- TITLE: T cell responses to nonstructural protein 3 distinguish infections by Dengue and
 Zika viruses
 AUTHORS: Bobby Brooke Herrera^{1*}, Wen-Yang Tsai^{2*}, Carlos Brites³, Estela Luz³,
- 5 Celia Pedroso³, Jan Felix Drexler^{4,5}, Wei-Kung Wang^{2†}, Phyllis J. Kanki^{1†}
- 6
- 7 **AFFILIATIONS:** ¹Department of Immunology and Infectious Diseases, Harvard T.H.
- 8 Chan School of Public Health, Boston, MA, USA
- ⁹ ²Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A.
- 10 Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
- ³Laboratory of Infection Research, School of Medicine, Federal University of Bahia,
- 12 Salvador, Brazil
- ⁴Charité-Universitatsmedizin Berlin, corporate member of Freie Universität Berlin,
- 14 Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology,
- 15 Germany
- ⁵German Centre for Infection Research, Germany
- 17
- 18 *These authors contributed equally to this work.
- 19
- ¹Corresponding authors: Email: pkanki@hsph.harvard.edu (PJK); wkwang@hawaii.edu
- 21 (WKW)
- 22
- 23 **RUNNING TITLE:** T cell responses distinguish flavivirus infections

24	ABSTRACT WORD COUNT: 229
25	
26	TEXT WORD COUNT: 3,409
27	
28	KEYWORDS: Zika virus, dengue virus, T cell responses, nonstructural protein 3, Brazil
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

47 ABSTRACT

48

The 2015-16 Zika virus (ZIKV) epidemic in the Americas and the Caribbean 49 50 demonstrates that clinical assays to detect, distinguish, and characterize immune 51 responses to flaviviral infections are needed. ZIKV and dengue virus (DENV) are 52 mosquito-transmitted flaviviruses sharing overlapping geographical distribution and 53 have significant sequence similarity that can increase the potential for antibody and T cell cross-reaction. Using nonstructural protein 1-based enzyme-linked immunosorbent 54 55 assays (ELISAs), we determine the serostatus of individuals living in a DENV- and 56 ZIKV-endemic region in Brazil, identifying individuals with primary DENV (pDENV) and ZIKV (pZIKV), ZIKV with primary DENV (ZIKVwpDENV), and secondary DENV 57 58 (sDENV) infections; pDENV and pZIKV were further confirmed by neutralization tests. 59 Development of an enzyme-linked immunospot (ELISPOT) assay for DENV and ZIKV 60 structural and nonstructural (NS) protein antigens enables us to distinguish infections by 61 these viruses based on T cells and to characterize those responses. We find that IFN-y 62 and TNF- α T cell responses to NS3 differentiates DENV and ZIKV infections with 94% 63 sensitivity and 92% specificity. In general, we also show that pDENV and sDENV cases and pZIKV and ZIKVwpDENV cases elicit similar T cell response patterns, and that HIV-64 65 infected individuals have T cell responses that are lower in magnitude compared to HIV-66 negative individuals. These results have important implications for DENV and ZIKV diagnostic and vaccine development and provide critical insights into the T cell 67 68 response in individuals with multiple flaviviral infections.

69

IMPORTANCE

72	The potential for antibody and T cell cross-reaction to DENV and ZIKV,
73	flaviviruses that co-circulate and can sequentially infect individuals, has complicated
74	diagnostic and vaccine development. Our serological data show that antibodies to
75	nonstructural protein 1 can distinguish sequential human infections by DENV and ZIKV.
76	The development of a simple and inexpensive assay also enables the differentiation of
77	DENV and ZIKV infections based on the characterization of T cell responses. Our T cell
78	data reveals strong response patterns that are similar in nature in individuals with one or
79	multiple DENV infections and in individuals with only primary ZIKV infection and ZIKV-
80	infected individuals with previous DENV exposure. The characterization of T cell
81	responses in a serologically-validated group of individuals is of relevance to the
82	development of vaccines and immunotherapeutics against these global threats.
83	
84	
85	
86	
87	
88	
89	
90	
91	
92	

93 INTRODUCTION

94

Aedes mosquitoes transmit globally relevant flaviviruses including dengue virus 95 96 (DENV) and Zika virus (ZIKV). DENV exists as four antigenic serotypes, DENV1 to 97 DENV4 (1). These viruses have a wide geographic distribution with approximately 390 98 million infections annually and more than a guarter of the world's population at risk (2). 99 Prior to 2015, ZIKV was considered obscure and known to circulate in Africa and 100 Southeast Asia as two separate viral lineages, African and Asian (3). While most asymptomatic, the clinical presentation of ZIKV infection resembles that of dengue 101 102 including fever, rash, conjunctivitis, arthralgia, and myalgia (4). In early 2015, thousands 103 of Asian ZIKV cases appeared in northeast Brazil, with accompanying reports of severe 104 neuropathology including congenital microcephaly and Guillain-Barré syndrome (5, 6). 105 In February 2016, the World Health Organization declared ZIKV a public health 106 emergency of international concern (7). By June 2016, autochthonous transmission of 107 ZIKV had been reported in 40 countries and territories throughout South and Central 108 America and the Caribbean (8).

The emergence of ZIKV in DENV-endemic regions is of particular concern and relevant for diagnostic and vaccine development. The cocirculation of these genetically similar viruses can result in co-infection or sequential exposure, which has been shown to potentiate cross-reactive immunity at both the antibody and T cell levels (9-12). The envelope (E) protein is the major target of the antibody response in humans during flaviviral infection (1). Antibody-based assays were found to detect extensive crossreactivity to ZIKV E protein with other flaviviruses, requiring confirmation by plaque

116 reduction neutralization tests (PRNTs) (11, 13-16). These tests, however, are 117 challenged in their ability to confirm infection in individuals with multiple flaviviral 118 infections especially during the acute and early convalescent phases. Several studies 119 have also shown that most dengue-immune sera or DENV E monoclonal antibodies cross-react to ZIKV, but contain limited cross-neutralization activity and can instead 120 121 enhance ZIKV infection, known as antibody-dependent enhancement (ADE) (17-22). In 122 contrast, recent studies reported antibodies to ZIKV nonstructural protein 1 (NS1) were able to discriminate infections by these viruses (23, 24). We previously showed that 123 124 combinations of DENV and ZIKV NS1-based enzyme-linked immunosorbent assays 125 (ELISAs) were capable of distinguishing confirmed cases with past and present flaviviral infections including primary DENV (pDENV) and ZIKV (pZIKV), ZIKV with primary 126 127 DENV (ZIKVwpDENV), and secondary DENV (sDENV) infections (12). These ELISAs 128 are applicable for routine serological tests for DENV and ZIKV as well useful in 129 retrospective studies to identify individuals with primary and multiple flaviviral infections. 130 Pre-existing T cell responses to DENV have also been shown to react to 131 peptides encoded throughout the ZIKV proteome. DENV-naïve mice challenged with ZIKV developed ZIKV-specific CD8⁺ T cells, whereas DENV-immune mice challenged 132 with ZIKV elicited cross-reactive CD8⁺ T cells that reduced infectious ZIKV (25). A study 133 134 in humans infected with Asian ZIKV demonstrated that DENV serostatus influences the T cell response to ZIKV (10). DENV-immune individuals elicited CD4⁺ and CD8⁺ T cell 135 136 responses to ZIKV more rapidly and of greater magnitude compared to DENV-naïve 137 ZIKV-infected individuals. In addition, different patterns of immunodominant T cell 138 responses were observed in the case of DENV and ZIKV infections. While CD8⁺ T cell

139	responses against DENV target nonstructural (NS) proteins such as NS3, NS4B, and
140	NS5, ZIKV-specific CD8 $^+$ T cell responses target the structural proteins, capsid (C),
141	premembrane (prM), and E (10, 26). We previously developed a modified anthrax toxin
142	(LFn)-based enzyme-linked immunospot (ELISPOT) assay, which revealed long-term T
143	cell responses that were ZIKV- and DENV-specific to NS3 protease but cross-reactive
144	to NS3 helicase in individuals infected with DENV and African ZIKV (27). The impact of
145	cross-reactive immune responses in protection or development of ZIKV-mediated
146	neuropathology remains unclear.
147	In this study, we utilized our NS1-based ELISAs to determine the DENV and
148	ZIKV serostatus of individuals from Salvador, Brazil, a DENV-hyperendemic region with
149	one of the highest incidence rates of ZIKV during the 2015-16 epidemic (28). We then
150	tested the ability of our LFn ELISPOT assay to distinguish infections by DENV and
151	Asian ZIKV based on T cells and to characterize those responses.
152	
153	RESULTS
154	
155	NS1-based ELISAs and neutralization test determine DENV and ZIKV serostatus
156	
157	During the ZIKV outbreak in Salvador, Brazil, acute-phase blood samples were
158	collected from hundreds of suspected ZIKV-infected patients attending HIV outpatient
159	clinics between November 2015 and May 2016. Serological testing for ZIKV-NS1 IgG
160	and DENV-E IgG was performed, revealing a high incidence of ZIKV infection in
161	presumed DENV-immune and -naïve individuals (28). Fifty of these patients were

included in the present study. Their median age was 43 (range: 23-72), 49% female,
and 76% were human immunodeficiency virus (HIV)-infected. All HIV-infected

164 individuals were on antiretroviral therapy; more than 92% had undetectable viral loads

and normal CD4 counts. Patient characteristics and acute serology data are

summarized in Table S1 and Table 1, respectively.

167 In order to determine the DENV and ZIKV serostatus among the study participants who had potentially been dual exposed, we collected late convalescent-168 169 phase blood samples and employed our previously developed ZIKV-NS1 and DENV-170 NS1 IgG ELISAs (22). For samples positive for DENV-NS1, we calculated the ratio of 171 relative optical density (rOD) of ZIKV-NS1 to that of DENV-NS1 and used the rOD ratio < or \geq 0.24 to determine sDENV or ZIKVwpDENV infection, respectively (22). Twelve 172 173 ZIKVwpDENV and 21 sDENV infections were identified (Table 1, Fig. 1A to C). Five 174 samples with ZIKV-NS1 positive and DENV-NS1 negative were pZIKV. Since these 175 samples were collected more than one year post-infection, some anti-NS1 antibodies 176 may have declined to levels below detection, we further tested with ZIKV and DENV E 177 protein-based ELISAs and identified four samples negative for both ZIKV and DENV in 178 all four ELISAs tested (Table 1). Based on the difference in rOD of ZIKV and DENV E 179 proteins ($\Delta rOD = rOD$ of ZIKV – rOD of DENV), we identified four pZIKV ($\Delta rOD \ge 0.17$) 180 and four pDENV ($\Delta rOD < -0.17$) infections (Table 1, Fig. 1D to E). The negative, pZIKV 181 and, pDENV samples were further confirmed by micro-neutralization tests to DENV1-4 182 and ZIKV; all four negative samples had NT₉₀ titers <10 to DENV1-4 and ZIKV, and the five pZIKV and four pDENV samples showed monotypic neutralization pattern to ZIKV 183 184 and to one of the four DENV serotypes, respectively (Table 1). For the remaining 33

185	samples, microneutralization tests to ZIKV, DENV1 and/or DENV2 or 3 were performed
186	to show that all 12 ZIKVwpDENV samples neutralize (NT ₉₀ titers ≥10) ZIKV plus at least
187	one DENV serotype, whereas all 21 sDENV samples neutralize at least two DENV
188	serotypes or DENV plus ZIKV; these patterns were compatible with unspecified
189	flavivirus infection according to CDC guidelines (16). An additional three samples
190	(ZK1004, 1005, 1008), which had Δ rOD between –0.17 and 0.17, positive ZIKV-NS1
191	IgG at acute-phase sera but negative at late convalescent-phase, were classified as
192	undetermined (Table 1). Another sample (ZK0981), for which DENV acute-phase
193	serology was not performed, was negative for ELISAs using late convalescent-phase
194	serum and was also classified as undetermined.
195	
196	T cell responses to NS3 distinguish DENV and ZIKV infections
197	
198	We recently reported the development of a LFn ELISPOT assay based on NS3
199	protease and helicase to distinguish DENV and African ZIKV human infections (27). To
200	assess the ability of the assay to distinguish infection by DENV and Asian ZIKV, we
201	performed DENV and ZIKV homologous and heterologous LFn-NS3 protease and
202	helicase stimulation of date-matched late convalescent-phase PBMCs in an IFN- γ and
203	TNF- α ELISPOT among the serological-validated pDENV, pZIKV, sDENV, and
204	ZIKVwpDENV, and undetermined cases. Using a NS3 protease to helicase ratio cutoff
205	of 1.05 for the IFN- γ ELISPOT, pDENV and sDENV cases and pZIKV, ZIKVwpDENV
206	and the 3 out of the 4 serologically undetermined cases appeared to group together
207	(Fig. 2A). From the undetermined cases, 3 out of 4 (ZK1004, 1005, 1008) grouped with

the ZIKV-exposed individuals, while ZK0981 grouped with the DENV-infected
individuals. Using a ratio cutoff of 1.048 for the TNF-α ELISPOT, similar groupings were
observed (Fig. 2B). We were unable to distinguish sequential infections based on T cell
responses to NS3 protease and helicase.

212 Test data were further analyzed to define sensitivity (identifying true positives; 213 individuals who had been infected by DENV versus ZIKV) and specificity (true 214 negatives; DENV- or ZIKV-uninfected individuals). We evaluated sensitivity and 215 specificity as functions of the IFN- γ and TNF- α cutoff values, above which a sample was 216 considered positive and below which a sample was considered negative. We grouped 217 pDENV and sDENV and pZIKV and ZIKVwpDENV cases together based on the 218 clustering observed and excluded the 4 serologically undetermined cases from the 219 analysis. Receiver Operating Characteristic (ROC) curves and corresponding numerical 220 values illustrate the performance of the ELISPOTs as a function of the discrimination threshold, plotted as sensitivity versus 1 – specificity. The areas of the ROC curves 221 222 represent test performance, where 1 represents a perfect test, and 0.5 represents a 223 random predictor. We measured areas of 0.96 and 0.97 for the IFN-y and TNF- α 224 ELISPOTs, respectively (Table 2, Fig. 2 C-D). Using the cutoff values, the test 225 sensitivity and specificity for both the IFN-y and TNF- α ELISPOTs were 94% and 92%, 226 respectively.

227

LFn-DENV and -ZIKV structural and nonstructural proteins elicit robust T cell
 responses and prior DENV exposure does not affect the response

230

231	To assess the magnitude of T cell responses among the study participants, we
232	stimulated late convalescent-phase PBMCs in IFN- γ and TNF- α ELISPOTs using the
233	following six LFn fusion proteins: LFn-DENV-NS3-Protease (LFn-DV NS3-P), LFn-
234	DENV-NS3-Helicase (LFn-DV NS3-H), LFn-ZIKV-Capsid (LFn-ZV C), LFn-ZIKV-
235	premembrance (LFn-ZV prM), LFn-ZIKV-NS3-Protease (LFn-ZV NS3-P), LFn-ZIKV-
236	NS3-Helicase (LFn-ZV NS3-H). Individuals with pDENV and sDENV infections elicited
237	similar IFN- γ and TNF- α T cell response patterns (Fig. 3 A-B). These individuals had T
238	cell responses to LFn-DV NS3-H and LFn-ZV NS3-H that were stronger in magnitude
239	than to LFn-DV NS3-P and LFn-ZV NS3-P, respectively. Additionally, T cell responses
240	to LFn-DV NS3-P and NS3-H were stronger compared to LFn-ZV NS3-P and NS3-H.
241	The amount of T cell cross-reaction to the ZIKV structural proteins (LFn-ZV C and LFn-
242	ZV prM) was limited, compared to high cross-reactivity to LFn-ZV NS3-P and NS3-H.
243	Furthermore, individuals with pZIKV and ZIKVwpDENV infections elicited T cell
244	responses to LFn-ZV NS3-H and LFn-DV NS3-H that were stronger in magnitude
245	compared to LFn-ZV NS3-P and LFn-DV NS3-P, respectively (Fig. 3 C-D). While
246	individuals with pZIKV and ZIKVwpDENV infections had stronger IFN- γ T cell responses
247	to LFn-ZV NS3-H than to the ZIKV structural proteins, TNF- α responses to the ZIKV
248	structural proteins were stronger than to LFn-ZV NS3-P.
249	We further evaluated the impact of DENV immunity on the magnitude of T cell
250	responses. We compared the magnitude of the IFN- γ and TNF- α T cell responses
251	between individuals with pDENV and sDENV infections and pZIKV and ZIKVwpDENV

253 not significantly higher compared to individuals with a primary DENV or ZIKV infection

infections. In all cases, T cell responses in individuals with prior DENV exposure were

252

254	(Fig. 3 A-D). While IFN- γ and TNF- α responses appeared stronger to the ZIKV
255	structural proteins in individuals with sDENV infections than to individuals with pDENV
256	infections, these differences were not statistically significant. Similarly, individuals with
257	ZIKVwpDENV infection had comparable IFN- γ and TNF- α T responses to those with
258	pZIKV infections (Fig. 3 C-D).
259	
260	HIV influences the T cell response in DENV-exposed individuals
261	
262	We also compared the magnitude of the IFN- γ and TNF- α T cell responses in
263	DENV-exposed (grouping individuals with pDENV and sDENV infections together),
264	pZIKV, and ZIKVwpDENV individuals who were HIV-negative or HIV-infected. DENV-
265	exposed HIV-negative individuals had stronger IFN- γ responses to LFn-ZV C, -ZV NS3-
266	P, and -ZV NS3-H compared to HIV-infected individuals. IFN- γ responses to LFn-DV
267	NS3-P and NS3-H appeared to be stronger in the HIV-infected individuals, although
268	these differences were not statistically significant (p=0.61 and p=0.13, respectively)
269	(Fig. 4 A). A similar pattern of responses was observed for TNF- α (Fig. 4 D). In general,
270	ZIKVwpDENV HIV-negative individuals had stronger IFN- γ and TNF- α responses
271	compared to individuals that were HIV-infected (Fig. 4 B and E). In contrast, there was
272	largely no difference in the IFN- γ and TNF- α responses in pZIKV HIV-negative and HIV-
273	infected individuals (Fig. 4 C and F). There was an exception where the TNF- α
274	response to LFn-ZV NS3-H was stronger in individuals that were HIV-negative.
275	
276	

DISCUSSION

279	We report on the characterization of late convalescent-phase antibody and T cell
280	responses in individuals from Salvador, Brazil, a DENV-hyperendemic region that was
281	burdened by the 2015-2016 ZIKV outbreak. Our study presents three major findings in a
282	serologically-validated group of DENV and/or ZIKV infected individuals. First, IFN- γ and
283	TNF- α T cell response ratios of ZIKV NS3 protease to DENV NS3 protease can
284	discriminate infections in individuals exposed to these viruses. Second, individuals with
285	pDENV and sDENV infections have similar T cell response patterns, with extensive
286	cross-reactivity to ZIKV NS3 helicase, whereas individuals with pZIKV and
287	ZIKVwpDENV infections have strong responses to both ZIKV structural and
288	nonstructural proteins, with high cross-reaction to DENV NS3 helicase. Third, HIV-
289	infection is associated with responses that are lower in magnitude in DENV exposed
290	individuals.
291	Our previous study of NS1-based ELISAs on convalescent-phase sera from RT-
292	PCR confirmed cases with pZIKV, pDENV, sDENV and ZIKVwpDENV infections
293	showed that sDENV infection panel cross-react to ZIKV-NS1 and the rOD ratio of ZIKV-
294	NS1 to DENV-NS1 in IgG ELISA can distinguish sDENV and ZIKVwpDENV infections
295	(22). Since anti-NS1 antibodies may decline over time and become undetectable
296	especially for those with primary infection, we further tested these samples with E
297	protein-based IgG ELISAs and identified four negative samples, five pZIKV and four
298	pDENV infections. All these 13 samples have been verified by neutralization test using
299	$NT_{90} \ge 10$ as cutoff based on the CDC guidelines (16), suggesting that ΔrOD based on

300 ZIKV-E and DENV-E IgG ELISAs can distinguish pZIKV and pDENV infections; this 301 could potentially be a useful tool for epidemiology and pathogenesis study in endemic 302 regions. However, the sample size is small and the Δ rOD of 0.17 was based on a single 303 serum dilution of 1:800, future studies involving larger sample size and different 304 dilutions or end-point titers are needed to further validate these observations.

305 The degree of amino acid sequence identity between DENV and ZIKV structural 306 and nonstructural proteins is 49% and 51%, respectively (10). Multiple sequence 307 alignment and homology determination of DENV and ZIKV NS3 demonstrates high 308 amino acid sequence identity of 67%, with protease and helicase homology of 58% and 309 72%, respectively, consistent with the higher degree of DENV/ZIKV cross-reaction in 310 NS3 helicase (Table 3, Fig. 5). Our recent characterization of acute- and convalescent-311 phase T cells collected from individuals infected with DENV and African ZIKV in 312 Senegal, West Africa, revealed sustained DENV- and ZIKV-specific responses to NS3 313 protease and cross-reactive responses to NS3 helicase (27). Our findings in individuals 314 infected with DENV and Asian ZIKV are in agreement with our previous observations. 315 Although we were unable to distinguish sequential exposure, the LFn NS3 protease 316 ELISPOT differentiates infections between DENV- and ZIKV-infected individuals with 317 high sensitivity and specificity of 94% and 92%, respectively.

A relatively large body of epidemiological and laboratory-based evidence has suggested that severe and often fatal forms of dengue disease occurs most commonly during a secondary infection by a heterotypic DENV serotype (29, 30). Another phenomenon, known as original antigenic sin (OAS), has been observed in antibody as well as T-cell responses, in which less-effective T cells generated in response to a

323 primary DENV infection predominate during a subsequent infection with a different 324 DENV serotype, resulting in an inappropriate response and predisposing individuals to 325 severe disease (31, 32). The OAS hypothesis was challenged by a study in Sri Lankan 326 individuals infected with DENV, which showed that the phenomenon does not generate 327 less functional responses, but instead correlates with protective responses to conserved 328 viral sequences (26). Unexpectedly, we did not observe T cell responses that were 329 significantly higher in magnitude in individuals with prior DENV exposure. These results 330 are in contrast to our data on African ZIKV infections, which showed that previous 331 flavivirus exposure was associated with enhanced T cell responses (27). One possibility 332 is that the proportion of HIV infection among those with prior DENV exposure was 333 higher compared with DENV-naïve in this study (90.5% versus 50% comparing sDENV 334 and pDENV cases; 83.3% versus 60% comparing ZIKVwpDENV and pZIKV cases). 335 Nevertheless, as co-circulation of DENV, ZIKV, and other flaviviruses occurs throughout 336 many parts of the world, it is critical to continue to develop tools to better understand T 337 cell immunity in individuals exposed to multiple flaviviruses.

338 A recent study using human leukocyte antigen (HLA) transgenic mice infected 339 with DENV2 and Asian and African ZIKV strains revealed cross-reactive T cell 340 responses to HLA-restricted epitopes (25). Out of 8 ZIKV NS3 epitopes computationally 341 predicted to bind HLA class I molecules, only 3 epitopes elicited DENV2/Asian ZIKV 342 cross-reactive T cell responses. Of note, the cross-reactive epitopes were all positioned 343 within the helicase domain of NS3, further supporting our observations of high 344 DENV/ZIKV NS3 helicase T cell cross-reaction. Another study demonstrated ZIKV-345 specific and ZIKV/DENV cross-reactive T cell responses in humans (10). T cell

346 responses generated in response to prior DENV exposure recognized peptides 347 sequences located throughout the ZIKV proteome. DENV serostatus also influenced T 348 cell immunity to ZIKV. DENV-naïve ZIKV-positive individuals had predominant CD8 T 349 cell responses directed against structural proteins. In contrast, a majority of CD8 T cells 350 responses were directed against nonstructural proteins in DENV-immune ZIKV-positive 351 individuals, suggesting that previous DENV exposure can alter the T cell response. 352 While the above studies used peptide stimulation to characterize the T cell 353 response, there are concerns around this approach (33). Some of the HLA-predicted 354 peptides may fail to stimulate strong T cell responses as expected. Longer and shorter 355 peptides have also been shown to elicit different types of responses (34-36). An 356 alternative to peptide stimulation is the anthrax LFn, which has the capability to deliver 357 full length antigen into the cytosol for native processing via the MHC pathways, and to 358 elicit better T cell responses compared to peptides in some cases (37-42). Our 359 adaptation of the LFn ELISPOT, not only allowed detection of human DENV and ZIKV 360 infections, but also characterization of the associated T cell responses to structural and 361 nonstructural proteins. We demonstrated that individuals with pDENV and sDENV 362 infections had similar IFN-y and TNF- α T cell response patterns with high cross-363 reactivity to ZIKV NS3 helicase, but low cross-reactivity to the ZIKV structural proteins. 364 A small number of individuals with sDENV infections had cross-reactive T cell 365 responses to ZIKV structural proteins. Interestingly, however, individuals with pZIKV 366 and ZIKVwpDENV infections had similar IFN-y and TNF- α T cell responses patterns, 367 with strong responses to structural and nonstructural proteins. It is noteworthy that we 368 observed comparably strong T cell responses to the structural proteins in pZIKV and

ZIKVwpDENV cases, in contrast to Grifoni et al., suggesting that the most recent
infection may dictate the T cell response (10). Another possibility that cannot be
excluded is the differences in T cell stimulation strategies, which may be contributing to
the observed differences. Additionally, due to the limited collection of blood samples
from each patient, we were unable to characterize CD4- and CD8-specific responses.
Future characterization studies using the LFn delivery system on CD4 and CD8 T cells
will be important.

376 Our study of ZIKV seroprevalence in West Africa demonstrated continued human 377 transmission of the virus in HIV- and malaria-infected individuals (43). The co-infection 378 of flaviviruses with HIV or malaria could potentially impact pathophysiological 379 mechanisms, induce different clinical and laboratory findings, and interfere with 380 treatment. Previous studies have shown a suppression of HIV-1 replication during acute DENV infection (44, 45). In this study, we demonstrated that DENV-exposed individuals 381 382 who are HIV-infected had T cell responses that were significantly lower in magnitude 383 compared to HIV-negative individuals except in individuals with pZIKV infections. We 384 also observed that DENV-exposed HIV-infected individuals have T cell responses that 385 were lower in magnitude to ZIKV proteins compared to DENV-exposed HIV-negative 386 individuals. Whether HIV infection in DENV-exposed individuals reduces the ability to 387 induce cross-reactive T cell responses has important implications. More studies with 388 larger sample sizes are needed to increase our limited understanding of the 389 epidemiological and immunopathogenesis interactions of flavivirus exposure in 390 individuals with HIV and other comorbidities.

391	In summary, despite high sequence homology between DENV and ZIKV,
392	diagnostic assays based on antibodies to NS1 and T cell responses to NS3 protease
393	are effective at distinguishing human infections by these viruses. The LFn ELISPOT
394	assay has enabled direct comparison of T cell characterization in DENV, Asian and
395	Africa ZIKV human infections. As vaccines against DENV and ZIKV are currently being
396	developed, the information generated from these characterization studies are of high
397	relevance. The results of these characterization studies may contribute to the design
398	and development of DENV and ZIKV vaccines and T cell based diagnostics.
399	
400	MATERIALS AND METHODS
401	
402	Clinical samples and ethical statement
403	
404	Fifty late convalescent-phase blood samples were obtained from patients at
405	Professor Edgard Santos University Hospital, Federal University of Bahia, Salvador,
406	Brazil. These individuals were suspected ZIKV-infected during the 2015-2016 ZIKV
407	epidemic and their acute-phase sera were screened for ZIKV and DENV antibodies.
408	Late convalescent-phase peripheral blood mononuclear cells (PBMCs) were separated
409	from whole blood in EDTA tubes by Ficoll-Hypaque gradient density (Sigma-Aldrich, St.
410	Louis, MO, USA) and cryopreserved in freezing media (10% dimethyl sulfoxide [DMSO],
411	Sigma-Aldrich, St. Louis, MO, USA) at -80°C overnight prior to transfer to liquid
412	nitrogen. Convalescent-phase serum was aliquoted and immediately transferred to -
413	80°C.

The Federal University of Bahia Institutional Review Board (IRB), the Harvard T.H. Chan School of Public Health IRB, and the University of Hawaii IRB approved the primary studies under which the samples and data were collected. All patients provided informed consent for the collection of samples. Excess samples and corresponding data were banked, coded prior to analyses, and stored at the Federal University of Bahia.

419

420 ELISAs

421

422 For acute-phase sera, commercial ZIKV-NS1 and DENV-E based IgG ELISAs 423 (Euroimmun, Luebeck, Germany) were performed (27). For late convalescent-phase 424 sera, ZIKV- and DENV1-NS1 IgG ELISAs were performed as described previously (22). Briefly, 425 purified NS1 proteins (16 ng per well) were coated onto 96-well plates overnight, followed by 426 blocking and incubation with primary (serum at 1:400 dilution) and secondary (anti-427 human IgG conjugated with HRP, Jackson) antibodies (22). The OD at 450 nm was 428 read with a reference wavelength of 650 nm. Each ELISA plate included two positives (two confirmed-Zika or confirmed-dengue samples for ZIKV- and DENV-NS1 ELISAs, 429 430 respectively), four negatives (4 flavivirus-naïve sera), and tested samples (all in duplicates). The OD values were divided by the mean OD value of positive controls to 431 calculate the rOD values. The cut-off was defined by the mean rOD value of negatives 432 433 plus 12 standard deviations as described previously (22). For samples positive for both 434 ZIKV- and DENV-NS1 ELISAs, the ratio of rOD (=rOD of ZIKV-NS1/rOD of DENV-NS1) was calculated; rOD ratio < or \ge 0.24 indicated sDENV or ZIKVwpDENV infection, 435 436 respectively (22).

437	E protein-based IgG ELISAs using DENV1 virion or ZIKV (MR766 strain) virus			
438	like particles (VLP) were also tested for late convalescent-phase sera (46). Briefly,			
439	DENV1 virions or ZIKV-VLP derived from ultracentrifugation of culture supernatants of			
440	virus-infected Vero cells or pENTR-ZIKV prME plasmid-transfected 293T cells,			
441	respectively, were UV inactivated (for virions) and coated on 96-well plates at $4^{\circ}C$			
442	overnight, followed by blocking and incubation with primary (serum at 1:800 dilution)			
443	and secondary antibodies as above. The rOD and cut-off rOD values were similarly			
444	calculated. The difference in rOD of ZIKV and DENV E proteins (Δ rOD=rOD of ZIKV –			
445	rOD of DENV) was determined; $\Delta rOD \ge 0.17$ or < –0.17 was classified as pZIKV or			
446	pDENV infection, respectively.			
447				
448	Neutralization test			
449				
450	PRNT was performed on acute-phase sera to detect neutralization antibody to			
451	ZIKV as reported previously (47). For late convalescent-phase sera, a previously			
452	described micro-neutralization test was performed (48). Briefly, flat-bottom 96-well			
453	plates were seeded with Vero cells (3 x 10 ⁴ cells per well) 24 h prior to infection. Four-			
454	fold serial dilutions of serum (starting from 1:10) were mixed with 50 focus-forming units			
455	of DENV1 (Hawaii strain), DENV2 (NGC strain), DENV3 (CH53489), DENV4 (H241			
456	strain) or ZIKV (PRVABC59 strain) at 37°C for 1 h. The mixtures were added to each			
457				
	well followed by incubation for 48 h (except 70 h for DENV1), removal of medium, and			
458	well followed by incubation for 48 h (except 70 h for DENV1), removal of medium, and fixation as described previously (46). After adding murine mAb 4G2 and secondary			

459 antibody mixture (IRDye® 800CW-conjugated goat anti-mouse IgG at 1:10000 and

460	DRAQ5™ Fluorescent Probe at 1:10000), the signal (800 nm/700 nm fluorescence) was
461	detected by Li Cor Odyssey classic (LiCor Biosciences) and analyzed by Image Studio
462	software to determine percent neutralization at different concentrations and NT_{90} as
463	described previously (46, 48).
464	
465	
466	LFn fusion protein design
467	
468	Commercially synthesized gene fragments encoding the NS3 protease and
469	helicase of DENV2 and C, prM, and NS3 protease and helicase of Asian ZIKV and were
470	cloned into the LFn expression vector (pET15bLFn). The pET15bLFn vector contains a
471	T7 promoter, histidine tag (His $_6$), and the terminal domain of the anthrax lethal factor
472	(LFn; 255 amino acids). The pET15bLFn containing the coding sequences of the DENV
473	and Asian ZIKV proteins were transformed into <i>E. coli</i> BLR (DE3) (Millipore, Medford,
474	MA, USA). Selected clones were sequences to verify the reading frame, and clones
475	containing the correct sequence were used for protein expression.
476	The LFn-DENV and -ZIKV fusion proteins and the LFn control were expressed
477	upon isopropylthiogalactoside ([IPTG], Sigma-Aldrich, St. Louis, MO, USA) induction in
478	5L Luria broth containing carbenicillin and chloramphenicol for 2-4 hours. Cells were
479	pelleted by centrifugation and resuspended in imidazole (1mM) binding buffer
480	(Novagen, Madison, WI, USA) in the presence of a protease inhibitor cocktail (Thermo
481	Fisher Scientific, Rockford, IL, USA). Cell pellets were sonicated, centrifuged at $4^{\circ}C$,
482	and the supernatants were loaded in an equilibrated nickel-charged column for affinity

purification. The bound proteins were eluted in 100-200 mM imidazole, desalted with a
Sephadex G-25M column (Sigma-Aldrich, St. Louis, MO, USA), and eluted in PBS
(Sigma-Aldrich, St. Louis, MO, USA). The PBS-eluted proteins were passed through
Detoxi-Gel (Thermo Fisher Scientific, Rockford, IL, USA). Protein concentrations were
determined samples were stored at -80°C.

488

489 ELISPOT assay

490

Ex vivo ELISPOTs were performed as previously described. Briefly, 96-well 491 492 polyvinylidene difluoride (PVDF)-backed MultiScreen_{HTS} (MSIP) microtiter plates 493 (Millipore, Medford, MA, USA) were treated with 100ul of 90% ethanol for 30 seconds 494 and washed 5 times with sterile PBS. Plates were coated with 100ul of capture 495 antibodies (Abs) in PBS. Plates containing capture Abs were incubated overnight at 4°C. Plates were then blocked with 1% bovine serum albumin ([BSA], Sigma-Aldrich, St. 496 497 Louis, MO, USA) in PBS and washed 6 times with PBS. Cryopreserved PBMCs were thawed in R10 medium and incubated overnight at 37°C. PBMCs were washed 2 times 498 with PBS and seeded at 2 x 10⁵ cells/well in a final volume of 100ul/well. LFn-DENV 499 and -ZIKV proteins were added to each well. As a positive control, PBMCs were 500 501 stimulated with phytohemagglutinin ([PHA], Sigma-Aldrich, St. Louis, MO, USA). As a 502 negative control, wells received LFn. After incubation for 24-28 hours at 37°C in 5% 503 CO₂, the cells were discarded and plates were washed 3 times with PBS and 3 times with PBS with 0.05% Tween-20 ([PBST], Bio Rad Technologies, Hercules, CA, USA) to 504 505 remove cells. The detection antibodies were added and plates were incubated overnight

506 at 4°C. Plates were then washed 6 times with PBST, then incubated for 2 hours at room 507 temperature with mixtures containing the enzymatic conjugates. To develop spots, 508 plates were washed 4 times with PBST, three times with PBS, and 1 time with water. 509 Vector Blue substrate solution (Vector Laboratories, Burlingame, CA, USA) was added 510 for 5-15 mins before rinsing with water and air-drying. Digitized images were analyzed 511 for spots using CTL ImmunoSpot reader (Cellular Technology Limited, Cleveland, OH, 512 USA). DENV and ZIKV spots were calculated by subtracting the mean of the negative 513 control value from the mean value of the specific stimulation. Positive responses had to 514 be greater than 4 times the mean background, 3 standard deviations above the background, and \geq 55 spot-forming cells per (SFC)/10⁶ PBMCs. 515 516 517 **ROC** analysis

518

519 The ELISPOTs were validated using PBMCs from individuals that were 520 confirmed DENV- and/or ZIIV-infected by ELISA and/or neutralization tests. DENV and 521 ZIKV NS3 protease to helicase values were calculated, resulting in normalized test 522 ratios (ZIKV NS3 protease divided by DENV NS3 protease) ranging from 0.15-2.95. On 523 the basis of these data, we determined the optimal cutoffs between 0.15 and 2.95 by 524 calculating the sensitivity (number of true positives divided by total confirmed positive 525 values) and specificity (number of true negatives divided by the total confirmed 526 negatives) at increasing 0.05 to the theoretical cutoffs. After calculating the sensitivity 527 and specificity values, the optimal cutoffs were defined as the highest sum of sensitivity 528 and specificity, such that the optimal cutoff values reflected the optimal sensitivity and

529	specificity	The optimal cutoff	s obtained for the IF	N-v and TNF-a	was 1 05 and 1 048
529	specificity.	The optimal cuton		in-y and intr-u	was 1.05 anu 1.040,

- respectively (Prism 7, GraphPad Software, San Diego, CA, USA).
- 531

532 Multiple sequence alignment and percent homology analysis

- 533
- 534 Multiple sequence alignment of DENV1-4 and ZIKV NS3 was performed using

the Clustal Omega program (EMBL-EB, Cambridgeshire, UK). Averages of DENV and

- 536 ZIKV NS3 protease and helicase proteins were calculated using the ExPASy
- 537 Bioinformatics Resource Portal (Swiss Institute of Bioinformatics, Lausanne,
- 538 Switzerland) and based on averages of the different homology values in the four DENV
- serotypes and ZIKV. Average conservation was determined on a per-residue basis for
- 540 NS3 protease, helicase, and full-length protein.
- 541

542 Statistical analysis

543

Statistical analysis was performed using Prism 7 (GraphPad Software, San
Diego, CA, USA). Where appropriate, data were expressed as geometric positive
means on box whisker and bar graphs ± standard deviation. Data comparisons were
conducted using the Wilcoxon rank sum test. A threshold of p<0.05 was considered
statistically significant.

549

550

552 Data Availability

553

554 All relevant data has been included in the manuscript. We will provide any 555 additional data upon request.

556

557 ACKNOWLEDGEMENTS

558

We thank Yichen Lu for providing us with the LFn expression vector and Gwong-Jen J.				
Chang at the CDC Fort Collins for providing us the pENTR-ZIKV prME plasmid. This				
work was funded by a Harvard University David Rockefeller Center for Latin American				
Studies grant to BBH, and by grants R01AI110769-01 from the National Institute of				
Allergy and Infectious Diseases and P20GM103516 from the National Institute of				
General Medical Sciences, NIH to WKW. The funders had no role in study design, data				
collection and analysis, decision to publish, or preparation of the manuscript.				
REFERENCES				
1.	Peirson TC, Diamond MS. 2013. Flaviviruses. Fields Virology, 6th ed. Lippincott			
	Williams & Wilkins, Philadelphia.			
2.	Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM,			
	Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint			
	GR, Simmons CP, Scott TW, Farrar JJ, Hay SI. 2013. The global distribution and			
	burden of dengue. Nature 496:504-7.			
	We th Chang work v Studie Allerg Gener collect REFE 1.			

- 575 3. Faye O, Freire CC, Iamarino A, Faye O, de Oliveira JV, Diallo M, Zanotto PM,
- 576 Sall AA. 2014. Molecular evolution of Zika virus during its emergence in the
- 577 20(th) century. PLoS Negl Trop Dis 8:e2636.
- Simpson DI. 1964. Zika Virus Infection in Man. Trans R Soc Trop Med Hyg
 58:335-8.
- 580 5. Weaver SC, Costa F, Garcia-Blanco MA, Ko AI, Ribeiro GS, Saade G, Shi PY,
- 581 Vasilakis N. 2016. Zika virus: History, emergence, biology, and prospects for
- 582 control. Antiviral Res 130:69-80.
- 583 6. Krauer F, Riesen M, Reveiz L, Oladapo OT, Martinez-Vega R, Porgo TV,
- 584 Haefliger A, Broutet NJ, Low N, Group WHOZCW. 2017. Zika Virus Infection as a
- 585 Cause of Congenital Brain Abnormalities and Guillain-Barre Syndrome:
- 586 Systematic Review. PLoS Med 14:e1002203.
- 587 7. World Health Organization. 2016. WHO Director-General summarizes the
- 588 outcome of the Emergency Committee regarding clusters of microcephaly and
- 589 Guillain-Barré syndrome.
- 590 <u>http://www.who.int/mediacentre/news/statements/2016/emergency-committee-</u>
- 591 <u>zika-microcephaly/en/</u>. Accessed
- 592 8. Armstrong P, Hennessey M, Adams M, Cherry C, Chiu S, Harrist A, Kwit N,
- Lewis L, McGuire DO, Oduyebo T, Russell K, Talley P, Tanner M, Williams C,
- 594 Zika Virus Response E, Laboratory T. 2016. Travel-Associated Zika Virus
- 595 Disease Cases Among U.S. Residents--United States, January 2015-February
- 596 2016. MMWR Morb Mortal Wkly Rep 65:286-9.

597 9. Waggoner JJ, Gresh L, Vargas MJ, Ballesteros G, Tellez Y, Soda KJ, Sahoo MK,

- 598 Nunez A, Balmaseda A, Harris E, Pinsky BA. 2016. Viremia and Clinical
- 599 Presentation in Nicaraguan Patients Infected With Zika Virus, Chikungunya

600 Virus, and Dengue Virus. Clin Infect Dis 63:1584-1590.

- 10. Grifoni A, Pham J, Sidney J, O'Rourke PH, Paul S, Peters B, Martini SR, de Silva
- AD, Ricciardi MJ, Magnani DM, Silveira CGT, Maestri A, Costa PR, de-Oliveira-
- 603 Pinto LM, de Azeredo EL, Damasco PV, Phillips E, Mallal S, de Silva AM, Collins
- 604 M, Durbin A, Diehl SA, Cerpas C, Balmaseda A, Kuan G, Coloma J, Harris E,
- 605 Crowe JE, Jr., Stone M, Norris PJ, Busch M, Vivanco-Cid H, Cox J, Graham BS,
- Ledgerwood JE, Turtle L, Solomon T, Kallas EG, Watkins DI, Weiskopf D, Sette
- A. 2017. Prior Dengue virus exposure shapes T cell immunity to Zika virus in
- 608 humans. J Virol doi:10.1128/JVI.01469-17.
- 11. Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, Stanfield
- 610 SM, Duffy MR. 2008. Genetic and serologic properties of Zika virus associated

611 with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis 14:1232-9.

- 12. Tsai WY, Youn HH, Brites C, Tsai JJ, Tyson J, Pedroso C, Drexler JF, Stone M,
- 613 Simmons G, Busch MP, Lanteri M, Stramer SL, Balmaseda A, Harris E, Wang
- 614 WK. 2017. Distinguishing Secondary Dengue Virus Infection From Zika Virus
- 615 Infection With Previous Dengue by a Combination of 3 Simple Serological Tests.
- 616 Clin Infect Dis 65:1829-1836.
- 13. Lai CY, Tsai WY, Lin SR, Kao CL, Hu HP, King CC, Wu HC, Chang GJ, Wang

618 WK. 2008. Antibodies to envelope glycoprotein of dengue virus during the natural

619 course of infection are predominantly cross-reactive and recognize epitopes

620	containing highly conserved residues at the fusion loop of domain II. J Virol
621	82:6631-43.

- 14. Johnson BW, Kosoy O, Martin DA, Noga AJ, Russell BJ, Johnson AA, Petersen
- 623 LR. 2005. West Nile virus infection and serologic response among persons
- 624 previously vaccinated against yellow fever and Japanese encephalitis viruses.
- 625 Vector Borne Zoonotic Dis 5:137-45.
- 15. Rabe IB, Staples JE, Villanueva J, Hummel KB, Johnson JA, Rose L, Mts, Hills
- 627 S, Wasley A, Fischer M, Powers AM. 2016. Interim Guidance for Interpretation of
- 628 Zika Virus Antibody Test Results. MMWR Morb Mortal Wkly Rep 65:543-6.
- 629 16. Centers for Disease Control and Prevention. Guidance for U.S. laboratories
 630 testing for Zika virus infection. Available at:
- 631 <u>http://www.cdc.gov/zika/laboratories/lab-guidance.html</u>. Accessed 14 February
 632 2018.
- 633 17. Dejnirattisai W, Supasa P, Wongwiwat W, Rouvinski A, Barba-Spaeth G,
- Duangchinda T, Sakuntabhai A, Cao-Lormeau VM, Malasit P, Rey FA,
- 635 Mongkolsapaya J, Screaton GR. 2016. Dengue virus sero-cross-reactivity drives
- antibody-dependent enhancement of infection with zika virus. Nat Immunol
- 637 17:1102-8.
- 18. Priyamvada L, Quicke KM, Hudson WH, Onlamoon N, Sewatanon J, Edupuganti
- 639 S, Pattanapanyasat K, Chokephaibulkit K, Mulligan MJ, Wilson PC, Ahmed R,
- 640 Suthar MS, Wrammert J. 2016. Human antibody responses after dengue virus
- 641 infection are highly cross-reactive to Zika virus. Proc Natl Acad Sci U S A
- 642 113:7852-7.

643	19.	Castanha PM, Braga C, Cordeiro MT, Souza AI, Silva CD, Jr., Martelli CM, var

- 644 Panhuis WG, Nascimento EJ, Marques ET. 2016. Placental Transfer of Dengue
- 645 Virus (DENV)-Specific Antibodies and Kinetics of DENV Infection-Enhancing

646 Activity in Brazilian Infants. J Infect Dis 214:265-72.

- 20. Stettler K, Beltramello M, Espinosa DA, Graham V, Cassotta A, Bianchi S,
- 648 Vanzetta F, Minola A, Jaconi S, Mele F, Foglierini M, Pedotti M, Simonelli L,
- Dowall S, Atkinson B, Percivalle E, Simmons CP, Varani L, Blum J, Baldanti F,
- 650 Cameroni E, Hewson R, Harris E, Lanzavecchia A, Sallusto F, Corti D. 2016.
- 651 Specificity, cross-reactivity, and function of antibodies elicited by Zika virus
- infection. Science 353:823-6.
- 453 21. Halstead SB, O'Rourke EJ. 1977. Antibody-enhanced dengue virus infection in
 primate leukocytes. Nature 265:739-41.
- 655 22. Bardina SV, Bunduc P, Tripathi S, Duehr J, Frere JJ, Brown JA, Nachbagauer R,
- 656 Foster GA, Krysztof D, Tortorella D, Stramer SL, Garcia-Sastre A, Krammer F,
- Lim JK. 2017. Enhancement of Zika virus pathogenesis by preexisting
- antiflavivirus immunity. Science 356:175-180.
- 659 23. Steinhagen K, Probst C, Radzimski C, Schmidt-Chanasit J, Emmerich P, van
- 660 Esbroeck M, Schinkel J, Grobusch MP, Goorhuis A, Warnecke JM, Lattwein E,
- 661 Komorowski L, Deerberg A, Saschenbrecker S, Stocker W, Schlumberger W.
- 662 2016. Serodiagnosis of Zika virus (ZIKV) infections by a novel NS1-based ELISA
- devoid of cross-reactivity with dengue virus antibodies: a multicohort study of
- assay performance, 2015 to 2016. Euro Surveill 21.

665	24.	Balmaseda A, Stettler K, Medialdea-Carrera R, Collado D, Jin X, Zambrana JV,
666		Jaconi S, Cameroni E, Saborio S, Rovida F, Percivalle E, Ijaz S, Dicks S, Ushiro-
667		Lumb I, Barzon L, Siqueira P, Brown DWG, Baldanti F, Tedder R, Zambon M, de
668		Filippis AMB, Harris E, Corti D. 2017. Antibody-based assay discriminates Zika
669		virus infection from other flaviviruses. Proc Natl Acad Sci U S A 114:8384-8389.
670	25.	Wen J, Tang WW, Sheets N, Ellison J, Sette A, Kim K, Shresta S. 2017.
671		Identification of Zika virus epitopes reveals immunodominant and protective roles
672		for dengue virus cross-reactive CD8(+) T cells. Nat Microbiol 2:17036.
673	26.	Weiskopf D, Angelo MA, de Azeredo EL, Sidney J, Greenbaum JA, Fernando
674		AN, Broadwater A, Kolla RV, De Silva AD, de Silva AM, Mattia KA, Doranz BJ,
675		Grey HM, Shresta S, Peters B, Sette A. 2013. Comprehensive analysis of
676		dengue virus-specific responses supports an HLA-linked protective role for CD8+
677		T cells. Proc Natl Acad Sci U S A 110:E2046-53.
678	27.	Herrera BB, Tsai WY, Chang CA, Hamel DJ, Wang WK, Lu Y, Mboup S, Kanki
679		PJ. 2018. Sustained specific and cross-reactive T cell responses to Zika and
680		Dengue viruses NS3 in West Africa. J Virol doi:10.1128/JVI.01992-17.
681	28.	Netto EM, Moreira-Soto A, Pedroso C, Hoser C, Funk S, Kucharski AJ,
682		Rockstroh A, Kummerer BM, Sampaio GS, Luz E, Vaz SN, Dias JP, Bastos FA,
683		Cabral R, Kistemann T, Ulbert S, de Lamballerie X, Jaenisch T, Brady OJ,
684		Drosten C, Sarno M, Brites C, Drexler JF. 2017. High Zika Virus Seroprevalence
685		in Salvador, Northeastern Brazil Limits the Potential for Further Outbreaks. MBio
686		8.
687	29.	Halstead SB. 2007. Dengue. Lancet 370:1644-52.

688 30. Guzman MG, Alvarez M, Halstead SB. 2013. Secondary infection as a risk factor 689 for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective 690 and role of antibody-dependent enhancement of infection. Arch Virol 158:1445-691 59. 692 Halstead SB, Rojanasuphot S, Sangkawibha N. 1983. Original antigenic sin in 31. 693 dengue. Am J Trop Med Hyg 32:154-6. 694 32. Mongkolsapaya J, Dejnirattisai W, Xu XN, Vasanawathana S, 695 Tangthawornchaikul N, Chairunsri A, Sawasdivorn S, Duangchinda T, Dong T,

696 Rowland-Jones S, Yenchitsomanus PT, McMichael A, Malasit P, Screaton G.

697 2003. Original antigenic sin and apoptosis in the pathogenesis of dengue

hemorrhagic fever. Nat Med 9:921-7.

Karlsson RK, Jennes W, Page-Shafer K, Nixon DF, Shacklett BL. 2004. Poorly
soluble peptides can mimic authentic ELISPOT responses. J Immunol Methods
285:89-92.

Madden DR. 1995. The three-dimensional structure of peptide-MHC complexes.
Annu Rev Immunol 13:587-622.

35. Stryhn A, Pedersen LO, Holm A, Buus S. 2000. Longer peptide can be

accommodated in the MHC class I binding site by a protrusion mechanism. Eur JImmunol 30:3089-99.

36. Horig H, Young AC, Papadopoulos NJ, DiLorenzo TP, Nathenson SG. 1999.

708 Binding of longer peptides to the H-2Kb heterodimer is restricted to peptides

709 extended at their C terminus: refinement of the inherent MHC class I peptide

binding criteria. J Immunol 163:4434-41.

711 37.	Cao H, Agrawal D	, Kushner N, Touz	jian N, Essex M, L	_u Y. 2002. Delivery (of
---------	------------------	-------------------	--------------------	------------------------	----

- exogenous protein antigens to major histocompatibility complex class I pathway
 in cytosol. J Infect Dis 185:244-51.
- 38. Kushner N, Zhang D, Touzjian N, Essex M, Lieberman J, Lu Y. 2003. A fragment
- of anthrax lethal factor delivers proteins to the cytosol without requiring protective
- 716 antigen. Proc Natl Acad Sci U S A 100:6652-7.
- 39. Lu Y, Friedman R, Kushner N, Doling A, Thomas L, Touzjian N, Starnbach M,
- 718 Lieberman J. 2000. Genetically modified anthrax lethal toxin safely delivers
- whole HIV protein antigens into the cytosol to induce T cell immunity. Proc Natl
- 720 Acad Sci U S A 97:8027-32.
- 40. McEvers K, Elrefaei M, Norris P, Deeks S, Martin J, Lu Y, Cao H. 2005. Modified
 anthrax fusion proteins deliver HIV antigens through MHC Class I and II
 pathways. Vaccine 23:4128-35.
- 41. Sarr AD, Lu Y, Sankale JL, Eisen G, Popper S, Mboup S, Kanki PJ, Cao H.
- 2001. Robust HIV type 2 cellular immune response measured by a modified
- anthrax toxin-based enzyme-linked immunospot assay. AIDS Res Hum
- 727 Retroviruses 17:1257-64.
- 42. Liao Q, Strong AJ, Liu Y, Liu Y, Meng P, Fu Y, Touzjian N, Shao Y, Zhao Z, Lu
- Y. 2012. HIV vaccine candidates generate in vitro T cell response to putative
 epitopes in Chinese-origin rhesus macagues. Vaccine 30:1601-8.
- 43. Herrera BB, Chang CA, Hamel DJ, Mboup S, Ndiaye D, Imade G, Okpokwu J,
- Agbaji O, Bei AK, Kanki PJ. 2017. Continued Transmission of Zika Virus in
- 733 Humans in West Africa, 1992-2016. J Infect Dis 215:1546-1550.

734	44.	Watt G, Kantipong P, Jongsakul K. 2003. Decrease in human immunodeficiency
735		virus type 1 load during acute dengue fever. Clin Infect Dis 36:1067-9.
736	45.	McLinden JH, Stapleton JT, Chang Q, Xiang J. 2008. Expression of the dengue
737		virus type 2 NS5 protein in a CD4(+) T cell line inhibits HIV replication. J Infect
738		Dis 198:860-3.
739	46.	Tsai WY, Lai CY, Wu YC, Lin HE, Edwards C, Jumnainsong A, Kliks S, Halstead
740		S, Mongkolsapaya J, Screaton GR, Wang WK. 2013. High-avidity and potently
741		neutralizing cross-reactive human monoclonal antibodies derived from secondary
742		dengue virus infection. J Virol 87:12562-75.
743	47.	Moreira-Soto A, Sarno M, Pedroso C, Netto EM, Rockstroh A, Luz E, Feldmann
744		M, Fischer C, Bastos FA, Kummerer BM, de Lamballerie X, Drosten C, Ulbert S,
745		Brites C, Drexler JF. 2017. Evidence for Congenital Zika Virus Infection From
746		Neutralizing Antibody Titers in Maternal Sera, Northeastern Brazil. J Infect Dis
747		216:1501-1504.
748	48.	Govindarajan D, Meschino S, Guan L, Clements DE, ter Meulen JH, Casimiro
749		DR, Coller BA, Bett AJ. 2015. Preclinical development of a dengue tetravalent
750		recombinant subunit vaccine: Immunogenicity and protective efficacy in
751		nonhuman primates. Vaccine 33:4105-16.
752		
753		
754		
755		

757 **TABLES**

758 Table 1 Results of Serological tests

	Acute-phase sera									
									NT test ^f	
	ZIKV-	DENV-	PRNT	ZIKV-	DENV-	rOD	ZIKV-E	DENV-E	D1/D2/D3	
ID	NS1 lgG ^a	E lgGª	test⁵	NS1 lgG [°]	NS1 lgG [℃]	ratio ^c	lgG ^d	lgG⁴	/D4/ZIKV	Interpretation
ZK0978	-	-	-	-	-	NA	-	-	<10/<10/<10/<10	negative
ZK0982	-	-	-	-	-	NA	-	-	<10/<10/<10/<10	negative
ZK0987	-	-	-	-	-	NA	-	-	<10/<10/<10/<10	negative
ZK0999	-	-	-	-	-	NA	-	-	<10/<10/<10/<10	negative
ZK0979	+	+		+	-	NA	+ ^e	+	<10/<10/<10/>>160	pZIKV
ZK0993	+	+		+	-	NA	+ ^e	+	<40/<40/<10/<10/>160	pZIKV
ZK0998	+	+		+	-	NA	+ ^e	+	<10/<10/<40/<10/>160	pZIKV
ZK1006	+	+		+	-	NA	+ ^e	+	<80/<40<10/<40/640	pZIKV
ZK0996	+	-	+	+	-	NA	+ ^e	+	<10/<10/<10/>>160	pZIKV
ZK0966	-	+	-	-	-	NA	+	+ ^e	<40/160/<10/<40/<10	pDENV
ZK0980	-	+		-	-	NA	+	+ ^e	<40/<40/>160/<40/<10	pDENV
ZK0995	-	+		-	-	NA	+	+ ^e	>640/160/<10/<10/<10	pDENV
ZK0997	ND	ND		-	-	NA	+	+ ^e	<40/>160/<40/<40/<10	pDENV
ZK0972	+	+		+	+	≥0.24	+	+	>40/ND/ND/ND/>80	ZIKVwpDENV
ZK0975	+	+		+	+	≥0.24	+	+	>40/ND/ND/ND/>80	ZIKVwpDENV
ZK0989	+	+	+	+	+	≥0.24	+	+	>40/ND/ND/ND/>80	ZIKVwpDENV
ZK0991	+	+	+	+	+	≥0.24	+	+	>40/ND/ND/ND/>80	ZIKVwpDENV
ZK1000	+	+		+	+	≥0.24	+	+	>40/ND/ND/ND/>40	ZIKVwpDENV
ZK1009	+	+	+	+	+	≥0.24	+	+	>10/ND/ND/ND/>80	ZIKVwpDENV
ZK1011	+	+		+	+	≥0.24	+	+	>40/ND/ND/ND/>80	ZIKVwpDENV
ZK1012	+	+	+	+	+	≥0.24	+	+	>40/ND/ND/ND/>80	ZIKVwpDENV
ZK1014	+	+	+	+	+	≥0.24	+	+	>40/ND/ND/ND/>80	ZIKVwpDENV
ZK1015	+	+	+	+	+	≥0.24	+	+	>40/ND/ND/ND/>80	ZIKVwpDENV
ZK0968	+	ND		+	+	≥0.24	+	+	>40/ND/ND/ND/>80	ZIKVwpDENV
ZK0984	+	+		+	+	≥0.24	+	+	>320/>1280/<80/>1280/>320	ZIKVwpDENV
ZK0976	-	+		+	+	<0.24	+	+	>40/ND/ND/ND/<10	sDENV
ZK0986	-	+		+	+	<0.24	+	+	>40/ND/ND/ND/>80	sDENV

ZK0967	+	+		+	+	<0.24	+	+	>40/ND/ND/ND/>80	sDENV
ZK0969	+	+		+	+	<0.24	+	+	>40/ND/ND/ND/>40	sDENV
ZK0971	+	+		+	+	<0.24	+	+	>40/>40/ND/ND/<10	sDENV
ZK0977	+	+		+	+	<0.24	+	+	>40/ND/ND/ND/>80	sDENV
ZK0983	+	+	+	+	+	<0.24	+	+	>40/ND/ND/ND/>10	sDENV
ZL0985	+	+	+	+	+	<0.24	+	+	>40/ND/ND/ND/>40	sDENV
ZK0988	+	+		+	+	<0.24	+	+	>40/ND/ND/ND/>40	sDENV
ZK0992	+	+	+	+	+	<0.24	+	+	>40/ND/ND/ND/>80	sDENV
ZK0994	+	+	-	+	+	<0.24	+	+	>40/ND/ND/ND/>40	sDENV
ZK1001	+	+		+	+	<0.24	+	+	>40/>40/ND/ND/<10	sDENV
ZK1010	+	+		+	+	<0.24	+	+	>40/ND/ND/ND/>80	sDENV
ZK1013	+	ND		+	+	<0.24	+	+	>40/ND/ND/ND/>10	sDENV
ZK0973	-	ND		-	+	<0.24	+	+	>40/<80/>80/ND/>320	sDENV
ZK0974	-	+		-	+	<0.24	+	+	>40/>320/>80/ND/>10	sDENV
ZK1002	-	+	-	-	+	<0.24	+	+	>40/>80/<80/ND/<10	sDENV
ZK1003	-	+	-	-	+	<0.24	+	+	>40/>80/<80/ND/<10	sDENV
ZK1007	-	+		-	+	<0.24	+	+	>40/>80/>80/ND/<10	sDENV
ZK1016	-	+		-	+	<0.24	+	+	>40/>1280/>1280/ND/>10	sDENV
ZK0990	-	+	-	-	+	<0.24	+	+	>40/>1280/>80/ND/<10	sDENV
ZK1004	+	+		-	+	NA	+	+	ND/ND/ND/ND/ND	unknown
ZK1005	+	ND		-	+	NA	+	+	ND/ND/ND/ND/ND	unknown
ZK1008	+	+		-	-	NA	+	+	ND/ND/ND/ND/ND	unknown
ZK0981	-	ND		-	-	NA	-	-	ND/ND/ND/ND	unknown

759

760 pZIKV: primary ZIKV infection; pDENV: primary DENV infection; sDENV: secondary DENV infection; ZIKV wpDENV: ZIKV infection

761 with previous DENV infection. ND: not determined; NA not applicable.

762 ^aEuroimmun ZIKV-NS1 and DENV-E IgG ELISAs were performed on acute-phase sera (28).

763 ^bPRNT was performed on acute-phase sera to detect neutralization antibody to ZIKV (47).

764 °ZIKV-NS1 and DENV-NS IgG ELISAs were described previously (12). The rOD ratio (ZIKV-NS1/DENV-NS1) < or ≥0.24 was

765 classified as sDENV or ZIKVwpDENV (12).

766 ^{d,e}ZIKV-E and DENV-E IgG ELISAs utilized ZIKV VLP and DENV virions, respectively (46). ΔrOD (rOD of ZIKV–rOD of DENV) ≥

767 0.17 or < -0.17 was classified as pZIKV or pDENV infection, respectively.

768 ^fMico-neutralization test (NT) were performed (with NT₉₀ titers shown) to confirm none, pZIKV or pDENV infection (46, 48).

Table 2 Numerical values of ROC analysis and sensitivity and specificity results

772		IFN-γ⁺	TNF-α⁺
//2		DENV vs. ZIKV	DENV vs. ZIKV
773	AUC ^a	0.96	0.97
774	95% CI⁵	0.91-1.02	0.92-1.01
775	Cutoff	1.055	1.048
//3	Sensitivity	94%	94%
776	Specificity	92%	92%
777	^a Area under	the curve, ^b Confider	nce interval

Table 3 Sequence homology of DENV and Asian ZIKV NS3^a

	% homology to ZIKV							
Serotype	NS3 protease	NS3 helicase	Full-length					
DENV1	55%	71%	66%					
DENV2	58%	72%	67%					
DENV3	58%	72%	67%					
DENV4	59%	71%	67%					
^a Homology analysis between Asian ZIKV (GenBank accession number:								
NC_035889.1) and DENV1 (ACO06157.1), DENV2 (JN819419.1),								
DENV3 (ACY70771.1), and DENV4 (AEW50183.1).								

794 Figure 1. ZIKV and DENV NS1-based and E-based IgG ELISAs. (A) ZIKV-NS1, (B)

795 DENV-NS1 IgG ELISAs and (C) rOD ratio. (D) ZIKV-E, (E) DENV-E and (F) ΔrOD=rOD

of ZIKV–rOD of DENV. Dots lines indicate cut-off values, 0.24 for rOD ratio and 0.17 for

797 ΔrOD. pZIKV: primary ZIKV infection; pDENV: primary DENV infection; sDENV:

secondary DENV infection; ZIKVwpDENV: ZIKV infection with previous DENV infection.

NA not applicable.

800

Figure 2. T cell responses to NS3 protease and helicase and ROC analysis of the 801 802 ELISPOT test. Late convalescent-phase PBMCs from DENV- and/or ZIKV-infected 803 individuals were treated with homologous and heterologous LFn-DENV and -ZIKV NS3 protease and the specific IFN-y and TNF-a T cell responses were detected by ex vivo 804 805 ELISPOTs. (A) Scatter plot of the ratios of ZIKV NS3 protease to DENV NS3 protease 806 IFN-y responses versus ratios of helicase. (B) ROC analysis for the IFN-y ELISPOT. (C) 807 Scatter plot of the ratios of ZIKV NS3 protease to DENV NS3 protease TNF-α T cell 808 responses versus ratios of helicase. (D) ROC analysis for the TNF- α ELISPOT. The 809 dashed line on (A) represents the optimal cutoff value of 1.05 and the dashed line on 810 (C) represents the optimal cutoff value of 1.048. Individual colored dots represent serologically-validated DENV- and/or ZIKV-infected individuals and the undetermined 811 812 cases.

813

814 Figure 3. T cell responses to ZIKV and/or DENV structural or nonstructural

815 proteins among subgroups with different DENV and ZIKV serostatus. Late

816 convalescent-phase PBMCs from DENV- and/or ZIKV-infected individuals were treated

817	with homologous and/or heterologous LFn-DENV and -ZIKV capsid (ZV C),
818	premembrane (ZV prM), NS3 protease (DV or ZV NS3-P) and NS3 helicase (DV or ZV $$
819	NS3-H) and the specific IFN- γ and TNF- α T cell responses were detected by <i>ex vivo</i>
820	ELISPOTs. IFN- γ and TNF- α spot forming cells (SFC) were detected, counted, and
821	expressed as box plots with mean and standard deviations. Comparison of late
822	convalescent-phase (A) IFN- γ and (B) TNF- α T cell responses between individuals with
823	pDENV and sDENV infections. Comparison of late convalescent-phase (C) IFN- γ and
824	(D) TNF- α T cell responses between individuals with pZIKV and ZIKVwpDENV
825	infections. Individual colored plots represent serologically-validated DENV- and/or ZIKV-
826	infected individual. *, p<0.05.
827	
828	Figure 4. Impact of HIV status on the T cell response. Comparison of mean
829	convalescent-phase IFN- γ T cell responses expressed as bars and standard deviation
830	between (A) HIV-negative (open black bars) and HIV-infected (shaded black bars)
004	
831	individuals with pDENV and sDENV infections grouped together, (B) HIV-negative
831 832	individuals with pDENV and sDENV infections grouped together, (B) HIV-negative (open dark grey bars) and HIV-infected (shaded dark grey bars) individuals with
831 832 833	individuals with pDENV and sDENV infections grouped together, (B) HIV-negative (open dark grey bars) and HIV-infected (shaded dark grey bars) individuals with ZIKVwpDENV infections, and (C) HIV-negative (open light grey bars) and HIV-infected

835 convalescent-phase TNF- α T cell responses expressed as bars and standard deviation

between (D) HIV-negative (open black bars) and HIV-infected (shaded black bars)

- 837 individuals with pDENV and sDENV infections grouped together, (E) HIV-negative
- 838 (open dark grey bars) and HIV-infected (shaded dark grey bars) individuals with

- 839 ZIKVwpDENV infections, and (F) HIV-negative (open light grey bars) and HIV-infected
- 840 (shaded light grey bars) individuals with pZIKV infections. *, p<0.05.
- 841
- 842 Figure 5. Clustal Omega generated amino acid sequence alignment of DENV
- 843 serotypes 1 to 4 and Asian ZIKV. The residues in yellow represent the NS3 protease
- domain (amino acids 1-169) and the residues in orange represent the helicase domain
- 845 (amino acids 179-619). *, single, fully conserved residue. :, conservation between
- groups of strongly similar properties scoring > 0.5 in the Gonnet PAM 250 matrix. .,
- 847 conservation between groups of weakly similar properties scoring =< 0.5 in the
- 848 Gonnet PAM 250 matrix.

wpDENV n=12

n = 21

n = 4

n = 5

n = 4

negative p∠ikv pDENV ZIKV sDEI wpDENV

n=4 n=5 n=4 n=12 n=21

	1
DENV1	SGVLWDTPSPPEVERAVLDDGIYRILQRGLLGRSQVGVGVGQDGVFHTMWHVTRGAVLMYQGKRLEPSWASVKKDLISYGGGWRFQGSWNTGEEVQVIAVEPGKNPKNVQTTPGTFKTPE
DENV2	AGVLWDVPSPPPVGKAELEDGAYRIKQRGILGYSQIGAGVYKEGTFHTMWHVTRGAVLMHRGKRIEPSWADVKKDLVSYGGGWKLEGEWKEGEEVQVLALEPGKNPRAVQTKPGIFKTNT
DENV3	SGVLWDVPSPPETQKAELEEGVYRIKQQGIFGKTQVGVGVGKEGVFHTMWHVTRGAVLTYNGKRLEPNWASVKKDLISYGGGWRLSAQWQKGEEVQVIAVEPGKNPKNFQTTPGTFQTTT
DENV4	SGALWDVPSPAATQKAALSEGVYRIMQRGLFGKTQVGVGIHMEGVFHTMWHVTRGSVICHETGRLEPSWADVRNDMISYGGGWRLGDKWDKEEDVQVLAIEPGKNPKHVQTKPGLFKTLT
ZIKV	${\tt SGALWDVPAPKEVKKGETTDGVYRVMTRRLLGSTQVGVGVMQEGVFHTMWHVTKGSALRSGEGRLDPYWGDVKQDLVSYCGPWKLDAAWDGHSEVQLLAVPPGERARNIQTLPGIFKTKD$
	.*.**** *** :* .*.*.*: .*.********
	169 179
DENV1	GEVGAIALDFKPGTSGSPIVNREGKIVGLYGNGVVTTSGTYVSAIAQAKASQEGPLPEIEDEVFKKRNLTIMDLHPGSGKTRRYLPAIVREAIKRKLRTLILAPTRVVASEMAEALKGMP
DENV2	GNIGAVSLDFSPGTSGSPIVDRKGKVVGLYGNGVVTRSGAYVSAIAQTEKSIE-DNPEIEDDIFRKKRLTIMDLHPGAGKTKRYLPAIVREAIKRGLRTLILAPTRVVAAEMEEALRGLP
DENV3	GEIGAIALDFKPGTSGSPIINREGKVVGLYGNGVVTKNGGYVSGIAQTNAEPDGPTPELEEEMFKKRNLTIMDLHPGSGKTRKYLPAIIREAIKRRLRTLILAPTRVVAAEMEEALKGLP
DENV4	<mark>GEIGAVTLDFKPGTSGSPIINRKGKVIGLYGNGVVTKSGDYVSAITQAE</mark> RIGE-PDYEVDEDIFRKKRLTIMDLHPGAGKTKRILPSIVREALKRRLRTLILAPTRVVAAEMEEALRGLP
ZIKV	GDIGAVALDYPAGTSGSPILDKCGRVIGLYGNGVVIKNGSYVSAITQGRREEETPVECFEPSMLKKKQLTVLDLHPGAGKTRRVLPEIVREAIKTRLRTVILAPTRVVAAEMEEALRGLP
	*::**::**: *******:: *:::******** .* ***.*:* . : .: .::*:*:********
DENV1	IRYQTTAVKSEHTGREIVDLMCHATFTMRLLSPVRVPNYNMIIMDEAHFTDPASIAARGYISTRVGMGEAAAIFMTATPPGSVEAFPQSNAVIQDEERDIPERSWNSGYDWITDFPGKTV
DENV2	IRYOTPAIRAEHTGREIVDLMCHATFTMRLLSPVRVPNYNLIIMDEAHFTDPASIAARGYISTRVEMGEAAGIFMTATPPGSRDPFPOSNAPIMDEEREIPERSWNSGHEWVTDFKGKTV
DENV3	IRYQTTATKSEHTGREIVDLMCHATFTMRLLSPVRVPNYNLIIMDEAHFTDPASIAARGYISTRVGMGEAAAIFMTATPPGTADAFPQSNAPIQDEERDIPERSWNSGNEWITDFAGKTV
DENV4	IRYOTPAVKSEHTGREIVDLMCHATFTTRLLSSTRVPNYNLIVMDEAHFTDPSSVAARGYISTRVEMGEAAAIFMTATPPGATDPFPOSNSPIEDIEREIPERSWNTGFDWITDYOGKTV
ZTKV	
	·** *.* . *:* **************************
DENV1	WFVPSIKSGNDIANCLRKNGKRVIQLSRKTFDTEYQKTKNNDWDYVVTTDISEMGANFRADRVIDPRRCLKPVILKDGPERVILAGPMPVTVASAAQRRGRIGRNQNKEGDQYIYMGQPL
DENV2	WFVPSIKAGNDIAACLRKNGKKVIQLSRKTFDSEYVKTRANDWDFVVTTDISEMGANFKAERVIDPRRCMKPVILTDGEERVILAGPMPVTHSSAAQRRGRIGRNPKNENDQYIYMGEPL
DENV3	WFVPSIKAGNDIANCLRKNGKKVIQLSRKTFDTEYQKTKLNDWDFVVTTDISEMGANFKADRVIDPRRCLKPVILTDGPERVILAGPMPVTAASAAQRRGRVGRNPQKENDQYIFTGQPL
DENV4	WFVPSIKAGNDIANCLRKSGKKVIQLSRKTFDTEYPKTKLTDWDFVVTTDISEMGANFRAGRVIDPRRCLKPVILTDGPERVILAGPIPVTPASAAQRRGRIGRNPAQEDDQYVFSGDPL
ZIKV	WFVPSVRNGNEIAACLTKAGKRVIQLSRKTFETEFQKTKHQEWDFVVTTDISEMGANFKADRVIDSRRCLKPVIL-DG-ERVILAGPMPVTHASAAQRRGRIGRNPNKPGDEYLYGGGCA
	*****: **:** ** * **:*******:*: **: :*:******
DENV1	${\tt NNDEDHAHWTEAKMLLDNINTPEGIIPALFEPEREKSAAIDGEYRLRGEARKTFVELMRRGDLPVWLSYKVASEGFQYSDRRWCFDGERNNQVLEENMDVEIWTKEGERKKLRPRWLDARWTEAKMLLDNINTPEGIIPALFEPEREKSAAIDGEYRLRGEARKTFVELMRRGDLPVWLSYKVASEGFQYSDRRWCFDGERNNQVLEENMDVEIWTKEGERKKLRPRWLDARWTEAKMLLDNINTPEGIIPALFEPEREKSAAIDGEYRLRGEARKTFVELMRRGDLPVWLSYKVASEGFQYSDRRWCFDGERNNQVLEENMDVEIWTKEGERKKLRPRWLDARWTEAKMLLDNINTPEGIIPALFEPEREKSAAIDGEYRLRGEARKTFVELMRRGDLPVWLSYKVASEGFQYSDRRWCFDGERNNQVLEENMDVEIWTKEGERKKLRPRWLDARWTEAKMTFVELMRRGDLPVWLSYKVASEGFQYSDRRWCFDGERNNQVLEENMDVEIWTKEGERKKLRPRWLDARWTEARWTFVELMRRGDLPVWLSYKVASEGFQYSDRRWCFDGERNNQVLEENMDVEIWTKEGERKKLRPRWLDARWTFVELMRRGDLPVWLSYKVASEGFQYSDRRWCFDGERNNQVLEENMDVEIWTKEGERKKLRPRWLDARWTFVELMRRGDLPVWLSYKVASEGFQYSDRRWCFDGERNNQVLEENMDVEIWTKEGERKKLRPRWLDARWTFVELMRRGDLPVWLSYKVASEGFQYSDRRWCFDGERNNQVLEENMDVEIWTKEGGRKKLRPRWLDARWTFVELMRGDLPVWLSYKVASEGFQYSDRRWCFDGERNNQVLEENMDVEIWTKEGFNNQVLEENMDVEIWTKEGFTWLDARWTFVELMRRGDLPVWLSYKVASEGFQYSDRRWCFDGERNDVEIWTKEGFTWNDVEIWTKEGFTWFVELMRRGDLPVHITTHFTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT$
DENV2	${\tt ENDEDCAHWKEAKMLLDNINTPEGIIPSMFEPEREKVDAIDGEYRLRGEARKTFVDLMRRGDLPVWLAYKVAAEGINYADRRWCFDGIKNNQILEENVEVEIWTKEGERKKLKPRWLDARWCFDGINYADRRWCFDGIKNNQILEENVEVEIWTKEGERKKLKPRWLDARWCFDGINYADRRWCFDGIKNNQILEENVEVEIWTKEGERKKLKPRWLDARWCFDGINYADRRWCFDGIKNNQILEENVEVEIWTKEGERKKLKPRWLDARWCFDGINYADRRWCFDGIKNNQILEENVEVEIWTKEGERKKLKPRWLDARWCFDGINYADRRWCFDGIKNNQILEENVEVEIWTKEGERKKLKPRWLDARWCFDGINYADRRWCFDGIKNNQILEENVEVEIWTKEGERKKLKPRWLDARWCFDGINYADRRWCFDGIKNNQILEENVEVEIWTKEGERKKLKPRWLDARWCFDGINYADRRWCFDGIKNNQILEENVEVEIWTKEGERKKLKPRWLDARWCFDGINYADRRWCFDGIKNNQILEENVEVEIWTKEGERKKLKPRWLDARWCFDGINYADRRWCFDGIKNNQILEENVEVEIWTKEGERKKLKPRWLDARWCFDGINYADRRWCFDGIKNNQILEENVEVEIWTKEGERKKLKPRWLDARWCFDGINYADRRWCFDGIKNNQILEENVEVEIWTKEGERKKLKPRWLDARWCFDGINYADRAGNAGINYADRRWCFDGINYADARRWCFDGINYADRRWCFDGINYADRRWCFDGINYADARRWCFDGINYADARRWCFDGINYADRRWCFDGINYADARRWCFDGINYADARRWCFDGINYADARRWCFDGINYADARRWCFDGINYADARRWCFDGINYADARRWCFDGINYADARRWCFDGINYADARRWCFDGINYADARRWCFDGINYADARRWCFDGINYADARAGINYADARAGINAGINAGINAGANAFANAFAGANAGANAFANAFAANAFA$
DENV3	${\tt NNDEDHAHW} {\tt TEAKMLLDNINTPEGIIPALFEPEREKSAAIDGEYRLKGESRKTFVELMRRGDLPVWLAHKVASEGIKYTDRKWCFDGQRNNQILEENMDVEIWTKEGEKKKLRPRWLDARW} {\tt NNDEDHAHW} {\tt NNDHAHW} {\tt NHAHW} {\tt NNDHAHW} {\tt NHAHW} {\tt NHAH$
DENV4	${\tt KNDEDHAHWTEAKMLLDNIYTPEGIIPTLFGPEREKTQAIDGEFRLRGEQRKTFVELMRRGDLPVWLSYKVASAGISYKDREWCFTGERNNQILEENMEVEIWTREGEKKKLRPKWLDARWTEAKMLLDNIYTPEGIIPTLFGPEREKTQAIDGEFRLRGEQRKTFVELMRRGDLPVWLSYKVASAGISYKDREWCFTGERNNQILEENMEVEIWTREGEKKKLRPKWLDARWTEAKMLLDNIYTPEGIIPTLFGPEREKTQAIDGEFRLRGEQRKTFVELMRRGDLPVWLSYKVASAGISYKDREWCFTGERNNQILEENMEVEIWTREGEKKKLRPKWLDARWTEAKMLDNIYTPEGIIPTLFGPEREKTQAIDGEFRLRGEQRKTFVELMRRGDLPVWLSYKVASAGISYKDREWCFTGERNNQILEENMEVEIWTREGEKKKLRPKWLDARWTEAKMLDARWTEAKMLDARWTEAKMLDARWTEAKMLDARWTEAKMLTARWTEAKMLDARWTEAKWTAKAGISYKDREWCFTGERNNQILEENMEVEIWTREGEKKKLRPKWLDARWTEAKWTAFAGISYKTAGISYKDREWCFTGERNNQILEENMEVEIWTREGEKKKLRPKWLDARWTEAKWTAFAGISYKAFAGISYKT$
ZIKV	${\tt ETDED}{\tt HAHW} {\tt LEARMLLDNIYLQDGLIASLYRPEADKVAAIEGEFKLRTEQRKTFVELMKRGDLPVWLAYQVASAGITYTDRRWCFDGTTNNTIMEDSVPAEVWTRHGEKRVLKPRWMDAR}{\tt Construction}{\tt Cons$
	**** *** ******* ******* **************
DENV1	619 TYSDPLALREFKEFAAGRR
DENV3	TYSDPLALKEFKDFAAGRK
DENV2	IYSDPLALKEFKEFAAGRK
DENV4	VYADPMALKDFKEFASGRK
ZIKV	VCSDHAALKSFKEFAAGKR
	:* **:.**:*::