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ABSTRACT  29 

Geminiviruses are DNA viruses that replicate in nuclei of infected plant cells 30 

using the plant DNA replication machinery, including PCNA (Proliferating 31 

cellular nuclear antigen), a cofactor that orchestrates genome duplication and 32 

maintenance by recruiting crucial players to replication forks. These viruses 33 

encode a multifunctional protein, Rep, which is essential for viral replication, 34 

induces the accumulation of the host replication machinery and interacts with 35 

several host proteins, including PCNA and the SUMO E2 conjugation enzyme 36 

(SCE1). Post-translational modification of PCNA by ubiquitin or SUMO plays an 37 

essential role in the switching of PCNA between interacting partners during 38 

DNA metabolism processes (e.g. replication, recombination, repair, etc.). In 39 

yeast, PCNA sumoylation has been associated to DNA repair involving 40 

homologous recombination (HR). Previously, we reported that ectopic Rep 41 

expression results in very specific changes in the sumoylation pattern of plant 42 

cells.  In this work, we show, using a reconstituted sumoylation system in 43 

Escherichia coli, that tomato PCNA is sumoylated at two residues, K254 and 44 

K164, and that co-expression of the geminivirus protein Rep suppresses 45 

sumoylation at these lysines. Finally, we confirm that PCNA is sumoylated in 46 

planta and that Rep also interferes with PCNA sumoylation in plant cells.  47 

IMPORTANCE (150 words) 48 

SUMO adducts have a key role in regulating the activity of animal and yeast 49 

PCNA on DNA repair and replication. Our work demonstrates for the first time 50 

that sumoylation of plant PCNA occurs in plant cells and that a plant virus 51 

interferes with this modification. This work marks the importance of sumoylation 52 

in allowing viral infection and replication in plants. Moreover, it constitutes a 53 

prime example of viral proteins interfering with post-translational modifications 54 

of selected host factors to create a proper environment for infection. 55 

 56 

KEYWORDS: Geminivirus, Rep, PCNA, begomovirus, SUMO, sumoylation, 57 

homologous recombination 58 
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INTRODUCTION 60 

Geminiviruses constitute a large family of plant viruses with circular single-61 

stranded (ss) DNA genomes packaged within geminate particles (1), which 62 

replicate in the nuclei of infected cells through double-stranded (ds) DNA 63 

intermediates (2, 3). The largest geminivirus genus corresponds to 64 

begomoviruses, which can have bipartite genomes (A and B components) like 65 

Tomato golden mosaic virus (TGMV) or monopartite genomes like Tomato 66 

yellow leaf curl virus (TYLCV). Begomoviruses encode two proteins involved in 67 

viral replication: Rep (also called AL1, AC1, and C1), a multifunctional essential 68 

protein, and C3 (also called AL3, AC3, C3, and REn), which interacts with Rep 69 

and greatly enhances begomovirus DNA accumulation in host cells (4). Rep has 70 

different functions: it mediates recognition of its cognate origin-of-replication in a 71 

geminivirus species-specific manner (5), it is required for initiation and 72 

termination of viral DNA synthesis (6-8), and it acts as a DNA helicase (9, 10). 73 

Growing evidence strongly supports the notion that geminivirus proteins have a 74 

significant impact on a variety of host processes including cell differentiation, 75 

cell cycle control, DNA replication, plasmodesmata function and RNA silencing 76 

(3). By these means, geminiviruses reshape their environment by co-opting 77 

cellular processes necessary for viral replication, systemic spread, and 78 

impairment of plant defences. There are numerous mechanisms by which 79 

geminiviruses mediate their effects on the host cell, including targeting of post-80 

translational modification systems. Such systems play critical roles in many 81 

cellular processes because they cause rapid changes in (i) the function of pre-82 

existing proteins, (ii) composition of multi-protein complexes and (iii) their 83 

subcellular localization. Their versatility in regulating protein function and 84 

cellular behaviour makes them a particularly attractive target for viruses. One 85 

example of a key cellular regulatory system targeted by viruses is sumoylation 86 

(11, 12), a post-translational process mainly involved in nuclear functions that 87 

modifies protein function, activity or localization of its targets through covalent 88 

attachment of a 10-kD Ubiquitin-like polypeptide called SUMO (Small ubiquitin-89 

like modifier) (13-15). 90 
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Briefly, post-translational modification by SUMO involves a cascade of ATP-91 

dependent reactions that are mechanistically similar to ubiquitination, involving 92 

sequential activation and conjugation of SUMO. SUMO activation is driven by 93 

an E1 enzyme (SUMO-activating enzyme SAE1/SAE2 heterodimer), while 94 

SUMO conjugation is mediated by a single E2 enzyme (SUMO-conjugating 95 

enzyme SCE1, also known as Ubc9 in yeast and mammals). The final transfer 96 

of SUMO from SCE1 to specific lysine residues in target proteins can occur 97 

directly or can be enhanced by SUMO ligases (14, 16). Target proteins can 98 

undergo mono-sumoylation of one lysine, poly-sumoylation (SUMO chain 99 

formation) or multi-sumoylation (modification of several lysines in one substrate) 100 

(17-19). SUMO can be specifically detached from modified lysines by SUMO 101 

proteases (ULPs), making it a reversible and dynamic process (18, 20). The 102 

consequence of sumoylation on targets is very diverse, ranging from changes in 103 

localization to altered activity and, in some cases, stabilization of the modified 104 

protein. All of these effects are frequently the result of changes in the molecular 105 

interactions of the sumoylated proteins. Sumoylation can either mask a binding 106 

site in its target thus inhibiting its interactions with other proteins, increase the 107 

number of binding sites on its target hence facilitating the binding of molecules, 108 

such as proteins or DNA, or produce a conformational change that modulates 109 

its activity. 110 

In plants, the characterization of the sumoylation enzymes has largely been 111 

restricted to Arabidopsis thaliana, although information based on sequence 112 

analysis of other plant genomes is available (21, 22). The Arabidopsis genome 113 

encodes eight full-length SUMO genes (AtSUMOs), a single gene encoding the 114 

SUMO-conjugating enzyme SCE1 (AtSCE1a) and a large number of ULPs. 115 

Only two SUMO E3 ligases (SIZ1, HPY2/MMS21) have been identified and 116 

characterized in Arabidopsis (23-27). In plants, sumoylation is important for 117 

embryonic development, organ growth, flowering transition, and hormone 118 

regulation (28). In addition, SUMO also plays a key role in stress-associated 119 

responses to stimuli such as extreme temperatures, drought, salinity and 120 

nutrient assimilation (29, 30). During these abiotic stresses, the profile of 121 

SUMO-modified proteins changes dramatically, greatly increasing the global 122 

SUMO-conjugates levels and decreasing the pool of free SUMO (31, 32). After 123 
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exertion of stress, SUMO-conjugates slowly diminish by the action of ULPs, that 124 

are fundamental players in fine-tuning SUMO conjugation/deconjugation (20, 125 

33). Several observations, including pathogen manipulation of SUMO 126 

conjugation by bacterial elicitors (34-36), modification of SUMO levels altering 127 

pathogen infection in plants (37, 38) and sumoylation influencing innate 128 

immunity (39-41), indicate that SUMO also plays an important role in plant 129 

defence responses. 130 

Numerous studies in recent years have shown that sumoylation also plays a 131 

role in viral infection. In animals, proteins from DNA and RNA virus families 132 

were shown to be sumoylated, and this modification seems to be important for 133 

their function. Conversely, proteins encoded by DNA viruses can modify host 134 

sumoylation, globally or to certain specific substrates, altering the host 135 

environment to facilitate viral replication or to overcome host defences, either by 136 

preventing de novo sumoylation or by enhancing desumoylation (11, 12, 42, 137 

43). 138 

In sharp contrast with these animal pathosystems, only two examples of an 139 

interaction between viral proteins and the sumoylation machinery have been 140 

described for plants so far. The only RNA-dependent RNA polymerase of the 141 

potyvirus Turnip mosaic virus (TuMV), Nlb, is sumoylated and interacts with 142 

SUMO3 from Arabidopsis (44). Knockout or overexpression of SUMO3 143 

suppresses TuMV replication and attenuates the viral symptoms (45). The other 144 

example is the interaction between the begomovirus protein Rep and SCE1 145 

(37). This interaction is essential for viral infection, since Rep mutants impaired 146 

in SCE1-binding and plants with altered SUMO levels, showed reduced viral 147 

replication (37, 46). Transient expression of Rep in Nicotiana benthamiana 148 

showed that the interaction between Rep and SCE1 does not alter the global 149 

sumoylation pattern in planta, but rather may specifically influence SUMO 150 

conjugation of a selected subset of host proteins (46). 151 

In this study, we identify PCNA (Proliferating cell nuclear antigen) as such a 152 

plant protein whose sumoylation is altered in the presence of the begomovirus 153 

protein Rep. Using a reconstituted sumoylation assay in Escherichia coli, we 154 

demonstrate that tomato PCNA is readily sumoylated at two different lysines 155 
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(K164 and K254). However, in the presence of Rep, SUMO attachment is 156 

compromised at both these acceptor sites. This interference is specific for 157 

PCNA, since Rep does not alter sumoylation of a control protein. It does also 158 

not depend on the physical interaction between Rep and SCE1. Finally, we are 159 

able to detect for the first time sumoylation of PCNA in planta and show that the 160 

reduction of PCNA sumoylation exerted by Rep also occurs in plant tissues. 161 

 162 

RESULTS 163 

Rep modulates the sumoylation of PCNA 164 

Ectopic Rep expression alters the sumoylation status of specific host proteins 165 

(46). Although full determination of the number and identity of these plant 166 

targets will require a comprehensive proteomic analysis, proteins that both 167 

interact with Rep and are known to be sumoylated are primary candidates. One 168 

of such proteins is PCNA, since its sumoylation has been described for PCNA 169 

homologues of yeast, Xenopus laevis, mammalians and Arabidopsis (47-53) 170 

and tomato PCNA binds Rep from several begomoviruses (54, 55). 171 

Sumoylation of Arabidopsis PCNA has been described for both homologues 172 

encoded in its genome (AtPCNA1 and AtPCNA2) using a sumoylation system 173 

reconstituted in bacteria (52, 53). In order to assess if tomato PCNA (PCNA) is 174 

also sumoylated and if Rep then interferes with its sumoylation, we followed a 175 

similar strategy and performed sumoylation assays in E. coli as described by 176 

(56). In this assay, all components of the sumoylation pathway (SAE1/2, SCE1, 177 

and SUMO1) are expressed in E. coli together with a potential substrate protein 178 

using an inducible system based on T7 promoters, where SAE1, SUMO1 and 179 

the target protein are expressed as His-tagged proteins to facilitate protein 180 

detection. Three compatible plasmids were co-maintained in E. coli in this assay 181 

to simultaneously express: (i) mammalian His-SAE1, SAE2 and SCE1 (Ubc9) 182 

from a polycistronic RNA, (ii) mammalian His-SUMO1, (iii) His-PCNA from 183 

tomato, or alternatively His-PCNA and Rep as a polycistronic mRNA. Protein 184 

expression was induced in cells co-transformed with the appropriate plasmids 185 

and total protein extracts from these cells were analysed with western blots 186 
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probed with anti-PCNA, anti-SUMO1/2, anti-His or anti-Rep antibodies (Fig. 1). 187 

Cells expressing only PCNA displayed a band of the expected size (32 kD) 188 

when the blot was incubated with anti-PCNA (Fig. 1, lane 1). An additional band 189 

(PCNA-SUMO) of approximately 55 kD was detected when PCNA was 190 

expressed together with the complete sumoylation machinery (E1/E2 and 191 

SUMO) (Fig.1, lane 5), but not when it was co-expressed only with the 192 

sumoylation machinery without SUMO (Fig. 1 lane 4). Since the apparent mass 193 

of this band matches the expected mass for a PCNA-SUMO dimer and a similar 194 

band was detected when the blot was incubated with anti-SUMO or anti-His 195 

antibodies, we conclude that this 55 kD band corresponds to mono-sumoylated 196 

form of PCNA. This result indicates that tomato PCNA, like its yeast, 197 

mammalian and Arabidopsis homologues, can be sumoylated. The extra protein 198 

bands observed on the membrane by the anti-SUMO antibody are similar to 199 

those reported previously (56) and likely correspond to free SUMO (SUMO) or 200 

SUMO chains (dimers, trimers, etc.). Similar bands were detected with the anti-201 

His antibody.  202 

When PCNA and Rep were co-expressed from the same plasmid as a 203 

polycistronic mRNA, together with the complete sumoylation machinery 204 

expressed from two accompanying plasmids, the intensity of the band that 205 

corresponds to sumoylated PCNA (PCNA-SUMO) was drastically reduced (Fig. 206 

1, lane 6). This reduction in intensity was also observed for a higher molecular 207 

weight band (X1) detected by the anti-SUMO antibody. The size of this band is 208 

consistent with PCNA with two SUMO peptides attached. However, this extra 209 

band was not detected with anti-PCNA, arguing that it reflects a different protein 210 

(complex). Together, these results demonstrate that sumoylation of tomato 211 

PCNA is strongly reduced in the presence of Rep. When using an anti-Rep 212 

antibody, a band corresponding to the expected molecular weight (44 kD) of the 213 

viral protein Rep was detected (Fig. 1, anti-Rep). We did not detect any bands 214 

that could match with sumoylated forms of Rep, confirming that SUMO is not 215 

covalently attached to Rep. The additional smaller band (X2) detected with the 216 

anti-Rep antibody likely corresponds to a truncated form of the viral protein. To 217 

establish if impairment of PCNA sumoylation is strictly due to co-expression of 218 

Rep, we performed a sumoylation assay in which we replaced Rep by the C2 219 
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protein from the begomovirus Tomato yellow leaf curl Sardinia virus. The results 220 

showed that only Rep and not C2 was capable of reducing the amount of 221 

sumoylated PCNA, thus ruling out an unspecific interference with sumoylation 222 

due to the simultaneous expression of PCNA and any given protein from a 223 

polycistronic RNA (Fig. 2A, lanes 7 to 9). Expression of C2 was confirmed using 224 

an anti-His antibody. 225 

To determine if the Rep-mediated suppression of PCNA sumoylation is due to 226 

the inhibition of SCE1 activity by the viral protein, we carried out a sumoylation 227 

assay replacing PCNA with Arabidopsis Catalase 3 (CAT3), a known 228 

sumoylation substrate (57). A C-terminal CAT3 fragment fused to a Flag epitope 229 

was expressed in E. coli cells in the presence or absence of Rep. Again, 230 

western blots were probed with anti-Flag, anti-Rep and anti-SUMO antibodies 231 

(Figure 2B). In all proteins extracts, a band of approximately 35 kD 232 

corresponding to the CAT3 protein was detected with the anti-Flag antibody 233 

(Fig. 2B, anti-FLAG). When CAT3 was co-expressed with the complete 234 

sumoylation machinery (E1/E2 and SUMO), an additional band of 235 

approximately 50 kD, consistent with mono-sumoylated CAT3, was detected 236 

both with the anti-Flag (Fig. 2B, anti-FLAG, lane 5) and the anti-SUMO antibody 237 

(Fig. 2B, anti-SUMO, lane 5). When CAT3 and Rep were expressed 238 

simultaneously from one plasmid as a polycistronic mRNA, together with the 239 

sumoylation machinery expressed from the two accompanying plasmids, the 240 

intensity of the band identified as sumoylated CAT3 remained unaltered (Fig. 241 

2B, lane 6). This indicates that Rep expression does not affect the conjugating 242 

activity of SCE1 in the E. coli assay in a generic way. Rep expression was 243 

confirmed by probing the western blot with an anti-Rep antibody. 244 

Tomato PCNA is sumoylated at the residues K164 and K254 245 

Sumoylation of yeast PCNA occurs preferentially at K164, a residue conserved 246 

in all PCNA proteins, and to a lesser extent at K127 (47). Sumoylation of yeast 247 

PCNA K164 requires the SUMO E3 ScSiz1, whereas K127 sumoylation 248 

proceeds without an E3 ligase in vitro and is mediated by ScSiz2 in vivo (47, 249 

58). Sumoylation at K164 has been observed in other species, such as chicken 250 

cells, X. laevis egg extracts and mammalian cells (48-51, 59). In the in E. coli 251 
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reconstituted sumoylation, Arabidopsis PCNA was shown to be sumoylated 252 

primarily at K254, although additional sumoylation was reported to occur at 253 

other lysine residues (K13, K14, K20, K217, and K240), but not at K164 (52).  254 

In order to establish whether tomato PCNA also contains multiple SUMO 255 

acceptor sites and to examine if Rep interferes with sumoylation at each site, 256 

we performed sumoylation assays expressing tomato PCNA mutants where 257 

lysines were replaced by alanines. To select PCNA lysine residues for 258 

mutagenesis, we analysed a PCNA multisequence alignment and candidate 259 

lysines were picked according to the following criteria: (i) the residue is 260 

conserved in PCNA homologues of different organisms, (ii) the residue was 261 

previously described as SUMO acceptor site in other PCNA homologues, (iii) 262 

the residue is located in a predicted SUMO acceptor site using GPS SUMO-gp 263 

and SUMOsp2.0 (60, 61) and/or (iv) the residue is located at the surface of the 264 

PCNA three-dimensional structure. These analyses suggested the residues 265 

K91, K164, K168, K190 and K254 to have increased probability to be 266 

sumoylated, with K164 and K254 being the prime candidates (Fig. 3A). As a 267 

first step, single and double mutants were generated for the residues K164 and 268 

K254 and analysed in our sumoylation assay in E. coli. Co-expression of wild-269 

type PCNA with the complete sumoylation machinery (E1/E2 and SUMO) 270 

produced a double band (PCNA-SUMO) of the expected molecular mass of 271 

sumoylated PCNA (Fig. 3B, lane 2): we did not observe this double band 272 

before, due to a lower resolution in protein separation in our previous western 273 

blots  (Fig. 1). This double band could represent PCNA monomers mono-274 

sumoylated at two different positions. This phenomenon was previously 275 

described for yeast and human PCNA, which when sumoylated at K127 or 276 

K254 respectively migrated on SDS-PAGE gel at a different apparent molecular 277 

mass than yeast PCNA SUMO-modified at K164 (47, 50, 62). When PCNA 278 

K164A was co-expressed instead of wild-type PCNA, a single band of 55 kD 279 

(corresponding with the lower of the two bands obtained with the wild-type 280 

PCNA) was observed (Fig. 3B, lane 4). On the contrary, co-expression of the 281 

single PCNA mutant K254A resulted in a decrease in intensity of the lower 282 

band, while the intensity of the upper band remained unchanged at the levels 283 

seen for wild-type PCNA (Fig. 3B, lane 6). When the PCNA double mutant 284 
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K164A/K254A was expressed, the upper band disappeared entirely while a 285 

decrease in the intensity was detected for the lower band, similar to situation 286 

shown for the single mutant K254A (Fig. 3B, lane 5). These results indicated 287 

that the double band detected with wild-type PCNA corresponds to two distinct 288 

PCNA-SUMO adducts in which SUMO is attached to two different lysines, with 289 

the upper band, being the result of sumoylation at K164 and the lower, at least 290 

partially, the product of sumoylation at K254. To identify the alternative lysine 291 

residue(s) responsible for the residual sumoylation of the lower band in PCNA 292 

K254A, we performed sumoylation assays introducing into the PCNA double 293 

mutant K164A/K254A additional mutations in each of the other selected lysine 294 

residues (K91, K168 or K190). However, none of the additional mutations was 295 

able to remove the weak band present in the double mutant K164A/K254A, 296 

suggesting that lysine residues other than K91, K168 or K190 are sumoylated in 297 

bacteria when K164 and K254 are mutated (results with the additional K91A, 298 

K168A and K190A mutations are shown in Fig. S1). When co-expressing Rep 299 

no lower band is detected and a large reduction in the upper band is observed 300 

(Fig. 3B, Lane 3) indicating that expression of Rep impairs PCNA sumoylation 301 

in all lysines residues. 302 

Rep-mediated suppression of PCNA sumoylation is independent of the 303 

Rep-SCE1 interaction 304 

To gain insight into the mechanism of Rep-mediated suppression of PCNA 305 

sumoylation, we analysed whether the physical interaction of Rep with SCE1 or 306 

PCNA had a role. Previous work had mapped the SCE1-binding domain of Rep 307 

between the residues 56-114, with the region 56-85 likely forming the core of 308 

the interface with N. benthamina SCE1, while the region 86-114 may stabilize or 309 

enhance this interaction. Replacement of the lysine residues K68 and K102 in 310 

the binding region of Rep impairs its interaction with SCE1 and dramatically 311 

reduces viral replication, indicating that the Rep-SCE1 interaction is required for 312 

viral DNA replication  313 

(37, 46). To determine whether the Rep-SCE1 interaction (37, 46, 54) is 314 

required for compromised PCNA sumoylation, we performed a sumoylation 315 

assay in E. coli co-expressing the Rep K68A/K102A double mutant, which does 316 
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not interact with N. benthamiana SCE1 (46). As expected, the double band 317 

corresponding with sumoylated PCNA vanished when wild type Rep was co-318 

expressed (Fig. 4, lane 2). A similar reduction in the intensity of these two 319 

bands was seen when Rep K68A/K102A was co-expressed (Fig. 4, lane 3). 320 

This indicates that, in the conditions of our sumoylation assay, the direct 321 

interaction SCE1-Rep is not required for the Rep-mediated suppression of 322 

PCNA sumoylation.  323 

The residues of PCNA that contribute to its interaction with Rep seem to spread 324 

across the protein, while the residues of Rep important for the interaction with 325 

PCNA appear to be concentrated in the middle part of this viral protein, 326 

spanning the residues 120-183 (54). To further investigate the mechanism of 327 

interference, we carried out sumoylation assays expressing truncated versions 328 

of Rep. Ten different Rep truncations were generated and expressed from the 329 

same promoter as wild-type PCNA (Fig. S2A). Expression of all these Rep 330 

mutants could be successfully detected in protein extracts from E. coli by 331 

western blotting using an anti-Rep antibody, except for Rep1-68, Rep1-99 and 332 

Rep120-140. These latter three truncations were expressed at low or undetectable 333 

levels and therefore excluded from our sumoylation assays (Fig. S2C). As 334 

described above, the expression of the full Rep protein interfered with PCNA 335 

sumoylation, producing a clear decrease in the intensity of the two sumoylated 336 

PCNA bands (Fig. S2B, lane 3). This reduction in intensity for both SUMO-337 

modified PCNA bands was also seen when any of the Rep truncated proteins 338 

were expressed, but only in the presence of Rep1-184 and Rep120-352 the 339 

decrease in intensity of the lower band was equivalent to the effect seen with 340 

intact Rep protein (Fig. S2B, lanes 6 and 8). 341 

Rep interferes with PCNA sumoylation in an Arabidopsis sumoylation 342 

system reconstituted in bacteria 343 

Analyses performed in bacteria with Arabidopsis PCNA1 by Strzalka and co-344 

workers detected sumoylation on K254, but did not detect sumoylation of the 345 

conserved K164 (52). However, our results imply in the case of tomato PCNA 346 

that both residues can be sumoylated with a similar efficiency (Fig. 3B). The 347 

respective experimental approaches differ not only in the PCNA homologue 348 
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used, but also in the origin of the sumoylation enzymes used. We used an 349 

assay previously employed to identify SUMO targets in Arabidopsis proteins 350 

(63) originally developed by (56), that expresses mammalian E1 and E2 351 

enzymes and the human SUMO1. However, the results with Arabidopsis PCNA 352 

obtained by Strzalka and co-workers are based on a reconstituted sumoylation 353 

pathway that is entirely composed of Arabidopsis proteins. To determine if the 354 

discrepancy between these K164 sumoylation results is due to the disparate 355 

origin of the enzymes used, we redesigned the Mencia and Lorenzo assay 356 

replacing the mammalian E1 and E2 enzymes for their Arabidopsis counterparts 357 

(AtSAE and AtSCE1). Using this system, we first determined if tomato PCNA 358 

could be SUMO-modified using the Arabidopsis isoforms AtSUMO1, AtSUMO2 359 

or AtSUMO3. As a positive control, we used human SUMO1. Total protein 360 

extracts were analysed by western blot using anti-PCNA or anti-His antibodies 361 

to confirm expression of the SUMO isoforms (Fig. 5A). Consistently with our 362 

previous sumoylation assay with mammalian enzymes (Fig. 3B), co-expression 363 

of PCNA and human SUMO1 produced a double band of approximately 55 kD, 364 

(Fig. 5A, lane 3). This double band was also observed in the protein extract 365 

from cells expressing either  AtSUMO1 or -2, albeit at a slightly smaller 366 

molecular weight due to a different in sequence of the Arabidopsis SUMOs 367 

compared to the human SUMO1 (Fig. 5A, lanes 4, and 5). The same double 368 

band was also detected in the presence of AtSUMO3, however its intensity was 369 

noticeably reduced (Fig. 5A, lane 6), even with the amount of mature free 370 

AtSUMO3 being similar to that of AtSUMO1 or AtSUMO2 (Fig. 5A, lower panel, 371 

lanes 4, 5 and 6). These results indicate that tomato PCNA can be post-372 

translationally modified by AtSUMO1 and AtSUMO2, but that it is a poor 373 

substrate for AtSUMO3 conjugation when using the Arabidopsis E1 and E2 374 

enzymes.  375 

To confirm that the sumoylated PCNA double band corresponds to sumoylation 376 

at K164 and K254, the tomato PCNA single mutants K164A or K254A and the 377 

double mutant K164A/K254A were co-expressed in the Arabidopsis 378 

reconstituted assay with AtSUMO1. Expression of human SUMO1 was used as 379 

positive control. The upper band observed with wild-type PCNA disappeared 380 

when the single PCNA mutant K164A was tested (Fig. 5B, lanes 4 and 8). 381 
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Expression of the single mutant K254A caused a decrease of the intensity of 382 

the lower band, while the intensity of the upper band remained unaltered when 383 

compared with wild-type PCNA (Fig. 5B, lane 5). In the case of the double 384 

mutant K164A/K254A, the upper band disappeared completely and the intensity 385 

of the lower band was greatly diminished (Fig. 5B, lane 6). These results 386 

indicate that tomato PCNA is sumoylated in vitro on the same lysine residues, 387 

regardless of the origin of the sumoylation machinery used. 388 

When PCNA and Rep were expressed simultaneously from the target plasmid 389 

as a polycistronic mRNA, together with the Arabidopsis sumoylation machinery 390 

(AtSAE/SCE1 and AtSUMO1), the intensity of the two bands identified as 391 

mono-sumoylated PCNA was greatly reduced compared to those produced in 392 

the absence of Rep (Fig. 5C, lanes 3 and 4), confirming the result obtained 393 

using the reconstituted assay in bacteria (Fig. 1). 394 

In planta sumoylation of tomato PCNA is compromised by Rep 395 

While sumoylation of plant PCNAs has been detected in bacteria using different 396 

reconstituted sumoylation systems, sumoylation of PCNA remains to be proven 397 

in plants cells, likely due to the low levels of modified PCNA available, probably 398 

beyond the sensitivity threshold of the detection methods used. Increasing the 399 

amount of sumoylated PCNA might allow us to infer if Rep also modulates the 400 

post-translational modification status of PCNA in planta. To this end, we 401 

transiently expressed Flag-tagged tomato PCNA (PCNA-Flag) together with 402 

mature AtSUMO1 in young, not fully expanded N. benthamiana leaves (2-week 403 

old plants), in which more cells are likely to be in the replicative stage of the cell 404 

cycle (previous studies had shown that yeast PCNA is predominantly 405 

sumoylated during the S-phase of the cell cycle (62). In addition, we subjected 406 

the harvested leaf material to a heat shock at 37ºC for 45 min to increase the 407 

levels of SUMO-conjugates (31). Western blots on PCNA protein immuno-408 

purified with anti-Flag resin showed that PCNA accumulated in plants as 409 

monomers, dimers and trimers (of approximately 35, 70 and 100 kD, 410 

respectively) (Fig. 6A, anti-flag). These blots were also probed with anti-SUMO 411 

antibody, revealing that the PCNA-Flag monomers were also sumoylated in 412 

planta, giving rise to a band of approximately 50kD (Fig. 6A, anti-SUMO) 413 
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equivalent to that previously detected in bacteria using the Arabidopsis system 414 

(Fig. 5). When Rep from the begomovirus Tomato yellow leaf curl virus was co-415 

expressed in planta in the same experimental conditions, the signal for the ~50 416 

kD band decreased, suggesting that the levels of SUMO-modified PCNA were 417 

lower when Rep was present (Fig. 6,anti-SUMO). The presence of Rep (GFP-418 

tagged) was confirmed by immunoblotting of total protein extracts with an anti-419 

GFP antibody (Fig. 6, anti-GFP). These results show for the first time that 420 

PCNA is sumoylated in plant cells, and confirm that Rep also compromises 421 

PCNA sumoylation in planta. 422 

 423 

DISCUSSION 424 

PCNA is a protein highly conserved in eukaryotes that controls cell cycle 425 

regulation, DNA replication and DNA repair, through its interaction with DNA 426 

and with a plethora of proteins involved in these processes. The switching 427 

between these different PCNA functions is modulated by its post-translational 428 

modification status, mainly ubiquitination or sumoylation, which facilitates or 429 

hinders the interaction of PCNA with specific binding partners, providing a 430 

mechanism to control PCNA function (64, 65). PCNA sumoylation has a 431 

conserved role in inhibiting homologous recombination (HR) (47, 64, 65). 432 

SUMO conjugation is mediated by the sole SUMO-specific E2 enzyme SCE1. 433 

Additionally, sumoylation at K164 requires the SUMO E3 Siz1 in yeast, whereas 434 

at K127 is modified by yeast Siz2 in vivo but this latter modification also 435 

proceeds without an E3 in vitro (47, 58).  436 

Sumoylation of the two PCNA homologues (PCNA1 and PCNA2) present in 437 

Arabidopsis has been described using a reconstituted sumoylation system in E. 438 

coli (52, 53). In the first report, sumoylation of PCNA1 was detected using 439 

Arabidopsis AtSUMO1 and AtSUMO3, while in the second, the authors showed 440 

efficient sumoylation of PCNA1 and PCNA2 using S. cerevisiae SUMO (Smt3) 441 

as well as AtSUMO1, -2, -3 and -5. In this work, we show that tomato PCNA is 442 

also sumoylated in vitro by human SUMO1 and AtSUMO1 and 2 (Fig. 5). 443 

However, sumoylation of PCNA with AtSUMO3 was notably inefficient 444 
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compared to that obtained with the other SUMO homologues, in spite that all 445 

SUMOs were expressed in the bacteria to similar levels (Fig. 5). Taking into 446 

account that all the sumoylation enzymes used in both works were the same, 447 

this divergence must be due to the PCNA origin. The difference in sumoylation 448 

observed when using AtSUMO1/2 or AtSUMO3 is not a surprise since, like their 449 

mammalian counterparts, the Arabidopsis SUMO paralogues have acquired 450 

distinct expression patterns and biochemical properties (22, 39). For example, 451 

AtSUMO1/2, which are almost identical, are better substrates for conjugation 452 

than AtSUMO3 (66). The fact that S. cerevisiae PCNA is sumoylated when 453 

using the Arabidopsis enzymes (52, 67), tomato PCNA can be equally modified 454 

by mammalian as well as Arabidopsis SUMO-conjugating enzymes and SUMO 455 

peptides, indicates the high level of functional conservation of the mechanism to 456 

sumoylate PCNA. 457 

Sumoylation assays of tomato PCNA identified two modification products with a 458 

similar molecular weight (Fig. 3B) that likely correspond to tomato PCNA 459 

monomers mono-sumoylated at two alternative sites (K164 versus K254). Such 460 

phenomenon was previously described for yeast PCNA, which migrated on 461 

SDS-PAGE electrophoresis with a different apparent molecular mass when 462 

sumoylated at K127 or K124 (47, 62). In none of the experiments in bacteria 463 

using the Arabidopsis or mammalian sumoylation enzymes, we have identified 464 

bands corresponding to tomato PCNA monomers simultaneously modified with 465 

two SUMO molecules (PCNA-2xSUMO), indicating that (i) the simultaneous 466 

modification of both lysine acceptor sites of one PCNA monomer or (ii) the 467 

formation of a SUMO chain (di-SUMO) on one acceptor lysine are both more 468 

inefficient than previously suggested for Arabidopsis PCNA (52). Considering 469 

that tomato PCNA could be efficiently sumoylated at each of two lysine acceptor 470 

residues in an alternate fashion, the lack of PCNA molecules attached to two 471 

SUMO peptides simultaneously could suggest that some hierarchy is 472 

established in the sumoylation of the lysines. Whether inhibition of the 473 

consecutive modification of both lysines with SUMO was (i) due to the 474 

biochemical characteristics of the sumoylation systems when expressed in 475 

bacteria or (ii) the absence of additional components such as SUMO E3 ligases, 476 
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remains to be analysed. Interestingly, previous data showed that, in bacteria, 477 

the expression of the Arabidopsis SUMO E3, AtSIZ1, does not impact the 478 

sumoylation of Arabidopsis or S. cerevisiae PCNA isoforms (52, 67).  479 

In recent years several analyses have been carried out in planta to identify plant 480 

SUMO targets (24, 32, 63, 68-71). The dynamic nature of the sumoylation 481 

pathway, where SUMO proteases play a major regulatory role to determine the 482 

fraction of a protein which remains sumoylated, represents a technical 483 

challenge to identify proteins modified by SUMO. In fact, PCNA sumoylation 484 

has not been detected in any of the above-mentioned studies, and even the use 485 

of plant material containing a large proportion of dividing cells as PCNA source, 486 

or transiently expressing PCNA in leaves, has failed to prove PCNA 487 

modification in planta (52). In this work, we show for the first time that plant 488 

PCNA, as its animal and yeast homologues, is indeed sumoylated in plant cells. 489 

The determinant use of a heat-shock to increase the accumulation of SUMO 490 

(31) allowed us to detect the sumoylation of a PCNA monomer when transiently 491 

expressing all proteins in N. benthamiana leaves. Interestingly, labelling of 492 

PCNA at the C-terminus with a Flag epitope does seemingly not interfere with 493 

its ability to interact with itself forming dimers or trimers.  494 

The analysis of PCNA containing point mutations in lysine residues selected for 495 

their likelihood to be sumoylated allowed us to show that, in bacteria, tomato 496 

PCNA is preferentially sumoylated at two residues that are conserved in all 497 

eukaryotic PCNAs, K164, a residue reported to be sumoylated in yeast and 498 

animal, and K254. Although both residues are at the surface of the PCNA ring, 499 

they are located at opposite sides of the PCNA ring: K164 is at the back side, 500 

while K254 is at the front side of this ring. The weak band detected in the 501 

assays with the double mutant K164A/K254A with a molecular weight 502 

intermediate between the double band detected with wild-type PCNA suggests 503 

that, in the absence of those two residues, another yet unidentified lysine can 504 

be sumoylated. Whether or not that corresponds to a true third SUMO acceptor 505 

site or its modification is an artefact caused by the absence of the other two 506 

sites remains to be clarified.  507 
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Previous work with Arabidopsis PCNA identified K254 as one of the residues 508 

sumoylated in bacteria, yet failed to detect sumoylation at K164 (52). Although 509 

this study used a reconstituted system consisting of Arabidopsis proteins similar 510 

to the one used here, there are some experimental differences that could 511 

explain this apparent discrepancy. Mainly, to identify SUMO acceptor sites, 512 

Strzalka and co-workers used Arabidopsis AtSUMO3, while we used AtSUMO1. 513 

So, it could be possible that K164 is sumoylated only by AtSUMO1, while K254 514 

can be modified by both AtSUMO1 and AtSUMO3. However, AtSUMO3 is an 515 

unique SUMO paralogue that it is only present in a small clade of the 516 

Brassicaceae (22). In addition, in order to analyse sumoylation Strzalka and co-517 

workers generated Arabidopsis PCNA mutants replacing all but one of the 518 

lysine residues by arginines, while in our approach we only replaced those 519 

residues already proven to be sumoylated. So, we cannot rule out the possibility 520 

that in method of Strzalka and co-workers, the overall structure of PCNA is 521 

changed, which would interfere with the access of the sumoylation enzymes to 522 

specific residues. In fact, their observation that five additional lysines (located in 523 

the inner circle of the PCNA ring) can serve as SUMO acceptor site, suggests 524 

that in the absence of the main acceptor sites SCE1 will accept any available 525 

lysine as substrate. Such potentially unbiased sumoylation was previously 526 

observed for FoxM1 (72). Furthermore, overexpression of the sumoylation 527 

machinery in the presence of a target with only one lysine residue could result 528 

in the generation of false positives, given that the stoichiometric conditions on 529 

such reaction are bound to be far from physiological. However, we cannot fully 530 

exclude that Arabidopsis and tomato PCNA could be partially sumoylated at 531 

different residues.  532 

Replication of the geminiviral genome fully relies on the host DNA replication 533 

machinery, including PCNA and DNA polymerases. PCNA is essential for viral 534 

replication (73) and expression of the corresponding gene is induced by the 535 

presence of Rep (74-76). Our results prove that Rep, besides binding to the 536 

PCNA protein, also interferes with its sumoylation in all modifiable lysine 537 

residues. This inhibitory effect of Rep was unique for PCNA, as it did not affect 538 

SUMO attachment to the plant protein used as a control (CAT3). The fact that 539 
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PCNA sumoylation is also compromised when a Rep mutant is used that cannot 540 

interact with the SUMO conjugating enzyme SCE1, suggests that reduced 541 

SUMO conjugation of PCNA is not due to Rep inhibiting SCE1 enzymatic 542 

activity, a mechanism previously described for the Gam1 protein of the CELO 543 

virus (77). The results obtained when expressing the truncated forms of Rep 544 

point to the PCNA-binding domain in Rep as a determining factor that results in 545 

suppression of PCNA sumoylation. The results obtained by Bagewadi and 546 

colleagues (54), showing that Rep interacts with residues located all over the 547 

PCNA molecule, could indicate the reduction of PCNA sumoylation is a 548 

consequence of steric hindrance of SCE1 once Rep is bound to PCNA. This 549 

scenario would fit with the model described by Mayanagi and colleagues, where 550 

one PCNA interactor can block access of other interactors to the PCNA 551 

molecule; steric hindrance would thus fine-tune and modulate PCNA function 552 

(78-80). Specific mutants of PCNA in which the Rep-PCNA interaction is lost, 553 

will be required to confirm this hypothesis. 554 

Sumoylation of PCNA is high in particular during the S-phase, where it would be 555 

involved in suppressing undesired recombination events between newly 556 

synthesized DNA molecules during normal fork progression. In yeast, PCNA 557 

sumoylation recruits the DNA helicase Srs2 that inhibits recombination by 558 

removing RAD51 from ssDNA, thereby disassembling an essential 559 

recombination intermediate structure [reviewed in (81)]. During replication, Srs2 560 

aids in the repair of gaps by preventing ssDNA from being used to initiate 561 

recombination. Deletion of Srs2 or mutations of PCNA that impair its 562 

sumoylation, cause increased levels of HR (62, 82-84). The mechanisms 563 

mediated by Srs2 seem to be conserved in eukaryotes. Sumoylation of PCNA in 564 

human cells recruits PARI, a Srs2 homolog that binds to RAD51 (51, 85). In 565 

Arabidopsis, an Srs2 homolog was identified and shown to act as a functional 566 

DNA helicase that can process branched DNA structures that occur during 567 

synthesis-dependent strand annealing (SDSA) pathway of recombination. 568 

These properties suggest that AtSrs2 might play a role in regulating HR in 569 

plants, as predicted for its yeast homologue (86). 570 

Several lines of evidence suggest that recombination is a key evolutionary 571 
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process to generate diversity amongst ssDNA viruses (87). Recombination 572 

among geminiviral genomes has been extensively recorded for several 573 

members of the family and seems to be a consequence of a general 574 

enhancement of the recombination frequency upon infection [(88-93), reviewed 575 

in (94)] Besides the high level of recombination among the viral molecules, 576 

several experimental results also indicate that geminiviruses alter HR in plants, 577 

as infections with the begomovirus Euphorbia mosaic virus (EuMV) induces 578 

somatic HR events for Arabidopsis transgenes, specially within vein-associated 579 

tissues where this virus replicates (95).  580 

The mechanisms of HR in ssDNA viruses remains poorly defined, but are most 581 

probably strongly influenced by the ways in which these viruses replicate. 582 

Geminiviruses replicate their circular ssDNA by three modes of action: 583 

complementary strand replication (CSR), rolling-circle replication (RCR) and 584 

recombination-dependent replication (RDR) (96, 97). It has been suggested that 585 

RDR is a replication system by which host recombination factors are utilized for 586 

geminiviral amplification and also lead to enhanced host DNA recombination 587 

(95). Rep, the only viral protein that is essential for replication, is likely to have a 588 

key role in the recruitment and assembly of this viral replisome, a protein-DNA 589 

complex that includes both viral proteins and host factors involved in DNA 590 

replication and repair, including those for HR [reviewed by (3)]. Besides its 591 

interaction with PCNA, Rep interacts with a variety of proteins involved in 592 

replication and/or HR processes such as RFC (98), RPA32 (99), Rad54 (100) or 593 

Rad51 (101). The relevance of this HR replication mechanism for geminiviruses 594 

has been highlighted recently by infecting an Arabidopsis RAD51D mutant with 595 

the bipartite geminivirus Euphorbia yellow mosaic virus (102). The results 596 

obtained showed that RAD51D promotes viral replication at the early stages of 597 

the infection, and its presence is required for geminiviral recombination, since in 598 

the absence of RAD51D a significant decrease of both intra- and intermolecular 599 

recombinant molecules between the two DNA components of the bipartite 600 

geminivirus was observed. The fact that, in a series of experiments to develop 601 

geminivirus-based replicon for transient expression of Transcription activator-602 

like effector nucleases (TALENs), it was found that expression of the Rep 603 
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homologue from geminivirus Bean yellow dwarf virus (BeYDV) increases the 604 

frequency of gene targeting (103) points to the involvement of this protein in the 605 

viral control of the HR mechanism. 606 

Combining all our data, we propose that the interaction between Rep and 607 

PCNA modulates the protein modification status of PCNA, thus switching its 608 

cellular function to create an environment suitable for viral replication. Further, 609 

we propose that the specific reduction of PCNA sumoylation, caused by the 610 

action of Rep, is a key step to induce HR in both infecting geminiviral genomes 611 

and the genome of the infected plant cells. We propose that during viral 612 

replication Rep will interfere, possibly by its interaction with PCNA, with the 613 

ability of SCE1 to attach SUMO to PCNA. As a consequence, Srs2 binding to 614 

PCNA would be reduced, thus allowing maintenance of the Rad51-ssDNA 615 

nucleoprotein filaments generated from exposed ssDNA, which in turn will 616 

cause an increase in the level of HR recombination. Beside its effect on 617 

increasing geminiviral recombination, a higher HR activity could also have an 618 

effect on the geminiviral replication efficiency, since HR provides a mechanism 619 

for tolerating lesions that block the progression of replication forks. 620 

 621 

MATERIAL AND METHODS 622 

General methods.  623 

Manipulations of Escherichia coli strains and nucleic acids were performed 624 

according to standard methods (104). E. coli strain DH5α was used for 625 

subcloning. All the PCR-amplified fragments cloned in this work were fully 626 

sequenced. E. coli NCM631 strain was used for the sumoylation assays.  627 

Plasmids and cloning.  628 

Supplementary Table 1 summarises the engineering of the plasmids used in 629 

this work. Primers used in this work are summarized in Supplementary Table 2.  630 

Molecular graphics of tomato PCNA were made with the UCSF Chimera 631 

package (105) using human PCNA (protein data bank 1AXC) as reference. 632 

Chimera is developed by the Resource for Biocomputing, Visualization, and 633 
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Informatics at the University of California, San Francisco (supported by NIGMS 634 

P41-GM103311). 635 

In bacteria sumoylation assays  636 

PCNA from Solanum lycopersicum (obtained from pCNACT2, (55) and Rep 637 

from Tomato golden mosaic virus (TGMV) (positions 2461 through 2588 to 638 

nucleotide 1416; Genbank ID NC001507) PCR amplified from pDBRepTG (55) 639 

were subcloned into pET28b (Novagen, EMD Millipore, Billerica, 640 

Massachusetts) to obtain the pET28-SlPCNA and pET28-Rep plasmid, 641 

respectively. A fragment from pET28-Rep containing the RBS (ribosomal 642 

binding site) and the Rep ORF fused to a 6XHis tag was subcloned into pET28-643 

SlPCNA, generating the pET28-SlPCNA-Rep, a vector able to produce the 644 

polycistronic mRNA for the SlPCNA and Rep proteins. 645 

PCNA mutants were obtained using the vector pET28-SlPCNA as template and 646 

Quikchange Lightning Site-Directed Mutagenesis Kit (Stratagene, Agilent, 647 

Santa Clara, California).  648 

To express Arabidopsis Catalase3 (AtCAT3) and Rep from TGMV from a 649 

polycistronic RNA, restriction fragment from pET28-Rep, containing the RBS 650 

and the Rep ORF fused to a 6XHis tag, was subcloned into pGEX-AtCAT3 to 651 

yield pGEX-AtCAT3-Rep. pGEX-AtCAT3 express the Catalase C-terminal 652 

fragment (AtCAT3Ct -419/472) fused to GST (glutathione transferase) and Flag 653 

(66). 654 

To express C2 and SlPCNA from a polycistronic, a restriction fragment of 655 

pET28-C2 containing the RBS and the C2 ORF fused to a 6XHis tag was 656 

subcloned into pET28-SlPCNA yielding pET28-SlPCNA-C2. Previously, pET28-657 

C2 was generated by PCR amplifying and cloning the C2 ORF of Tomato 658 

yellow leaf curl Sardinia virus (TYLCSV) (positions 1631 to nucleotide 1224, 659 

Genbank ID: L27708) in EcoRI/XhoI of pET-28b. 660 

To express Rep K68A/K102A, Rep ORF was PCR amplified from pGBAL1-661 

K68A/K102A (46) and subcloned into pET28b yielding pET28-RepK68A/K102A. 662 

A restriction fragment from pET28-RepK68A/K102A, containing the RBS and 663 
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the Rep ORF fused to a 6XHis tag was subcloned downstream of the PCNA 664 

ORF in pET28-SlPCNA to yield pET28-SlPCNA-RepK68A/K102A 665 

Truncation constructs of Rep were constructed using PCR with specific primers 666 

(see Supplementary Table 2). For the N-terminal truncations PCR fragments 667 

containing the truncated Rep were cloned in pET28b to obtain pET28-Rep120-668 

184, pET28-Rep56-130, pET28-Rep68-352, pET28-Rep120-352, and pET28-Rep120-352. 669 

To express truncated Rep and SlPCNA, PCR amplified fragments of these 670 

plasmids or pET28-Rep, containing the RBS and the truncated Rep fused to a 671 

6XHis tag were subcloned into pET28-SlPCNA to yield: pET28-SlPCNA-Rep120-672 

184 pET28-SlPCNA-Rep120-184, pET28-SlPCNA-Rep56-130, pET28-SlPCNA-Rep68-673 

352, pET28-SlPCNA-Rep120-352, and pET28-SlPCNA-Rep120-352, pET28-SlPCNA-674 

Rep1-68, pET28-SlPCNA-Rep1-81, pET28-SlPCNA-Rep1-99, pET28-SlPCNA-675 

Rep1-120 and pET28-SlPCNA-Rep1-184. 676 

The polycistronic construct expressing Arabidopsis sumoylation E1 and E2 677 

enzymes was generated as follows. AtSAE1, AtSAE2 and AtSCE1 were 678 

amplified from Arabidopsis Columbia-0 cDNA and cloned in pET28b in order to 679 

set them downstream of a RBS, yielding the plasmids pET28-AtSCE1, pET28-680 

AtSAE1, and pET28-AtSAE2. Next, a restriction fragment of pET28-AtSCE1 681 

was cloned into pET28-AtSAE2 to obtain pETSS and a restriction fragment of 682 

pET28-AtSAE1 was cloned into pETSS to obtain pETSS1a. Finally, to transfer 683 

the polycistronic construct to a vector with P15A ori and chloramphenicol 684 

resistance, compatible with the other plasmids used in the sumoylation assays 685 

in E. coli, a SphI/EagI fragment of pETSS1a was cloned into the SphI/EagI sites 686 

of pACYC184 (106) to yield pASS1a. 687 

The CDS corresponding to the mature proteins (GG) of Arabidopsis AtSUMO1, 688 

2, and 3 were PCR amplified from Arabidopsis cDNA and cloned in pET28b to 689 

obtain pET28-AtSUMO1, pET28-AtSUMO2, and pET28-AtSUMO3, 690 

respectively. Restriction fragments of these constructs, containing ORF of 691 

AtSUMOs fused to histidine tags were subcloned in pRHSUMO to substitute the 692 

human HsSUMO1 ORF, obtaining pRHAtSUMO1, pRHAtSUMO2, and 693 

pRHAtSUMO3. 694 
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Sumoylation assays with the mammalian enzymes were performed as 695 

previously described by (56). Plasmids expressing the potential sumoylation 696 

target proteins, the sumoylation enzymes and the human SUMO1, were 697 

sequentially transformed in E. coli.  Expression was induced by adding 1mM 698 

IPTG to the culture medium in the exponential growth phase (OD600=0.6). 699 

Samples were taken 4 hours after induction and proteins were extracted as 700 

described in (56).  701 

The mammalian and Arabidopsis sumoylation E1 and E2 enzymes are encoded 702 

in the plasmids pBADE12, and pASS1a respectively. Human SUMO1 and 703 

Arabidopsis SUMO 1, 2 and 3 are fused to his tags and expressed from 704 

plasmids pRHSUMO, pRHAtSUMO1, pRHAtSUMO2 and pRHAtSUMO3. In the 705 

sumoylation assays with pGEX-AtCAT3, human SUMO1 is expressed from 706 

pRKSUMO (56) instead of pRHSUMO.  707 

In planta sumoylation assay  708 

For the in planta sumoylation assay, the ORF of Solanum lycopersicum PCNA 709 

(GenBank ID: NM_001247915, kindly provided by KeyGene N.V, Wageningen, 710 

The Netherlands) was amplified (Table S2) to generate a fragment containing 711 

the SlPCNA fused to a Flag-tag at its N-terminus. The fragment was subcloned 712 

in pJL-TRBO vector (107) to generate the pTRBO-PCNA-Flag plasmid. 713 

pK7FWG2 plasmid (108) containing Rep from TYLCV fused to EGFP (Rep 714 

Genbank ID: AF271234) was also kindly provided by KeyGene N.V. (referred to 715 

as pK7FWG2-Rep). The ORF of the mature Arabidopsis AtSUMO1 (residues 1-716 

91) in pDONR221 (109) was introduced into the pGWB402 destination vector 717 

(110) using a Gateway LR Clonase II reaction (Thermo Fisher) to generate the 718 

pGWB402-SUMO1 vector.  719 

The binary constructs pTRBO-PCNA-Flag, pK7FWG2-Rep and pGWB402-720 

SUMO1 were introduced in Agrobacterium tumefaciens strain GV3101 (111) by 721 

electroporation. Single colonies were grown overnight until an OD600 of 0.8-1.5 722 

in low salt LB medium (1% w/v Tryptone, 0.5% w/v yeast extract, 0.25% w/v 723 

NaCl, pH 7.0) supplemented with 20 μM acetosyringone and 10 mM MES (pH 724 

5.6). Cells were collected by centrifugation and resuspended in infiltration 725 

medium (1× MS [Murashige and Skoog] salts (Duchefa), 10 mM MES pH 5.6, 726 
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2% w/v sucrose, 200 μM acetosyringone). The A. tumefaciens cultures were 727 

mixed at a ratio 1:1:1 and co-infiltrated (in the sample without Rep the 728 

pK7FWG2-Rep culture was replaced with a culture harbouring empty pGWB451 729 

vector) in leaves of two-week old N. benthamiana plant at a final OD600 = 1. In 730 

addition, an A. tumefaciens strain carrying the pBIN61 with the P19 silencing 731 

suppressor from Tomato busy shunt virus (TBSV) was added to every 732 

infiltration mixture at an OD600 = 0.5 at 2:1 ratio. Three days post-infiltration, the 733 

whole infiltrated leaves of N. benthamiana were harvested, placed in a petri 734 

dish on wet paper and heat shocked for 45 minutes while being floating in water 735 

bath set at 37oC in the dark. After this period, the leaf tissue was snap frozen in 736 

liquid nitrogen and stored till protein extraction.  737 

Plant proteins were extracted as described by (112) For co-738 

immunoprecipitations, 500 μl of the input was incubated with 30 μl resin anti-739 

Flag M2 affinity gel (Sigma-Aldrich; 50% slurry) at 4oC for 3 hours. 740 

Subsequently, the resin was collected by centrifugation (5,000g), washed 3 741 

times with 0.5 ml washing buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 10% 742 

v/v glycerol, 10 mM EDTA, 0.15% v/v NP-40, 1 tablet of protease inhibitor 743 

cocktail (Roche)/ 50 ml buffer) and incubated at 4oC for 1 hour with 100 μl 744 

elution buffer (washing buffer + 3X Flag peptide [Sigma-Aldrich, catalog number 745 

F4799] 150 ng/μl). After incubation, the resin was transferred to Bio-Spin 746 

columns (Bio-Rad) and spun down at 1,000g for 1 minute. The eluate 747 

(immunoprecipitated proteins, referred to as IP:anti-Flag) and analysed by 748 

western blot. Details of antibodies used in this work are summarized in 749 

Supplementary Table 3.  750 
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 1194 

 FIGURE LEGENDS 1195 

Figure 1. Sumoylation of tomato PCNA in a reconstituted SUMO 1196 

conjugation system in bacteria is modulated by Rep.  1197 

Tomato PCNA, Rep from Tomato golden mosaic virus (TGMV), E1/E2 1198 

(mammalian SAE1, SAE2 and Ubc9), SUMO (HsSUMO1) were co-expressed in 1199 

E. coli NCM631 cells and extracted. Protein extracts were blotted with the 1200 

antibodies indicated (left side). Expression (+/-) of the individual components is 1201 

indicated at the top per lane. Relevant bands are labelled on the right side. The 1202 

band labelled ‘X1’ could correspond to a SUMO tetramer or more likely to a 1203 

complex of PCNA-2xSUMO. Band ‘X2’ corresponds to a truncated form of Rep 1204 

protein. Molecular weight markers (Mw) are indicated.  1205 

Figure 2. Rep interferes only with sumoylation of PCNA but not with other 1206 

proteins.  1207 

(A) Tomato PCNA, Rep from Tomato golden mosaic virus (TGMV), C2 from 1208 

Tomato yellow leaf curl Sardinia virus (TYLCSV), E1/E2 (mammalian SAE1, 1209 

SAE2 and Ubc9), SUMO (HsSUMO1) were co-expressed in E. coli NCM631 1210 

cells and extracted. Protein extracts were blotted with the antibodies indicated 1211 

antibodies indicated (left side). Expression (+/-) of the individual components is 1212 

indicated. Relevant bands are labelled on the right side. (B) Similar to (A), 1213 

except that Catalse3 (CAT3) is co-expressed.  1214 

Figure 3. Identification of tomato PCNA SUMO acceptor sites  1215 
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(A) Primary sequence of tomato PCNA with residues K164 and K254 1216 

highlighted (red and green, respectively) (upper panel) and the predicted 3D 1217 

model of the structure of a tomato PCNA trimer (central panel) or a monomer 1218 

(lower panel)  1219 

(B) Sumoylation assay of tomato PCNA single mutants K164A, K254A and the 1220 

double mutant K164A/K254A in bacteria while co-expressing Rep from TGMV. 1221 

Assay is similar to Figure 1. Expression (+/-) of the individual components is 1222 

indicated. E1/E2 enzymes were expressed in all samples. Coomassie staining 1223 

to confirm equal protein loading are showed.  1224 

Figure 4. The Rep-SCE1 interaction is not essential to suppress PCNA 1225 

sumoylation in bacteria. Assay is similar to Fig. 1, except that a Rep variant 1226 

was co-expressed that fails to interact with SCE1 (K68A/K102A; lane 4). 1227 

Figure 5. Arabidopsis SUMO conjugation enzymes modify the same Lys 1228 

residues in tomato PCNA in bacteria 1229 

(A) Assay is similar to Fig. 1, except that AtE1/E2 (Arabidopsis SAE1, SAE2 1230 

and SCE1) were co-expressed together with the Arabidopsis SUMO paralogues 1231 

SUMO1, -2, and -3 (AtS1/2/3/). Expression (+/-) of the individual components is 1232 

indicated. E1/E2 enzymes were expressed in all samples. 1233 

(B) Similar to (A), except that PCNA variants were co-expressed in which K164, 1234 

K254 or both were mutated Ala. At= AtSUMO1; Hs=HsSUMO1 (lanes 4-6, 8). 1235 

Wt = wildtype tomato PCNA, as used in panel A. 1236 

(C) Similar to (A), except that Rep from Tomato golden mosaic virus (TGMV) is 1237 

co-expressed (lane 4). 1238 

Figure 6: Rep from Tomato yellow leaf curl virus (TYLCV) compromises 1239 

sumoylation of tomato PCNA in planta.  1240 

(A) Flag-tagged tomato PCNA together with Arabidopsis thaliana SUMO1 was 1241 

transiently expressed in Nicotiana benthamiana leaves in the presence or 1242 

absence of GFP-tagged Rep from TYLCV. Total protein extracts were subjected 1243 

to immunoprecipitation and proteins that co-eluted from the Flag affinity resin 1244 

(IP:anti-Flag) were blotted with anti-Flag or anti-AtSUMO1 antibodies. The 1245 

upper panel shows the enrichment of PCNA-Flag, as monomer but also as 1246 

dimer and trimer (~70 and 100 kD, respectively); the anti-SUMO immunoblot 1247 

reveals that in presence of Rep the ~50 kDa band, corresponding to the 1248 
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sumoylated monomeric form of PCNA-Flag, is reduced when Rep is co-1249 

expressed.  1250 

(B) Total protein extracts (input) were analyzed by immunoblotting using anti-1251 

GFP antibody to show accumulation of Rep-GFP and by Coomassie staining to 1252 

confirm equal protein loading. 1253 

 1254 
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