
osprey 3.0: Open-Source Protein Redesign for You,
with Powerful New Features

Mark A. Hallen‡,1,3, Jeffrey W. Martin‡,1, Adegoke Ojewole†,4,
Jonathan D. Jou†,1, Anna U. Lowegard†,4, Marcel S. Frenkel5, Pablo Gainza1,

Hunter M. Nisonoff1, Aditya Mukund1, Siyu Wang4, Graham T. Holt4, David Zhou1,
Elizabeth Dowd1, and Bruce R. Donald∗,1,2,5

April 22, 2018

‡,† These authors contributed equally
Departments of 1 Computer Science and 2 Chemistry, Duke University, Durham, NC 27708
3 Toyota Technological Institute at Chicago, Chicago, IL 60637
4 Program in Computational Biology and Bioinformatics and 5 Department of Biochemistry,
Duke University Medical Center, Durham, NC 27710
∗ Corresponding author, brd+jcc18@cs.duke.edu

Abstract

We present osprey 3.0, a new and greatly improved release of the osprey protein
design software. osprey 3.0 features a convenient new Python interface, which greatly
improves its ease of use. It is over two orders of magnitude faster than previous ver-
sions of osprey when running the same algorithms on the same hardware. Moreover,
osprey 3.0 includes several new algorithms, which introduce substantial speedups as
well as improved biophysical modeling. It also includes GPU support, which provides
an additional speedup of over an order of magnitude. Like previous versions of os-
prey, osprey 3.0 offers a unique package of advantages over other design software,
including provable design algorithms that account for continuous flexibility during de-
sign and model conformational entropy. Finally, we show here empirically that osprey
3.0 accurately predicts the effect of mutations on protein-protein binding. osprey 3.0
is available at http://www.cs.duke.edu/donaldlab/osprey.php as free and open-source
software.

Keywords: Protein design, drug design, GPU, structural biology, Python

1

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

We present the third major release of the OSPREY protein design software, along with com-
parisons to experimental data that confirm its ability to optimize protein mutants for desired
functions. osprey 3.0 has significant efficiency, ease-of-use, and algorithmic improvements
over previous versions, including GPU acceleration and a new Python interface.

2

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

INTRODUCTION

For over a decade, the osprey software package1,1–3 has offered the protein design com-

munity a unique combination of continuous flexibility modeling, ensemble modeling, and

algorithms with provable guarantees4,5. Having begun as a software release for the K∗ al-

gorithm2,6, which approximates binding constants using ensemble modeling, it now boasts a

wide array of algorithms found in no other software. osprey has been used in many designs

that were empirically successful—in vitro 6–12 and in vivo 7–10 as well as in non-human pri-

mates7. osprey’s predictions have been validated by a wide range of experimental methods,

including binding assays, enzyme kinetics and activity assays, in cell assays (MICs, fitness)

and viral neutralization, in vivo studies, and crystal7,13 and NMR9 structures.

However, as osprey grew to include more algorithms and features (Fig. 1), the code

became increasingly complicated and difficult to maintain. The growing complexity of the

software also hindered its ease-of-use. osprey 3.0 represents a complete refactoring of the

code, and presents a simpler and more intuitive interface that makes protein redesign much

easier than before. The new, developer-friendly code organization also facilitates adding

new features to the free and open-source osprey project, both by ourselves and by other

contributors. We have introduced a convenient Python scripting interface and added support

for GPU acceleration of the bulk of the computation, allowing designs to be completed much

more quickly and easily than in previous versions of osprey. We believe osprey 3.0 will

be a very useful tool for both developers and users of provably accurate protein design

algorithms.

Past successes of osprey

osprey has been used for an impressive number of empirically successful designs, ranging

from enzyme design to antibody design to prediction of antibiotic resistance mutations.

Notably, osprey has been successful in many prospective experimental studies, i.e., studies

in which our designed sequences are tested experimentally, thus validating osprey through

use in practice rather than simply through a retrospective comparison of osprey calculations

to previous experimental results. osprey is most applicable to problems that can be posed in

3

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

terms of biophysical state transitions like binding, allowing the K∗ algorithm and its variants

to predict the optimal sequences based on an estimate of binding free energy computed using

Boltzmann-weighted conformational ensembles. Moreover, most protein design problems can

be posed in this way, sometimes in terms of binding to more than one ligand. osprey is

capable of both positive design, in which binding of a designed protein to a target is increased,

and negative design, in which binding to a target is decreased, as well as more complicated

design objectives where specific binding to one target and not to another is required.

For example, we have successfully predicted novel resistance mutations to new inhibitors

in MRSA (methicillin-resistant Staphylococcus aureus) using multistate design (combining

negative and positive design). osprey does this by searching for sequences that have im-

paired drug binding compared to wild-type DHFR, but still form the enzyme-substrate

complex as usual, allowing catalysis to proceed10,13. Our predictions were validated not

only biochemically and structurally, but also at an organismal level13,25,26. Similarly, we

have successfully changed the preferred substrate of an enzyme—the phenylalanine adenyla-

tion domain of gramicidin S synthetase—from phenylalanine to leucine by modeling the two

enzyme-substrate complexes, and searching for sequences with improved binding to leucine

and reduced binding to phenylalanine6. The resulting designer enzymes exhibited improved

catalysis, and designs changing the specificity from phenlyalanine to several charged amino

acids were successful as well6. The combination of positive and negative design in os-

prey has also successfully designed mutants of the gp120 surface protein of HIV that bind

specifically to particular classes of antibodies, enabling their use as probes for detecting and

isolating those antibodies from human sera12.

These multistate design capabilities, long a mainstay of osprey, are accelerated by the

modules BBK∗ (described below) and COMETS (described in Ref. 21). COMETS provably

returns the sequence that minimizes any desired linear combination of the energies of multiple

protein states, subject to constraints on other linear combinations. Thus, COMETS can

target nearly any combination of affinity (to one or multiple ligands), specificity, and stability

(for multiple states if needed). COMETS and BBK∗ have been integrated into osprey 3.0

and accelerated, and they are currently the only provable multi-state design algorithms that

run in time sublinear in the size M of the sequence space. This can be important, since M

4

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

is exponential in the number of simultaneously mutable residue positions.

Further successes of osprey have involved improving positive design, e.g., the interac-

tion of the anti-HIV antibody VRC07 with its antigen, gp120. Using this approach, we

collaborated with the NIH Vaccine Research Center to design a broadly neutralizing anti-

body (VRC07-523LS) against HIV with unprecedented breadth and potency that is now in

clinical trials (Clinical Trial Identifier: NCT030151817,27). We also have designed allosteric

inhibitors of the leukemia-associated protein-protein interaction between Runx1 and CBFβ 9.

Similarly, we have used osprey to develop peptide inhibitors of CAL, a protein involved in

cystic fibrosis8. The CBFβ and CAL inhibitors were successful in vitro and in vivo 8,9.

In addition, a number of other research groups have successfully used the osprey algo-

rithms and software (by themselves) to perform biomedically important protein designs, e.g.,

to design anti-HIV antibodies that are easier to induce28; to design a soluble prefusion closed

HIV-1-Env trimer with reduced CD4 affinity and improved immunogenicity29; to design a

transmembrane Zn2+-transporting four-helix bundle30; to optimize stability and immuno-

genicity of therapeutic proteins31–33; and to design sequence diversity in a virus panel and

predict the epitope specificities of antibody responses to HIV-1 infection34.

We believe osprey 3.0 will enable an even greater range of successful designs.

PERFORMANCE ENHANCEMENTS IN osprey 3.0

Engineering improvements yield large single-threaded speedups

osprey 3.0’s code has been heavily optimized to improve single-threaded performance rela-

tive to the previous version, osprey 2.221. Two main areas have received the most attention

and the most improvement in performance so far: A∗ search speed, and conformation mini-

mization speed.

osprey uses the A∗ search algorithm15 to perform its combinatorial search over sequence

and conformational space2,16,19. The performance of A∗ search in osprey depends mostly on

the size of the conformation space of the design: the time required for search scales strongly

with the number of mutable and flexible residues. Search time is also dependent on the

5

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

speed at which we can evaluate the energy scoring functions on A∗ nodes. Optimizations in

osprey 3.0 have dramatically increased the A∗ node scoring speed, mainly by caching the

results of expensive computations and reusing them at different nodes. Many intermediate

values used by the A∗ scoring functions need only be computed once per design. This reduces

the cost of node scoring by roughly an order of magnitude. We can also score child nodes

differentially against their parent nodes to speed up node scoring. Caching intermediate

values during the parent node scoring and using them to simplify child node scoring yields

roughly another order of magnitude speedup in A∗ node scoring.

osprey 3.0 also includes optimizations to improve the performance of forcefield evalua-

tion and conformation minimization. Conformation minimization is typically the bottleneck

in osprey calculations with continuous flexibility2,16,19,20. The code in osprey 3.0 that

evaluates forcefield energies for a protein conformation has been heavily optimized, although

speed gains here over osprey 2 are modest (roughly two-fold), since the original code was

already well-optimized in this area. Much larger performance increases were gained by

caching forcefield parameters and lists of atom pairs between different conformations to be

minimized, which yielded roughly a 10-fold increase in speed. osprey 3.0 also increases per-

formance by only evaluating forcefield terms involving mutable and/or flexible residues in a

design, since interaction energies between other residues will be identical across all sequences

and conformations. Since most designs only model a minority of the residues in a protein as

flexible, this can be a substantial improvement.

Performance comparisons are shown for 45 protein design test cases in Fig. 2 and Ta-

ble 1. All these test cases model continuous protein flexibility2,16,17, and 18 of them involve

provably accurate partition function calculations (see Table 1 and Ref. 17 for details). To

summarize, the optimizations to single-threaded performance described above made osprey

3.0 on average 461-fold faster than osprey 2.2 across 29 protein design test cases, and al-

lowed osprey 3.0 to finish the remaining 16 test cases, which osprey 2.2 could not finish

within a 17-day time limit. For example, osprey 2.2 on a Intel Xeon E5-2640 v4 CPU took

49.5 minutes to run a small (6 continuously flexible residues) benchmark sidechain packing

problem involving a 114-residue fragment of PDZ3 domain of PSD-95 protein complexed

with a 6-residue peptide ligand (PDB ID: 1TP5). But osprey 3.0 finished the same design

6

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

in 7.0 seconds on the same hardware, which is a 424-fold speedup.

GPU acceleration reduces design runtimes

One of the key challenges in protein design is modeling and searching the many continuous

conformational degrees of freedom inherent in proteins and other molecules. The sidechain

conformations of each amino-acid type are generally found in clusters, known as rotamers35,

so it is common practice to approximate protein conformational space as discrete by forc-

ing each residue to be in the modal conformation of one of these clusters14,15. However,

design accuracy is increased significantly when continuous flexibility is taken into account,

by allowing the continuous degrees of freedom to move within finite bounds around these

modal values1,16,19,36. Moreover, this increase in accuracy depends on considering contin-

uous flexibility during the conformational search process, rather than simply performing

minimization post hoc on the top-scoring sequences and conformations output by a dis-

crete search algorithm. Although such a post hoc minimization approach would obtain more

energetically favorable models of the top sequences, it would still produce the same top se-

quences as a purely discrete design would, which have been shown to not be truly the top

sequences, even if a much finer discrete rotamer subsampling is allowed1,16. For example,

clashing discrete rotamers can often be converted to favorable conformations by relatively

small adjustments in the sidechain conformations2,16,19,20. As a result, designs performed

with continuous flexibility taken into account throughout the search yield significantly dif-

ferent, and more biologically accurate, sequences than the same designs performed using

discrete search1,16,19.

To address this problem, osprey includes several algorithms to design proteins while

taking continuous flexibility into account throughout the process of sequence and confor-

mational search2,16–20. These algorithms predict optimal protein sequences with provable

guarantees of accuracy given a biophysical model that includes continuous flexibility.

This minimization-aware design approach requires energy minimization to be performed

for a large number of conformations (within the bounds on the continuous degree of freedom

that define each conformation). This minimization is a relatively expensive operation, so the

bulk of a design’s runtime can be spent on energy minimization of conformations. Therefore,

7

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

improvements to the speed of energy minimization can have a dramatic impact on osprey

runtimes.

Much work has been done to optimize osprey for execution on CPUs, particularly highly

multi-core CPUs and even networked clusters of CPU-powered servers37,38. However, modern

GPU hardware enables high-performance computation for some specific tasks at a fraction

of the cost of large CPU clusters, mainly due to the huge video game industry, which propels

innovation in hardware design and drives down costs. The widespread adoption of fast and

highly programmable GPUs in the past decade has transformed many areas of computa-

tional science, including quantum chemistry39, computer vision40, and cryptography41. In

particular, GPUs have been found to produce speedups of approximately an order of magni-

tude in molecular dynamics simulations42–44, which, like osprey, must sum huge numbers

of forcefield energy terms and can use the GPU to parallelize this computation. GPUs have

also been used to accelerate the A∗ search step of protein design45, albeit without addressing

the continuous minimization bottleneck.

Thus, in order to bring the benefit of GPUs to continuously flexible protein design calcu-

lations, osprey 3.0 includes GPU programs (called kernels) built using the CUDA frame-

work46 that implement the forcefield calculations and local minimization algorithms used in

protein redesign.

We present performance results of these GPU kernels on various hardware platforms in

Figure 3. A GPU server housing 4 Nvidia Tesla P100 cards can finish minimizations with

about 300,000 atom pairs roughly 110-fold faster than a single thread running on an Intel

Xeon E5-2640 v4 CPU. With two Intel Xeon E5-2640 v4 CPUs running at full capacity

with multiple threads, the four Nvidia Tesla P100 GPUs finish the same minimizations

roughly 8-fold faster. The speedups of GPUs over CPUs scale with the number of atom

pairs in the minimization. For minimizations with fewer (about 30,000) atom pairs, even

four Nvidia Tesla P100 GPUs cannot outperform two Intel Xeon E5-2640 v4 CPUs. There

is significant overhead to transfer each minimization problem from the CPU to the GPU

during designs. Even though GPUs can evaluate the minimizations much faster than CPUs,

when there are few atom pairs, this transfer overhead dominates the computation time

and causes GPUs to perform merely similarly to CPUs, rather than significantly faster.

8

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

Nevertheless, the bottleneck in protein design is minimizations with many atom pairs, and

for these minimizations osprey’s speedups on GPUs are on par with the state of the art for

GPU speedups of molecular dynamics simulations.

The performance of desktop hardware appears similar to server hardware, except on a

smaller scale. A single Nvidia GTX 1070 GPU performs minimizations at roughly half the

speed of an Nvidia Tesla P100 GPU. Two Nvidia GTX 1080 GPUs perform similarly to the

Nvidia Tesla P100 GPU on the large conformation benchmark (Fig. 3, bottom), but actually

perform worse than a single Nvidia GTX 1070 for the small conformation benchmark (Fig. 3,

middle) – despite having well over twice the hardware of the single Nvidia GTX 1070 GPU.

This anomalous performance suggests the kernel osprey 3.0 uses for minimizations is not

yet well-optimized for the Nvidia GTX 1080 GPU, and that future engineering efforts could

offer significant performance increases for Nvidia GTX 1080 GPUs. The Nvidia GTX 1050, a

laptop GPU, does not appear to be powerful enough to offer any advantages over traditional

CPU computing in osprey 3.0 (Fig. 3, light blue columns).

Modern GPU architectures offer thousands of parallel hardware units for calculations,

compared to the tens of parallel hardware units in modern CPU architectures. The perfor-

mance results of the current generation of osprey’s GPU kernels indicate that minimization

speeds on GPUs have only begun to scratch the surface of what is possible, particularly for

minimizations with few atom pairs. Future versions of these GPU kernels will likely offer sig-

nificantly higher performance on the same hardware – perhaps allowing minimization speeds

many times faster than today’s GPU kernels. This in turn will make it even more efficient

to perform minimization-aware protein design, and allow minimization-aware designs with

even more mutable and flexible residues and with more mutation options per residue.

PYTHON SCRIPTING IMPROVES EASE-OF-USE

One of the most visible additions to osprey 3.0 is the Python application programming

interface (API), which allows fine-grained control over design parameters in a streamlined

and easy-to-use experience. osprey 3.0 still supports a command-line interface with con-

figuration files for backwards compatibility, but new development will be focused mostly on

9

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

the new Python interface.

The osprey 3.0 distribution contains a Python module which is installed using the pop-

ular package manager pip. Once installed, using osprey 3.0 is as easy as writing a Python

script. High-performance computations are still performed in the Java virtual machine to

give the fastest runtimes, so Java is still required to run osprey 3.0, but communication

between the Python environment and the Java environment is handled behind-the-scenes,

and osprey 3.0 still looks and feels like a regular Python application.

See Figure 4 for a complete example of a Python script that performs a very simple design

using osprey 3.0, and Figure 5 for a slightly more involved design using BBK∗ 36 (a new

algorithm in osprey 3.0, described in its own section below). Figure 6 graphically displays

the design setup for the BBK∗ design.

NEW PROTEIN DESIGN ALGORITHMS IN osprey 3.0

LUTE: Putting advanced modeling into a form suitable for efficient,

discrete design calculations

osprey 3.0 comes with LUTE18, a new algorithm that addresses two issues with previous

versions of osprey.

First, previous versions modeled continuous flexibility by enumerating conformations in

order of a lower bound on minimized conformational energy2,16. This lower bound can

be relative loose, especially for larger systems, and thus a large number of suboptimal

conformations—often exponentially many with respect to the size of the system—must be

scored by continuous minimization merely because they have favorable lower bounds on their

energy. LUTE addresses this problem by enumerating conformations in order of their actual

minimized conformational energies instead of simply in order of a lower bound. These ener-

gies are estimated using an expansion in low-order tuples of residue conformations. Thus, the

burden of modeling continuous flexibility is shifted from the combinatorial optimization (A∗)

step, which has unfavorable asymptotic complexity, to a precomputation step (the “LUTE

matrix precomputation”18) that only scales quadratically with the number of residues. This

10

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

dramatically reduces the computation time for large designs with continuous flexibility, and

has doubled the number of residues that can be treated simultaneously with continuous

flexibility18.

Second, all previous combinatorial protein design algorithms have relied on an explicit

decomposition of the energy as a sum of local (e.g., pairwise) terms. This made design with

energy functions that do not have this form difficult. LUTE can straightforwardly support

general energy functions, and, as shown in Ref. 18, it can obtain good fits at least in the

case of Poisson-Boltzmann energies. Moreover, once the LUTE matrix precomputation is

completed, the time cost of finding the optimal sequence and conformation does not depend

on the energy function used. This is an enormous advantage for more expensive and accurate

energy functions like Poisson-Boltzmann, which otherwise would be far too expensive for all

but the smallest designs.

osprey users can now turn on LUTE for continuously flexible calculations simply by

setting a boolean flag (in the DEEGMECFinder Python constructor). osprey 3.0 also sup-

ports design with Poisson-Boltzmann solvation energy calculations, which call the DelPhi51,52

software for the single-point Poisson-Boltzmann calculations (we ask the user to download

DelPhi separately for licensing reasons). Such improved modeling is essential to increasing

the reliability of and range of feasible uses for computational protein design.

CATS: Local backbone flexibility in all biophysically feasible dimensions

osprey pioneered protein design calculations that model local continuous flexibility of

sidechains in the vicinity of rotamers in all biophysically feasible dimensions (i.e., the sidechain

dihedrals). This continuous flexibility was often critical in correctly predicting energetically

favorable sequences1,16, especially when those sequences falsely appeared to be sterically

clashing when modeled using only rigid rotameric conformations taken from a rotamer li-

brary (see section on GPU acceleration above for more details). In osprey 3.0, we now

extend this ability to the backbone: allowing local continuous backbone flexibility in the

vicinity of the native backbone with respect to all biophysically feasible degrees of freedom.

This flexibility is enabled by the CATS algorithm20 (Fig. 7). CATS uses a new parame-

terization of backbone conformational space, along with the voxel framework that osprey

11

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

has always included. It is equivalent to searching over all changes in backbone dihedrals (φ

and ψ) subject to keeping the protein conformation constant outside of a specified flexible

region. CATS includes an efficient Taylor series-based algorithm for computing atomic co-

ordinates from its new degrees of freedom, enabling efficient energy minimization. Unlike

previous protein design algorithms with backbone flexibility, CATS routinely finds backbone

motions on the order of an angstrom (in RMSD with respect to the wildtype backbone)

while still performing a comprehensive search of its backbone conformation space. In Ref.

20, we have shown that backbone flexibility as modeled by CATS is sometimes critical for

avoiding nonphysical steric clashes (Fig. 7B,C) and often affects energetics significantly. For

example, mutating residue 54 of the antibody VRC07 to tryptophan improves its binding to

its antigen (HIV surface protein gp120)7, but a design to recapitulate this mutation found

it to be blocked by a steric clash unless CATS was used to find a backbone motion that

escapes the clash20. In this design, CATS significantly outperformed a provable search over

backrub53 motions, which are also available in osprey19,54.

CATS is intended to be run as part of the flexibility model for osprey’s other algo-

rithms, yielding efficient calculations with continuous flexibility in both the sidechains and

the backbone. osprey’s convenient interface allows a user to add CATS flexibility to a

design merely by specifying the start and end points of the backbone segment to be made

flexible.

BBK∗: Efficiently computing the tightest binding sequences from a com-

binatorially large number of binding partners

In previous versions of osprey, the K∗ algorithm24 modeled an ensemble of Boltzmann-

weighted conformations to approximate the thermodynamic partition function. It combined

minimized dead-end elimination pruning14 with A∗ 14,55 gap-free conformation enumeration

to compute provable ε-approximations to the partition functions for the protein and ligand

states of interest. K∗ combined these partition function scores to approximate the association

constant, Ka, as the ratio of ε-approximate partition functions between the bound and

unbound states of a protein-ligand complex. Notably, each partition function ratio, called a

12

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

K∗ score, is provably accurate with respect to the biophysical input model 2,16,24.

Although K∗ efficiently and provably approximated Ka for a given sequence, it had to

compute a K∗ score for each sequence of interest. All provable ensemble-based algorithms

prior to BBK∗, as well as many heuristic algorithms that optimize binding affinity, are

single-sequence algorithms which must compute the binding affinity for each possible se-

quence. The number of sequences, of course, is exponential in the number of simultaneously

mutable residue positions. Therefore, designs with many mutable residues rapidly became

intractable. osprey 3.0 provides a new algorithm, BBK∗, which overcomes this challenge.

BBK∗ 36 builds on K∗, and is the first provable, ensemble-based protein design algorithm to

run in time sublinear in the number of sequences. The key innovation in BBK∗ that enables

this improvement is the multi-sequence (MS) bound. Rather than compute binding affin-

ity separately for each possible sequence, as single-sequence methods do, BBK∗ efficiently

computes a single provable K∗ score upper bound for a combinatorial number of sequences.

BBK∗ uses MS bounds to prune a combinatorial number of sequences during the search,

entirely avoiding single-sequence computation for all pruned sequences.

Importantly, BBK∗ also contains many other powerful algorithmic improvements and

implementation optimizations: the parallel architecture of BBK∗, which enables concurrent

energy minimization, and a novel two-pass partition function bound, which minimizes far

fewer conformations while still computing a provable ε-approximation to the partition func-

tion. Combined with the combinatorial pruning power of the MS bound, BBK∗ is able to

search over much larger sequence spaces than previously possible with single-sequence K∗

(Fig. 8). In computational experiments on 204 protein design problems, BBK∗ accurately

predicted the tightest-binding sequences while only computing K∗ scores for as few as one

in 105 of the sequences in the search space36. Moreover, in computational experiments on 51

protein-ligand design problems, BBK∗ was up to 1982-fold faster than single-sequence K∗,

despite provably producing the same results36.

These improvements show that BBK∗ not only accelerates protein designs that were

possible with previous provable algorithms, it also efficiently performs designs that are too

large for previous methods.

13

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

BWM∗: Exploiting locality of protein energetics to efficiently compute

the GMEC

osprey 3.0 comes with BWM∗ 23, a new algorithm that exploits sparse energy functions to

provably compute the GMEC in time exponential in merely the branch-width w of a protein

design problem’s sparse residue interaction graph.

Because energy decreases as a function of distance, many protein design algorithms model

protein energetics with energy functions which omit pairwise interactions between sufficiently

distant residues. These sparse energy functions not only provide a simpler, more efficiently

computed model of energy, but also induce optimal substructure to the problem: because not

all residues interact, the optimal conformation for a given residue can be independent of the

conformations at other residues. BWM∗ exploits this optimal substructure by 1) representing

the sparse interactions with a sparse residue interaction graph, and 2) computing a branch-

decomposition for use in dynamic programming.

BWM∗, unlike treewidth-based methods that also exploit the sparsity of pairwise residue

interactions to efficiently compute the GMEC56, enumerates a gap-free list of conformations

in order of increasing sparse energy. Because this list is gap-free, BWM∗ not only computes

the GMEC of the sparse energy function, but also recovers the GMEC of the full energy

function, as shown in Ref. 23. By enumerating all conformations within the provable sparse

energy bound between the sparse and full GMEC, BWM∗ computes a list of conformations

that is guaranteed to contain the full GMEC, as well as the sparse GMEC57. Moreover,

because BWM∗ can enumerate conformations in gap-free order up to any energy threshold

specified by the user, it can be used to accurately compute partition functions, and thus

binding free energies that account correctly for entropy, using the K∗ algorithm2,24.

Thus, in practice, BWM∗ circumvents the worst-case complexity of traditional methods

such as A∗ for designs with sparse energy functions, computing the sparse GMEC of an

n-residue design with at most q rotamers per residue in O(nw2q
3
2
w) time, and also enumer-

ates each additional conformation in merely O(n log q) time, which is up to three orders of

magnitude faster than traditional A∗ in practice23.

14

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

ACCURACY BENCHMARKS

We first tested the accuracy of osprey 3.0 for the subset of algorithms also available in

osprey 2.2β, by running both versions of osprey on the same test cases and checking that

the results matched. Since the accuracy of osprey 2.2β using these algorithms has been

experimentally confirmed (see Introduction), by transitivity, our tests confirmed osprey

3.0’s accuracy. In addition, we performed new, retrospective tests, described below.

To evaluate the accuracy of the implementation of the newest optimizations in osprey

3.0, we performed a series of designs for a variety of protein-protein interfaces (PPIs) as

retrospective validation. We used K∗ 24 to computationally predict experimentally measured

changes in binding for each PPI. Each protein structure is listed by name and PDB ID

in Table 258–61. These systems include barnase with its peptide inhibitor barstar62,63, the

cytochrome c:cytochrome c peroxidase complex64, interferon α-2 (IFNα2) in complex with

interferon α/β receptor 2 (IFNAR2)65, and the interleukin 2 (IL-2):IL-2 receptor α (IL-2Rα)

complex66.

Our retrospective validation experiments focused on mutations at residues in or proximal

to the protein-protein interface that were not limited to alanine scanning. Including some

of these tested and reported mutations62–66, for each structure we tested anywhere from 5

to 19 designs. In total, we tested 58 mutations using default, out-of-the-box osprey 3.0

settings and parameters. Each design included one or two mutable residues along with a

set of surrounding flexible residues (See Table 2). Flexible residues were chosen by selecting

all residues within 4 Å of the mutable residues and removing those that only have back-

bone interactions. Two example designs are shown in Figure 9, where osprey 3.0 and K∗

accurately predict the effect of two point mutations in the interface of the IFNα2:IFNAR2

complex (highlighted in blue in Table 2).

For each system, the K∗ scores were ranked in increasing order of reported experimental

binding. Spearman’s ρ values were subsequently calculated for each system by calculating

the statistical dependence between the K∗ score rankings and the experimentally measured

rankings (See Table 2 and Figure 10). This is a sound measure because generally the output

of a design calculation that is used to decide which mutants to make experimentally is

15

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

simply the intra-system ranks of the mutants. Looking at the values in Table 2, we see

a high correlation in the rankings between experimentally measured binding and binding

predicted by osprey 3.0 and K∗ for each system with values ranging from 0.500 to 0.795.

We found that, across the tested systems, the Spearman’s ρ value is 0.762. This value is the

Pearson correlation of the intra-system ranks of all the mutants. Overall, these correlations

are very good for design for affinity in computational protein design.

DISCUSSION

osprey has demonstrated its accuracy and utility in practice through many prospective

designs that have performed well experimentally6–12. osprey 3.0 is at least as accurate as

the versions of osprey used to perform these designs, because it uses the same biophysi-

cal model used in those studies, with provable guarantees of accuracy given the biophysical

model. We have compared design results using osprey 2.2 and osprey 3.0 to confirm

agreement. However, osprey 3.0 performs such designs much more efficiently, due to the

engineering improvements described here. Moreover, in this paper we have performed addi-

tional comparisons to experimental data to confirm the accuracy of osprey 3.0. osprey

3.0 also includes methods to improve the biophysical model and thus improve accuracy still

further (should the user choose to select osprey’s newer models).

As our benchmark results here show, we have made substantial progress toward correctly

predicting the effect of mutations on protein activity. The high accuracy comes from os-

prey’s accurate biophysical model, which accounts for both continuous protein flexibility

and conformational entropy, together with algorithms that provably return optimal sequences

given that model. In fact, no other software can provide a provable guarantee of accuracy

given a model that accounts for continuous flexibility and conformational entropy. More-

over, osprey’s combinatorial algorithms4,5 compute optimal sequences efficiently even when

searching over a large sequence space.

The large speedups in osprey 3.0, together with the easy-to-use Python interface, thus

make it much more tractable to perform protein design with such biophysically realistic

modeling and with guaranteed accuracy given the model. In particular, osprey 3.0 benefits

16

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

from many sources of speedups that can be used together. Speedups from osprey 3.0’s

optimization of the conformational minimization, forcefield evaluation, and A* routines can

exceed two orders of magnitude even compared to osprey 2.221 running on the same CPU

hardware. Together with an additional speedup of over an order of magnitude from GPU’s,

a design that would take months using osprey 2.2 could easily take only a few hours using

osprey 3.0. Many designs could see even greater speedups, because in addition to these

engineering improvements, some of the algorithmic improvements in osprey 3.0 provide a

dramatic increase in computational efficiency.

The improvements in modeling facilitated by osprey 3.0’s new algorithms also make

protein design with osprey more realistic. However, there is still much room for improve-

ment in the biophysical model used by osprey, and indeed by all currently available protein

design software. Modeling of larger backbone motions, more realistic interactions with wa-

ter, and electronic polarization, among other phenomena, are all likely to yield substantial

improvements in accuracy. The refactored architecture of osprey 3.0 will make it easier to

experiment with algorithms that facilitate these modeling improvements, and to implement

these algorithms within osprey’s current code base. Moreover, we have released osprey

3.0 as open source, to aid the community both in the development and the application of

improved models and algorithms for computational protein design.

CONCLUSIONS

osprey has long offered unique capabilities to protein designers. In particular, it has al-

ways offered a unique combination of provably accurate conformational search, continuous

flexibility, efficient search over large sequence spaces, and free energy calculations based on

Boltzmann-weighted thermodynamic conformational ensembles. In osprey 3.0 we intro-

duced software improvements that will make these algorithms much more practical for the

wider design community: performance that is orders of magnitude faster, and a Python

interface that makes osprey much easier to use. In addition, we expanded the range of bio-

physical modeling assumptions that osprey can accommodate, both in terms of molecular

flexibility and energy functions. As with previous versions, we are releasing osprey 3.0 as

17

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

free and open-source software to maximize its benefit to the community. We hope this new

version will be of significant utility to designers, whether they have used osprey before or

are trying it for the first time.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Alvin Lebeck for helpful discussions on GPUs, Drs.

Kyle Roberts and Swati Jain for helpful discussions on protein design, and the NIH (grants

R01 GM-78031 and R01 GM-118543 to B.R.D.), NSF (Graduate Research Fellowship to

A.O.), PhRMA Foundation (Informatics Predoctoral Fellowships to A.U.L. and M.A.H.),

and Liebmann Foundation (fellowship to M.A.H.) for funding.

18

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

References

1. P. Gainza, K. E. Roberts, I. Georgiev, R. H. Lilien, D. A. Keedy, C.-Y. Chen, F. Reza,

A. C. Anderson, D. C. Richardson, J. S. Richardson, et al., Methods in Enzymology

523, 87 (2013).

2. I. Georgiev, R. H. Lilien, and B. R. Donald, Journal of Computational Chemistry 29,

1527 (2008).

3. I. Georgiev, K. E. Roberts, P. Gainza, M. A. Hallen, and B. R. Donald, os-

prey (Open Source Protein Redesign for You) user manual, Available online:

www.cs.duke.edu/donaldlab/software.php. Updated, 2015. 94 pages. (2009).

4. B. R. Donald, Algorithms in Structural Molecular Biology (MIT Press, Cambridge, MA,

2011).

5. P. Gainza, H. M. Nisonoff, and B. R. Donald, Current Opinion in Structural Biology

39, 16 (2016).

6. C.-Y. Chen, I. Georgiev, A. C. Anderson, and B. R. Donald, Proceedings of the National

Academy of Sciences of the USA 106, 3764 (2009).

7. R. S. Rudicell, Y. D. Kwon, S.-Y. Ko, A. Pegu, M. K. Louder, I. S. Georgiev, X. Wu,

J. Zhu, J. C. Boyington, X. Chen, et al., Journal of Virology 88, 12669 (2014).

8. K. E. Roberts, P. R. Cushing, P. Boisguerin, D. R. Madden, and B. R. Donald, PLoS

Computational Biology 8, e1002477 (2012).

9. M. J. Gorczynski, J. Grembecka, Y. Zhou, Y. Kong, L. Roudaia, M. G. Douvas, M. New-

man, I. Bielnicka, G. Baber, T. Corpora, et al., Chemistry and Biology 14, 1186 (2007).

10. K. M. Frey, I. Georgiev, B. R. Donald, and A. C. Anderson, Proceedings of the National

Academy of Sciences of the USA 107, 13707 (2010).

11. B. W. Stevens, R. H. Lilien, I. Georgiev, B. R. Donald, and A. C. Anderson, Biochemistry

45, 15495 (2006).

19

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

12. I. Georgiev, P. Acharya, S. Schmidt, Y. Li, D. Wycuff, G. Ofek, N. Doria-Rose, T. Lu-

ongo, Y. Yang, T. Zhou, et al., Retrovirology 9, P50 (2012).

13. S. M. Reeve, P. Gainza, K. M. Frey, I. Georgiev, B. R. Donald, and A. C. Anderson,

Proceedings of the National Academy of Sciences of the USA 112, 749 (2015).

14. J. Desmet, M. de Maeyer, B. Hazes, and I. Lasters, Nature 356, 539 (1992).

15. A. R. Leach and A. P. Lemon, Proteins: Structure, Function, and Bioinformatics 33,

227 (1998).

16. P. Gainza, K. Roberts, and B. R. Donald, PLoS Computational Biology 8, e1002335

(2012).

17. M. A. Hallen, P. Gainza, and B. R. Donald, Journal of Chemical Theory and Computa-

tion 11, 2292 (2015).

18. M. A. Hallen, J. D. Jou, and B. R. Donald, in International Conference on Research in

Computational Molecular Biology (Springer, 2016), pp. 122–136.

19. M. A. Hallen, D. A. Keedy, and B. R. Donald, Proteins: Structure, Function and Bioin-

formatics 81, 18 (2013).

20. M. A. Hallen and B. R. Donald, Bioinformatics 33, i5 (2017).

21. M. A. Hallen and B. R. Donald, Journal of Computational Biology 23, 311 (2016).

22. K. E. Roberts, P. Gainza, M. A. Hallen, and B. R. Donald, Proteins: Structure, Function,

and Bioinformatics 83, 1859 (2015).

23. J. D. Jou, S. Jain, I. Georgiev, and B. R. Donald, Journal of Computational Biology 23,

413 (2016).

24. R. H. Lilien, B. W. Stevens, A. C. Anderson, and B. R. Donald, Journal of Computational

Biology 12, 740 (2005).

20

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

25. A. Ojewole, A. Lowegard, P. Gainza, S. M. Reeve, I. Georgiev, A. C. Anderson, and

B. R. Donald, in Computational Protein Design (Humana Press, New York, 2017), vol.

1529 of Methods in Molecular Biology, in press.

26. S. M. Reeve, E. W. Scocchera, G. Narendran, S. Keshipeddy, J. Krucinska, B. Hajian,

J. Ferreira, M. Nailor, J. Aeschlimann, D. L. Wright, et al., Cell Chemical Biology 23,

1458 (2016).

27. VRC 605: A Phase 1 Dose-Escalation Study of the Safety and Pharmacokinet-

ics of a Human Monoclonal Antibody, VRC07-523LS, Administered Intravenously

or Subcutaneously to Healthy Adults. ClinicalTrials.gov Identifier: NCT03015181.

NIAID And National Institutes of Health Clinical Center. January (2017).

https://clinicaltrials.gov/ct2/show/NCT03015181.

28. I. S. Georgiev, R. S. Rudicell, K. O. Saunders, W. Shi, T. Kirys, K. McKee, S. O’Dell,

G.-Y. Chuang, Z.-Y. Yang, G. Ofek, et al., The Journal of Immunology 192, 1100 (2014),

ISSN 0022-1767, 1550-6606, URL http://www.jimmunol.org/content/192/3/1100.

29. G. Y. Chuang, H. Geng, M. Pancera, K. Xu, C. Cheng, P. Acharya, M. Chambers,

A. Druz, Y. Tsybovsky, T. G. Wanninger, et al., J. Virol. 91 (2017).

30. N. H. Joh, T. Wang, M. P. Bhate, R. Acharya, Y. Wu, M. Grabe, M. Hong, G. Grigoryan,

and W. F. DeGrado, Science 346, 1520 (2014).

31. A. S. Parker, Y. Choi, K. E. Griswold, and C. Bailey-Kellogg, J Comput Biol 20, 152

(2013).

32. R. S. Salvat, Y. Choi, A. Bishop, C. Bailey-Kellogg, and K. E. Griswold, Biotechnol

Bioeng (2015).

33. H. Zhao, D. Verma, W. Li, Y. Choi, C. Ndong, S. N. Fiering, C. Bailey-Kellogg, and

K. E. Griswold, Chem Biol 22, 629 (2015).

34. N. A. Doria-Rose, H. R. Altae-Tran, R. S. Roark, S. D. Schmidt, M. S. Sutton, M. K.

Louder, G. Y. Chuang, R. T. Bailer, V. Cortez, R. Kong, et al., PLoS Pathog. 13,

e1006148 (2017).

21

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

35. J. Janin, S. Wodak, M. Levitt, and B. Maigret, Journal of Molecular Biology 125, 357

(1978).

36. A. A. Ojewole, J. D. Jou, V. G. Fowler, and B. R. Donald, Journal of Computational

Biology (2018), Epub ahead of print.

37. I. Georgiev, R. H. Lilien, and B. R. Donald, Bioinformatics 22, e174 (2006).

38. Y. Pan, Y. Dong, J. Zhou, M. Hallen, B. R. Donald, J. Zeng, and W. Xu, Journal of

Computational Biology 23, 737 (2016).

39. R. C. Walker and A. W. Goetz, Electronic Structure Calculations on Graphics Processing

Units: From Quantum Chemistry to Condensed Matter Physics (John Wiley & Sons,

2016).

40. K. He, X. Zhang, S. Ren, and J. Sun, in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (2016), pp. 770–778.

41. R. Szerwinski and T. Güneysu, in International Workshop on Cryptographic Hardware

and Embedded Systems (Springer, 2008), pp. 79–99.

42. J. Glaser, T. D. Nguyen, J. A. Anderson, P. Lui, F. Spiga, J. A. Millan, D. C. Morse,

and S. C. Glotzer, Computer Physics Communications 192, 97 (2015).

43. R. Salomon-Ferrer, A. W. Götz, D. Poole, S. Le Grand, and R. C. Walker, Journal of

Chemical Theory and Computation 9, 3878 (2013).

44. M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, and E. Lindahl,

SoftwareX 1, 19 (2015).

45. Y. Zhou, W. Xu, B. R. Donald, and J. Zeng, Bioinformatics 30, i255 (2014).

46. C. Nvidia, Programming guide (2010).

47. A. C. Rosenzweig, D. L. Huffman, M. Y. Hou, A. K. Wernimont, R. A. Pufahl, and

T. V. O’Halloran, Structure 7, 605 (1999).

22

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

48. S. C. Lovell, M. J. Word, J. S. Richardson, and D. C. Richardson, Proteins: Structure,

Function, and Genetics 40, 389 (2000).

49. A. Globerson and T. S. Jaakkola, in Advances in neural information processing systems

(2008), pp. 553–560.

50. R. J. Bingham, E. Rudiño-Piñera, N. A. Meenan, U. Schwarz-Linek, J. P. Turkenburg,

M. Höök, E. F. Garman, and J. R. Potts, Proceedings of the National Academy of

Sciences 105, 12254 (2008).

51. A. Nicholls and B. Honig, Journal of Computational Chemistry 12, 435 (1991).

52. W. Rochia, S. Sridharan, A. Nicholls, E. Alexov, A. Chiabrera, and B. Honig, Journal

of Computational Chemistry 23, 128 (2002).

53. I. W. Davis, W. B. Arendall, D. C. Richardson, and J. S. Richardson, Structure 14, 265

(2006).

54. I. Georgiev, D. Keedy, J. S. Richardson, D. C. Richardson, and B. R. Donald, Bioinfor-

matics 24, i196 (2008).

55. P. E. Hart, N. J. Nilsson, and B. Raphael, IEEE Transactions on Systems Science and

Cybernetics 4, 100 (1968).

56. J. Xu and B. Berger, Journal of the ACM 53, 533 (2006).

57. S. Jain, J. D. Jou, I. S. Georgiev, and B. R. Donald, PLoS Computational Biology 13,

e1005346 (2017).

58. T. Ikura, Y. Urakubo, and N. Ito, Chemical Physics 307, 111 (2004).

59. H. Pelletier and J. Kraut, Science 258, 1748 (1992).

60. C. Thomas, I. Moraga, D. Levin, P. O. Krutzik, Y. Podoplelova, A. Trejo, C. Lee,

G. Yarden, S. E. Vleck, J. S. Glenn, et al., Cell 146, 621 (2011).

61. X. Wang, M. Rickert, and K. C. Garcia, Science 310, 1159 (2005).

23

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

62. G. Schreiber and A. R. Fersht, Biochemistry 32, 5145 (1993).

63. C. Frisch, G. Schreiber, C. M. Johnson, and A. R. Fersht, Journal of Molecular Biology

267, 696 (1997).

64. J. E. Erman, G. C. Kresheck, L. B. Vitello, and M. A. Miller, Biochemistry 36, 4054

(1997).

65. J. Piehler, L. C. Roisman, and G. Schreiber, Journal of Biological Chemistry 275, 40425

(2000).

66. R. J. Robb, C. M. Rusk, and M. P. Neeper, Proceedings of the National Academy of

Sciences 85, 5654 (1988).

67. J. M. Word, S. C. Lovell, T. H. LaBean, H. C. Taylor, M. E. Zalis, B. K. Presley, J. S.

Richardson, and D. C. Richardson, Journal of Molecular Biology 285, 1711 (1999).

68. K. E. Roberts and B. R. Donald, Protein interaction viewer (2014), URL

http://www.cs.duke.edu/donaldlab/software/proteinInteractionViewer/.

24

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

Figure 1: The osprey protein redesign suite. (A) The input model includes a 3D

structure of the protein to be redesigned, a definition of the sequence space, the allowed

protein flexibility (including the rotamer library), and a pairwise energy function. (B) Rigid

DEE14,15, iMinDEE16, EPIC17, LUTE18, DEEPer19, and CATS20 model different types of

protein flexibility. Flexibility ranges in complexity from discrete, rigid rotamers to continuous

side chain flexibility to complete flexibility including continuous backbone flexibility. (C)

The EPIC17 and LUTE18 algorithms also expand energy function capability by allowing for

non-pairwise, basic quantum chemistry and Poisson-Boltzmann solvation. (D) COMETS21

allows for multi-state design by optimizing sequences and conformations for user-specified

bound and unbound states. This is accomplished using multiple input structures. (E) These

algorithms are implemented in OSPREY and improved through the use of GPU acceleration.

According to the allowed flexibility, OSPREY runs a specific pruning algorithm followed by

a highly optimized descendant of the A∗ search algorithm22. The A∗ output generates a

ranking based on either the lowest-energy structure of each sequence, or an ensemble of

structures computed by the K∗ algorithm. (F) The BWM∗ 23 algorithm exploits sparse

residue interaction graphs and branch decomposition to outperform traditional A∗. (G) The

K∗ 2,24 algorithm calculates a K∗ score (an approximation of the binding constant, Ka) by

provably estimating the partition function for the protein, the ligand, and the protein-ligand

complex. The K∗ algorithm exploits a thermodynamic ensemble of structures as opposed

to a single structure, as illustrated in the panel (PDB ID: 3FQC). K∗ can also be used to

find sequences that have a high affinity for one ligand (positive design) while having a low

affinity for another (negative design) by taking a ratio of K∗ scores10,13.

Figure 2: Runtimes of osprey 2.2 vs. osprey 3.0 for 45 protein design test cases

(details shown in Table 1), shown on a log scale. Designs that only finished with

osprey 3.0 (given a 17-day time limit) are shown on the right in red. All test cases involve

continuous flexibility2,16 and minimization-aware DEE16,17; 18 involve provably accurate

partition function calculations (see Table 1 and Ref. 17 for details).

25

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

Figure 3: Benchmarks for protein conformation minimization in osprey 3.0 for

various hardware platforms and for conformations of varying size. From small-

est to largest: (top) a single residue pair is the smallest multi-body minimization possible,

(middle) a full protein conformation with a single flexible residue represents a small design,

(bottom) a full protein conformation with 20 flexible residues represents a large design. For

CPU hardware, concurrent minimizations correspond to CPU threads. For GPU hardware,

concurrent minimizations correspond to streams defined by the CUDA framework. Faster

minimization speeds correspond with faster osprey runtimes. All minimizations were per-

formed on the Atx1 metallochaperone protein (PDB ID: 1CC8)47. Flexible residues were

modeled with continuous sidechain flexibility, and all other residues remained completely

fixed.

Figure 4: A Python script that performs a very simple design in osprey 3.0. The

design searches over sequences in which residues A2 and/or A3 of the Atx1 metallochaperone

protein (PDB ID: 1CC8)47 are mutated; residues A2-A4 (i.e., residue 2-4 of chain A) are

all modeled with sidechain flexibility, consisting of a discrete search over the Penultimate

rotamer library48’s rotamers for the specified amino acid types. The mutability, flexibility,

and starting crystal structure are all specified in the “define a strand” section of the code.

Advanced users can also modify the other sections to specify changes from the default search

algorithms, energy function, and other modeling assumptions. This script uses the Max

Product Linear Programming (MPLP) algorithm49 to reduce the size of the A∗ search tree15

employed for sequence and conformational search without compromising accuracy; see Ref.22

for details.

26

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

Figure 5: A Python script that performs a simple BBK∗ design in osprey 3.0.

This design produces a peptide to bind human fibronectin (the “ligand strand,” i.e. chain

A) by optimizing a fragment of the protein FnBPA from Staphylococcus aureus (the “protein

strand,” chain G), which has been crystallized in complex with fibronectin domains (PDB

ID: 2RL050). As in Fig. 4, the script defines the starting crystal structure, mutable residues,

and level of mutability and flexibility (here including continuous flexibility) in the form of

Python strand objects. Fig. 6 represents this design graphically. This design is accelerated

by parallelism, running on 4 CPU cores. This example thus shows it is easy to invoke and

use parallelism within the osprey 3.0 software.

Figure 6: Setup for the Python-scripted BBK∗ 36 design described in Fig. 5. This

design starts with the crystal structure (PDB ID: 2RL050) of a complex between fragments of

the protein FnBPA from Staphylococcus aureus (blue ribbons) and human fibronectin (green

ribbons), and optimizes binding with respect to the amino acid type of FnBPA residue 649

(magenta), while modeling continuous flexibility in several surrounding sidechains (orange).

The full complex is shown on the left, while the region surrounding the mutation is shown

in detail on the right. See Ref. 36 for background on the FnBPA:fibronectin system.

27

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

Figure 7: Left: CATS allows systematic search over a voxel of backbone conformations in

the vicinity of the wild-type backbone conformation (black). The voxel is specified as box

constraints on a novel set of backbone coordinates; conformations with one such coordinate

moved to the edge of the voxel are shown in red and green, and a conformation with all

such coordinates moved to the edge of the voxel is shown in purple. See Fig. 1 of Ref. 20

for more details. Middle: Rigid-backbone structural modeling of an experimentally effective

mutant of anti-HIV gp120 antibody VRC07 showed unavoidable steric clashes between Trp

54 of VRC07 and Trp 427 and Gly 473 of gp120 (purple). Right: CATS explained the

experimentally observed activity by finding a new backbone conformation that resolved

these clashes (green; overlaid with clashing rigid-body backbone (purple) and backbone

conformation computed with the older DEEPer algorithm (blue)). DEEPer reduced the

clashes somewhat using backrub motions53, but they were still significant even after the

backrubs. See Fig. 3 of Ref. 20 for more details. Portions of this figure were reprinted with

permission from Ref. 20.

Figure 8: Measuring the contributions of the BBK∗ 36 algorithmic improvements

to the empirically observed running times of osprey. BBK∗ calculations were run

to predict either the single top sequence or to enumerate the top 5, and were compared to

exhaustive computation of K∗ scores for each sequence (i.e., iMinDEE/A∗/K∗ 2,16 or single-

sequence K∗), which was the prior state of the art for Boltzmann-weighted ensemble-based

binding affinity computation before BBK∗. (A) Running times for BBK∗ and single-sequence

K∗ vs. the number of sequences in the search space for 204 protein design test cases, a

benchmark set described in Ref. 36. Single-sequence K∗ completed only 107 of the test

cases within a 30-day time limit (left of the vertical line), and took up to 800 times longer

than BBK∗ to do so, while BBK∗ completed all the designs within the time limit. (B) The

number N of sequences whose energies must be examined or bounded by iMinDEE/A∗/K∗

(green line; exponential in the number of mutable residue positions) and by BBK∗ (dots).

For each data point representing a BBK∗ test case, the vertical gap between that data point

and the green line (gap on the y axis) represents the number of sequences that are pruned

without ever having to be examined. Figure adapted with permission from Ref. 36.

28

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

Figure 9: (A) The structure of the IFNα2:IFNAR2 complex (PDB ID: 3S9D60) with separate

chains shown in cyan and magenta and with two example interface design regions shown

in boxes. Each box contains a mutable residue shown as sticks and its surrounding flexible

residues shown as lines. (B) and (F) zoom in on each design. (B-E) Design at position R33 for

a mutation that osprey correctly predicts as decreasing binding: R33Q. (B) The wildtype

sequence with probe dots67,68 displaying favorable interactions with surrounding flexible

residues (shown as lines). (D) The mutant sequence (33Q) with probe dots displaying some

favorable as well as unfavorable interactions. Comparing (B) and (D), it is clear there is a loss

in favorable interactions and a gain in unfavorable interactions upon mutation from R to Q,

resulting in an experimentally observed decrease in binding that the K∗ algorithm captures

accurately (See Table 2). (C) and (E) show the top 10 conformations in the conformational

ensemble used in the K∗ calculation for each sequence. (F-I) Design at position N156 for a

mutation that osprey correctly predicts as increasing binding: N156A. (F) The wildtype

sequence with probe dots67,68 displaying some favorable interactions with surrounding flexible

residues (shown as lines). (H) The mutant sequence (156A) with probe dots displaying some

favorable interactions with surrounding flexible residues (shown as lines). There are some

gained interactions (shown by an increase in the number of favorable probe dots) in (H)

compared to (F), but these are not visually obvious, thus emphasizing the importance of

K∗, which successfully picks up these nuanced changes and correctly predicts improved

binding (See Table 2). (G) and (I) show the top 10 conformations in the conformational

ensemble used in the K∗ calculation for each sequence. Not shown are the ensembles for the

unbound states that are also used to calculate the K∗ scores.

Figure 10: Testing the accuracy of the K∗ algorithm in osprey 3.0 by comparing K∗

rankings to experimentally reported rankings (See Table 2). Each system is represented by

its corresponding PDB ID and a linear trendline is shown for each in its corresponding color

according to the legend.

29

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

Figure 1
Hallen, Martin, et al.

30

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

Figure 2
Hallen, Martin, et al.

31

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

1 2 4 8 16 32 64 128 256
0

500

1000

1500

2000

2500

Small Conformation Minimization Performance
28,680 atom pairs

Concurrent Minimizations

M
in

im
iz

at
io

ns
 p

e
r

S
ec

on
d

1 2 4 8 16 32 64 128 256
0

2000

4000

6000

8000

10000

12000

14000

16000

Residue Pair Minimization Performance
235 atom pairs

Concurrent Minimizations

M
in

im
iz

at
io

ns
 p

e
r

S
ec

on
d

1 2 4 8 16 32 64 128 256
0

10

20

30

40

50

60

Large Conformation Minimization Performance
304,623 atom pairs

Concurrent Minimizations

M
in

im
iz

at
io

ns
 p

e
r

S
ec

on
d

CPU: AMD A8-6600K

GPU: Nvidia GeForce GTX 1070

Desktop-class hardware:

GPU: Nvidia GeForce GTX 1050

Laptop-class hardware:

CPU: 2x Intel Xeon E5-2640 v4

GPU: Nvidia Tesla P100

Server-class hardware:

GPU: 2x Nvidia GeForce GTX 1080 GPU: 4x Nvidia Tesla P100

Figure 3
Hallen, Martin, et al.

32

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

import osprey

osprey.start()

define a strand

strand = osprey.Strand(’1CC8.ss.pdb’)

strand.flexibility[’A2’].setLibraryRotamers(’ALA’, ’GLY’)

strand.flexibility[’A3’].setLibraryRotamers(osprey.WILD TYPE, ’VAL’)

strand.flexibility[’A4’].setLibraryRotamers(osprey.WILD TYPE)

make the conf space

confSpace = osprey.ConfSpace(strand)

choose a forcefield

ffparams = osprey.ForcefieldParams()

how should we compute energies of molecules?

ecalc = osprey.EnergyCalculator(confSpace, ffparams)

how should we define energies of conformations?

confEcalc = osprey.ConfEnergyCalculator(confSpace, ecalc)

how should confs be ordered and searched?

emat = osprey.EnergyMatrix(confEcalc)

astar = osprey.AStarMPLP(emat, confSpace)

find the best sequence and rotamers

gmec = osprey.GMECFinder(astar, confEcalc).find()

Figure 4
Hallen, Martin, et al.

33

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

import osprey

osprey.start()

choose a forcefield

ffparams = osprey.ForcefieldParams()

read a PDB file for molecular info

mol = osprey.readPdb(’2RL0.min.reduce.pdb’)

make sure all strands share the same template library (including wild−type rotamers)

templateLib = osprey.TemplateLibrary(ffparams.forcefld, moleculesForWildTypeRotamers=[mol])

define the protein strand

protein = osprey.Strand(mol, templateLib=templateLib, residues=[’G648’, ’G654’])

protein.flexibility[’G649’].setLibraryRotamers(osprey.WILD TYPE, ’TYR’, ’ALA’, ’VAL’, ’ILE’, ’LEU’) \

.addWildTypeRotamers().setContinuous()

for res in [’G650’,’G651’,’G654’]:

protein.flexibility[res].setLibraryRotamers(osprey.WILD TYPE).addWildTypeRotamers().setContinuous()

define the ligand strand

ligand = osprey.Strand(mol, templateLib=templateLib, residues=[’A155’, ’A194’])

for res in [’A156’,’A172’,’A192’,’A193’]:

ligand.flexibility[’A156’].setLibraryRotamers(osprey.WILD TYPE).addWildTypeRotamers().setContinuous()

make the conf space for the protein, ligand, and complex

proteinConfSpace = osprey.ConfSpace(protein)

ligandConfSpace = osprey.ConfSpace(ligand)

complexConfSpace = osprey.ConfSpace([protein, ligand])

how should we compute energies of molecules?

(give the complex conf space to the ecalc since it knows about all the templates and degrees of freedom)

parallelism = osprey.Parallelism(cpuCores=4)

minimizingEcalc = osprey.EnergyCalculator(complexConfSpace, ffparams, parallelism=parallelism, isMinimizing=True)

BBK∗ needs a rigid energy calculator too, for multi−sequence bounds on K∗

rigidEcalc = osprey.SharedEnergyCalculator(minimizingEcalc, isMinimizing=False)

how should we define energies of conformations?

def confEcalcFactory(confSpace, ecalc):

eref = osprey.ReferenceEnergies(confSpace, ecalc)

return osprey.ConfEnergyCalculator(confSpace, ecalc, referenceEnergies=eref)

how should confs be ordered and searched?

def astarFactory(emat, rcs):

return osprey.AStarMPLP(emat, rcs, numIterations=5)

run K∗

bbkstar = osprey.BBKStar(proteinConfSpace, ligandConfSpace, complexConfSpace, rigidEcalc, minimizingEcalc, confEcalcFactory,

astarFactory, numBestSequences=2, epsilon=0.99, energyMatrixCachePattern=’emat.∗.dat’,

writeSequencesToConsole=True, writeSequencesToFile=’bbkstar.results.tsv’

)

scoredSequences = bbkstar.run()

use results

for scoredSequence in scoredSequences:

print("result:")

print("\tsequence: %s" % scoredSequence.sequence)

print("\tscore: %s" % scoredSequence.score)

34

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

Figure 5
Hallen, Martin, et al.

35

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

Figure 6
Hallen, Martin, et al.

Figure 7
Hallen, Martin, et al.

36

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

Figure 8
Hallen, Martin, et al.

Figure 9
Hallen, Martin, et al.

37

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

Figure 10
Hallen, Martin, et al.

38

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

Table 1: Details of 45 protein design test cases with continuous flexibility run on both osprey

2.2 and osprey 3.0. Test cases primarily adapted from Ref. 17. a Y indicates a partition

function calculation (a subroutine of the K∗ algorithm2,24), which analyzes a thermodynamic

ensemble of conformations; N indicates calculation of the single global minimum-energy

conformation (GMEC). DNF: Did not finish.

Protein name PDB

code

PF?a Mutable

residue

count

OSPREY

3.0 time

(min)

OSPREY

2.2 time

(min)

Speedup

Scorpion toxin 1AHO N 7 0.37 2.75 7.38

Scorpion toxin 1AHO N 9 0.64 6.60 10.35

Scorpion toxin 1AHO N 12 194.71 1608.16 8.26

Scorpion toxin 1AHO N 14 287.87 2075.04 7.21

Cytochrome c553 1C75 N 6 0.28 4.30 15.19

Atx1 metallochaperone 1CC8 N 7 2.56 85.41 33.41

Atx1 metallochaperone 1CC8 Y 7 67.12 DNF >364.72†

Bucandin 1F94 N 7 0.40 4.82 12.07

Nonspecific lipid-transfer

protein

1FK5 N 6 0.03 0.78 27.34

Transcription factor IIF 1I27 N 7 1.58 385.56 244.4

Ferredoxin 1IQZ N 9 0.16 2.45 14.92

Trp repressor 1JHG N 7 2.88 22.50 7.8

Fructose-6-phosphate

aldolase

1L6W N 6 0.23 75.97 336.22

Cephalosporin C deacety-

lase

1L7A N 8 4.09 928.27 226.93

PA-I lectin 1L7L N 6 0.12 6.26 52.85

Phosphoserine phos-

phatase

1L7M N 7 1.13 249.33 220.11

alpha-D-glucuronidase 1L8N N 5 0.13 480.13 3701.36

Dachshund 1L8R N 8 0.19 1.41 7.62
† osprey 2.2 did not finish within the time limit, so we report a lower bound on the speedup:

the ratio of the time limit (17 days) to the osprey 3.0 runtime. (Table continues on next

page) 39

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

Protein name PDB

code

PF?a Mutable

residue

count

OSPREY

3.0 time

(min)

OSPREY

2.2 time

(min)

Speedup

Granulysin 1L9L N 7 0.06 1.24 20.8

gamma-glutamyl hydrolase 1L9X N 5 0.03 92.13 3507.46

Ferritin 1LB3 N 5 0.42 23.42 55.2

Cytochrome c 1M1Q N 8 1.68 357.59 213.09

Hypothetical protein YciI 1MWQ N 8 0.13 3.69 28.13

ygfY 1X6I Y 14 604.71 DNF >40.48†

ADAR1 ZB domain 1XMK Y 15 2172.23 DNF >11.27†

Histidine triad protein 2CS7 Y 14 2816.56 DNF >8.69†

Transcriptional regulator

AhrC

2P5K Y 11 1.18 DNF >20811.61†

Scytovirin 2QSK N 10 10.47 164.49 15.71

Scytovirin 2QSK Y 10 2.54 9267.19 3651.9

Hemolysin 2R2Z Y 12 42.02 DNF >582.58†

Putative monooxygenase 2RIL N 8 18.16 15.89 0.87

Putative monooxygenase 2RIL Y 8 0.23 104.77 463.18

alpha-crystallin 2WJ5 Y 15 226.32 DNF >108.17†

Cytochrome c555 2ZXY Y 14 381.39 DNF >64.19†

High-potential iron-sulfur

protein

3A38 Y 13 65.15 DNF >375.72†

ClpS protease adaptor 3DNJ Y 12 65.04 DNF >376.4†

Putative monooxygenase 3FGV Y 10 1.94 DNF >12591.94†

Protein G 3FIL Y 14 303.81 DNF >80.58†

Viral capsid 3G21 Y 15 188.53 DNF >129.85†

dpy-30-like protein 3G36 N 4 1.55 9.97 6.43

dpy-30-like protein 3G36 Y 4 0.05 2.44 47.07

Hfq protein 3HFO Y 10 6.81 DNF >3594.09†

Cold shock protein 3I2Z Y 14 20.84 DNF >1174.8†

HPI integrase 3JTZ Y 14 859.69 DNF >28.48†

PSD-95 PDZ3 domain 1TP5 N 6 0.12 49.50 424.29

40

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

Mutation(s) Experimental

Ranking

Computational

Ranking

B
a
rn

a
se
:B

a
rs
ta
r,

P
D
B

ID
:
1
X
1
U

D39A 1 1

H102A 2 3

R87A 3 5

K27A 4 8

R59A 5 2

D35A 6 4

Y29A 7 7

E73A 8 12

E76A 9 6

W35F 10 11

E60A 11 10

Y29F 12 9

ρ = 0.755

IL
-2
:I
L
-2
R
α
,
P
D
B

ID
:
2
B
5
I

K38E, S39D 1.5 1

R35T, R36S 1.5 2

R35K, R36K 3 4

E1K, D4K 4 7

E29R 5 5

L2A 6 16

D4K 7.5 9

S39A, S41A 7.5 12

E1K 9 11

H120A 10 10

E29A 11 6

L42S, Y43L 12 3

E1Q 13 14

N27A 14 15

K38T 15 8

D4N 16 13

ρ = 0.554

C
y
tc
:C

y
tc

p
er
o
x
id
a
se
,
P
D
B

ID
:
2
P
C
B

E290N 1 2

D34N 2 4

A193F 3 1

E35Q 4 3

E32Q 5 5

ρ = 0.500

IF
N
α
2
:i
fn
a
r2
,
P
D
B

ID
:
3
S
9
D

R33Q 1 1

R33A 2 2

R33K 3 5

L30A 4 6

R149A 5 4

L30V 6 9

A148A 7 10

A145G 8 14

A145M 9 3

L15A 10 13

L153A 11 12

L26A 12 7

S152A 13 16

F27A 14 8

S25A 15 18

D35A 16 17

R22A 17 11

M16A 18 15

N156A 19 19

ρ = 0.795

Across All ρ = 0.762

Table 2: Comparison of osprey predictions to experimental results for mutations

in four protein systems. Allowed mutations for each system are listed along with their

corresponding rankings from experimental measurements62–66 vs. computational predictions

by K∗ from osprey 3.0. The mutations highlighted in blue are shown in detail in Figure

9. A Spearman’s ρ value is calculated for each system and shown here. The “Across All”

value is calculated by ranking each system individually and then calculating the Spearman’s

ρ across all of the designs.

41

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
The copyright holder for this preprint (which was notthis version posted April 23, 2018. ; https://doi.org/10.1101/306324doi: bioRxiv preprint

https://doi.org/10.1101/306324

