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Abstract 

Background: Mendelian Randomisation (MR) is a powerful tool in epidemiology which can be used 

to estimate the causal effect of an exposure on an outcome in the presence of unobserved 

confounding, by utilising genetic variants that are instrumental variables (IVs) for the exposure. This 

has been extended to Multivariable MR (MVMR) to estimate the effect of two or more exposures on 

an outcome.  

Methods/Results: We use simulations and theory to clarify the interpretation of estimated effects in 

a MVMR analysis under a range of underlying scenarios, where a secondary exposure acts variously 

as a confounder, a mediator, a pleiotropic pathway and a collider. We then describe how instrument 

strength and validity can be assessed for an MVMR analysis in the single sample setting, and develop 

tests to assess these assumptions in the popular two-sample summary data setting.  We illustrate 

our methods using data from UK biobank to estimate the effect of education and cognitive ability on 

body mass index.  

Conclusion: MVMR analysis consistently estimates the effect of an exposure, or exposures, of 

interest and provides a powerful tool for determining causal effects in a wide range of scenarios with 

either individual or summary level data. 

 

Keywords: Mendelian Randomisation, Two-sample Mendelian Randomisation, Multivariable 

Mendelian Randomisation, Cochran’s Q statistic, Instrument Strength, Instrument Validity.  
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Introduction 

In many scenarios where we wish to estimate the causal effect of an exposure X on an outcome Y, a 

conventional regression analysis can be misleading, as the observational association between the 

two variables could easily be affected by unobserved confounding.  If genetic variants – usually 

single nucleotide polymorphisms (SNPs) - are available which reliably predict the exposure variable 

but do not have an effect on the outcome through any other pathway, then they are valid 

instrumental variables (IVs) and can be used in a Mendelian randomization (MR) analysis to obtain 

unconfounded estimates of the effect of the exposure on the outcome, as illustrated in Figure 1. 

 

 

Key Messages: 

• Multivariable Mendelian randomisation (MVMR) has been introduced as a technique for 

estimating the causal effect of multiple exposure variables on a health outcome with 

two-sample summary data.  We build on this work by clarifying how MVMR should be 

applied with individual level data and two-sample summary data, in order to conform 

with established econometric theory for multivariable two-stage least squares analysis.  

• Instrument strength and validity should be assessed in the single sample MVMR setting 

using the Sanderson-Windmeijer F statistic and the Sargan test. 

• We develop a generalised version of Cochran’s Q statistic to test for instrument strength 

and validity in the two-sample summary data setting. However, these tests require 

knowledge of the covariance between the effects of the genetic variants on each 

exposure.  

• If the covariance between the effect of the genetic variants on each exposure can be 

either: (i) estimated from individual data; (ii) assumed to be zero, or; (ii) fixed at zero by 

using non-overlapping samples for each exposure GWAS, then our proposed summary 

data Q statistics will give a good approximation of the true (individual level data) result. 

• The causal effect estimated by Mendelian Randomisation and Multivariable Mendelian 

Randomisation can differ.MR estimates the total causal effect of the exposure on the 

outcome, whereas MVMR estimates the direct causal effect of each exposure on the 

outcome.  
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Figure 1: Hypothesised relationship between genetic variant ��, modifiable exposure � and outcome � in the presence of an 

unobserved confounder, denoted by �. The line from  �� to � represents instrumental variable assumption IV1. Dashed lines 

represent potential violations of the instrumental variable assumptions IV2 and IV3. 

 

In many scenarios we may wish to estimate the effect of multiple exposures on the outcome using 

MR analysis, for example; because we believe these exposures to be closely related or because we 

believe one exposure may mediate the relationship between the exposure of primary interest and 

the outcome. This can be done with Multivariable MR (MVMR) where a set of genetic variants is 

used to predict a set of exposure variables. However, careful consideration needs to be given in such 

an analysis to exactly what relationship is being estimated and how the IV assumptions required for 

MR analysis apply to a MVMR analysis. In this paper we build on previous work developing MVMR 

methods with two-sample summary level data (1, 2) and fully explain how MVMR can be 

implemented with either individual level or two-sample summary level data, exactly what is being 

estimated in a MVMR analysis and how the IV assumptions required for MR analysis translate to 

MVMR analysis. We describe existing tests that can be used to test the IV assumptions with 

individual level data and add to the previous literature on MVMR by developing new methods to 

identify potential violations of the IV assumptions with two-sample summary level data. 

Mendelian Randomisation 

To state the IV assumptions more formally with reference to Figure 1: For a single SNP ��  to be a 

valid IV it must be:  

IV1: associated with the exposure  � (the “relevance” assumption);  

IV2: independent of the outcome � given the exposure �, (the “exclusion restriction”); and  

IV3: independent of all (observed or unobserved) confounders of � and �, as represented by U (the 

“exchangeability” assumption);   

IV2 

IV3 
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If IV1-IV3 are satisfied for a set of SNPs � � ��� , … , ��	, then traditional IV methods can be 

employed to reliably test for a causal effect of � on � using G, � and � alone, without any attempt 

to adjust for 
 at all. For example, suppose the variables �, �, 
 and � are linked via the following 

models: 

  � �  �� � �� � 
 � 
�# �1	  

  � � �� � �� � 
 �  
�  #�2	  

Here 
�  and 
� represent independent error terms, � represents the parameter vector ��, … , ��, 

and � is the true causal effect of � on � we wish to estimate. We will assume throughout this paper 

that ��� , … , ��	 are mutually uncorrelated (by design). A naïve regression of � on � will not yield a 

consistent estimate for �  because the explanatory variable in the regression, �, is correlated 

with 
. However, two-stage least squares (TSLS) estimation, performed by regressing � instead on �� 

- the predicted value of � from a regression of � on � – will yield a consistent estimate for �, 

because �� is independent of 
.(3, 4) 

TSLS relies on individual level data, but the sharing of such data is often impractical. In recent years it 

has become much more common to attempt MR analyses using summary data estimates of SNP-

exposure and SNP-outcome associations gleaned from two independent but homogeneous study 

populations. The SNPs in question are usually identified as genome-wide significant `hits' in distinct 

genomic regions via a genome wide association study (GWAS) for the exposure. This is referred to as 

`two-sample summary data MR’. 

Let �� and Γ� represent the true association for SNP �� in � with the exposure and the outcome 

respectively. From models (1) and (2) we can link the �’th SNP outcome association to the �’th SNP 

exposure association via the model 

Γ� �  ���#�3	  

It follows that the Wald estimator ��� � ���

	
�
 , is a consistent estimate for �. (5, 6) Where Γ�� and ��� are 

estimates from OLS estimation of; 

� �  Γ� � Γ��� � ��,� 

And 

� �  �� � ���� � �
,� 
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When the SNPs are uncorrelated, taking an inverse variance weighted (IVW) average of the ratio 

estimates will yield an overall estimate for �, �����, that closely approximates the TSLS estimate that 

would have been obtained if individual level data were available.(7) 

Detecting `weak’ instruments and `invalid’ instruments in MR 

If assumptions IV1 – IV3 are fulfilled for all SNPs in �, and linear models (1)-(2) hold, then either a 

TSLS or IVW analysis (with uncorrelated SNPs) will consistently estimate the causal effect.(8-10) In 

order to satisfy IV1, the SNPs in � should strongly predict the exposure �. This can be quantified 

using the F-statistic from the first stage regression of � on �. Using instruments that are jointly only 

weakly associated with the exposure (i.e. which have a small F-statistic) will result in weak 

instrument bias.(11)   

Secondly, SNPs should not exert a direct effect on �, i.e. they should not affect � other than 

through �. Any such effect would represent a violation of IV2. Horizontal pleiotropy, where the 

genetic variants used as instruments have an effect on the outcome that is not through the exposure 

of interest is a violation of the exclusion restriction and could easily be responsible for such a 

violation in the MR setting.(10, 12-14) The SNPs should also not be confounded by any variables that 

also influence the outcome. Any confounding of this nature would be a violation of assumption IV3.  

A violation of either assumptions IV2 or IV3 is likely to lead to bias and potentially erroneous 

conclusions in both the TSLS and IVW estimates.(4) The presence of potential pleiotropic effects can 

be evaluated using the Sargan test(15, 16) using individual level data and Cochran’s Q statistic(17-19) 

using summary data.  The causes and consequences of pleiotropy in MR are described in detail 

elsewhere.(1, 9, 10, 13, 14, 20) 

In addition to assumptions IV1 – IV3 there are additional assumptions and considerations that apply 

to all instrumental variable estimation, including MR and MVMR. These included the assumptions of 

linearity and homogeneity which are in many settings required for obtaining a point estimate of the 

causal effect. However, if this assumption is violated the causal null will still be respected and it will 

still be possible to identify whether the exposures are causally associated with the outcome.(21-23)  

Throughout this analysis we assume linearity of the relationship between the exposures and the 

outcome, however if this assumption did not hold the same issues would apply to MVMR as apply in 

MR analysis which are discussed in detail elsewhere.(24, 25)  

Multivariable Mendelian randomization 

MR can be extended to estimate the effect of multiple exposure variables on an outcome(1) and is 

particularly useful in cases where a standard MR analysis would fail due to violation of assumptions 
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IV2-3. It is also useful in cases where two or more correlated exposures are of interest and may help 

to understand if both exposures exert a causal effect on the outcome, or if one in fact mediates the 

effect of the other on the outcome(26, 27). `Multivariable MR’ (MVMR) requires a set of SNPs, �, 

which are associated with the exposure variables but do not affect the outcome other than through 

these variables.  In the same way as standard (single variable) MR, these SNPs can be used to predict 

each of the exposure variables in the model and these predicted values can be used to estimate the 

effect of the exposures on the outcome in a multivariable regression analysis. The setup for MVMR is 

illustrated for an analysis involving two exposure variables (�� and ��) in Figure 2.  The arrows 

linking �� with ��, and �� with � have been left bi-directional to acknowledge the fact that many 

underlying causal relationships are possible. That is, they could point in either direction or be 

completely absent. Indeed, many of these options will be subsequently explored. 

 

 

 

 

 

 

 

Figure 2: Hypothesised relationship between genetic variant(s) G, modifiable exposures,  ��, �� and outcome Y in the 

presence of unobserved confounder U. Bi-directional arrows represent possible violations of the IV assumptions induced by 

�� that are explored in this paper. 

Although it is the simplest possible MVMR setting, two exposures suffice to illustrate all the 

scenarios and ideas described in this paper.  From Figure 2, we can write the following general 

model linking �, ��, �� and 
: 

 � �  �� � ���� � ���� � 
 �  
� #�4	  

For example, suppose that   �� and �� are in fact independent given G (so there is no arrow in Figure 

2 between �� and ��)  and �� affects � independently of �� (so that there is a direct arrow from �� 

to �). If true, then models (5) and (6) for �� and �� would, jointly with (4), describe the data: 

�� � ��� � ��� � 
 � 
��
#�5	  

  �� � ��� � ��� � 
 � 
��
# �6	  

�� 

� �� � 
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The purpose of an MVMR analysis is to determine the direct causal effect of both  ��  and �� on the 

outcome �, when conditioned on one another. Without loss of generality we will focus primarily on 

the effect of �� (and the parameter ��	 with the direct effect of �� on � denoted by �� being of 

secondary importance.   

With individual level data TSLS can be implemented with multiple exposure variables, regressing 

each exposure on the full set of SNPs to yield genetically predicted estimates for �� and ��. The 

outcome Y can then be regressed on these predicted estimates for �� and �� jointly to obtain 

consistent estimates of  �� and ��. This can be conducted by simply using the ivreg2 command in 

Stata or ivpack in R.  

In the two sample summary data setting, Burgess and colleagues(1, 2) show how MVMR can be 

implemented using summary data estimates of the association between SNP � (out of �) and: the 

outcome,  Γ��; exposure ��,  ����;  and exposure ��, ����, by fitting the following model:                                                          

 Γ�� � β����,� �  β����,� � ��   #�7	  

This is a straightforward generalization of the IVW estimation framework. 

Important considerations 

To conduct an MVMR analysis it is necessary to have at least as many genetic instruments as there 

are exposures to be instrumented in the model, this is true regardless of whether single sample or 

two sample summary data are used. It is possible to include genetic instruments that are associated 

with more than one exposure variable, providing all of those exposure variables are included in the 

estimation. Instruments must not, however, exert a direct effect on the outcome, except through 

the included exposures.  There is no benefit to excluding instruments that are only strongly 

associated with one exposure, as this will lead to a loss of precision in the estimates obtained. This 

also avoids any potential bias that could arise due to selecting instruments based on their 

strength.(11)
 

 

What quantities do MR and MVMR estimate?  

MR and MVMR target different causal effects of the exposure on the outcome. In general, MR 

estimates the total effect of the exposure on the outcome, whereas MVMR estimates the direct 

effect of each exposure on the outcome.  

For example, if Figure 3 describes the truth, the total effect of exposure �� on the outcome is the 

effect of �� on the outcome � directly plus the effect of �� on � via ��, and is equal to �� � ���. 

The direct effect of the exposure ��on the outcome � is the effect �� has on � not via any other 

exposure variables included, and so is equal to ��. Whether or not these effects differ in general 
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depends on the underlying relationship between the exposures and between each exposure and the 

outcome. If there is no effect of �� on �� or of �� on �, i.e. either � or �� is equal to zero, these 

effects will be the same. 

 

 

 

 

 

 

Figure 3. Illustration of the direct effect and total effect of �� on the outcome �. 

To highlight the potential differences between MR and MVMR, and the potential benefits of MVMR, 

we now consider the application of MVMR to four different scenarios which are commonly 

encountered, or at least suspected, in epidemiological studies 

. Each of these scenarios represents a situation where conventional univariable MR would produce 

consistent results, given the correct set of SNPs, but where MVMR may estimate a different causal 

effect and provide benefits when in fact some of the SNPs may have effects on more than one 

exposure (and thus making them invalid instruments for a univariable MR analysis).   In the first 

scenario �� is a confounder of the relationship between �� and �. That is, there is a direct causal 

path from �� to �� and from �� to �. Along with model (4), model (6) above and (8) below underlie 

the individual level data: 

�� �  ��� � ���� � 
 �  
��
 #�8	  

In the second scenario �� is a collider of the relationship between �� and �. That is, there is a direct 

causal path from �� to �� and from � to ��. When an exposure and outcome both influence another 

variable, controlling for that variable in  conventional analysis will introduce bias into the observed 

association between the exposure and the outcome.(28) This form of bias can also be understood as 

a form of selection bias which would occur if inclusion in the sample was dependent on the value of 

��.(29)  Along with model (4) (with �� set to 0), model (5) above and (9) below are used to generate 

the individual level data:        

 �� �  ��� � ���� � "�� � 
 �  
��
#�9	  

�� 

�� 

� �� � 


 

�� 

�� 
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In the third scenario  is an independent pleiotropic pathway from  to . This corresponds to the 

scenario first described in the previous section. Along with model (4), models (5) and (6) above are 

used to generate the individual level data.  

In the fourth scenario  is a mediator of the relationship between  and .  Along with model (4), 

model (5) above and (10) below are used to generate the individual level data: 

 

Each of these scenarios are shown in Figure. 4.  

 

 

Figure 4: Causal diagrams for scenarios 1-4. Models referred to are the equations above that would give the same 

relationship between the instruments, exposures and outcome. G1, G2 and G12 are subsets of the full set of  SNPs G  that 

affect ,  and both exposures respectively.  
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Simulations 

Datasets of 10,000 individuals are simulated under all four scenarios discussed using � � 30 genetic 

variants. The variants are assumed to be uncorrelated but, for added realism and complexity, are 

further subdivided into three categories: 

• 10 SNPs that only predict ��: �� (with a non-zero �� element but zero �� element); 

• 10 SNPs that only predict ��: �� (with a non-zero �� element but zero �� element); 

• 10 SNPs that predict �� and ��: ��� (with non-zero �� and �� elements). 

� therefore represents the complete vector���, ��, ���	. For each scenario the causal parameter of 

interest, ��, is set to 1.  

For each scenario, we estimate the causal effect% �� and �� of �� and �� on �, using a range of 

estimation methods. With single sample individual level data, we implemented: 

• OLS, both for �� and �� individually (i.e. univariable regressions) and together (i.e. a 

multivariable regression);  

• MR for �� and �� individually, each time using all the available SNPs as instruments,  

• Multivariable MR including both �� and �� in the same analysis.  

• MR  for �� and �� individually using only the SNPs that are valid instruments for that 

exposure (�� and �� respectively)  

With two sample summary level data, we implemented: 

• MR for �� and �� individually using all of the instruments available; 

• MVMR including both �� and ��; 

• MR for �� and �� individually using only the SNPs that are valid instruments for the 

exposure. 

All estimation methods are described in Table S.1. In all of the scenarios considered the exposure 

variables are strongly predicted by the instruments and the instruments have no additional 

pleiotropic effects on the outcome, other than through the exposures included in the model.  

Results 

Focusing our attention on exposure ��, the results from these simulations show that MVMR always 

gives an unbiased estimate of the direct effect of �� on the outcome.  In the hypothetical case where 

only the valid SNPs for ��  (��) are used as instruments in a single variable MR the estimated effect 

of �� on � is the total effect of a change in �� on the outcome. Whether the direct or total effect is 

of more interest to practitioners will depend on the particular situation being considered. In many of 
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the scenarios explored the direct effect equals the total causal effect, however when �� is a 

mediator of the relationship between �� and the outcome, the direct and total effects of �� may be 

substantially different. In this scenario MVMR is not a form of mediation analysis but instead 

estimates the direct effect of the exposure on the outcome that doesn’t act via the mediator. The 

results from the simulations are given in Table S.2 and a summary table of what is estimated by each 

method in each scenario is given in Table 1.  

Table 1 – Summary of estimated effects for &� 

 Scenario/which estimand is targeted? 

Method I 2 3 4 

Individual level data     

OLS x x x x 

Univariate MR x Direct/total x x 

MVMR Direct/total Direct/total Direct/total Direct 

Univariate MR – subset of SNPS Direct/total Direct/total Direct/total Total 

Two-sample summary data analysis     

Univariate MR x Direct/total x x 

MVMR Direct/total Direct/total Direct/total Direct 

Univariate MR – subset of SNPS Direct/total Direct/total Direct/total Total 
When each method of estimation estimates the direct and total effects for �� in each of the scenarios considered. 

An ‘x’ represents a biased method of estimation 

When conducting the univariable MR estimation with a subset of the SNPs in � we have, for 

illustration, assumed `oracle’ knowledge on which SNPs are valid instruments for each exposure. 

This will, of course, not be possible in practice For example, in scenario 1 if we select SNPs because 

they are associated with a ��  we will select the entire set G, but this will include the subset ���, ���) 

which exert pleiotropic effects on the outcome Y and thus bias the analysis.  Table 1 indeed shows 

that when all SNPs in G are used for a univariable MR analysis, it will deliver a biased and 

inconsistent estimate of the total causal effect of �� on Y in scenarios 1, 3 and 4. MVMR, by contrast 

will then provide a consistent estimator of the direct effect of the exposure on the outcome, the 

consistency of IV analysis under a range of scenarios that include those discussed here has been 

proved elsewhere. (3, 4, 30)  These simulation results also highlight that MVMR does not introduce 

bias into the results when �� is a collider of the relationship between �� and �. This is because the 

predicted value of �� , ��� which is not dependent on the outcome, is used in the analysis. Of course, 

adjusting directly for  ��, rather than ���, would bias the analysis. This is an important benefit of 

MVMR.  

Testing the assumptions of MVMR. 

In the simulations above we assumed, for clarity, that the instruments were both strong and valid for 

the purposes of an MVMR analysis.  However, violation of these assumptions can give misleading 
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results in practice, so it is necessary to test these assumptions. We now describe how instrument 

strength and validity can be scrutinised for an MVMR analysis in the individual and two sample 

summary data settings. 

In addition to assumptions IV1 – IV3 there are additional assumptions and considerations that apply 

to all instrumental variable estimation, including MR and MVMR. These included the assumptions of 

linearity and homogeneity which is in many settings required for obtaining a point estimate of the 

causal effect. Increasing the number of exposures in two sample MVMR will make this a stronger 

assumption due to the increased number of SNPs and exposures. When implementing MVMR 

analysis this limitation should be considered and weighed against the benefits when deciding how 

many exposures to include in the analysis. Another additional assumption, particularly relevant to 

two-sample MVMR analysis is that all data are drawn from the same underlying population. 

Throughout our analysis we assume this to hold. The requirement for and issues surrounding this 

assumption are detailed elsewhere.(31, 32)  

 

The Individual level data MVMR setting. 

Instrument strength 

In any MR analysis the set of genetic instruments G must be strong in order to avoid weak 

instrument bias (assumption IV1). In single variable MR analysis weak instruments will bias the 

estimated results in the direction of the observational estimate, however in MVMR analysis it is not 

clear what direction the bias of the estimation result for each exposure will take as a result of weak 

instruments.(33)   It is therefore important to test the strength of the instruments in any MVMR 

analysis, however, the assessment of instrument strength is more complicated. It is necessary for G 

to strongly predict both �� and �� (as quantified by strong F-statistics), but not sufficient. In 

addition, G must also jointly predict both �� and ��.  That is, once the secondary exposure �� has 

been predicted using �, � must still be able to predict the primary exposure ��. Figure 5 illustrates 

three scenarios (A – C) where this may not be the case even when both exposures appear to be 

strongly predicted individually by � and a fourth scenario (D) where both exposures are strongly 

predicted.   

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 1, 2018. ; https://doi.org/10.1101/306209doi: bioRxiv preprint 

https://doi.org/10.1101/306209
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 5 – Potential setups of instruments and exposures. In A – B the exposures are individually strongly predicted but are 

not jointly predicted. In C the exposures are individually strongly predicted but weakly predicted in a joint sense. . In D; the 

exposures are individually and jointly strongly predicted. Specifically: A: G predicts  which is a predictor of . B:  G 

predicts  which is a predictor of . C: G predicts  and  which are highly correlated. D: G predicts  and  which 

are uncorrelated (given G). 

 

Joint strength can be assessed using the Sanderson-Windmeijer conditional F statistic(33), , that is 

available as part of ivreg2 in Stata.  is calculated in the following manner: 

 

•  is regressed on the full set of genetic instruments (and any control variables included in 

the estimation) and the predicted value of ,  is calculated; 

•   is then regressed on  (and any control variables) to yield the TSLS estimate  and the 

residual error terms    are saved;  

• The errors are then regressed on the full set of instruments (and any control variables). The 

conditional F statistic is obtained as the F statistic for the effect of the instruments in this 

regression; 

• The conditional F statistic must be adjusted for a degrees of freedom correction, and can be 

compared to the conventional weak instrument critical values.(34) 

For multiple exposure variables the first step is repeated for each of the exposures and all of these 

predicted values are included in the regression in the second step. This F-statistic can be compared 

to the standard critical values for weak instruments, therefore if the conditional F statistic for all of 

the exposure variables are larger than the rule of thumb value of 10 then the instruments can be 

considered adequately strong for the purposes of MVMR.  
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Instrument validity 

If no pleiotropy exists amongst the genetic variants then each one should identify the same causal 

parameter. This can be evaluated using the Sargan test.(15) Specifically, it tests whether the 

instruments can explain any of the variation in the outcomes that has not been explained by the 

value of the exposure variables. It is calculated by the following steps; 

• Regress the outcome Y on the exposures using TSLS to yield causal estimates ��� and ���   

• Calculate the residual error term � ' ������ � ����� 	  and then regress the residuals on 

the full set of instruments. The Sargan test is then the sample size times the R2 of this 

regression. 

• Evaluating with the Sargan statistic with respect to a (� distribution with degrees of 

freedom equal to the number of instruments minus the number of predicted exposure 

variables  (i.e. the null hypothesis that all of the instruments are valid).(4)  

This test is available as part of the ivreg2 command in Stata, and the ivpack package in R.  In order to 

conduct this test the model must be over-identified, i.e. there must be more instruments than 

exposure variables (so that the degrees of freedom of the (� test is positive).(35) This `global’ test 

does not give any indication as to which of the genetic instruments are invalid if the test rejects the 

null. However, alternative methods of estimation can be used to estimate the causal effects as long 

as at least 50% of the SNPs do not have a pleiotropic effect on the outcome.(36, 37)   

The two-sample summary data setting 

Assessment of instrument validity and strength is apparently yet to be described in the two sample 

summary data setting that is relevant to the majority of contemporary Mendelian randomization 

studies, and consequently it is not implemented in any standard software. We therefore describe 

the necessary procedures in fine detail so that they can be confidently implemented by others. 

Assessing instrument strength: heterogeneity is `good’ 

Suppose that all of the genetic instruments predict both exposure variables, so that models (4), (5) 

and (6) hold, but there are at least two elements of ��and �� in (5) and (6) which differ. If true, then 

the model will be at least exactly identified. That is, there will be at least as many independent 

genetic instruments (i.e. 2) as there are exposure variables to be instrumented. This implies that 

model (11): 

 �� � )� � )�� � *�   # �11	  

�� � �� � ��� � *�, 
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must be over-identified (or equivalently miss-specified), because ��  cannot then be simply a scalar 

multiple, ),  of ��  . Therefore, we can test for under-identification in our estimation model by 

testing for over-identification in model (11) using the Sargan test as described above. The 

equivalence of this test with the Sanderson-Windmeijer approach has been shown formally 

elsewhere (38) .  The null of this Sargan test is that of underidentification. 

Extending this to two-sample analysis;  ���,� �   )���,� � +�,� is   analogous to equation (11) estimated 

by IV using individual level data with  ��� predicted using G, therefore it should be possible to test for 

under-identification in two-sample MVMR estimation by testing for overidentification in the model 

 ���,� �   )���,� �  
.  We recommend that this test is conducted using a modified version of 

Cochran’s Q statistic, as shown in equation (12) below: 

,��
� ∑ . �

	���
� / 0���� ' )�����1�


��� .                                                      (12) 

The variance term for ,��
, 2���

� �  2��
� � )��2��

� '  2)�2���,  where 2��
�   is the variance of ���,� , 2��

�  is 

the variance of ���,�, 2��� is the covariance of ���,� and  ���,�, and )� is an efficient estimator for )  

Estimation of the 2���
� terms in practice depends on the type of model used to obtain ���,� and �3 �,�. 

When each exposure is regressed on the entire set of SNPs simultaneously (i.e. via multivariable 

regressions with an intercept):  

2��
� �  ����	��


�

4 5 
���
�  

�

���

, 2��
� �  ����	��


�

4 5 
���
� , and  2��� �  ����	��


�

4 5 
���  
���  
�

���

�

���

 

Where 4 is the number of subjects, and �
��� , 
���	 are the estimated residuals from these 

regressions. If ���� and ����  are obtained separately (i.e. via univariable regressions with an 

intercept), then the error terms are obtained from the equivalent expressions: 

2��
� �  0��

���1
�

4 5 
����
�  

�

���

, 2��
� �  0��

���1
�

4 5 
����
� , and  2��� �  0��

���1
�

4 5 
����  
����  
�

���

�

���

 

Respectively, 
����  and 
����   are the estimated residuals from the j’th regression. 

Under the null hypothesis that the instruments do not contain enough information to predict both 

exposure variables, ,��
 will be asymptotically (

�

�  distributed when ) is estimated using an 

asymptotically efficient estimator, where � is the number of instruments. Rejection of the null 

hypothesis (i.e. detection of `heterogeneity’) indicates that the model we wish to estimate is 

identified for �� .   
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All the above can be repeated for �� by swapping the roles of  ���and  ���  and calculating an 

equivalent , statistic for ��,  ,��
 say.  If both ,��

 and ,��
 are larger than the chosen critical value 

then the null hypothesis of under-identification can be rejected and the test suggests that the 

instruments can predict variation in both exposures. Table 2 shows the distribution of ,��
 and 

,��
for four different scenarios with two exposure variables and  � � 100 SNPs. �� and �� are both 

functions of a set of SNPs and independent confounding variables. In the first simulation the model 

has been set up as given in Scenario 3 in Figure 4 and in Figure 5D with each of the exposure 

variables predicted by a set of SNPs and a common confounding variable. This model is identified as 

both exposure variables can be predicted by the set of instruments. In the second and third 

simulations the model has been set up in the same way but with no effect of the SNPs on either �� 

or �� respectively. That is, the model is underidentified with one of the exposure variables not being 

predicted by the instruments in each case. In the final simulation the model has been set up with the 

effect of the SNPs on the exposures as given in Figure 5A and a common confounder. This setup 

leads to neither exposure being predicted by the SNPs when they are both included in an MVMR 

estimation as the SNPs in the model cannot predict both of the exposure variables jointly.    The 

results from these simulations show that this test has the required distribution under the null 

hypothesis.  

Table 2 - The distribution of the modified Q statistic as a test for under-identification 

 Q��
 Q��

 

 Mean Std. dev Rej. Rate (%) Mean Std. dev Rej. Rate (%) 

x� strongly identified 

x� strongly identified 

1953018 26441 100 1952738 247541 100 

x� unidentified 

x� strongly identified 

99.3 14.6 6.2 379282 135506 100 

x� strongly identified 

x� unidentified 

453058 1607136 100 100.2 14.6 6.6 

x� strongly identified 

x� strongly identified 

Jointly unidentified 

x� � δx�,  δ � 1 

100.2 14.6 6.6 100.2 14.6 6.6 

N = 50,000. Repetitions = 1000, 100 SNPs as instruments. Rejection rates give the proportion of times each Q statistic is 

larger than the 95
th

 percentile of a Chi-squared distribution on 99 degrees of freedom (123.2). 

Testing instrument validity: heterogeneity is `bad’  

Cochran’s Q statistic for the regression of interest has been proposed as a method for identifying the 

presence of invalid instruments (e.g. due to horizontal pleiotropy) in two-sample summary data MR 

analysis, with a single exposure.(19) Specifically, if all instruments are valid IVs, and the modelling 

assumptions necessary for two-sample MR are satisfied, then each genetic instrument should give 

the same estimate of the effect of the exposure on the outcome. Excessive heterogeneity in the 
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causal effect estimates obtained by each SNP individually now becomes an indicator of invalid 

instruments. We propose testing for invalidity in two sample summary data MVMR using an 

adjusted version of the Cochran Q statistic given by: 

,� � ∑ . �

	��
� / <

 Γ�� ' 0������� � �������1=� .

���                                          (13) 

Where 2��
�  �  2��

� � ���
�

 2��
� �  ���

�
 2��

� � 2������2���. To clarify,  2��
�  is the variance of  Γ�� , and ��� and 

��� are efficient estimates of �� and �� (for example as obtained from fitting model (7)). Under the 

null hypothesis that the genetic instruments do not have pleiotropic effects on the outcome, ,� is 

asymptotically (� distributed with �� ' 2	 degrees of freedom. The standard implementation of 

Cochran’s Q would merely have a weighting of 2��
� , and is not therefore asymptotically (� 

distributed. It is a straightforward generalisation of the adjusted Q statistic recently proposed by 

Bowden et al in the univariable MR setting.(18) Excessive heterogeneity in ,� therefore brings 

assumptions IV2 and IV3 into doubt. 

Figure 6 shows the distribution of ,� compared to the standard Q statistic and a (� distribution with 

98 degrees of freedom for a model with 2 exposure variables and 100 genetic instruments. For 

simplicity the estimated effects of the SNPs on the exposures each have a common variance of 0.02 

and have a common covariance of 0. ,� is seen to have the correct distribution under the null 

hypothesis of no pleiotropy in the model.  

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 1, 2018. ; https://doi.org/10.1101/306209doi: bioRxiv preprint 

https://doi.org/10.1101/306209
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

 

 

Figure 6: The distribution of the adjusted and standard Q statistics under the null hypothesis of no heterogeneity. 5000 

repetitions, 100 SNPs. Here �� �  �� � 1. 2��
�

�  2��
�

�  0.02 , 2��� � 0 for all j. 

We suggest updating the two sample causal estimates in an iterative process using weights derived 

from the initial estimates of the causal effects, which is referred to as `modified iterative’ weighting 

in Bowden et al (18) within the context of a univariate MR analysis.  Further work is required to fully 

investigate the effect of this and to understand how the fully analytical solution discussed in (18) 

which finds the causal estimate that directly minimises an equivalent Q statistic, could be extended 

to the multivariable case, but if done so this could help to mitigate the effect of weak instrument 

bias.  

 Approximating >��,>�� and >� with incomplete information 

The covariance vector 2���  that is necessary for correct specification of ,��,,�� and ,� can only be 

calculated from the individual participant data. If this information is not available, one solution 

would be to ensure that 2���  is zero, by estimating the genetic associations with each exposure and 

the outcome in separate samples. This would correspond to a `three-sample’ summary data MR-

analysis when two exposures constitute the MVMR analysis.  

Another pragmatic solution would be to assume that each 2��� term is zero. This will give a good 

approximation for ,�� and ,�� whenever )2���  is small and for ,� whenever  ������2��� is small.  
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Application to education, cognitive ability and Body Mass Index 

In this section we apply the methods discussed above to investigate whether there is evidence for a 

causal effect of education and cognitive ability on body mass index (BMI) using data from UK 

biobank. Education and cognitive ability have both been found to be associated with BMI, with 

higher levels of education and cognitive ability being associated with lower levels of BMI.(39-42) 

However, there is also a high level of correlation observed between completed education and 

measured cognitive ability, therefore it is not clear whether, once this correlation has been 

controlled for, both education and cognitive ability have a causal effect on BMI.(39)  

Data 

UK biobank recruited 502,641 individuals aged 37-73 years between 2006 and 2010 from across the 

UK. Individuals where invited to a clinic where they answered a questionnaire and interview about a 

range of health topics and provided anthropomorphic measurements and gave samples of blood, 

urine and saliva. This study has been described in full previously.(43) 

Individuals in UK biobank were asked to report the highest educational qualification they had 

obtained. For each individual we assigned an age at which they left education based their reported 

qualification. A breakdown of educational qualifications and associated ages across the cohort is 

given in Table S.3.  

Cognitive ability was measured among a subset of the UK biobank participants as the number of 

correct answers recorded in a series of 13 questions designed to measure cognitive ability that 

where completed as part of the initial clinic. The cognitive ability variable was then standardised to 

have mean zero and variance 1.  BMI was calculated based on the height and weight of the 

individuals in the sample. Throughout the analysis we analysed this variable on the natural log scale 

because of its skewed distribution.  

Analysis 

We first conducted MR analyses for the effect of education and cognitive ability on BMI separately 

using single variable MR.  A single composite instrument for education was created using the 

polygenic score of 74 SNPs from a recent GWAS of educational attainment.(44) A single composite 

instrument for cognitive ability was created using the polygenic score of 18 SNPs from a recent 

GWAS of cognition.(45) As this GWAS was conducted using the interim release of UK Biobank we 

restricted our analysis to individuals not included in the interim release.  
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We then conducted a multivariable MR analysis of the effect of education and cognitive ability on 

BMI. This analysis included both the composite instruments for education and cognitive ability used 

in the single variable MR analyses.  

The results from this analyses, along with a multivariable OLS regression of BMI on education and 

cognitive ability, are given in Table 3. The OLS results show that each extra year of education is 

associated with a decrease in BMI MR and MVMR results suggests a causal effect in the same 

direction, but with a larger magnitude. The results for cognitive ability are more mixed with no 

association seen in the OLS results, a negative total effect of cognitive ability on BMI in the MR 

analysis and potentially a positive direct effect of cognitive ability on BMI  observed in the MVMR 

analysis. Our empirical and theoretical investigation helps to clarify why the the high level of 

correlation between education and cognitive ability would lead to the conclusion that there is a 

negative effect of cognitive ability on BMI in MR analysis.  The MVMR results show that, if anything, 

the direct effect of increasing cogntive ability is to increase BMI.  These results highlight the 

potential benefits of MVMR. However, before giving much credence to this result it is necessary to 

assess the strength of our SNPs to jointly predict education and cognitive ability. 

Testing the instrument strength in the single sample setting 

As a measure of the strength of the instruments we calculate the standard F-statistic for both 

education and cognitive ability and the Sanderson – Windmeijer partial F-statstic(33) for the 

multivariable MR analysis. As all F-statistics are much larger than the rule-of-thumb cut off of 10 we 

are reassured that the instruments are not individually weak. However, the partial F-statistic for 

both education and cognitive ability is significantly lower, showing that the power of the instruments 

to predict both variables simultanously is greatly reduced.  

The Sargan test for invalid instruments can only be calculated for estimation models with more 

instruments than exposure variables. In this estimation we have two exposure and two instruments 

and so it is not possible to calculate the Sargan statistic.  
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Table 3 – The effect of education and cognitive ability on BMI 

  OLS MR 

  Single 

variable 

Multivariable Single 

variable 

Multivariable 

Age completed 

Education 

Effect -0.008 -0.008 -0.028 -0.044 

 Std.Error (0.0003) (0.0003) 0.005 0.013 

 95% C.I. [-0.0095,  -

0.0074] 

[-0.0085,  -

0.0074] 

[-.0391   -

.0179] 

[-.0704   -

.0187] 

 F-statistic   188.2 195.0 

 S-W F-

statistic 

   35.7 

Standardised 

cognitive ability Score 

Effect -0.006 0.0001  0.048 

 Std.Error (0.0007) (0.0007) 0.008 0.025 

 95% C.I. [-0.0078, -

0.0051] 

[-0.0013,   

0.0014] 

[-.0380     -

.0082] 

[-0.001    

0.098] 

 F-statistic   542.2 309.7 

 S-W F-

statistic 

   37.0 

Dependent variable is log(BMI). 

Estimates of the effect of education and cognitive ability on BMI from OLS, single variable MR and multivariable MR 

analysis of individual level data.  

All regressions also include a full set of control variables: age, gender, income and 10 genetic principal components 

Instruments are constructed from GWAS scores for education and cognitive ability. The regressions are weighted so that 

individuals who left school at 15 are given an 80% upweighting. All non-European and related individuals have been 

excluded from the analysis. Total sample size included in all regressions: 74,309. 

 

 

Two-Sample Multivariable MR 

To illustrate two-sample MVMR we randomly divided the sample used for the individual analysis into 

three equal-sized groups. For each SNP used in the polygenic score, we then calculated its effect on 

log(BMI), education and cognitive ability using different parts of the sample., The results were then 

used to conduct a two-sample MVMR analysis. The results are given in Table S.4. They show that 

increased education has a direct effect which decreases BMI and cognitive ability has no direct effect 

on BMI. The results are in line with those obtained from the individual level analysis.  

Testing instrument strength in the two-sample setting 

To test for weak instruments in this analysis we have calculated the weak-instrument , statistics for 

education and cognitive ability. The  ,��� statistic for education is 1724.4. The  ,���  statistic for 

cognitive ability is 1488.8. The critical value for a (� distribution with 88 degrees of freedom at the 

5% level is 110.9. Therefore we reject the null hypothesis that the SNPs do not explain any of the 

variation in the exposures education and cognitive ability in this two sample analysis and can 

conclude that these SNPs can predict both education and cognitive ability in the data.  
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Testing for pleiotropy in the two-sample setting.  

To illustrate the two tests for pleiotropy discussed earlier we report the ,� statistic for MVMR. The 

value of ,� for this regression is 129.5. The critical value for a (� distribution with 87 degrees of 

freedom is 109.77. Therefore, the null hypothesis that there is no heterogeneity is rejected for this 

value of ,�.  

Multivariable MR Egger regression  

An alternative procedure that has been recently proposed to adjust for pleiotropy beyond that 

explainable by genetically predictable exposures (e.g. �� and ��) is a Multivariable MR Egger 

regression(46) This is a natural extension of the original MR Egger approach(1) and is calculated by 

fitting the two sample MVMR model with a constant included; 

Γ�� �  �� � ������ � ������ � 
�� �  
��   
If the constant is different from zero this suggests that additional pleiotropy is meaningfully biasing 

the analysis. However a generalisation of the InSIDE assumption is required in order for it to deliver 

unbiased causal estimates. These are described in detail elsewhere.(1) 

The two sample results were used to fit multivariable MR Egger regression, the results of which are 

given in Table S.5.  Its intercept parameter is estimated to be small, and consequently the estimated 

effects of the exposures do not differ from those in the two-sample MVMR estimation. This supports 

the suggestion that the SNPs do not exert a direct effect on BMI apart from through education or 

cognitive ability. As MR-Egger is dependent on the orientation of the SNP exposure associations, we 

repeated this analysis with the associations orientated so that the SNP education associations where 

all positive and then with the SNP cognitive ability associations all positive. These changes had no 

substantive effect on the results obtained.   

The difference between the Q-statistic and Multivariable MR Egger estimation suggest an 

inconsistency between these two tests however this may have arisen due to a high level of variation 

in the effect of the SNPs on each exposure leading to a higher Q statistic. This is supported by Figure. 

7a and 7b which gives individual MR plots for each exposure, and shows that there is a large amount 

of variation of the SNPs on each of the exposures.   Repeating this analysis with the outlying SNP 

excluded makes no substantive difference to the results obtained.   

The MVMR Egger analysis was repeated using the effect of each SNP on education, cognitive ability 

and BMI taken from GWAS estimates.(44, 45, 47) The magnitude of the estimated effects differ in 

this analysis as the outcome variable is BMI rather than the natural log of BMI, however these 
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results also show no pleiotropic effect of the SNPs on the outcome and a negative effect of higher 

education on BMI. Results from this analysis are given in Table S.5.   

 

 

Figure 7:  Left: MR Egger plot for the association between educational attainment and BMI. Right: MR Egger plot for the 

association between cognitive ability and BMI. All SNPs that affect either education or cognitive ability are included 

Discussion 

In this paper we have attempted to explain the principled application and interpretation of 

instrumental variable analysis to the epidemiological setting with multiple exposures. We first 

focused on the individual data setting, for which it is possible to borrow well-established methods 

(and related software) from the econometrics literature.  We then considered the two-sample 

setting and built upon previous research in this area by developing new tests for assessing the 

validity and relevance of the genetic instruments. In particular, we propose two new tests; 

• Modified Q statistics, (in our case , and ) for instrument relevance that detect 

`good’ heterogeneity if a set of SNPs can jointly and reliably predict all intermediate 

exposures of interest; 

• A modified Q statistic, for instrument validity that detects `bad’ heterogeneity if a set of 

SNPs contains invalid instruments. 

We finally illustrated the application of MVMR using individual and summary level data to estimate 

the effect of education and cognitive ability on BMI. The results from this analysis show that 

increasing education leads to lower BMI and the size of this effect increases when cognitive ability is 

controlled for. Comparing the single exposure MR analysis results (with all SNPs that affect 

educational attainment excluded) to the MVMR results for cognitive ability shows a large change in 

the size and direction of the effect. This result suggests that education is a mediator of the 
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relationship between cognitive ability and BMI and any direct effect of cognitive ability on BMI is 

minimal.   

The methods we describe can be used to estimate the effect of multiple related exposures on an 

outcome using either individual level or summary level data. Although we have focused on the case 

of two exposures for ease of explanation, all of these methods can be easily applied to scenarios 

with three or more exposures. An advantage of MVMR analysis is that SNPs which are thought to 

potentially affect multiple exposure variables, or where it is not clear exactly which exposure they 

affect, can be included when estimating the effects of the exposures on the outcome. This makes 

MVMR particularly useful when the exposures are closely related or one (or more) is thought to be a 

potential pleiotropic pathway from the SNPs to the outcome. MVMR will also produce consistent 

estimates when there is measurement error in any of the exposure variables and therefore is a 

useful method of analysis when multiple exposure variables are thought to be subject to 

measurement error.  

As with all MR analysis it is important to ensure that the IV assumptions are satisfied. Here we 

explain how the IV assumptions apply to a MVMR analysis. We describe existing tests that can be 

used to test the assumptions in individual level data and propose tests that can be used with two-

sample summary level data. These new tests are a key strength of this work as MVMR cannot be 

effectively used as part of the tools a researcher has available for analysis unless the potential 

pitfalls of the analysis are well understood. Our applied results highlight the importance of 

considering the IV assumptions in the context of the particular analysis being conducted as even 

when the instruments appear to be very strong for each of the exposures individually, this does not 

guarantee that they will be equally as strong for the exposures when estimated jointly in a MVMR 

model.  For example, the F-statistics decrease from 195 and 310 to 36 and 37 for educational 

attainment and cognitive ability respectively.  

A practical limitation of the new tests we develop for two-sample summary data MVMR is the 

reliance on knowledge of the covariance between the effect of the SNP on each exposure. These 

results are not available in conventional GWAS results, and it would be infeasible to calculate them 

in advance for every possible combination of exposure variable that could be included in a MVMR 

model. Unfortunately, our work shows that this information is strictly needed for valid inference. In 

order to conduct these tests in summary level data we therefore have to make a choice about how 

to treat these missing pieces of information. If the data were available it can be directly calculated 

from the individual level data for the particular MVMR study being conducted. Alternatively, it could 

be assumed to be zero, or set to zero by using non-overlapping GWAS studies for each exposure as 

the standard error of the estimated SNP effects will not correlate across different samples.  This is an 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 1, 2018. ; https://doi.org/10.1101/306209doi: bioRxiv preprint 

https://doi.org/10.1101/306209
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

important limitation of the results given here for testing the assumptions of two-sample summary 

data MVMR. 

Another weakness of the instrument relevance test we develop is that this is a test for whether the 

SNPs can conditionally explain any of the variation in the exposure variables, rather than being a 

more usual weak instrument test, such as the rule of thumb of F being greater than 10 for a 

univariable MR analysis or the Sanderson-Windmeijer conditional F statistic for IV analysis with 

individual level data. Extending this test to weak instrument is an area for future work.   
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