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Abstract 

Previously described methods of analysis allow variants in a gene to be weighted more highly 

according to rarity and/or predicted function and then for the variant contributions to be summed 

into a gene-wise risk score which can be compared between cases and controls using a t test. 

However this does not allow incorporating covariates into the analysis. Schizophrenia is an example 

of an illness where there is evidence that different kinds of genetic variation can contribute to risk, 

including common variants contributing to a polygenic risk score (PRS), very rare copy number 

variants (CNVs) and sequence variants. A logistic regression approach has been implemented to 

compare the gene-wise risk scores between cases and controls while incorporating as covariates 

population principal components, the PRS and the presence of pathogenic CNVs and sequence 

variants. A likelihood ratio test is performed comparing the likelihoods of logistic regression models 

with and without this score. The method was applied to an ethnically heterogeneous exome-

sequenced sample of 6000 controls and 5000 schizophrenia cases. In the raw analysis the test 

statistic is inflated but inclusion of principal components satisfactorily controls for this. In this 

dataset the inclusion of the PRS and effect from CNVs and sequence variants had only small effects. 

The set of genes which are FMRP targets showed modest evidence for enrichment of rare, functional 

variants among cases (p=0.005). This approach can be applied to any disease in which different kinds 

of genetic and non-genetic risk factors make contributions to risk. 
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Introduction 

We have previously developed a method which performs a weighted burden analysis to test 

whether, in a particular gene or set of genes, variants which are rarer and/or predicted to have more 

severe functional effects occur more commonly in cases than controls 
1,2

. Each variant is assigned a 

weight based on its rarity and predicted function and then an overall gene-wise risk score is 

allocated to each subject consisting simply of the sum of the weights of the variants which are found 

in that subject. These scores for cases and controls are then compared by carrying out a t test. The t 

test is rapid to compute and statistically robust and the method performed acceptably when applied 

to real samples. However a t test does not incorporate information from covariates and there are 

two reasons why this is an important limitation. The first reason is that if the samples are ancestrally 

heterogeneous then artefactual results can be obtained and that using ancestry principal 

components as covariates might mitigate this problem. The second reason is that other measurable 

genetic and non-genetic factors might be known to contribute to risk of disease and that 

incorporating these as covariates might be expected to enhance the accuracy of the analysis. Three 

obvious kinds of genetic risk to consider are the polygenic risk score (PRS), the presence of known 

pathogenic copy number variants (CNVs) and the presence of known pathogenic sequence variants. 

To use schizophrenia as a concrete example, there is evidence that certain CNVs greatly increase risk 

but these are very rare, even among cases 
3
. Likewise very rare variants causing loss of function 

(LOF) of a small number of genes substantially increase risk  4,5. Statistical evidence demonstrates 

that rare, damaging variants in additional genes also affect risk and that these genes are 

concentrated in particular gene sets although the individual genes contributing to this effect are yet 

to be identified 6,7. Finally, cases tend to have a higher PRS, reflecting the combined effect of many 

common variants, widely distributed and individually having very small effects on risk 8. When 

carrying out a case-control study of exome sequence data in order to detect associations with rare, 

damaging variants it might be reasonable to suppose that cases with pathogenic CNVs or sequence 

variants might be unlikely to possess additional rare risk factors. Likewise, a case with a very low PRS 

might be thought more likely to possess some additional risk factor than one whose PRS is very high. 

Thus it seems desirable to incorporate information about different kinds of risk factor jointly when 

possible. Accordingly software was developed that would compare the gene-wise risk scores using 

logistic regression analysis so that any desired covariates could be included. 

 

Methods 

The previously described SCOREASSOC program was modified to carry out logistic regression analysis 
1,2. It accepts as input genotypes of variants within a gene for cases and controls, with each variant 

assigned a weight according to its annotation as obtained using VEP, PolyPhen and SIFT 9–11.  The 

functional weight is then multiplied by a weight for rarity, so that rarer variants are assigned higher 

weights. For each subject a gene-wise risk score is derived as the sum of the variant-wise weights, 

each multiplied by the number of alleles of the variant which the given subject possesses. The 

program was modified to accept as additional input an arbitrary number of quantitative covariates 

for each subject, typically population principal components, PRS and an indicator variable denoting 

whether or not the subject possesses a known pathogenic CNV or sequence variant. The score and 

covariates are entered into a standard logistic regression model with case-control status as the 
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outcome variable and after variable normalisation the likelihood of the model is maximised using the 

L-BFGS quasi-newton method, implemented using the dlib library 12. The contribution of different 

variables to risk is assessed using standard likelihood ratio tests by comparing twice the difference in 

maximised log likelihoods between models with and without the variables of interest. The 

coefficients for each variable can be varied to maximise the likelihood or can be fixed. For example, 

if it is known that a particular CNV is associated with a ten-fold increase in risk then the coefficient 

can be set to ln(10) to reflect this, rather than fitting it from the available dataset, which may contain 

fewer subjects than those used to produce the original risk estimate.  

Preliminary analyses indicated that simple logistic regression could produce extreme p values if a 

gene had only a single very rare variant found in only one or two cases. This seems to arise because 

subjects with unknown genotype are assigned an average gene-wise risk score. Most subjects would 

have a score of zero but if more cases than controls had an unknown genotype then the 

maximisation routine would overfit the model and would assign a very high value to the score 

coefficient. To address this, the ridge penalty function, consisting of the squares of the regression 

coefficients, was subtracted from the log likelihood. This satisfactorily prevented the artefactual 

extreme p values without preventing the ability to fit the model to produce the expected large 

coefficients for covariates such as principal components and the PRS. 

The program outputs the coefficients for the fitted models along with their estimated standard 

errors and the results of the likelihood ratio test. When association with the gene-wise risk score 

alone is tested, i.e. when the two models differ only in whether or not the score is included, then the 

statistical significance is summarised as a signed log p value (SLP) which is the log base 10 of the p 

value given a positive sign if the score tends to be higher in cases and negative if it tends to be lower. 

For other analyses the minus log base 10 of the p value (MLP) is output. The support program for 

SCOREASSOC, called GENEVARASSOC, was also modified to facilitate incorporating the covariates 

and specifying the desired analyses. Both are implemented in C++ and can be downloaded along 

with documentation from the site listed below. 

Example application 

The approach was applied to whole exome sequence data from the Swedish schizophrenia study, 

consisting of 4968 cases and 6245 controls ancestry 6. The sequence data was downloaded as a VCF 

file from dbGAP (https://www.ncbi.nlm.nih.gov/gap). One aspect of special interest about this 

dataset is that although it was recruited in Sweden some subjects have a substantial Finnish 

component to their ancestry and that this applies more to cases than controls. It was analysed 

previously using scoreassoc to carry out a weighted burden test but to do this it was first necessary 

to remove the subjects with Finnish ancestry because otherwise some genes produced false positive 

results 7. To obtain the gene-wise risk scores the same methods were used as for this previous 

analysis. Variants were excluded if they did not have a PASS in the Variant Call Format (VCF) 

information field and individual genotype calls were excluded if they had a quality score less than 30. 

Sites were also excluded if there were more than 10% of genotypes missing or of low quality in 

either cases or controls or if the heterozygote count was smaller than both homozygote counts in 

both cohorts. Each variant was annotated using VEP, PolyPhen and SIFT 9–11. GENEVARASSOC was 

used to generate the input files for SCOREASSOC and the default weights provided with the software 

were used, for example consisting of 5 for a synonymous variant and 20 for a stop gained variant, 
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except that 10 was added to the weight if the PolyPhen annotation was possibly or probably 

damaging and also if the SIFT annotation was deleterious. The full set of weights used is shown in 

Table 1. SCOREASSOC also weights variants more highly than common ones but because it is well-

established that no common variants have a large effect on the risk of schizophrenia we excluded 

variants with MAF>0.01 in the cases and in the controls, so in practice weighting by rarity had 

negligible effect. 

To obtain population principal components, the genotypes were thinned to include only variants 

present on the Illumina Infinium OmniExpress-24 v1.2 BeadChip 

(http://emea.support.illumina.com/downloads/infinium-omniexpress-24-v1-2-product-files.html) 

and then version 1.09beta of plink was run with the options --pca header tabs --make-rel 
13–15

. In 

order to obtain a PRS for schizophrenia, the file called scz2.prs.txt.gz, containing ORs and p values 

for 102,636 SNPs, was downloaded from the Psychiatric Genetics Consortium (PGC) website 

(www.med.unc.edu/pgc/results-and-downloads). This training set was produced as part of the 

previously reported PGC2 schizophrenia GWAS 8. SNPs with p value < 0.05 were selected and their 

log(OR) summed over sample genotypes using the --score function of plink 1.09beta in order to 

produce a PRS for each subject 13–15. 

Attempts were made to use allele depth information in the VCF file to call all the CNVs with odds 

ratio (OR) reported to be greater than 9 as listed in Table 1 of a recent study of over 40,000 subjects 
3. Calling was carried out blind to case-control status. A deletion was called if there was a relatively 

low read depth over the region (compared to the expected depth across subjects for each variant 

and across variants for each subject) and if there were very few heterozygote calls. A duplication was 

called if there was a relatively high number of reads and if the heterozygote calls tended to occur 

with allele ratios of 2:1 or 1:2 instead of 1:1. It can be difficult to detect CNVs from exome-sequence 

VCF files because some regions will not be covered at all and because depth information is only 

provided for positions where a variant allele is observed. Calls were made blind to phenotype. There 

was insufficient information to call the CNV at 9:831690-959090 and no subjects were called with a 

CNV at 3:197230000-198840000, although the latter is very rare and it may be that it was not 

present. The number of calls that were made in cases and controls is shown in Table 2. Although 

there is a marked excess of CNV calls among cases at 16:29560000-30110000 and 22:17400000-

19750000, this is not the case for the other locations and it assumed that many of these calls may be 

erroneous. The intent of the current study is simply to demonstrate the feasibility of the analytic 

approach, so errors in the CNV calls are not regarded as especially problematic. However because of 

the unreliability of the calls it was decided not impose a fixed effect for the CNVs but to fit the effect 

size as observed in this dataset. For brevity, these CNVs having large effects of risk, along with LOF 

sequence variants having large effects on risk, will be referred to as pathogenic. 

Based on previous findings, it was decide to regard LOF sequence variants in SETD1A, RBM12 or  

NRXN1 as pathogenic 3–5,16,17. No subjects had a LOF variant in NRXN1 or RBM12. However two cases 

had LOF variants in SETD1A, with one having a stop gained variant and the other a splice acceptor 

variant. 

Likelihood ratio tests were carried out to assess the association of the principal components with 

caseness and then, using the principal components as covariates, to assess the association of the 

PRS and of the pathogenic CNVs and sequence variants. 
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For each gene, the following analyses were carried out to test the association of the gene-wise risk 

score with caseness: 

A t test comparing scores in cases and controls. 

Logistic regression analysis of the scores with no covariates. 

Analysis of the scores including principal components as covariates. 

Analysis of the scores including principal components and PRS as covariates. 

Analysis of the scores including principal components and pathogenic variants as covariates. 

Analysis of the scores including principal components, PRS and pathogenic variants as covariates. 

Two lists of gene sets were used to test whether the genes within a set on average produced higher 

SLPs than those not in the set. The first list consisted of the 31 gene sets which had been previously 

tested for an enrichment for damaging or disrupting ultrarare variants (dURVs) in cases in this 

dataset 
6
. The second list consisted of the 1454 "all GO gene sets, gene symbols" pathways 

downloaded from the Molecular Signatures Database at 

http://www.broadinstitute.org/gsea/msigdb/collections.jsp (Subramanian, Tamayo et al. 2005). For 

each set, a t test was carried out to compare the gene-wise SLPs for the genes in the set with the 

SLPs for the genes not in the set. The result for each set is itself expressed as an SLP, which is 

positive if the SLPs for genes within the set are higher than for those not in the set. 

Results were managed and graphs produced using R 18. 

 

Results 

Carrying out the logistic regression analyses is notably slower than performing a t test and to carry 

out all the analyses takes a few minutes for each gene, so that analyses of all 22021 genes took a 

couple of days to complete on a computer cluster. 

The likelihood ratio test comparing models with or without the first 20 population principal 

components showed that ancestry was strongly associated with caseness (X2=374, 20 df, MLP>35). 

Using these principal components as covariates, both the PRS (X2=156, 1 df, MLP=35) and the 

presence of a pathogenic CNV or sequence variant (X
2
=39.6, 8df, MLP=5.4), were also associated 

with caseness. 

Figure 1 shows the QQ plots obtained for the different gene-wise analyses. The simple t test 

comparing gene-wise risk scores has a clear excess of positive SLPs above the chance expectation. 

The most extreme of these is for COMT, SLP=7.4. As discussed previously, this gene-wise result is 

largely driven by SNP rs6267 which is heterozygous in 51/6242 controls and 94/4962 cases (OR=2.3, 

p=8*10-7) and this reflects the fact that variant is much commoner in Finns than in non-Finnish 

Europeans . One gene, CDCA8, has an extremely negative result and this reflects the fact that more 

controls than cases have a number of very rare variants with high functional weights. The results for 

the logistic regression analysis of the gene-wise risk scores alone, shown in Figure 1b, are very 
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similar to those obtained from the t test. However when the population principal components are 

included, as shown in Figure 1c, the results conform almost exactly to what would be expected by 

chance. The SLP for CDCA8 remains somewhat low at -5.6 but this does not exceed the threshold for 

significance using a Bonferroni correction for the number of genes tested. Including the PRS, CNVs 

and SETD1A variants as covariates, as shown in Figures 1d, 1e and 1f, does not have a large impact 

on the overall distribution of the SLPs.  

Examining the SLPs for individual genes showed that, as can be seen from the QQ plots, including the 

population principal components as covariates could have a large impact. The largest effect was 

seen with COMT, where the SLP was reduced by 4.7, and there were an additional 6 genes for which 

the absolute value of the SLP reduced by more than 3 and in all there were 59 genes where the 

magnitude of the SLP reduced by 2 or more. For all but 2 of these the SLP was positive. There were 

other genes where the magnitude of the SLP was increased, though to a lesser extent. For only one 

gene, CRISP3, did this change exceed 2 and there were 24 others for which the change was 1 or 

greater. All these genes had a negative SLP. Thus, when including the principal components had a 

large effect, the effect was generally to make positive SLPs smaller and negative SLPs larger. 

Although there were large effects for some genes, overall the effects were fairly small and evenly 

balanced, so that across all genes the mean SLP was reduced by 0.088 and the mean of the absolute 

value of the SLP was reduced by 0.059. 

Including the PRS as a covariate had only small effects on the results. The largest change in SLP was 

only 0.6. Considering those genes which had the largest change in the absolute value of the SLP, 

there was a fairly equal distribution between those with positive and negative SLPs. The average 

effects across all genes were almost perfectly balanced, with the mean SLP changing by only 

-0.00078 and the mean absolute value of the SLP changing by 0.00016. 

Including the pathogenic variants as covariates also had only small effects. For two genes the 

negative SLPs decreased by 0.95 and 0.87 but in no other gene did the SLP change by more than 

0.51. In spite of the small magnitude of the changes, there was a very striking imbalance in the way 

they were distributed. Out of the 200 genes with the largest increase in the absolute value of the SLP 

197 had a negative SLP while out of the 200 genes with largest decrease in the absolute value of the 

SLP 199 had a positive SLP. Thus, in the analyses for which including the pathogenic variants had the 

largest effect, doing so tended to reduce positive SLPs and increase negative SLPs. This imbalance 

was only notable for the analyses with the largest effects and overall the average effect was small so 

that including the pathogenic CNVs changed the mean SLP by 0.00018 and the mean absolute value 

of the SLP by 0.0013.  

As in previous studies of this dataset, none of the individual gene-wise tests is statistically significant 

at the genome-wide level. Table 3 shows genes with SLP of 3 or higher from the analysis including all 

covariates.  

The results of the gene set analyses applied to the sets used in the previous analyses of this dataset 

are shown in Table 4, where a positive value for the set SLP indicates that the SLPs for genes in the 

set are on average higher than the SLPs for genes not in the set. It can be seen that more sets have 

positive than negative SLPs (though the sets are not independent) and that the highest SLP achieved 

is for the set consisting of FMRP targets, with SLP=2.3, equivalent to p=0.005. This would not be 

significant if a Bonferroni correction were applied for the 32 sets tested. It could be argued that 
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because there is substantial overlap between the genes in the sets then a Bonferroni correction is 

overly conservative but in any event the results provide at best modest support for the hypothesis 

that there is enrichment for functional variants in this gene set among cases. It is of interest to note 

that the magnitude of the SLPs is reduced when the principal components are included, 

demonstrating that one may be at risk of obtaining false positive results if this is not done.  

Figure 2 shows a QQ plot of the SLPs obtained for the GO gene sets against the expectation if the 

sets were independent and it can be seen that they conform closely to this distribution. In fact, the 

sets are not independent and genes overlap between sets so one could argue that the SLPs are 

somewhat higher than would be expected by chance but there is certainly no strong evidence to 

implicate specific sets. Table 4 shows those sets achieving an SLP of 2 or more in the full analysis 

including all covariates. 

 

Discussion 

This study demonstrates that it possible to use a logistic regression approach to carry out a weighted 

burden analysis, including all variants in a gene weighted according to function and rarity, while 

including other important covariates. The example analysis produces results which are broadly 

similar to previous analyses of this dataset, although with less strong support for the previously 

implicated gene sets.  

An important finding is that including the population principal components is able to completely 

control for the effect of having an excess of cases with a strong Finnish ancestry component. This 

means that the complete dataset can be analysed if desired. Of course, there might be arguments 

against doing this. If different causal variants are present in different populations then analysing an 

admixed population might reduce power but in general it seems advantageous to be able to 

incorporate ancestry as a covariate. From a theoretical point of view we might expect that 

incorporating known risk factors as covariates could increase the power to detect new associations. 

In practice, including the PRS and pathogenic CNVs and sequence variants has only a small effect on 

the results obtained in the present example. 

Although the main emphasis of the study is simply to demonstrate the feasibility of the approach, it 

is possible to speculate on why it failed to provide any new, interesting results. One problem may 

well be that the default scheme for weighting variants according to predicted functional effects is 

sub-optimal. Many criticisms of it could be made, for example that LOF variants and 5'UTR variants 

should be given higher weights. For the future, it would be worthwhile to make attempts to produce 

a weighting scheme which was informed by the increasing empirical knowledge becoming available 

about the kinds of genetic variation most likely to have major effects on phenotype. Another 

approach would be to attempt to fit the weights directly and this could easily be done within the 

context of logistic regression analysis if it were thought that the dataset was informative enough. A 

similar approach has been applied in the context of generating an exome-wide genetic risk score 19.  

Incorporating pathogenic variants had little effect on the results obtained and one reason for this is 

that only 1% of subjects were identified as possessing such a variant. It would be reasonable to hope 

that as further studies discover additional variants to be pathogenic so the proportion of subjects 
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possessing one them will increase and they will have a larger impact on the results of multivariate 

analyses. However another factor to consider is that there were almost certainly errors in the CNV 

calls and that had the calls been accurate then they might have had more influence on the results. 

This is simply a feature of using a downloaded VCF file to provide an example dataset. In a real-world 

association study using whole exome sequence data one would have the reads available and could 

make more reliable calls from those, and of course one might also carry out comparative genomic 

hybridisation analysis to obtain accurate calls. 

Although the method described here does not seem to have marked benefits for this dataset, it does 

offer an approach that will be useful to apply as additional risk factors, both genetic and non-

genetic, are characterised and need to be incorporated into analyses. An obvious example would be 

for a disease such as ischaemic heart disease (IHD), where rare and common genetic variants along 

with environmental risk factors all make substantial contributions 
20

. The application of logistic 

regression has been described as a way to incorporate information from covariates into association 

studies seeking to identify variants and genes associated with disease. However the same framework 

could then readily be translated into a way to characterise risk of disease for an individual. One 

could fit a model incorporating relevant risk factors using a study population and then take the fitted 

coefficients for that model and apply them to a genotyped individual subject to obtain an estimate 

of their level of risk. It has already been proposed that the PRS IHD  for could have clinical utility in 

deciding whether to prescribe statins for a patient 21. Using a model such as the one proposed would 

allow an overall risk score to be produced from a single combined analysis including factors such as 

age, gender, smoking status, ancestry, IHD PRS and rare coding variants. One can envisage in future 

that one might even be able to partition overall risk in clinically significant ways, for example with a 

contribution related to dyslipidemia, a contribution related to clotting and a contribution related to 

hypertension. This could allow the subclassification of patients to support personalised approaches 

to treatment interventions.  

 

Software availability 

The code and documentation for SCOREASSOC and GENEVARASSOC is available from 

https://github.com/davenomiddlenamecurtis/scoreassoc and 

https://github.com/davenomiddlenamecurtis/geneVarAssoc. 
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Table 1 

The table shows the weight which was allocated to each type of variant according to its 
annotation by VEP 9. 10 was added to this weight if the variant was annotated by Polyphen 
as possibly or probably damaging and 10 was added if SIFT annotated it as deleterious 10,11. 

VEP annotation Weight 

intergenic_variant 1 

feature_truncation 3 

regulatory_region_variant 3 

feature_elongation 3 

regulatory_region_amplification 3 

regulatory_region_ablation 3 

TF_binding_site_variant 3 

TFBS_amplification 3 

TFBS_ablation 3 

downstream_gene_variant 3 

upstream_gene_variant 3 

non_coding_transcript_variant 3 

NMD_transcript_variant 3 

intron_variant 3 

non_coding_transcript_exon_variant 3 

3_prime_UTR_variant 5 

5_prime_UTR_variant 5 

mature_miRNA_variant 5 

coding_sequence_variant 5 

synonymous_variant 5 

stop_retained_variant 5 

incomplete_terminal_codon_variant 5 

splice_region_variant 5 

protein_altering_variant 10 

missense_variant 10 

inframe_deletion 15 

inframe_insertion 15 

transcript_amplification 15 

start_lost 15 

stop_lost 15 

frameshift_variant 20 

stop_gained 20 

splice_donor_variant 20 

splice_acceptor_variant 20 

transcript_ablation 20 
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Table 2  

Counts of CNV calls in cases and controls for those CNVs with OR>9 in Table 1 from a recent study of 

CNVs in schizophrenia 3. Attempts were made to call the CNVs from the VCF file, which only contains 

depth information about locations within exons where there is allelic variation. There was 

insufficient information to call the CNV at 9:831690-959090 and it is expected that some of the 

other calls are erroneous. 

Position Pathogenic CNV  Controls, N=6245 Cases, N=4968 

2:50000992-51113178 del 6 8 

3:197230000-198840000 del 0 0 

7:72380000-73780000 dup 0 3 

9:831690-959090 del/dup - - 

8:100094670-100958984 del 9 9 

15:28920000-30270000 del 21 18 

16:28730000-28960000 del 1 4 

16:29560000-30110000 dup 2 14 

22:17400000-19750000 del 0 9 

Any pathogenic CNV  38 65 
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Table 3 

Table showing gene-wise risk score SLPs for genes achieving SLP greater or equal to 3 in the analysis 

including all covariates. (PCs = population principal components, PRS = schizophrenia polygenic risk 

score, CNV + LOF = pathogenic copy number variant or loss of function variant.) 

Gene symbol Gene name Analysis method 

  t test Logistic regression using listed covariates 

   None PCs PCs, 

PRS 

PCs, 

CNV + 

LOF 

PCs, 

PRS, 

CNV + 

LOF 

LY9 T-lymphocyte surface 

antigen Ly-9 

4.7 4.6 3.4 3.7 3.5 3.8 

SNORA62 Small Nucleolar RNA, 

H/ACA Box 62 

3.4 4.2 4.2 4.2 3.8 3.8 

ADAMTSL1 ADAMTS-like protein 1 4.4 4.4 3.6 3.7 3.7 3.7 

RNU5D-1 RNA, U5D Small Nuclear 

1 

4.4 4.4 3.5 3.5 3.5 3.5 

PITPNA Phosphatidylinositol 

transfer protein alpha 

isoform 

3.0 3.1 3.5 3.4 3.5 3.4 

LOC100133091 Uncharacterized 

LOC100133091 

3.2 3.3 3.2 3.3 3.3 3.3 

POMZP3 POM121 and ZP3 fusion 

protein 

3.2 3.3 3.2 3.3 3.3 3.3 

LOC101927640 Uncharacterized 

LOC101927640 

2.5 2.5 3.3 3.3 3.3 3.3 

ALG6 Dolichyl pyrophosphate 

Man9GlcNAc2 alpha-

1,3-glucosyltransferase 

3.4 3.6 3.5 3.2 3.5 3.2 

KLHL11 Kelch-like protein 11 4.4 4.3 3.1 3.2 3.1 3.2 

PLIN3 Perilipin-3 4.8 4.7 3.5 3.4 3.3 3.2 

HNRNPA1L2 Heterogeneous nuclear 

ribonucleoprotein A1-

like 2 

5.1 5.1 3.2 3.1 3.1 3.1 

OR9Q2 Olfactory receptor 9Q2 2.9 2.9 2.9 2.9 3.0 3.0 
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Table 4 

Table showing results for the gene sets used in previous analyses 6,7. 

 

Gene set Set symbol 
(Number of 
genes in set) 

Analysis method 

  t test Logistic regression using listed 

covariates 

   None PCs PCs, 

PRS 

PCs, 

CNV 

+ 

LOF 

PCs, 

PRS, 

CNV 

+ 

LOF 

OMIM intellectual disability 22
 alid 

(107) 
0.5 0.5 0.2 0.2 0.2 0.1 

Expression specific  to brain 23 brain 
(2660) 

0.5 0.5 0.6 0.5 0.5 0.4 

Bound by CELF4 24 celf4 
(2675) 

0.0 0.0 0.4 0.4 0.4 0.4 

Missense�constrained 25
 constrained 

(1005) 
0.6 0.5 0.8 0.7 0.8 0.7 

Involved in developmental 
disorder 26 

dd 
(93) 

1.7 1.7 1.2 1.2 1.2 1.2 

De novo variants in autism 27
 denovo.aut 

(2927) 
4.1 4.3 1.8 1.8 1.8 1.8 

De novo variants in coronary 
heart disease 27

 

denovo.chd 
(249) 

0.2 0.2 0.0 0.0 0.0 0.0 

De novo variants in epilepsy 27 denovo.epi 
(322) 

0.8 0.8 0.8 0.8 0.9 0.8 

De novo duplications in ASD 28
 denovo.gain.asd 

(1365) 
-0.7 -0.6 -0.5 -0.6 -0.5 -0.6 

De novo duplications in bipolar 
disorder 28 

denovo.gain.bd 
(180) 

-0.1 -0.1 0.5 0.5 0.5 0.5 

De novo duplications in 
schizophrenia 28 

denovo.gain.scz 
(200) 

-1.3 -1.3 -0.8 -0.8 -0.8 -0.8 

De novo variants in intellectual 
disability 27

 

denovo.id 
(251) 

0.7 0.7 0.5 0.5 0.4 0.4 

De novo deletions in ASD 28 denovo.loss.asd 
(1179) 

0.0 0.0 -0.7 -0.7 -0.7 -0.7 

De novo deletions in bipolar 
disorder 28

 

denovo.loss.bd 
(130) 

0.3 0.3 0.4 0.4 0.4 0.4 

De novo deletions in 
schizophrenia 28 

denovo.loss.scz 
(246) 

0.7 0.7 0.5 0.6 0.5 0.6 

De novo variants in schizophrenia  
27 

denovo.scz 
(770) 

4.2 4.4 1.1 1.0 1.1 1.0 

Bound by FMRP 29 fmrp 
(1244) 

2.9 3.0 2.6 2.4 2.5 2.3 

Implicated by GWAS 8 gwas 
(91) 

0.5 0.5 0.4 0.4 0.4 0.4 

Targets of microRNA�137 30
 mir137 0.4 0.4 0.3 0.3 0.3 0.3 
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(3260) 
Expression specific to neurons 31

 neurons 
(4747) 

0.1 0.1 1.0 1.0 0.9 0.9 

NMDAR and ARC complexes 28 nmdarc 
(80) 

0.1 0.1 -0.1 -0.1 -0.1 -0.1 

Loss�of�function intolerant 32 pLI09 
(3488) 

0.5 0.6 1.5 1.4 1.6 1.4 

PSD�95 33
 psd95 

(120) 
0.4 0.4 0.8 0.8 0.8 0.8 

Bound by RBFOX 1 or 3 34 rbfox13 
(3445) 

-0.4 -0.4 0.4 0.3 0.4 0.3 

Bound by RBFOX 2 34
 rbfox2 

(3068) 
0.0 0.1 0.8 0.6 0.8 0.6 

Synaptic 35 synaptome 
(1887) 

0.7 0.7 1.2 1.2 1.2 1.2 

Escape X�inactivation 36 x.escape 
(213) 

0.2 0.2 0.7 0.5 0.6 0.5 

X�linked intellectual disability, 
Genetic Services Laboratories of 
the University of Chicago 37–40 

xlid.chicago 
(77) 

1.2 1.2 1.6 1.4 1.5 1.3 

X�linked intellectual disability, 
Greenwood Genetic Centre 39

 

xlid.gcc 
(114) 

0.8 0.7 0.9 0.8 0.8 0.7 

X�linked intellectual disability, 
OMIM 22 

xlid.omim 
(57) 

-0.1 -0.2 -0.2 -0.2 -0.2 -0.3 

X�linked intellectual disability 
(combined) 

xlid 
(122) 

0.8 0.7 0.8 0.7 0.7 0.6 
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Table 5 

Table showing GO gene sets achieving SLP greater or equal to 2. 

Gene set Analysis method 

 t test Logistic regression using listed 

covariates 

  None PCs PCs, 

PRS 

PCs, 

CNV 

+ 

LOF 

PCs, 

PRS, 

CNV 

+ 

LOF 

CYTOKINE_METABOLIC_PROCESS 1.9 2.0 3.1 3.1 3.0 3.0 

CYTOKINE_BIOSYNTHETIC_PROCESS 1.8 1.8 3.0 3.0 2.9 2.9 

REGULATION_OF_CYTOKINE_BIOSYN

THETIC_PROCESS 1.7 1.7 2.8 2.8 2.7 2.7 

NEGATIVE_REGULATION_OF_TRANS

LATION 1.1 1.2 2.5 2.4 2.4 2.3 

NEGATIVE_REGULATION_OF_CELLUL

AR_PROTEIN_METABOLIC_PROCESS 1.4 1.4 2.5 2.4 2.4 2.3 

NUCLEOSOME_ASSEMBLY 1.5 1.5 2.0 2.1 1.9 2.1 

ATP_BINDING 1.5 1.5 2.1 1.9 2.1 2.0 
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Figure 1 

QQ plots of SLPs obtained for 22021 genes using different methods of analysis. 1A Results from t 

tests comparing gene-wise risk scores between cases and controls.  Results for Figures 1B to 1F use 

logistic regression analysis of gene-wise risk scores with caseness as outcome. Analyses include the 

following covariates. 1B No covariates. 1C 20 population principal components. 1D 20 population 

principal components and PRS. 1E 20 population principal components and pathogenic CNV or 

sequence variants. 1E 20 population principal components, PRS and pathogenic CNV or sequence 

variants. 

1A 

 

1B 
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Figure 2 

QQ plot for set-wise SLPs obtained when including all covariates for GO gene sets against the 

expected SLP if all sets were non-overlapping and independent. 
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