

 We sought to jointly model the probability of the reaction time (rt) and choices (c). For 

each trial t: 

 

6

to 
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��� � �
 , 
��| �	 … ���	, 
�	 … 
���	, 
	 … 
��	� 

 

Where 
� is the reward earned on trial t. Using the chain rule for probabilities, we can rewrite 

this equation: 

 

 

��� � �
 , | �	 … ���	, 
�	 … 
���	, 
	 … 
��	� �
��|  �� �
�
 , �	 … ���	, 
�	 … 
���	, 
	 … 
��	� 

 

We now make the simplifying assumption that choices are conditionally independent of reaction 

times on previous trials:   

 

 ��� � �
 , | �	 … ���	, 
	 … 
��	� �
��|  �� � �
 , �	 … ���	, 
�	 … 
���	, 
	 … 
��	� 

 

This assumption is sure to be partially invalid, and future methods that explicitly model this 

relationship should perform better. However, the complexity of modeling this relationship 

simultaneously with reinforcement learning is beyond the scope of the current work.  

In order to specify a conditional probability distribution on reaction times, we specify a 

linear regression model relating values of the p options as well as the choice to reaction times. 

We make use of the fact that linear regression can be equivalently specified as a maximum 

likelihood solution to a linear probabilistic generative model: 


�� �  � ��
�

����	� , … , ���, ��� �  � 

Where  � ~ ��0, ���.  

 

For n trials, one can show that the log joint likelihood of both the observed choices and reaction 

times is equal to: 

 

� log � ���
��
∑ ��������

�
�

�

��	

� �   !"# $ 1
√2(�) � 1

2�� � �
��
�

��	
� � ��

�

����	� , … , ���, ����� 
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The first term is the softmax log likelihood of choices and the second term is the likelihood of a 

linear regression model of reaction times, which can be easily read from the output of most linear 

regression software packages (e.g., statsmodels in Python).   

For our simulation data, we created reaction times that were a function of the bandit 

values. Given the pervasive finding that reaction times are slower for more difficult decisions 

(Ratcliff & McKoon, 2008), we defined reaction times to be a function of the absolute value of 

the difference in values between the bandits: 

 


�� �  �|�	� � ���| �  � 

 

We set � = 1 and added Gaussian random noise to the simulated reaction times with mean of 0 

and standard deviation equal to 5 times the standard deviation of the reaction time regressor. This 

procedure resulted in noisy reaction times that were correlated with the absolute value in the 

difference in choice options with an average R2 = .037. We used a simple model of RTs for the 

sake of simplicity in simulations. However, one can define a more complex and realistic model 

relating values and choices to reaction times and we do so in our analysis of real bandit data. 

 
4 Results 
 
4.1 Illustration of RL parameter identifiability 
 
 Parameter identifiability in reinforcement learning models is due to the relationship 

between learning rate and decision noise. Imagine a two-armed bandit task in which you have 

observed a subject make a leftward choice, receive a reward, and then subsequently make a 

rightward choice. It is impossible to determine whether the subject chose rightward on the 

second trial because she did not learn or because she learned but responded randomly. The 

strength of this correlation between learning rate and decision noise will depend on many factors, 

including the number of trials and the true learning rate and decision function. Nonetheless, any 

correlation between parameters presents a problem because it means that some span of parameter 

settings provide roughly equally good accounts of the data. Figure 1a shows the likelihood 

surface for a reinforcement learning model of a simulated subject in a two-arm bandit. The dark 

blue area shows a strong tradeoff between parameters; a lower learning rate and reliable 

responding or higher learning rate and more stochastic responding provide similar accounts of 
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the data. One consequence of this type of likelihood surface is that the maximum likelihood 

estimate (the peak of the surface in 2a) can move large distances in parameter space with small 

changes in the data. That is, if this subject had chosen only a little differently, there could be a 

large change in the maximum likelihood estimate of learning rate.  

Figure 2. Likelihood surface of reinforcement and temporal discounting models. A) Likelihood 
surface for a reinforcement learning model of a simulated subject on a 2-arm bandit task (alpha = 
.3, inverse temperature = 2). There is a tradeoff between learning rate and inverse temperature, 
such that a lower learning rate and more reliable responding provides a similar fit as a higher 
learning rate and more random responding. B) Likelihood surface for a hyperbolic model of a 
simulated subject in an intertemporal choice task (discount rate = .025, inverse temperature = 2).. 
Most of the uncertainty comes from the inverse temperature parameter. Compared to A, there is 
only a modest tradeoff between discount rate and choice noise.   

  

This tradeoff is a general property of psychological models that attempt to separately 

identify an underlying transformation of the experimental variables from a noisy decision 

function. However, RL models suffer from an additional problem that exacerbates the degree of 

correlation between learning rate and choice noise. The learning rate controls the relative weight 

of recent versus more distant trials in determining value. For all learning rates greater than 0, the 

most recent trials will have the strongest effects on choice. As a result, the differences in 

predictions between models with different learning rates can be subtle: they differ only in the 

extent to which distant trials influence choice, but these distant trials always exert a smaller 

effect than recent trials. Therefore, a range of learning rates can explain any given sequence of 

choices and rewards, exacerbating the correlation between learning rate and choice noise.  

9
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The property that choice predictions change slowly with changes in parameters is not a 

general property of psychological models. By way of illustration, consider a temporal 

discounting experiment in which subjects make choices between delayed rewards, (e.g., $5 now 

or $10 in 2 weeks). The subjective value of the rewards, discounted by the delay until their 

receipt, is typically modeled using a hyperbolic function: 

 

*+,-���./� �0!+� �  1�"+ �
1 � 2 3 4�!05 

 

And choices are typically modeled with the same softmax function used in RL. Imagine 

organizing the choices available to the subject by the how impatient they would need to be in 

order to be indifferent between the two options. A subject’s k specifies where in this sorted list of 

choices she switches from choosing the shorter delay reward to the longer delay reward. As k 

changes, this switch point changes, making strong predictions about choice. As shown in Figure 

1b, hyperbolic models have a weaker tradeoff between discount rate and decision noise, allowing 

for a more robust estimation of parameters than in reinforcement learning. Given the unique 

challenges of estimating the parameters of reinforcement learning models, we assess the utility of 

two complementary methods in constraining the values of these parameters. 

 
4.2 Reaction times and Bayesian priors improve parameter identifiability 
 
 An experimenter is typically interested in the estimate of learning rate in order to relate 

this variable to some other variable of interest. Any error in estimation of learning rate will 

introduce noise to this comparison and weaken the power of the subsequent test. Therefore, we 

focused our analysis on our ability to recover learning rates from a cohort of subjects. For each 

cohort, we drew parameters for each subject, simulated a run through a two-arm bandit with a 

simple RL model, and used the resulting data to fit the parameters of the same model. For each 

cohort, we computed the correlation between the ground truth learning rates and the recovered 

learning rates. We examined these correlations as a function of the number of trials of the task 

and the number of subjects in a cohort. 

 We find that the ability to reconstruct learning rates is low for 100 trials, r = .66, or 200 

trials, r = .79, experiments that are typical in bandit tasks (Figure 3). Note that these simulations 
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are likely to overestimate the true ability to reconstruct learning rates because the simulated 

subjects use a generative model that is then used to fit behavior. These estimates can therefore be 

viewed as an approximate upper bound on the ability to fit learning rates. Increasing the number 

of trials improves the ability to reconstruct learning rates, but there are often financial and 

psychological limits to the maximum number of trials. Perhaps surprisingly, increasing the 

number of subjects does not appreciably improve the ability to reconstruct learning rates. While 

larger samples increase the power of the correlation test, it is also harder to discriminate between 

subjects as the average difference in learning rate between subjects decreases. 

 We next turned to analyzing our methods for improving parameter identifiability. All 

tests were Bonferroni corrected for 10 tests across the trial and subject bins. Using either reaction 

times or priors improves parameter identifiability for all trial counts and all cohort sizes, all p < 

.001. Reaction times improved parameter identifiability more than MAP estimation with 

Bayesian priors, except for bandits with 100 trials, p > .2, 15 subjects, p = .019, all others, p < 

.001. This finding is remarkable given that reaction times were noisily related to the difference in 

option values (average R2 = .037) and the simulated subject parameters were drawn from these 

prior distributions. Finally, the combined use of Bayesian priors and reaction times provided the 

best fit for all cohort sizes and numbers of trials, all p < .001. This finding confirms that reaction 

times and Bayesian priors offer partially distinct ways to regularize the parameter estimates, and 

their combined use can potentially have an additive effect.  

  

 

Figure 1 Simulation of parameter identifiability. A) The correlation between ground truth and 
fitted learning rates as a function of the number of bandit trials. Increasing the number of trials 
helps parameter identifiability, and the use of reaction times and Bayesian priors substantially 
improves parameter identifiability regardless of the number of trials. B) The correlation between 
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ground truth and fitted learning rates as a function of the number of subjects. Increasing the 
number of subjects did not improve parameter identifiability. The use of reaction times and 
Bayesian priors substantially improves parameter identifiability regardless of the number of 
subjects. 

 

 

4.3 Effect of parameter identifiability on experimental power 
 

Our estimates of the ability to recover the learning rates of a subject population are 

optimistic. Even so, the simulated correlation between recovered learning rates and ground truth 

may appear high. However, even moderate decrements in the ability recover learning rates can 

have a large effect on experimental power (Figure 4). For example, one needs around 85 subjects 

to detect a correlation of r = .3 with 80% power. If experimental constraints set the maximum 

number of trials to be 200, then our simulations suggest that experimenter would need to collect 

data from at least 137 subjects to detect the same effect with the same power, a 60% increase. 

According to our simulations, the use of reaction times could increase parameter identifiability 

sufficiently to require 105 subjects. The use of these model-fitting techniques can therefore have 

appreciable effects on the power.  

Figure 4. Effect of parameter identifiability on experimental power. Green lines depict the power 
to detect a correlation between two variables for different sample sizes. Purple lines depict the 
power after accounting for the noise introduced by model-fitting.  
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4.4 Application to Empirical Data 
 

Simulations show that both the use of a Bayesian prior and the use of reaction times in 

model fitting helps parameter identifiability. Although these simulations were designed to match 

experimental data as closely as possible, they included two important features that could render 

their predictions over-optimistic. First, the parameters were generated from the same prior 

distribution used for fitting. Second, the reaction times were generated from the model used to fit 

reaction times. We therefore assessed the efficacy of these methods in a previously published 

dataset (Wimmer, Braun, Daw, & Shohamy, 2014). 30 subjects performed 100 trials of a two-

armed bandit task in which each bandit was associated with a different, trial-unique object that 

was irrelevant to the task. In addition, subjects performed a second run of the task without the 

objects. Although there were differences between the tasks (e.g., presence of objects), and there 

could have been state differences within a subject (e.g., fatigue), we reasoned that learning rates 

assessed from two very similar bandit tasks should be strongly correlated. We modeled log 

transformed reaction times as a function of 1) the linear and quadratic effect of the absolute value

of the difference in values between the bandits 2) the linear effect of trial number, and an 3) 

indicator function on whether the subject choose the bandit with the maximum value.  

Figure 5. Joint modeling of choice and reaction times improves parameter identifiability in real 
data. A) The correlation in estimated learning rate between two runs of a bandit task using a 
standard RL model. B) The correlation in estimated learning rate when estimated using a model 
of reaction times and choice.  
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Under standard model fitting with no Bayesian priors and no reaction times, learning 

rates are correlated, r(28) = .47, p = .009, Figure 5a. Fitting with Bayesian priors results in a 

larger correlation, r(28) = .59. We used the R package Bayesian First Aid to assess the difference 

in correlations and found a 74.5% posterior probability that Bayesian priors improved the 

correlation. Fitting with reaction times results in an even higher correlation, r(28) = .75, Figure 

5b. The Bayesian posterior probability that reaction times increased the magnitude of the 

correlation over standard model fitting is 94.5%. In contrast to our simulation results, the 

combined use of both Bayesian priors and RT results in a similar strength correlation as using 

only Bayesian priors, r(28) = .60, p < .001. These parameters in turn were only moderately 

correlated with the parameters from using Bayesian priors, r(28) = .62, p < .001, or reaction 

times, , r(28) = .55, p = .002, alone. We speculate that this is because our Bayesian priors do not 

perfectly align with the distribution of parameters in our subjects, and therefore reaction times 

and Bayesian priors push parameter estimates in different directions. Overall, our results 

suggests that fitting reaction times results in a higher correlation between learning rates assessed 

from the same subjects in different bandit tasks.  

 

5 DISCUSSION 
 

 The utility of reinforcement learning models for understanding individual variability or 

individual neural responses depends on the ability to estimate the parameters of the model. We 

showed that jointly fitting choices and reactions times or the use of Bayesian priors can improve 

the reliability of these parameter estimates. Another promising approach is to use empirical 

priors derived from an independent, similar dataset (S. Gershman, 2016) or a hierarchical 

approach that simultaneously fits group-level and subject-level parameters (Chávez, Villalobos, 

Baroja, & Bouzas, 2017). This approach is particularly promising given our finding that our 

Bayesian priors actually interfered the ability of reaction times to improve parameter 

identifiability in real data where the priors may have been misspecified. However, the efficacy of 

this approach is controversial (Spektor & Kellen, 2018) and it can yield counterintuitive results. 

For instance, the empirical prior on learning rate advocated by Gershman is concentrated entirely 

on 0 and 1. This prior expresses the belief that subjects do not use reinforcement learning: they 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306720doi: bioRxiv preprint 

https://doi.org/10.1101/306720
http://creativecommons.org/licenses/by-nc/4.0/


rTMS effects on decision framing 

 15

either don’t learn, or they do use a win-stay/lose-shift  strategy. Although this prior has the 

benefit of being empirically derived, the fact that it expresses a belief about learning that is 

opposed by a wealth of behavioral and neural data runs somewhat counter to the spirit of a 

Bayesian prior. Nonetheless, the use of empirical priors is consistent with the approach 

advocated here, and we believe that the use of reaction time data would still benefit this 

approach. 

  Our modeling approach focused on a simple reinforcement learning model applied to a 

bandit task. There is substantial interest in relating parameters of more complex RL tasks to 

psychological variables. For example, in the two-step decision task, subjects make sequential 

decisions to earn rewards (Daw et al., 2011). This behavior is well-described by a hybrid 

between a model-free learning agent, similar to the one described here, and a model-based agent 

that makes decisions based on a model of the sequential structure of the task. Experimenters have 

attempted to measure the relative weighting between these two systems and relate this weighting 

parameter to individual differences in neural activation (Daw et al., 2011; Doll, Duncan, Simon, 

Shohamy, & Daw, 2015), working memory capacity (Otto, Raio, Chiang, Phelps, & Daw, 2013), 

habit persistence (Gillan, Otto, Phelps, & Daw, 2015) and compulsive behavior (Gillan, 

Kosinski, Whelan, Phelps, & Daw, 2016). Because these models depend on the same 

reinforcement learning mechanism described here, it is likely that the weighting parameter is 

similarly difficult to estimate. We anticipate that joint modeling of reaction times could help 

improve estimates of individual differences in goal-directed behavior.  

 Formal models are vital for developing a theoretical understanding of brain and behavior 

and are practically useful tools for distilling the information contained in data (Gläscher & 

O'Doherty, 2010). However, most models contain hidden complexity that can reduce their 

applicability. In RL, this complexity is due to the fact that the behavior of the model changes 

slowly with changes in parameterization (Wilson & Niv, 2015). Faced with this problem, 

experimenters should make use of all the information available to help constrain estimates of 

learning. Reaction times are a useful and readily available source of such information. Future 

work should consider how biometrics such as eye tracking could be used to further constrain 

model estimates (Leong, Radulescu, Daniel, DeWoskin, & Niv, 2017).  
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