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Fly development amazes us by the precision and reproducibility of gene expression, especially since
the initial expression patterns are established during very short nuclear cycles. Recent live imaging of
hunchback promoter dynamics shows a stable steep binary expression pattern established within the
three minute interphase of nuclear cycle 11. Considering expression models of different complexity,
we explore the trade-off between the ability of a regulatory system to produce a steep boundary
and minimize expression variability between different nuclei. We show how a limited readout time
imposed by short developmental cycles affects the gene’s ability to read positional information along
the embryo’s anterior posterior axis and express reliably. Comparing our theoretical results to real-
time monitoring of the hunchback transcription dynamics in live flies, we discuss possible regulatory
strategies, suggesting an important role for additional binding sites, gradients or non-equilibrium
binding and modified transcription factor search strategies.

I. INTRODUCTION

During development reproducible cell identity is
determined by expressing specific genes at the cor-
rect time and correct location in space in all indi-
viduals. How is this reproducible expression pat-
tern encoded in the noisy expression of genes [1, 2],
and read out in a short amount of time? We study
this question in one of the simplest and the best
understood developmental examples – the Bicoid-
hunchback system in Drosophila melanogaster. In
the fly embryo, the exponentially decaying Bicoid
(Bcd) gradient [3–5] acts as a maternal source of
positional information along the embryo’s Anterior-
Posterior (AP) axis [6]. The hunchback (hb) gene
extracts this positional information from the local
Bicoid concentration and forms a steep binary-like
expression pattern, observed as early as in nuclear
cycle (nc) 10 (see Fig. 1 A) [3, 7–9]. This Hb pat-
tern later becomes a source of positional information

for the formation of other gap gene patterns [10, 11],
forming the first step in the differentiation of cecullar
phenotypes.

From real-time monitoring of the hb transcription
dynamics [12, 13] using the MS2-MCP RNA-tagging
system [14], we observed that from nc11 to nc13 the
positional readout process of the hb gene is inter-
rupted by mitosis, leaving a window of 5-10 minutes
for gene expression in each cycle. Once the pattern
stabilizes 2-3 minutes after mitosis, as we describe in
detail in a companion experimental paper [13], the
boundary between regions of high and low hb tran-
scription is already steeper than even the Hb protein
concentration profile in nc14 [13, 15, 16].

Several studies have proposed that the steep
boundary between regions of high and low hb ex-
pression, given the smooth Bcd transcription factor
(TF) gradient, is due to the cooperativity between
the TF binding sites (Fig. 1B) [7, 15, 17–20]. This
cooperativity diversifies gene expression levels given
small changes in the input [21–23]. Conventionally,

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 27, 2018. ; https://doi.org/10.1101/305532doi: bioRxiv preprint 

https://doi.org/10.1101/305532


2

FIG. 1: Setup of the problem: features of the hb transcription pattern in early fly development.
(A) A cartoon of the side section of the fly embryo in nuclear cycles (nc) 11-13. Nuclei at different positions along the
anterior posterior (AP) axis express different concentrations of hb mRNA, represented by different shades of green
(dark green denotes larger concentrations). The hb gene expression pattern can be studied from different perspectives:
(I) Side view of the whole embryo. (II) Single columns of nuclei at similar position along the AP axis. (III) Single
rows of nuclei along the AP axis.
(B) The expression of hb mRNA from the hb gene is regulated by Bcd transcription factor (TF) binding. We consider
a model of gene expression regulation via the binding and unbinding of Bcd proteins (orange) to multiple operator
sites (blue) of the promoter. Bcd forms an exponentially decaying gradient along the AP axes and the concentration
of Bcd TF in the nuclei depends on the position of the nucleus along the AP axis, X.
(C) During each nuclear cycle each hb loci switches from periods of activation to inactivation by binding and unbinding
Bcd TF. The distribution of these periods depends on the binding and unbinding rates of Bcd TF. Within the model,
each hb loci produces a readout fP defined as the average promoter activity level n(t) during the steady state
expression interval T of the interphase of a given nuclear cycle.
(D) By observing the whole embryo (perspective I in Fig. 1 A), we are able to calculate the average of the expression
pattern fP of the nuclei, 〈fP 〉, as a function of the nuclei’s position along the AP axes (green line), from which the
boundary steepness (denoted by H) is quantified by fitting a Hill function of Bcd concentration [TF ] (orange line).
TF0 denotes the concentration of Bcd TF at half-maximal expression.
(E) By observing nuclei at similar position X along the AP axis (perspective II in Fig. 1 A), we can make a distribution
of the readout, fP and use it to calculate the readout errors CVP in the single locus readout fP . CVP is defined as
the standard variation of the readout fP divided by its mean.
(F) The detailed expression pattern fP obtained by observing a single row of nuclei (perspective III in Fig. 1 A)
along the AP axis, depends both on the averaged pattern and the errors in the readout of this mean value.
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the pattern steepness is represented by the Hill co-
efficient H. We define the hb gene readout as the
hb gene transcription state of one locus in a single
nucleus averaged over a given transcription window,
fP , (Fig. 1C). We can evaluate this quantity as a
function of the TF concentration [TF ] (Fig. 1D),
and thanks to the exponential nature of the Bcd
gradient [15], uniquely associate a position along the
AP axis to a Bcd concentration [TF]. The Hill coef-
ficient is then estimated by fitting the mean readout
value averaged over all nuclei at a specific position
along the AP axis, 〈fP 〉, to a sigmoidal function:

〈fP 〉 ∼
[TF ]H

TFH
0 + [TF ]H

, (1)

where TF0 is the Bcd concentration that results in
half-maximal hb expression, 〈fP |[TF ]=TF0

〉 = 0.5
(Fig. 1D). TF0 defines the middle of the bound-
ary, which we will call the mid-boundary point, that
separates the highly expressing ”ON” nuclei in the
anterior region and the minimally expressing ”OFF”
nuclei in the posterior region of the embryo. Within
a simple model where hb expression depends only
on the binding and unbinding of Bcd to the hb pro-
moter, the maximal steepness of the hb expression
pattern was shown to depend on the number of oper-
ator binding sites in the promoter region of the gene
N . Depending on whether this process conserves de-
tailed balance or not, the maximal Hill coefficient is
2N − 1 or N , respectively [18].

These studies did not address whether such a steep
boundary is achievable within the limited time win-
dow of 3 to 15 minutes in nuclear cycles 11-13, in
which the Bcd concentration is read. The effects
of the time constrained readout are further aggra-
vated by the fact that transcription is stopped be-
fore and during each mitosis [13, 24], suggesting that
the hb expression pattern needs to be re-established
in each nuclear cycle. In addition, the intrinsic noise
in chemical processes leads to inherent errors in the
Bcd concentration readout [16, 25]. This noise re-
sults in a lower bound for the Bcd concentration
readout error, defined as the standard deviation of
the concentration of the measured molecule divided
by its mean (Fig. 1E), that depends on the read-
out integration time and the diffusion constant of
ligand molecules [5, 26–29]. Extending the original
work that considered a single or an array of non-
interacting receptors [5, 26], other work pointed out
that cooperativity from receptor arrays increases the
readout noise [30, 31]. Given these effects, it is un-
clear how the readout precision of the Bcd concen-
tration (or nuclei position) changes quantitatively
given the highly cooperative readout process by the

promoter observed as the steep hb expression pat-
tern [9, 15, 16] (Fig. 1F) and what are the conse-
quences for the ability of neighboring nuclei to take
on different cell fates. In this work, we investigate
how the constraints coming from short cell cycles
affect the steepness and errors in the hb expression
pattern.

II. THE MODEL

In the early stage of development, the hb tran-
scription pattern is steep, despite relying mostly on
the exponential Bcd gradient as the source of po-
sitional information [8]. It was hypothesized that
Bcd molecules can bind cooperatively to the many
Bcd binding sites on the hb promoter, enabling the
gene to have diverse expression levels in response
to gradual changes in the Bcd concentration [7, 18].
We use a simple model of gene expression regulation
by binding of Bcd transcription factors (TF) to the
operator sites (OS) of the target promoter [18] (Fig.
1B, SI Fig. 1). The promoter activity depends on the
occupancy state of the operator sites and we consider
different activation schemes, which we specify be-
low. The binding rates are functions of the position-
dependent TF concentration and we further assume
their value is bounded by the promoter search time
of individual TFs (see SI section 2). The promoter
readout, fP , is defined as the mean of the promoter
activity level n(t), calculated from the temporal av-
erage of the promoter state n(t) over the steady state
expression interval T of a given nuclear cycle inter-
phase (see Fig. 1C).

We first focus on a simplified version of the general
model of gene regulation for binding of Bcd TF to
the N OS [18], where all the binding sites of the tar-
get promoter are identical. This assumption gives a
Markov model of TF binding/unbinding to the many
identical OS of the target promoter:

P0

k1[TF ]−−−−⇀↽−−−−
k−1

P1

k2[TF ]−−−−⇀↽−−−−
k−2

P2...
kN [TF ]−−−−−⇀↽−−−−−
k−N

PN , (2)

where Pi denotes the promoter state with i bound
OS and N − i free OS. [TF ] is the relative Bcd
TF concentration with respect to that at the mid-
boundary position. Since Bcd concentration decays
exponentially along the embryo AP axis, we estimate
the relative nuclei position X measured in terms of
the gradient decay length from the TF concentration
(X = ln([TF ]), such that at mid-boundary X = 0
and [TF ] = 1. The binding and unbinding of TF
to the promoter occur with rate constants ki and
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k−i. If all the rates are non-zero, all reactions are
reversible and Eq. 2 defines an equilibrium model.

Throughout the paper, we randomize the bind-
ing and unbinding rates to explore the behavior of
the model (see Methods section V B for details).
When comparing models with different parameters
we rescale unbinding rate values k−i in order to keep
the binding rate at the mid-boundary position con-
stant. In order to best align to experimental obser-
vations, we estimate this fixed binding rate at −5%
embryo length (EL) (−50% EL and 50% EL are the
embryo’s anterior and posterior poles), which is the
typical boundary position in the analyzed wild type
embryos [13] (see SI - section 3.) .

We first consider the “all-or-nothing” case, i.e. the
promoter is active when the OS are fully bound by
TF (PN ≡ Pactive), although the qualitative con-
clusions remain the same for the “K-or-more” sce-
nario [18, 30], where the promoter is active if at least
K sites are occupied (see section III F). At steady
state, we find the probability that the promoter is
in the active state given the nucleus position X (see
SI - section 1):

P (Pactive, X) =
K̃Ne

N ·X∑N
i=0 K̃ieiX

, (3)

where for convenience of notation we define the effec-
tive equilibrium constant K̃i =

∏i
j=1 kj/

∏i
j=i k−j

and K̃0 = 1. We assume the target gene tran-
scription rate at steady-state is proportional to the
probability of the promoter to be in the active state
(Eq. 3).

The steepness of the expression pattern is quan-
tified by the Hill coefficient H [32], calculated as
the slope of the expression pattern at the mid-
boundary position (see SI - section 4) H = N −
(
∑N−1

i=1 i · K̃i)/K̃N . H is bounded from below by 1,
and from above by N – the OS number, confirming
previous results [18]. Maximum steepness (H = N)
is achieved when the system spends most of the time
in the fully free (P0) or fully bound states (PN ) while
H = 1 when the system spends most of the time in
highly occupied states PN−1 and PN (see SI - section
5).

Lastly, we also consider a full non-equilibrium
binding model (defined in SI Fig. 1 and SI section 8),
in which not all binding reactions are reversible,
and reversible equilibrium models with two differ-
ent types of TF factors (defined in SI – section 10).
To explore the properties of all of these models, we
solve the time dependent equations of motion for
the stochastic binding models numerically and, when
possible analytically in steady state, considering dif-

ferent expression schemes (“all-or-nothing” and “K-
or-more”), different numbers of TF binding sites and
randomizing binding and unbinding parameters (see
Methods section V B).

III. RESULTS

A. The expression pattern formation time

The hb expression pattern in the early phase of
development is always formed under rigorous time
constraints: the total time of transcription during an
interphase of duration Tfull varies in nc 10-13 from
∼ 100 seconds to ∼ 520 seconds (Fig. 2A). During
mitosis, Bcd molecules leave the nuclei and only re-
enter at the beginning of the interphase [5]. The
steep expression pattern takes time to reestablish.
Assuming that at the beginning of the interphase all
OS of the hb promoter in all nuclei are free, the mean
probability µP (t,X) for the promoter to be active
at position X at time t following the entering of the
TF to the nuclei is initially large only in the anterior
of the embryo (see SI Fig. 3). By propagating the
time dependent equations of motion for the stochas-
tic equilibrium binding models (SI Eq. 5) in time, we
see that with time µP (t,X) increases also in other
regions of the embryo, to reach its steady-state form
(P (Pactive, X)) with a border between low and high
expressing nuclei that defines the mid-boundary po-
sition.

Whether the interphase duration Tfull in a given
nuclear cycle is long enough for the system to reach
steady state depends on the parameters of binding
and unbinding of the TF to the operator sites. How-
ever, the binding and unbinding rates also determine
the expression pattern steepness, leading to con-
straints between expression pattern steepness and
formation time. Considering the “all-or-nothing”
equilibrium model, when the promoter is active
(PN ≡ Pactive), any unbinding from the promoter
inactivates the promoter. We find that a steep ex-
pression pattern requires the promoter to stay in the
active state for a long time or to be regulated by
binding of TF to many OS (see SI - section 5.3):

H ≤ N − (N − 1)
τbind
τactive

, (4)

where τactive = (k−N )−1 is the mean time for the
promoter to switch from the active state to the in-
active state and τbind = (kN )−1 is the mean time
for a TF to bind to the last unoccupied OS. The
maximum value of H is reached when the promoter
spends most of the time in the P0, PN−1 and PN

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 27, 2018. ; https://doi.org/10.1101/305532doi: bioRxiv preprint 

https://doi.org/10.1101/305532


5

FIG. 2: Equilibrium model predictions for the pattern formation time and readout error.
(A) The early nuclear cycles have a short interphase Tfull and even shorter steady state periods T when the average
transcription rate is neither increasing after, nor decreasing before, transcription shut-off during mitosis. The total
transcription window Tfull and the time window when the transcription rate is at steady state T of hb transcription
in nuclear cycle 10, 11, 12, 13 and early nuclear cycle 14 (before cellularization) at 25◦C obtained from 8 MS2-MCP
movies [13]. The short periods of transcription inactivity right before and after mitosis are excluded.
(B) Steep steady state expression profiles (large H) cannot be reached in short nuclear cycles. Since transcription
is shut-off during mitosis, the sigmoidal expression pattern (as in Fig. 1D), characterized by the mean promoter
activity in nuclei positioned at mid-boundary µP (Tfull, 0) = 0.5, needs to be re-established in each nuclear cycle.
We randomize the binding and unbinding rates of the equilibrium model to calculate the upper bound for the mean
promoter activity in nuclei positioned at mid-boundary µP (Tfull, 0), and the corresponding Hill coefficient H, for
varying OS number N and nuclear cycle duration Tfull. µP (Tfull, 0) < 0.5 indicates the steady state expression profile
could not be reached within the nuclear cycle duration.
(C) Steep expression profiles (large H) correspond to equilibrium binding models with larger readout errors of the
mean activity of the nuclei at the mid-boundary position. The readout error decreases with nc duration. Randomizing
parameters of the equilibrium model we plot the lower bound for the readout error of the mean activity of the nuclei,
CVP , defined as the standard variation of the readout fP divided by its mean, for varying OS number N and
steady state-period T . The bounds in (A-B) are calculated numerically from ∼ 50000 data points of the solutions
of dynamical equations of the equilibrium model (SI section 1.2) with N OS, each corresponding to a randomized
kinetic parameter set.

states (see SI - section 5.3). This limit corresponds
to very slow promoter switching, τactive ≥ τbind, sim-
ilarly to conclusions obtained for cell surface recep-
tors [30]. With typically considered parameters for
the Bcd-hb system [9, 15, 33], τbind ∼ 4s and the
H ∼ N limit in Eq. 4 corresponds to τactive � 4 s
(see SI section 5.3). Even if the currently available
estimates for the value τbind prove inaccurate, the
qualitative conclusion about slow promoter switch-
ing will remain unchanged.

Given the limited interphase duration in nc 11,
Tfull ∼ 270s (Fig. 2A), randomizing parameters of
the equilibrium model (Eq. 2) shows that a steep
steady-state expression pattern cannot be estab-
lished during the interphase: the upper bound for
the mean promoter activity level µP (Tfull, 0) at the
mid-boundary position (X = 0) at the end of the
interphase of duration Tfull is less than the steady
state value of 0.5 for kinetic parameters giving large
Hill coeffcients H (Fig. 2B). For long interphases
(Tfull ≥ 100 s), all patterns but those close to the

maximum allowed steepness of H ≈ N reach steady
state. For H ≈ N , Eq. 4 imposes large τactive, which
means there are not enough binding and unbinding
events to achieve the steady state expression pattern
with µP (Tfull, 0) ∼ 0.5 at the boundary.

Generalizing the model to allow non-equilibrium
binding (SI Fig. 1) increases the possible Hill coeffi-
cients above H > N = 6, but does not alleviate their
inaccessibility within the considered nuclear cycles
11-13 (SI Fig. 12). Given the observed steep bound-
ary H ∼ 7 in nuclear cycles 11-13 [13, 16] and the
relatively short interphase duration (Tfull ∼ 520s in
nc 13, see Fig. 2A), it seems unlikely that the steep
steady state boundary is reached in early fly devel-
opment with only the N = 6 known Bicoid operator
sites of the proximal hb promoter [7, 19]. Never-
theless the steady state results give a best case sce-
nario for readout error estimates so we focus on an
equilibrium steady state system in the next section.
We then extend the arguments to out-of-equilibrium
binding.
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B. The single locus readout error at
steady-state

Even when the mean promoter dynamics over the
nuclear population has reached steady-state, each
individual gap gene in each nucleus must indepen-
dently read the positional information and express
mRNA in a way to ensure the transcription pat-
tern’s reproducibility. The promoter in each nucleus
switches between an active and an inactive state
n(t) = 0, 1 (Fig. 1C). The reproducibility of the

transcriptional readout fP = 1
T

∫ T

t=0
n(t)dt at the

mid-boundary position in steady state is described
by the nuclei-to-nuclei readout error of the mean ac-
tivity of the nuclei CVP = δfP /〈fP 〉, where the av-
erage 〈〉 is over nuclei at the same position X = 0
calculated during the steady state expression win-
dow T in a given nuclear cycle (Fig. 1C and E, see
SI - section 6).

Randomizing binding parameters in the equilib-
rium model (Eq. 2) we see that the lower bound
for the nuclei-to-nuclei readout error, CVP , increases
with increasing Hill coefficient H and decreases with
the nc duration (Fig. 2C). A steep pattern requires
slower promoter switching dynamics (Eq. 4), which
results in less independent measurements that take
part in the single locus readout during each inter-
phase. Therefore, the steeper the pattern, the larger
the nuclei-to-nuclei readout error in the expression
pattern due to the increased variability in the read-
outs, fP , between different nuclei [34]. When the
steepness H approaches its upper bound limited by
the maximum number of binding sites N , due to a
small number of switching events during the inter-
phase, the distribution of readout fP approaches a
Bernoulli distribution with p = 0.5 with the relative
error always equal to

√
(1− p)/p = 1, regardless of

T and N . The decrease in readout error at small
steepness depends on the length of the nuclear cy-
cle (Fig. 2C). For very short cycles (i.e. T < 10 s),
only non steep patterns (H ≤ 2) are able to signif-
icantly reduce the readout errors. For long inter-
phases (T > 100 s), significant reduction in readout
errors can be achieved with steep patterns (H ∼ 5),
and further decreasing H yields little improvement
in reducing the readout error (SI Fig. 4).

In our models, τbind is the only external time scale
in the problem. We assume it is set by diffusion
(SI – section 2) and all other timescales (e.g. the
time to establish the steady state expression pattern,
the value of τactive that will minimize the time to
establish the steady state profile) depend on it. If
our estimate of τbind ∼ 4s is inaccurate and differs
by orders of magnitude, then the conclusions about

not being able to establish the steep steady state
expression pattern may not hold. However the point
of the analysis presented in this section remains valid
– steep expression profiles result in large nuclei-to-
nuclei variability.

C. Positional resolution

The above analysis uncovers a trade-off between
the readout error and steepness of the expression
pattern at the boundary: the steeper the boundary,
the larger the minimal nuclei-to-nuclei variability,
quantified as the readout error (Fig. 2C). Addition-
ally, while long nuclear cycles seem desirable both
to obtain the observed steep expression patterns and
decrease nuclei-to-nuclei variability, the nuclear cy-
cles 11-13 during which these steep patterns are ex-
perimentally observed [13] are very short (Fig. 2A).
In light of the experimental facts, steep expression
patterns seem like an obstacle to reducing readout
errors.

The trade-off between the expression pattern
steepness and the nuclei-to-nuclei variability sug-
gests that neither of these features alone can be
used as the sole criterion for a reproducible pattern.
This observation is not surprising given that these
features emerged from looking at the embryo from
two different perspectives (Fig. 1A): the expression
pattern steepness is perceived from an external ob-
server’s perspective when looking at the whole em-
bryo at a fixed time (Fig. 1D), while the readout
error is calculated by comparing nuclei at a simi-
lar position along the AP axis averaged over time
(Fig. 1E). These features are likely to be unobtain-
able to individual nuclei (Fig. 1F), in which the de-
cisions about transcription are made, since they re-
quire averaging or comparing the readout of different
nuclei.

In order to better understand the readout of repro-
ducible cell fates from the perspective of an individ-
ual nucleus in the fly embryo, we use the positional
resolution of the expression pattern, ∆X [9, 35], de-
fined as the minimum distance between two nuclei
located symmetrically on the two sides of the mid-
border position X = 0 that have distinct readout
levels in steady state (Fig. 3A). Specifically, if F+

and F− are the distributions of mRNA concentra-
tions in two nuclei at positions +∆X/2 and −∆X/2
(see SI - section 7), we define the positional resolu-
tion ∆X such that the probability of a false positive
readout is small, P (F+ ≤ F−) ≤ 0.05. Positional
resolution is a distance measure that we report in
length units of % egg length (EL) or nuclei widths,
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FIG. 3: The positional resolution of the pattern.
(A) We use the positional resolution ∆X to describe how well nearby nuclei can readout discernible inputs. F+

and F− are the positional readouts in individual nuclei positioned at ±∆X/2 from the mid-boundary point (X =
0). Positional resolution, ∆X, is the minimal distance between nuclei that make distinct readouts at steady state
P (F+ ≤ F−) ≤ 0.05. Positional resolution results from a trade-off between the pattern steepness and the readout
error: (i-iii) a cartoon representation of the trade-off for a flat pattern (low H, i), pattern of intermediate steepness
(ii) and a steep pattern (high H, iii). Both (i) and (iii) have a large value of positional resolution. At low H (i), the
readout errors are low but the mean readout values are very similar. At high H (iii), the mean readout values are
different but the readout errors are large. The best positional resolution is reached with an intermediate H (ii).
(B) Each nucleus readout is the average of M independent single locus readouts: M can be 1 (there is one copy of
the gene as is the case in a heterogeneous gene construct), 2 (there is one gene copy on each chromosome as is the
case of the WT embryo) or greater (nuclei at the same position can communicate by diffusion of readout molecules
[35, 36] and the readout is the result of spatial averaging). As M increases, the readout error of the nuclei decreases
due to spatial averaging.

where one nucleus width corresponds to 2% EL. The
width of one nucleus (2% EL) sets a natural reso-
lution scale for the problem – the embryo cannot
achieve a better resolution than that of one nucleus.
While positional resolution tells us how well a nu-
cleus can distinguish its position from that of other
nuclei, it is not a measure of information between
the position along the AP axis and Bicoid concen-
tration, such as the previously proposed positional
information [37, 38]. The term positional resolution
is borrowed from optics, and the higher the reso-
lution the better, since it corresponds to a smaller
minimal distance between nuclei that make distinct
readouts. To avoid confusion, in the text we refer to
the minimal value of the positional resolution ∆X
as the best case scenario when nuclei separated by a
small distance make discernable readouts.

The trade-off between the pattern steepness and
the readout error translates into constraints on the
positional resolution. For a flat expression pattern
(low H, Fig. 3A, panel (i)), F+ and F− have a
small difference in their mean value, which makes
it hard to differentiate the mRNA concentration in

closely positioned nuclei, but the variance around
their mean is also small. On the other hand, with a
very steep pattern (Fig. 3A, panel (iii)), F+ and F−
have a big difference in their mean mRNA expression
but also an increased variance, due to the increased
readout errors in particular nuclei. An intermediate
Hill coefficient offers the best positional resolution
(Fig. 3A, panel (ii)).

To evaluate the positional resolution for a given
pattern steepness H and steady state expression in-
terval T in a given nuclear cycle we randomize all the
binding/unbinding parameters for a promoter with
N = 6 OS – a number inspired by the number of Bi-
coid binding sites found on the hb promoter [7, 19].
We identify the parameters that give the smallest
CVP to ensure the smallest ∆X. CVP and ∆X are
tightly correlated (SI Fig. 9) but CVP is faster to
evaluate.

For short nuclear cycles (small T ), there are
hardly any promoter switching events during the
readout time window and the readout error CVP ∼ 1
for all values of H (Fig. 2C). In this case, the posi-
tional resolution is mainly governed by the increase
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FIG. 4: The positional resolution of the expression pattern for different nuclear cycles and regulatory
models
(A) Positional resolution calculated from the equilibrium binding site model with randomized kinetic parameters that
give different values of the expression profile steepness H for M = 1. The colored lines show the results for parameters
that give the smallest readout error CVP from a set of randomized parameters for the steady-state window T in nc
11-14 (Fig. 2A). The curves are smoothed using cubic spline interpolation for better visualization. For each nuclear
cycle we find the optimal Hill coefficient H∗ that results in a model with the smallest value of positional resolution,
∆Xmin.
(B-D) The range of optimal Hill coefficients H∗ (dashed blue line) that yield the lowest value of the positional
resolution (obtained as described in Fig. 4A) as a function of the steady-state readout duration T for the equilibrium
N = 6 model (defined in Eq. 2 and SI section 1.2) (B); the hybrid N = 6 non-equilibrium model with 3 equilibrium
and 3 non-equilibrium OS (defined in section III E and SI section 8) (C); and the two mirror TF gradient model
(defined in section III G and SI section 10)(D). Around the optimal Hill coefficients H∗ that give the minimal value
of the positional resolution ∆X (dashed blue line) we also plot the range of Hill coefficients that come from models
resulting in ∆X = ∆Xmin ± 2% EL, allowing for a tolerance interval for the positional resolution (solid blue lines).
The curves are smoothed by cubic spline interpolation for better visualization. Also shown is the lowest achievable
value of the positional resolution in the numerical randomization experiment for varying T (dashed orange line). The
results are obtained assuming a diffusion limited estimate for τbind = 4s. The theoretical results for M = 1 for all
models are compared to the empirical Hill coefficient Hdata (blue circles with error bars) and positional resolution
∆Xdata (orange crosses with error bars) extracted from MS2-MCP live imaging data in nc 12 and nc 13 [13] (see
SI section 12). The error bars correspond to 95% confidence intervals. In general, only the non-equilibrium model
with N = 6 is able to produce both Hill coefficients and ∆X values observed in experiments. However, assuming
tbind = 4s, even the non-equilibrium model cannot achieve the experimental values of the Hill coefficient during the
time T of nc 12-13.
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in the difference between F+ and F−, with increasing
Hill coefficients H, which leads to a decrease in ∆X
(Fig. 4A). As T lengthens, the value of the positional
resolution ∆X for small Hill coefficients decreases
with increasing H, due to the reduced readout error
from averaging promoter switching events, until a
certain value, ∆Xmin(T ). As H approaches N , the
readout error increases drastically since CVP → 1
(Fig. 2C). As a result, the value of the positional
resolution ∆X increases and converges to a fixed
value ∆XN ≈ 24% EL independently of T (see SI
section 7).

We asked what values of Hill coefficients give the
best ability for close-by nuclei to distinguish their
position along the AP axis, and whether these val-
ues change with the duration of the nuclear cycle. To
this end for each steady state transcription period T ,
we read-off the minimal value of the positional reso-
lution ∆X predicted by our model, ∆Xmin(T ), from
Fig. 4A to produce the orange line in Fig. 4B. We
also plot the optimal Hill coefficients corresponding
to the minimal value of the positional resolution,
H∗ = H(∆Xmin) as a function of T – the dashed
blue line in Fig. 4B. We found that the Hill coeffi-
cients H∗ that guarantee the best positional resolu-
tion decrease with the nuclear cycle duration. Since
the embryo need not be performing an optimal posi-
tional readout, we found the range of Hill coefficients
that allow for a margin of error of about one nucleus
(2% of the embryo’s length). The choice of 2% of
the embryo’s length is arbitrary, yet motivated by
the observation that close-by nuclei do make differ-
ent readout and this assumption allows us to explore
the properties of the model. The solid blue lines in
Fig. 4B denote a confidence interval ofH that results
in a positional resolution within 2% of the embryo’s
length of the optimal value.

We see that for short nuclear cycles (up to nc
11), the embryo can best discriminate readouts when
producing a very steep pattern (intersect of dashed
blue and dashed gray nc 11 line in Fig. 4B ). For
longer nuclear cycles (12 and 13), a narrow range
of moderately steep profiles (H∗ between 2 and 5)
result in the smallest values of positional resolution
(intersect of dashed blue and dashed gray nc 12 and
nc 13 line in Fig. 4B ). As the steady state transcrip-
tion period T increases, ∆X becomes very small for
expression profiles with a wide range of H and the
constraint on H∗ is relaxed (blue solid lines for large
T in Fig. 4B). In this case a discernible readout ow-
ing to small values of positional resolution can be
reached even for very flat expression profiles, since
time averaging alone can result in reproducible read-
outs.

To compare the model predictions to experimen-
tal data, in Fig. 4B-D we plot the Hill coefficient
(blue dot) and positional resolution (orange cross)
obtained from the analysis of MS2-MCP imaging of
fly embryos in nc 12 and 13 [13]. To avoid variabil-
ity in the Bcd concentration between embryos, the
analysis was performed by aligning 8 embryos in nc
12 and 4 embryos in nc 13 at the point of their half-
maximal value of the integral fluorescence intensity.
The Hill coefficients are calculated by fitting a sig-
moidal curve to the mean normalized fluorescence
intensity averaged over nuclei at similar positions as
a function of the AP axis from data combined from
multiple embryos (see SI section 12 for details). To
calculate the positional resolution we take the nor-
malized fluorescence intensity as the readout of each
nucleus within a 5% EL bin around X = 0 and follow
the procedure described above and in SI section 12.
The errors bars in Fig. 4B-D for both observables
represent the 95% confidence intervals. The exper-
imental positional resolution is ∆Xdata ∼ 14% EL
(confidence interval from 11% to 20%) in nc 12 and
∆Xdata ∼ 12% EL (confidence interval from 8% EL
to 18% EL) in nc 13. The experimental Hill co-
efficient value is Hdata = 6.9 (confidence interval
[5.80, 8.64], p < 0.05) in nc 12 and Hdata = 7.1 (con-
fidence interval [6.20, 8.32], p < 0.05) in nc 13. The
experimental positional resolution in these early nu-
clear cycles is well predicted by an equilibrium model
with N = 6 binding sites (orange dashed line and
orange dots in Fig. 4B), but the experimental Hill
coefficient is larger than the model prediction (blue
dashed line and blue dots in Fig. 4B).

D. An effective treatment of spatial averaging

To explore the effect of multiple gene copies on
positional resolution we generalize the model with
M = 1 that describes the readout from a heteroge-
nous gene to M = 2, which describes a homoge-
nous gene readout made independently in one nu-
cleus (Fig. 3B). Although the density of nuclei does
increase as nuclear cycles progress, assuming that
each nuclei is making an independent measurement
of the Bcd concentration (M = 1 for a heterogenous
gene or M = 2 for a homogenous gene), the minimal
distance between nuclei that make a distinct readout
measured in units of length, will not change. How-
ever, spatial averaging of the readout concentration
changes the positional resolution ∆X. In our model
we account for spatial averaging of mRNA in the cy-
toplasmic space coming from different nuclei [35] in
an effective way by assuming that the readout in a
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given nucleus is the average of more than two genes
(M > 2, Fig. 3B).

The results for the mRNA readout in a nucleus
coming from a single expressing gene copy (M = 1
– a heterozygous fluorescent marker such as in re-
cent MS2-MCP experiments [12]) hold for a readout
coming from more gene copies (M > 1, Fig. 3B,
SI Fig. 8). As expected, averaging over many gene
copies further reduces the readout noise and slightly
decreases the minimal value of positional resolution
(SI Fig. 8). We opt for an effective treatment of spa-
tial averaging at the mRNA level, since the scale of
the phenomenon has not yet been quantified in ex-
periments in nc 11-13 and a more detailed model
would require making arbitrary assumptions. In
general, the strength of the averaging effect is likely
to increase with time, as the nuclei density increases
and the nuclear cycles get longer. Our model does
not capture these time dependent effects because the
role of averaging is likely to be limited during the
very short time of ∼ 2 minutes when the steep ex-
pression pattern is established [13].

E. The non-equilibrium model

Comparing the results of the equilibrium binding
site model to experimental observations, we note
that the steepness values obtained in experiment
(Hdata ∼ 7) cannot be reached by an equilibrium
model with the identified N = 6 Bcd binding sites on
the proximal hb promoter. Estrada et al. [18] noted
that this threshold of H = N can be overcome with
a non-equilibrium binding model. We considered a
full non-equilibrium model for N = 3 (SI Fig. 1) and
a hybrid model for N = 6 due to the computational
complexity of performing a parameter scan of a full
N = 6 non-equilibrium model. In the hybrid model,
the promoter has 3 OS whose interactions with TF
are in equilibrium and 3 OS whose interactions with
TF are out-of-equilibrium (see SI - section 8).

The boundary steepness within these models can
be larger than the number of operator sites (H ≤ 5
for the N = 3 case, SI Fig. 11, and H ≤ 8 for the
hybrid N = 6 case, SI Fig. 12). However, the con-
clusions drawn from the equilibrium model are still
valid even for H > N . Large Hill coefficients re-
sult in larger readout errors (SI Fig. 11 and SI Fig.
12). For the N = 6 hybrid model, the value of the
positional resolution is minimal for large H only for
very short interphase durations, and for longer inter-
phase durations lower Hill coefficients give smaller
∆X (SI Fig. 13). For interphase durations found
in the fly embryo, intermediate Hill coefficient val-

ues, 2 ≤ H ≤ 5, provide the best positional reso-
lution of ∼ 6 to 10 % EL or 6 to 7 nuclei lengths
(Fig. 4C), smaller than the observed experimental
values of ∼ 14% EL for nc 12 and 12% EL for nc 13
[13] (orange crosses with error bars in Fig. 4C, see
SI - section 12).

F. “K-or-more” model

Until now we assumed that the gene is read out
only if all the binding sites are occupied. We re-
lax this assumptions and consider the equilibrium
“K-or-more” model (Pactive ≡ Pi≥K , 1 < K < N),
where the gene is transcribed if at least K binding
sites are occupied, assuming for simplicity that tran-
scription occurs at the same rate regardless of the
promoter state. As in the “all-or-nothing” model,
the attainable pattern steepness is also bounded by
the number of OS (H ≤ N − τbind/τactive), but to
achieve a specific steepness H, the τactive in the
“K-or-more” model is N − 1 times smaller than
that of “all-or-nothing” model. However, since the
deactivation process now involves several reversible
steps, τactive is also noisier. As a result, the “K-or-
more” model has only a slightly faster pattern for-
mation time and slightly lower readout error than
the “all-or-nothing” case (SI Fig. 14). In general,
the ‘K-or-more” setup does not change the conclu-
sions about the parameter regimes where the min-
imal value of the positional resolution ∆X can be
obtained (SI Fig. 15).

G. Transcription pattern formed by additional
transcription factor gradients

We also investigated whether two mirrored tran-
scription factor gradients, one anterior activator TF
and one posterior repressor TF’, could lower the pre-
dicted pattern steepness, at the same time keeping
low values of positional resolution. While there is
no direct evidence for additional regulatory gradi-
ents acting in the early nuclear cycles, the idea of an
inverse gradient, possibly indirectly due to Caudal,
has been suggested [39]. We assume N = 6 binding
sites for the Anterior-Posterior decreasing gradient
(TF) and L = 6 binding sites for Posterior-Anterior
decreasing (TF’) gradient. Transcription is allowed
only when the promoter is fully bound by TF and
free of TF’ and we assume that the interactions of
TF and TF’ with the promoter are independent (see
SI section 10). In the equilibrium model, the pat-
tern can achieve a maximum steepness of H∗ ∼ 7
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given the total of 12 binding sites (Fig. 4D). The
quantitative conclusions are the same as for the pre-
viously considered models (SI Fig 16 and SI Fig. 17)
but the minimal value of the positional resolution
(∆X ∼ 10% EL in nc 12 and nc 13) is smaller than
that achieved with a single TF gradient, and smaller
than observed experimentally.

Lastly, we investigated the pattern formation
when an additional repressor is concentrated in the
mid-embryo region (see SI section 10.2). This sce-
nario is motivated by the known pattern of the
Capicua (Cic) protein and its potential effect on
transcription. In the hb promoter sequence there
is one known binding motif for the Cic protein [40].
Since the Cic concentration is relatively constant at
the hb pattern boundary (∼ −5% EL from mid-
embryo), Cic does not affect the pattern steepness.
We also find that the Cic gradient contributes lit-
tle to the positional resolution of the hb pattern
(SI Fig. 18).

H. A common Hill coefficient for all nuclear
cycles

Since the interphase duration varies during the
early development phase but the molecular encod-
ing of regulation is unlikely to change, we can use
the results of the simplest equilibrium model Fig. 4B
to define a value of a Hill coefficient, Hrobust, that
gives the minimal value of the positional resolution
in the widest range of steady state transcription pe-
riods T (see Fig. 5 inset) as a function of the num-
ber of operator sites (N) for different numbers of
expressing gene copies (M). For M = 1, Hrobust is
slightly greater than N/2, resulting in not so steep
boundaries (Fig. 5). Hrobust increases with M but
is always smaller than its highest possible value of
N allowed by the equilibrium model, even for very
large numbers of expressing genes.

The optimal value of the Hill coefficients in nc
12 and 13 for all the considered models, as well
as the Hrobust values, are all between H ∼ 2 − 4.
These values are in very good agreement with in
vitro experiments that measured the cooperativity
of 6 Bcd binding sites on the hb promoter [20, 41]
(Hdata ∼ 3).

I. Comparison to experimental data

Comparing the model predictions to the experi-
mental data [13], one can construct an equilibrium
model that correctly captures the experimentally ob-

FIG. 5: The Hill coefficient Hrobust that gives the
best positional resolution for the widest range of
steady state transcription periods for the equi-
librium model with N = 6 binding sites.
Since the regulatory parameters are unlikely to change
between nc 11-13, we look for the model quantified by
its Hill coefficient that results in the lowest values of
the positional resolution in the largest range of T . In-
set: Hrobust is calculated as the minimum of the upper
bound of the confidence interval of the optimal Hill coef-
ficient CI(H∗), where the optimal Hill coefficient H∗ is
defined in Fig. 4A, and the confidence intervals are the
solid blue lines in Fig. 4B. Hrobust is shown as a func-
tion of the OS number (N) and number of readout genes
(M). Also plotted for reference are H = N (dashed line)
and H = N/2 (solid line). Hrobust for M = 1 is much
less than the maximum steepness allowed by the model
H = N and with a lot of spatial averaging (M = 10)
Hrobust approaches N .

served positional resolution, but it is much harder
to achieve the readout steepness observed from the
endogenous promoter given the currently identified
number of binding sites. As has been shown be-
fore [18], non-equilibrium models allow for steeper
expression profiles. However, increasing the Hill co-
efficients to Hdata ∼ 7 [13, 16] also increases the
minimal obtainable value of the positional resolution
within a hybrid non-equilibrium model to ∆X ∼
20% EL (∼ 10 nuclei widths), slightly above the the
experimentally observed value of ∆Xdata ∼ 12% EL
in nc 13 (∼ 6 nuclei widths) (Fig. 4 C). Unfortu-
nately, from the experimental data it is hard to re-
liably extract Hill coefficients for nc 11.

Steep boundaries are only possible if the promoter
spends most of its time in the fully occupied or fully
bound states, which sets boundaries on the switch-
ing parameters [30, 42] (SI Fig. 6). We looked for the
kinetic parameter set that yields the smallest posi-
tional resolution ∆X and, although the values vary
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with the interphase duration, we find that a param-
eter set that results in the experimentally observed
∆Xdata ∼ 12% EL in nc 12 does not change over
multiple nuclear cycles of varying duration. This
stability throughout the nuclear cycles is consistent
with experimental observations that the Bcd interac-
tions with the hb promoter are likely independent of
other TF, which suggests the binding rate constant
coefficients are independent of the nuclei’s positions
along the AP axes [43].

Varying the only parameter of the model τbind,
which is set by the 3D diffusion assumption,
rescales the steady state transcription period T
(see SI Fig. 19). However, this rescaling does not
quantitatively change the conclusions of our analy-
sis for the equilibrium models, since only the non-
equilibrium model with N = 6 binding sites is able
to produce boundaries as steep as those observed in
the experiments (Fig. 4C). Within a non-equilibrium
model longer binding timescales (τbind = 40s) than
currently estimated within the diffusion approxima-
tion (τbind ∼ 4s) result in a model that reproduces
the observed steepness in nc 11-13 (SI Fig. 19 B) but,
as discussed above, also results in a much higher
minimal value of the positional resolution. Con-
versely, short binding timescales (τbind = 0.4s) allow
the model to reach very low values of positional res-
olution in models with much smaller corresponding
Hill coefficients than Hdata (SI Fig. 19 A).

We also asked what value of the binding rate τbind
in a non-equilibrium model results in both Hill co-
efficients and positional resolution that is consistent
with experimentally observed values. For this, we
calculate the positional resolution as a function of
τbind and randomized the remaining set of binding
and unbinding parameters to achieve the experimen-
tally observed Hdata ≈ 7 and the lowest value of
the positional resolution given the fixed Hdata con-
straint (see SI Fig.20). The difference with the anal-
ysis in SI Fig. 19 is that now we add an additional
constraint on H = Hdata, so the minimal value of
positional resolution is greater than in the results
in SI Fig. 19. We find that for small values of
τbind ∼ 0.01s, the mean values of the experimen-
tally observed positional resolution (∆Xdata ≈ 14%
EL in nc12 and ∆Xdata ≈ 12% EL in nc13) are
close to the minimal value calculated in the model
(SI Fig.20). Taking into account the confidence in-
terval of the experimentally measured positional res-
olution, the experimental values are very close to
the minimal predicted values of positional resolu-
tion even for τbind ∼ 0.1s. We conclude that a hy-
brid non-equilibrium model withN = 6 binding sites
can reproduce both the experimentally observed Hill

steepness and positional resolution, if the binding
timescales are smaller than currently estimated.

Achieving small τbind ∼ 0.1 − 0.4s requires a dif-
fusion coefficient of D ∼ 100µm2/s, which seems
an order of magnitude larger than the current es-
timates (D ∼ 7.4µm2/s) [9, 33]. Misestimates in
τbind = 1/(Dac[TF ]) coming from the binding site
size a and Bcd concentration [TF ] separately are un-
likely to be at the origin of such a large difference.
Even considering a combined effect of a misestimate
in the binding site size, Bcd concentration and the
diffusion coefficient, the diffusion coefficient would
need to be an order of magnitude larger. However,
a different diffusion model, such as a combination
of a 1D and 3D TF search for the operator site [44]
could help lower the binding timescale. As a result,
a non-equilibrium model with a slight modification
(additional binding site, additional regulation) and
a smaller binding rate does seem a likely candidate
for explaining the experimental data.

We compare the readout error δmRNA/〈mRNA〉
calculated directly from the MS2-MCP experiments
in nc 12 and nc 13 (SI Fig. 22). The experimental
readout error in nc 12 is δmRNA/〈mRNA〉 = 0.82
and in nc 13 is δmRNA/〈mRNA〉 = 0.69, which
are lower than expected from the equilibrium model
CVP ∼ 1 for the maximum allowed Hill coefficient
of N = 6, but higher than the CVP ∼ 0.45 in nc
12 and CVP ∼ 0.25 in nc 13 for the non-equilibrium
hybrid model that yields the minimal value of the
positional resolution. The higher experimentally ob-
served readout error may be due to the the fact
that the living embryo does not saturate the lower
bound of positional resolution, as well as additional
sources of noise in the experiments that are not con-
sidered in this model. These sources of noise include
the random arrival times of RNA polymerases [45],
non-uniform progression of the polymerases along
the DNA [46] or additional modes of regulation that
manifest themselves in bursty expression even in the
anterior region where Bcd binding should be satu-
rated [25, 47], and possibly experimental noise. To
focus on the regulatory architecture, following pre-
vious work [48–52], we assumed the mean expression
and noise at the promoter level is correlated with the
mRNA readout. Exploring the role of these different
sources of noise that lead to the observed readout er-
ror in conjunction with binding models of different
complexity remains a future direction.
The error values reported above are also less
than the previously reported δmRNA/〈mRNA〉 ∼
1.5 [25] for nuclei in a 10% EL strip centered at mid-
embryo for the same 4 nuclei in nc 13. In the previ-
ous analysis the embryos where aligned in the mid-
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dle of the embryo (0% EL), which is close to the
half-maximal expression point based on the mean
probability of the nuclei to transcribe the gene at
any point during the interphase. In the current
analysis, based on the discussion in the experimen-
tal companion paper [13], we align the embryos at
their half-maximal expression point of the integral
fluorescence intensity, which is typically positioned
anterior to the middle of the embryo at ∼ −5%
EL. These results suggest that either fluctuations
in the Bicoid concentration between embryos influ-
ence δmRNA/〈mRNA〉, or that nuclei that are po-
sitioned to the posterior of the mid-boundary point
(X = 0) contribute more to the readout error, which
is likely due to their lower expression probability.
We confirm the latter hypothesis by finding for the
4 embryos aligned at X = 0 in nc 13 the CVP in
a 5% strip around 0% EL, CVP = 1.78, which is
larger than the CVP = 0.69 in the strip centered at
−5% EL. However, without experiments that simul-
taneously measure Bcd concentrations and hb ex-
pression, we cannot rule out that fluctuations in the
Bicoid concentration also play a role.

To explore the role of a transcriptional repressor
in these trade-offs, we also considered the possibil-
ity of binding sites for an inversely directed gradi-
ent. The choice of a gradient repressor was arbitrary,
since the only known mirror gradient in early fly de-
velopment, Caudal, has no known binding sites in
the hb promoter, no known repressor function in fly
development and its maternal component has been
shown to be non-essential in early fly development
[53, 54]. Nevertheless it provided for a simple choice
of parameters and was motivated by earlier theoret-
ical ideas [39], and known activator-repressor pairs
in other systems [55]. Since we are only looking
at a small part of the embryo the precise form of
the gradient will not strongly influence our quali-
tative conclusions, so we opted for the mirror im-
age for simplicity. This two gradient model, even in
its equilibrium version, does decrease the positional
resolution in short cell cycles while increasing the
steepness of the expression profile (Fig. 4D). Again,
the exact results of the model do not position the
experimental results for the endogenous promoter
within the predictions of the model, but for the two
TF gradient the minimal value of the positional res-
olution observed at nc 12 is obtained at earlier nc
with H∗ ∼ 7, ∆X ∼ 16% EL is not far from the
experimentally measured value of ∆Xdata ∼ 12%
EL in nc 13 (Fig. 4D). Together these results sug-
gest that a repressor gradient working together with
Bcd in a non-equilibrium setting, possibly with ad-
ditional Bcd or Hb binding sites, could explain all

of the experimentally observed results. Following
the above results for different binding timescales
(SI Fig.20), an equilibrium repressor gradient model
with a smaller τbind is another way to agree the
model and the data.

There are also other repressor candidates in the
fly development, such as Capicua, which is a known
repressor gradient albeit with a different profile
[56, 57]. For simplicity, motivated by Capicua, we
studied a model with a constant additional repres-
sor gradient in the middle of the embryo. Not sur-
prisingly, due to its symmetry around the boundary,
this type of gradient neither increases steepness nor
severely modifies the readout error.

IV. DISCUSSION

In order to better understand the trade-off be-
tween short cell cycles, steepness, readout error and
positional resolution we studied a family of mod-
els where transcription is controlled by the binding
and unbinding of the Bcd TF to multiple operator
sites on the hb promoter: equilibrium binding mod-
els with different expression rules, non-equilibrium
models and equilibrium models with two TF gradi-
ents.

One possible way to reconcile steep profiles with
small values of positional resolution are additional
unidentified binding sites in the promoter. Currently
the minimal hb promoter used in the experiments we
are analyzing [13] is known to consist of 6 Bcd bind-
ing sites, one proximal and one distal Hb binding
site. Of course, it could also include unidentified
binding sites. Since we were interested in nc 11-13 –
the early cell cycles when the profile is already steep
– we did not include the Hb binding sites in our
analysis. At that stage of development the zygotic
Hb gradient is weak, although there exists a ma-
ternal step-like Hb profile with a smaller amplitude
than the final zygotic profile [8]. Since these Hunch-
back gradients have the same direction as Bcd, Hb
binding sites would most likely have the same effect
as additional Bcd sites so we did not add them to
the model promoter. However due to the step-like
shape with a boundary in the middle of the emrbyo,
maternal hunchback may play a role in establishing
the steep profile. The usually characterized minimal
hb promoter also includes one to two Zelda binding
sites but they either do not change or they decrease
the pattern steepness [13]. Nevertheless additional
unknown Bcd binding sites would certainly increase
steepness, as could Hb binding sites.

The disagreement between the model and the data
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is not manifested by the fact that the experimental
points do not precisely fall on the theoretical pre-
dictions. The fly embryo does not need to function
close to the optimal parameter regime and probably
it does not. The disagreement arises because the ex-
perimentally measured values of these two observ-
ables, the Hill coefficient and the positional resolu-
tion, cannot be simultaneously obtained within the
current regulatory model with the experimentally es-
timated diffusion limited binding time. In general,
within the current models, steep boundaries increase
the minimal obtainable value of the positional res-
olution. Specifically, the results of the model tell
us that in the case of the observed steep profiles the
best positional resolution that can be achieved has a
much larger value than is experimentally measured.
Since this is the minimal value of the positional reso-
lution, the experimentally observed value of the po-
sitional resolution must be larger. Yet, in exper-
iments we observe much smaller values of the po-
sitional resolution. This suggests different modes of
regulation, such as described above, or smaller bind-
ing timescales than currently estimated (SI Fig. 20).
Yet if this process is fast, and early fly development
is very fast, the undiscovered modes of regulation
have to be simple [43].

Another explanation to consider for the discrep-
ancy between the experimental observations and our
current discussion of the model is that the assump-
tion we made about the positional error being min-
imized in the developing embryo is not valid. How-
ever, even if we relax this assumption, the general
conclusions do not change: the Bcd-only equilibrium
N = 6 model is not compatible with the experimen-
tally observed Hill coefficient regardless of this as-
sumption and in the hybrid non-equilibirum model,
the predicted positional regulation for the experi-
mentally observed Hill coefficient values within the
current regulatory model is larger than the observed
positional regulation (SI Fig. 13). Relaxing this as-
sumption does, however, make it even more likely
for models with different binding timescales or ad-
ditional regulators or binding sites can explain both
the observables simultaneously.

The observed steep boundaries minimize the po-
sitional resolution only for very short cell cycles.
Another possible regulatory strategy involves set-
ting up an imprecise boundary with low positional
resolution at nc 11 using a steep expression pro-
file. This boundary would further be refined dur-
ing the following cell cycles, using additional regu-
latory mechanisms, such as Hb regulation or epige-
netic modifications encoding memory in the trans-
lational state [9], leading to lower positional regula-

tion. We also demonstrated that if the system starts
from an out-of-steady-state condition after mitosis,
the interphase duration may not be long enough for
steep steady state expression patterns to establish
(SI Fig. 3). This may lead the pattern to shift along
the AP axis from nuclear cycle to nuclear cycle, as
observed in fly development [9].

The “all or nothing” model is clearly a simplifying
assumption but we have shown that a “K-or-more”
model does not change the quantitative conclusions.
In the “K-or-more” model, we further, incorrectly,
assume that the transcription rate is the same for
all of the promoter states that enable transcription.
However, given the generality of our conclusions,
introducing intermediate transcription rates would
change the precise numerical values of the achievable
positional resolution but not the general constraints
on steepness and the positional resolution.

As has been pointed out in the context of max-
imizing information flow between the Bcd gradient
and Hb output [38], very steep boundaries decrease
the ability of the nuclei to discriminate between simi-
lar Bcd concentrations. The optimal expression pro-
files for minimizing positional resolution are always
relatively steep H > 1, since large input fluctuations
in the posterior end of the embryo coming from small
Bcd concentrations limit extremely flat expression
profiles. In general, we give a real biological ex-
ample of the previously identified phenomenon that
utlrasensitive systems require extremely slow recep-
tor switching dynamics, which results in increased
errors at the single-cell readout level [58]. Other
trade-offs imposed by a need for a precise or informa-
tive readout have also been explored, including the
energy–speed–accuracy constraint that shows that
these three quantitates cannot be simultaneously op-
timized [59] or the cost of optimal information trans-
mission in a finite time [60].

The variability in the expression states of differ-
ent nuclei in the considered models comes from the
binding and unbinding noise of TF to OS. The bind-
ing rates are assumed to be diffusion limited, which
we implement using the Berg-Purcell bound [26]. In
order to concentrate on the trade-off between steep-
ness and positional resolution and simplify the pa-
rameter space exploration, we make the simplifying
assumption that the binding and unbinding dynam-
ics are uncoupled from diffusion. This approxima-
tion means that after an unbinding event the TF
diffuses far enough from the OS so that it does
not have an increased probability of binding com-
pared to other TF molecules and its rebinding can
be considered as an independent event [29]. For the
equilibrium model, where all binding sites are the
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same, allowing for fast rebinding renormalizes the
binding rates depending on the number of available
free binding sites [29]. This renormalization would
rescale the time axes to shorter times (or shift the
time axis to the left on the log scale), but would
not qualitatively change the discussed results (see
SI Fig. 19). The effects of the full model of coupled
binding and diffusion in the non-equilibrium model
remain to be investigated in detail. Coupling the
search process to the non-equilibrium process is also
interesting in light of recent experimental evidence
of two Bcd populations, one that spends a long time
bound (∼ 1s)(< 0.1s) to the DNA, and the other
that spends a short time bound (< 0.1s) [61], which
could be a manifestation of specific or non-specific
rebinding.

We compared the experimentally measured posi-
tional resolution and steepness in the MS2-MCP ex-
periments [12, 13, 24] to the M = 1 “all or nothing”
model, since these experiments look at heterozygous
constructs. The developing fly embryo is homozy-
gous and has M=2 genes, and the total resolution of
the gene readout that matters for downstream genes
should be determined at the protein level. Therefore
the overall resolution at the protein level is different
than measured by the MS2-MCP system [15].

At the protein level Gregor et al. [15] measured
a Hill coefficient of Hprotein

data = 5 in nc 14 and con-
cluded that within the equilibrium limit of H ≤ N
the known six binding sites are sufficient to achieve
this steepness. In this work we consider the steep-
ness of the mRNA readout in nc 13 and earlier,
which is steeper (Hdata ∼ 7) than the protein bound-
ary at later cycles [13]. Our results therefore do
not contradict previous observations [15]. The pro-
tein boundary is likely to benefit from averaging of
protein concentrations between nuclei [15, 35]. The
fast timescale of about 2 minutes for achieving the
steep mRNA boundary [13] suggests that the read-
out mechanism initially produces a steeper bound-
ary, which is then made less steep with time, possi-
bly due to diffusion [35]. While spatial averaging is
clearly important for Hb proteins [15, 35], given that
the steep expression profile is established in ∼ 2 min-
utes [13], spatial averaging of hb mRNA in nc 11-12
probably plays a smaller role.

Inspired by the experiments of Lucas et al. [13] we
focused on nc 11-13. The hb gene is also expressed
during later stages of development [62–64]. In nc 14,
additionally to the proximal promoter active in nc
11-13, expression of hb is also controlled by distal
and shadow enhancers [1, 2, 43]. However they are
unlikely to play a major role in nc 11-13. Recent
studies have also used an optogenetically modifiable

Bcd protein [65] that makes it possible to modify
the transcription of Bcd target genes. Combining
all these experimental approaches with the knowl-
edge gained both about hb mRNA [12, 13, 24] and
Hb protein regulation [36] is a much needed future
direction.

In summary, we show how trade-offs between
steep expression profiles and positional resolution in-
fluence the possible regulatory modes of hb expres-
sion in the short early cell cycles of fly development.
We propose a number of possible solutions from non-
equilibrium binding, additional regulatory gradients
and binding sites, faster binding rates to epigenetic
regulation. Additional experiments are needed to
discriminate between the proposed scenarios. For
example, testing whether the binding of TF to the
promoter is equilibrium or non-equilibrium requires
analysis of experiments that track TF bound to fluo-
rescent probes that follow their binding and unbind-
ing. Equilibrium dynamics results in time reversible
traces – a property that can be evaluated based on
such tagged TF data collected using high resolution
microscopy.

V. METHODS

A. Model of promoter dynamics

The general model of transcription regula-
tion through transcription factor (TF) bind-
ing/unbinding to the operator sites (OS) is based on
the graph-based framework of biochemical systems
[18, 66]. In short, for a promoter with N TF bind-
ing sites the model considers all the possible 2N pro-
moter occupancy states and all transitions between
these states that involve the binding and unbinding
of one TF. In most treatments of the model we ran-
domize parameters to explore its behavior. The full
non-equilibrium model is described in SI - section 1
and solved numerically. Assuming the binding sites
are indistinguishable results in the one dimensional
equilibrium model in Eq. 2.

B. Randomization of kinetic parameters

The kinetic rate constants are randomized in R+

space. Assuming binding is diffusion limited by the
Berg-Purcell limit [26], the binding rate constants ki
have an upper bound depending on the OS search
time τbind. Based on measured and typically taken
parameters for diffusion, concentration and operator
size the we estimate τbind = 4s (SI section 2). How-
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ever, since we randomize the parameters, our quanti-
tative conclusions do not depend on the exact values
taken for these parameters. For the non-equilibrium
model, i ranges from 1 to 2N−1 and there are no
further constraints on the binding rates. For the
equilibrium model, a reaction from Pi−1 to Pi is the
binding of a TF to one of the remaining N − i + 1
free OS, so the rate constants k+i are bound by
(N−i+1)/τbind. There are no bounds on the unbind-
ing rate constants k−i, but their values are rescaled
a posteriori so that the boundary is located in the
middle of the embryo (P (Pactive, X = 0) = 0.5, see
SI - section 3). The values of the rate constants are
sampled to be uniformly distributed on the logarith-
mic scale, from 10−20 s−1 to 1020 s−1. The number
of randomized configurations tested is on the order
of 105.

C. Calculating the positional resolution

To find the value of ∆X for a specific kinetic pa-
rameter set, we test the condition P (F+ ≤ F−) ≤
0.05 with increasing nuclei distance ∆W . The dis-
tribution of F+ and F− is taken as the marginal dis-
tributions of the gene readout from 500 stochastic
simulation runs (SSA) [67, 68] implemented in the
SGNS2 simulator [69]. F− and F+ are not well-fit

by Gaussian distributions, especially for short inter-
phase durations. ∆X is the smallest value of ∆W
yielding a tolerable error of P (F+ ≤ F−) ≤ 0.05.
∆X and ∆W and nuclei position X can be expressed
in units of length relative to the decay length of the
TF gradient λ ≈ 100µm [5], which corresponds to
∼ 20% of the embryo length (EL).

D. Experimental data

The data on the dynamics of hb pattern are taken
from Lucas et al. 2018 [13]. In this work, hb tran-
scription in nuclear cycle 11 to 13 is monitored using
the MS2-MCP RNA tagging system [12, 14]. From
the total amount of mRNA produced per nuclei at
any given position, we extracted the pattern steep-
ness (Hdata) and positional resolution (∆Xdata) (See
SI section 12).
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1 Model of transcription regulation

1.1 The binding site model

We use a model of transcription factors (TF) binding/unbinding to operator sites (OS) based on the

graph-based method introduced in [1] and implemented in [2]. Within this framework one considers

a finite, connected, labeled, directed graph [v, e], where the vertices v describe the promoter micro-

states corresponding to the number and arrangement of bound TF on the promoter OS array, and

the edges e are transitions between micro-states. The edge labels k are infinitesimal transition rates

for a Markov process.

For a gene whose promoter has N OS, the number of micro-states/vertices is 2N :

v = [v1, v2...v2N ]. (1)

Since we assume only one binding/unbinding event can take place at a time, not all vertices are

directly connected and the number of edges is Nedges = N2N [2].

We separate the edges e into two sets, corresponding to forward (binding) transitions (e+) and

backward (unbinding) transitions (e−):

e = [e+, e−] = [e+1, e+2, ...e+N2N−1 , e−1, e−2, ...e−N2N−1 ], (2)

with the corresponding edge labels describing the reaction rate constants of binding and un-

binding between the TF and the OS:

k = [k+, k−] = [k+1, k+2, ...k+N2N−1 , k−1, k−2, ...k−N2N−1 ]. (3)

An example of the labeled graph is shown in SI Fig. 1 for N = 3.

The micro states of the gene are divided into active (when the gene is expressed) and inactive

(when the gene is not expressed) states. In this work, we assume that the gene is activated only

when the OS are bound by at least K TFs (corresponding to the ”K-or-nothing” case in [2], with

K ≤ N). During this active state window RNA polymerases can bind to the target promoter to

initiate transcription with a rate that is much faster than the rate of gene activation. Therefore,

the mean transcription rate and the mean expression values of a gene can be approximated by the

probability of the gene to be active 〈f(X)〉 = P (Pi≥K).

1
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Figure 1: The labeled graph for the general non-equilibrium binding site model of

transcription regulation for N = 3 OS. Each vertex v corresponds to a unique OS array state.

The edge labels describe the binding and unbinding reactions, assuming one reaction takes place

at a time.

1.2 The thermodynamic equilibrium model

1.2.1 One dimensional model

We assume that the N binding sites are identical, and thus all the micro-states v = [vi]i=1..N are

characterized only by the number of bound TF (Σvi). In this case the model is reduced to a one

dimensional model described by Pi – promoter states with i bound TF molecules:

P0
k1[TF ]−−−−⇀↽−−−−
k−1

P1
k2[TF ]−−−−⇀↽−−−−
k−2

P2...
kN [TF ]−−−−−⇀↽−−−−−
k−N

PN , (4)

where the TF-OS interactions are at thermodynamic equilibrium and the detailed balance is sat-

isfied. The binding and unbinding of Bcd molecules to the OS occurs with rate constants ki and

k−i. The maximum value of ki is dependent on τbind the time for a free OS to be bound by TF and

the number of free remaining operator [N − i+ 1]: ki ≤ [N − i+ 1]/τbind. [TF ] is the normalized

TF concentration, and is equal to 1 at the mid-boundary position X = 0 (defined in section 4).

1.2.2 Steady-state solution

The temporal evolution of the probability P (Pi) that the promoter is in state i in the one dimen-

sional model in Eq. 4 is given by:

∂tP (Pi) = ki[TF ]P (Pi−1) + k−(i+1)P (Pi+1)− (k−i + ki+1[TF ])P (Pi). (5)

2
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The steady state solution is:

P (Pi, [TF ]) =

∏i
j=0Kj [TF ]i∑N

`=0

∏`
j=0Kj [TF ]`

, (6)

where Kj = kj/k−j are the equilibrium constants for each transition between two states, and

K0 = 1.

We introduce the effective equilibrium constant K̃i =
∏i
j=0Kj that is proportional to the

fraction of time the promoter spends in state Pi:

P (Pi, [TF ]) =
K̃i[TF ]i∑N
j=0 K̃j [TF ]j

. (7)

If the TF concentration gradient follows an exponential curve, we can express the TF concen-

tration [TF ] in terms of the nuclei’s position (Eq. 14) and Eq. 7 becomes:

P (Pi, X) =
K̃ie

iX∑N
j=0 K̃jejX

. (8)

2 Promoter searching time at the boundary position

We estimate the expected time for a binding event between a single binding site and a TF at the

mid-boundary position ([TF ] = 1).

Assuming that the TF can only search for OS by diffusing in the nucleus and that each collision

between TF and OS is one successful binding event [3], we estimate τbind = 1/(Dac) ∼ 4 s, using

D ∼ 7.4µm2/s – the diffusion coefficient of TF (measured through Bcd-eGFP using FRAP [4, 5]),

[c ∼ 11.2/µm3 [4] – the absolute TF concentration at the mid-boundary position and a ∼ 3nm [6]

– the size of one operator site for Bicoid.

3 Aligning the pattern boundary position

From the randomized kinetic parameter set k = [ki, k−i], we solve the probability of the gene

to be active at any position position X and find the mid-boundary position X0(k) such that

P (Pactive|k,X0(k)) = 0.5. The solution remains the same when we multiply both ki and k−i to a

factor of eX0(k):

P (Pactive|k,X) = P (Pactive|[ki, k−i], X) (9)

= P (Pactive|[kieX0((k)), k−ie
X0((k))], X) (10)

= P (Pactive|[ki, k−ieX0((k))], X −X0(k)). (11)

The whole pattern can be shifted so that the mid-boundary position is located at X0(k) = X = 0:

P (Pactive([ki, k−ie
X0(k)], 0) = P (Pactive|[ki, k−i], X0(k)) = 0.5. (12)

We obtain the new parameter set k′ = [ki, k−ie
X0(k)], which satisfies the model assumptions

X0(k′) = 0.

3
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4 Boundary steepness and the Hill coefficient

The boundary steepness is a feature that emerges only when looking at the mean transcription

readout value fP (X) of the hunchback gene along the AP axis (see Fig. ?? C and D of the main

text) [2, 7, 8, 6]. We assume that the mean expression of the hunchback gene is regulated by a

single transcription factor (i.e. Bcd), which has normalized concentration [TF], in terms of a Hill

function with coefficient H:

〈fP ([TF ])〉 =
[TF ]H

1 + [TF ]H
. (13)

In the case of Bcd-hb system the TF concentration decays exponentially along the embryo

length [9] and we can estimate the nuclei’s position X from the TF concentration:

X = ln([TF ]). (14)

X is reported in units of decay length λ of the TF gradient, which is ∼ 100µm or 20% of the

embryo length (EL) [9]. Eq. 13 becomes:

〈fP (X)〉 =
eH·X

1 + eH·X
. (15)

Figure 2: Quantifying the pattern steepness.

(A) From the mean readout function fP (X), the Hill coefficient H can be obtained from either the

slope at the mid-boundary position corresponding to half-maximum readout of 〈fP (X)〉, (H(X =

0)) or at the steepest point (Hmax) as in [2].

(B) Comparison between the two definitions of steepness H(X = 0) and Hmax for the equilibrium

regulatory model with N = 6 binding sites shows the two values are correlated. The data points

are taken from ∼ 50000 data points with randomized kinetic parameters.

We define the mid-boundary position, X = 0, as the position along the AP axis corresponding

to half-maximum of the mean readout function, 〈fP (X)〉 = 0.5. Note that the expression boundary

is not necessarily positioned at the middle of the embryo.

Hill coefficients are typically obtained either by fitting the mean expression function to a sigmoid

curve [6, 8, 7] or by comparing the maximum derivative of the mean readout function to that of

a sigmoid function [2]. Here, to easily compare different embryos to each other and to analytical

predictions, we calculate the Hill coefficient by comparing the slope of the mean readout function

at the mid-boundary position (X = 0) to the prediction of Eq. 15:

4
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H = 4
(∂〈fP (X)〉

∂X

)
X=0

. (16)

To see if our definition using the derivative at the half-maximum expression position significantly

changes the numerical value of the steepness when calculated at the point of the maximum derivative

(SI Fig. 2A), we compare the two values obtained at the steady state of the transcription regulatory

model defined in Section 1.2 for different sets of randomized kinetic parameters. The results shown

in SI Fig. 2B for N = 6 show the two values of the steepness calculated at different positions

are tightly correlated, especially in the regime of high steepness. For the remainder of this work,

we work with the steepness defined at mid-boundary (H(X = 0)) and note that an alternative

definition would not change our conclusions.

5 Boundary steepness and promoter switching time for the equi-

librium model

5.1 The boundary steepness

We consider the general “K-or-more case”, that is the promoter is active when at least K OS

are bound by TF, P (Pactive) =
∑N

i=K P (Pi). When K = N , we recover the “all-or-nothing” case,

P (Pactive) = P (PN ).

At the boundary position X = 0 and P (Pactive) = p (0 ≤ p ≤ 1), Eq. 7 simplifies to:

P (Pactive, X = 0) =

∑N
i=K K̃i∑N
j=0 K̃j

= p, (17)

which imposes a condition on the effective equilibrium constants:

N∑
i=K

K̃i =
p

1− p

K−1∑
k=0

K̃k = p
N∑
j=0

K̃j . (18)

The slope of the pattern at mid-boundary position is given by the derivative:

(∂P (Pactive)

∂X

)∣∣
X=0

=

N∑
i=K

(
∂

∂X

K̃ie
iX∑N

j=0 K̃jejX

)∣∣
X=0

(19)

=

∑N
i=K iK̃i∑N
j=0 K̃j

−
∑N

i=K K̃i
∑N

j=0 jK̃j

(
∑N

j=0 K̃j)2

=

∑N
i=K iK̃i∑N
j=0 K̃j

−
p
∑N

j=0 jK̃j∑N
j=0 K̃j

,

where in the last step we used Eq. 18.

5

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 27, 2018. ; https://doi.org/10.1101/305532doi: bioRxiv preprint 

https://doi.org/10.1101/305532


For clarity, we set the ranges i = K..N , j = 0..N and k = 0..K− 1. Eq. 19 is then rewritten as:

(∂P (Pactive

)
∂X

)X=0 =

∑
iK̃i − p

∑
jK̃j∑

K̃j

(20)

=
(1− p)

∑
iK̃i − p

∑
kK̃k∑

K̃j

=
N(1− p)

∑
K̃i∑

K̃j

− (1− p)
∑

(N − i)K̃i + p
∑
kK̃k∑

K̃j

= Np(1− p)− (1− p)
∑

(N − i)K̃i + p
∑
kK̃k∑

K̃j

,

and the Hill coefficient (Eq. 16) is:

H = 4
∂P (Pactive)

∂X

= 4Np(1− p)− 4
(1− p)

∑
(N − i)K̃i + p

∑
kK̃k∑

K̃j

. (21)

At the boundary criteria p = 0.5 and:

H = N − 2

∑
(N − i)K̃i +

∑
kK̃k∑

K̃j

. (22)

In the “all-or-nothing” case (K = N),
∑N

j=0 K̃j = 2K̃N (Eq. 18), the first term in the nominator

disappears and Eq. 22 becomes

H = N −
∑N−1

k=0 kK̃k

K̃N

. (23)

5.2 Bounds for pattern steepness

Eq. 22 gives an upper bound of H ≈ N at the mid-boundary position, which occurs when∑N
i=K(N − i)K̃i +

∑K−1
k=0 kK̃k∑N

j=0 K̃j/2
<< N. (24)

When N is not too large (≤ 10), we can rewrite the upper bound condition in Eq. 24:

N∑
i=K

(N − i)K̃i +

K−1∑
k=0

kK̃k �
N∑
j=0

K̃j/2 (25)

which is equivalent to K̃l � K̃0 + K̃N for l = 1..N − 1 or K̃0 + K̃N ≈
∑N

j=0 K̃j .

Maximum sharpness (H = N) is achieved when K̃0 ≈ K̃N ≈ 0.5
∑N

i=0 K̃i – the system spends

most of the time in the fully free (P0) or fully bound states (PN ). In this limit, we have P (P0) +

P (PN ) ≈ 1, and thus P (Pactive) ≈ P (PN ) regardless of the value of K.

6
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To find the lower bound on H, we consider the difference between H and N from Eq. 22:

N −H =

∑N
i=K(N − i)K̃i +

∑K−1
k=0 kK̃k∑N

j=0 K̃j/2
(26)

=

∑N
i=K(N −K)K̃i −

∑N
i=K(i−K)K̃i∑N

i=K K̃i

+

∑K−1
k=0 (K − 1)K̃k −

∑K−1
k=0 (K − 1− k)K̃k∑K−1

k=0 K̃k

= N −K −
∑N

i=K(i−K)K̃i∑N
i=K K̃i

+K − 1−
∑K−1

k=0 (K − 1− k)K̃k∑K−1
k=0 K̃k

,

≤ N − 1

Thus H ≥ 1. H = 1 when the sum in Eq. 25 are negligible compared to 1, which happens when

K̃K � K̃K+1..N and K̃K−1 � K̃0..K−2. With these conditions, the promoter spends most of the

time in PK−1 and PK .

5.3 Promoter activity time

τactive is the mean duration the promoter is in the active state and the system is at steady state,

τactive ∼ P (Pactive). We can relate τactive to the average time τN the promoter spends in the PN
state where all the operator sites are occupied by TF:

τactive = τN
P (Pactive)

P (PN )
(27)

=
1

k−N

∑N
i=K K̃i

K̃N

=
KN

kN

∑N
i=K K̃i

K̃N

=
1

kN

K̃N

K̃N−1

∑N
i=K K̃i

K̃N

= τbind

∑N
j=0 K̃j

2K̃N−1

,

where τbind = 1/kN is the expected time for a binding event between the remaining free OS of

PN−1 and a TF at the mid-boundary position ([TF ] = 1) (as defined in section 2).

Eq. 27 allows us to connect the Hill coefficient in Eq. 23 to τactive. For K = N (the “all-or-

nothing” case), using Eq. 27, Eq. 23 becomes:

H = N −
∑N−1

k=0 kK̃k∑N
j=0 K̃j/2

(28)

= N −
(N − 1)K̃N−1 +

∑N−2
k=0 kK̃k∑N

j=0 K̃j/2

= N − (N − 1)τbind

τactive
−
∑N−2

k=0 kK̃k∑N
j=0 K̃j/2

≤ N − (N − 1)τbind

τactive
,

7
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or

τactive ≥ τbind
N − 1

N −H
. (29)

This leads to the bound on the Hill coefficient presented in the main text:

H ≤ N − (N − 1)
τbind

τactive
. (30)

Given the estimate τbind ≈ 4s (section 2), H ∼ N for τactive � 4 s or k−N � 0.25 s−1.

For K < N (the “K-or-more” case), Eq. 22 becomes:

H = N −
K̃N−1 +

∑N−2
m=K(N −m)K̃m +

∑K−1
k=0 kK̃k∑N

j=0 K̃j/2
(31)

= N − τbind

τactive
−
∑N−2

m=K(N −m)K̃m +
∑K−1

k=0 kK̃k∑N
j=0 K̃j/2

≤ N − τbind

τactive
,

or

τactive ≥ τbind
1

N −H
. (32)

The equality in Eq. 28 and Eq. 31 occurs when K̃1..N−2 �
∑N

j=0 K̃j – the system spends most of

the time in the P0, PN−1 and PN states.

6 Calculating the mean promoter activity and readout error

In this section we obtain analytical solutions for the time dependent mean promoter activity

(µP (T, 0)) and readout error (CVP (T )). Those results are expressed in terms of the exponen-

tial of the transition rate matrix U of size N2N for the non-equilibrium model and size N + 1 for

the equilibrium model, defined in Eq. 5. We discuss in what cases the matrix exponentiation can

be done analytically or must be done numerically.

The steady state solution for the promoter activity probability vector is given by Ux = 0 and

the normalization condition
∑
x = 1. In the equilibrium model, the steady state solution x is given

by Eq. 8.

6.1 Mean promoter activity out of steady state

We define x0 as the promoter state probability at the beginning of the interphase (
∑
x0 = 1). The

mean promoter activity level at time T is given by:

µP (T ) = αTeU ·Tx0 (33)

where α is a vector of the promoter active states. The ith element of α takes values of either 1 or

0, indicating the ith promoter state is active or inactive respectively.

8
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Figure 3: Example of the pattern formation following mitosis. The mean promoter activity

pattern µP (T,X) as a function of the position in the embryo the end of an interphase of duration

T (solid colored lines), for interphases of varying duration. The dashed line shows the steady-state

expression pattern.

6.2 The readout error

After the interphase of duration T , we obtain a readout fP (T ) which is the average of the promoter

activity trace n(t) over time T :

fP (T ) =
1

T

∫ T

0
n(t)dt. (34)

At steady state (x0 = x), the probability of the gene to be active is a projection of the steady state

probability onto the state of the system:

〈fP 〉 = αT × x. (35)

Let us define xfire in which xfire(i) = α(i)x(i). The second moment of fP (T ) can be found via the

autocorrelation function:

〈f2
P (T )〉 =

1

T 2

∫ T

0
du

∫ T

0
dv αTeU |u−v|xfire (36)

=
2

T 2

∫ T

0
du

∫ u

0
dv αTeU(u−v)xfire

=
2αT

T 2

∫ T

0
ds

∫ T

s
du eUsxfire

=
2αT

T 2

[ ∫ T

0
ds(T − s)eUs

]
xfire.

We diagonalize the matrix U = V DV −1, where V is the eigenvector matrix and D a diagonal

matrix of eigenvalues [λ1, λ2, ...λM ]. Eq. 36 becomes

〈f2
P (T )〉 =

2αT

T 2
V · diag

[
L1, L2, ...LM

]
· V −1xfire (37)

with

Li =

∫ T

0
ds(T − s)eλis. (38)

9

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted September 27, 2018. ; https://doi.org/10.1101/305532doi: bioRxiv preprint 

https://doi.org/10.1101/305532


Figure 4: The readout error of [TF] readout at steady-state. The smallest values of CVP
as a function of interphase duration T , plotted for varying pattern sharpness H.

Performing the integration, for λi = 0:

Li =

∫ T

0
ds(T − s) = T 2 − T 2/2 = T 2/2, (39)

and for λi 6= 0:

Li =

∫ T

0
ds · T · eλis −

∫ T

0
ds · s · eλis (40)

=

∫ T

0
ds · Teλis − 1/λi

(
s · eλis

∣∣T
0

+

∫ T

0
ds · T · eλis

)
= T/λi(e

λiT − 1)− T/λieλiT + 1/λ2
i (e

λiT − 1)

= 1/λ2
i (e

λiT − 1)− T/λi.

The readout error CVP (T ) is calculated as:

CVP (T ) =
δfP (T )

〈fP 〉
=

√
〈f2
P (T )〉 − 〈fP 〉2
〈fP 〉2

(41)

In the special case whenH approaches its maximum value, τactive is infinitely long, all eigenvalues

λi become zero and Li = T 2/2 for all i. In this limiting case:

〈f2
P (T )〉 =

2αT

T 2
V · T 2/2 · V −1x (42)

= αTx

= 〈fP 〉

Applying Eq. 42 to Eq. 41, the readout error at the mid-boundary position is therefore:

CVP (T ) =

√
〈fP 〉 − 〈fP 〉2
〈fP 〉2

= 1 (43)
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6.3 Specific case with 2 binding sites

In the specific case N = 2:

P0
k1[TF ]−−−−⇀↽−−−−
k−1

P1
k2[TF ]−−−−⇀↽−−−−
k−2

P2 (44)

the matrix U is:

U =

−k1 k−1 0

k1 −k2 − k−1 k−2

0 k2 −k−2

 , (45)

where we have set [TF ] = 1 at the mid-boundary position. The matrix is of size 3× 3 and can be

diagonalized analytically in the general case. We define the following auxiliary variables:

r = k1k2 + k−1k2 + k−1k−2

w = k1 + k2 + k−1 + k−2

v = k−2 − k1 − k2 − k−1

x = k2 + k−2 − k1 − k−1

d =
√

(k1 + k2 + k−1 + k−2)2 − 4(k1k2 + k1k−2 + k−1k−2)

(46)

and for the all-or-nothing case:

α =

( 0

0

1

)
, (47)

the steady state probability is:

〈fP 〉 = αTx = αT

( k−1k−2/r

k−2k1/r

k1k2/r

)
= k1k2/r, (48)

and the mean squared of the readout error is:

〈f2
P (T )〉 =

2k1k2

T 2r
× (49)[

T 2

2r

(
k2k−2 +

v2 − d2

4

)
+
( 2T

w − d
− 4

(w − d)2

(
1 + e−(w−d)T/2

)) k−2(x− d)

2r − 2w(w − d) + 3(w − d)2/2

)
+
( 2T

w + d
− 4

(w + d)2

(
1 + e−(w+d)T/2

) k−2(x+ d)

2r − 2w(w + d) + 3(w + d)2/2

]
The analytically calculated readout relative error CVP (T ) =

√
〈f2
P (T )〉/〈fP 〉2 − 1 agrees with

the numerical calculation for the N = 2 equilibrium model (SI Fig. 5).

7 Positional resolution

7.1 Calculation of positional resolution

For each set of parameters k, integration window T and nuclei distance ∆W , we generate 500

realizations of promoter activity at location −∆W/2 and +∆W/2. From each realization, we
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Figure 5: The analytical and numerical calculation of the relative error CVP (T ) for the

equilibrium model with N = 2 (SI section 6). Small discrepancies result from numerically

finding the half-maximum expression point, which due to numerical precision is not exactly at

〈fP 〉 = 0.5.

Figure 6: The unbinding rate constants k−i yielding the highest readout error CVP in

nuclear cycle 12 of the equilibrium model with N = 6. The optimal binding rate constants

ki are at their highest possible values (N − i+ 1)/τbind.

extract an individual gene readout f−i = fP (−∆W/2) and f+i = fP (+∆W/2), with i = 1...500.

The distribution of the readout values at the two positions, F+ and F−, can be approximated

marginally by the sample distribution of f+i and f+j (SI Fig. 7A).

The difference in the activity of two nuclei on opposite sides of the mid-boundary position is:

D = F+ − F−. (50)

When D takes a non-negative value, we have a false negative result suggesting the anterior nucleus

is not the anterior region. The probability β of getting such false negative samples is:

β = P (D ≤ 0) = P (F+ ≤ F−). (51)

The value of β for each ∆W can be calculated numerically via the approximated distribution of

F+ and F−. One observes that β decreases with increasing nuclei distance ∆W (SI Fig. 7B). We

set the risk tolerance level β ≤ 5% to conclude whether the nuclei distance (∆W ) is large enough

for any two nuclei to have different readout values. We define the positional resolution as such a

value of ∆W that (SI Fig. 7B):
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Figure 7: Finding the positional resolution.

(A) The distribution of readout F+ and F− from two nuclei positioned at a distance of ∆W on

opposite sides of the expression boundary.

(B) The coefficient β = P (D ≤ 0) is the risk of a nucleus wrongly predicting its position.

(C) ∆X is set as the smallest ∆W yielding a tolerable risk (β ≤ 5%).

∆X = min (∆W |β ≤ 0.05) . (52)

In practice, to determine the value of ∆X for each parameter set k, we increase ∆W from 0×λ
to 4× λ with an increment of 0.01× λ (λ is the TF gradient’s decaying length, which is ∼ 100µm
or ∼ 20%EL), which corresponds to 0% to 80% of the embryo length. For each value of ∆W ,

the distribution of D and the value of β are computed from stochastic simulations of F+ and F−
[10, 11]. As β also monotonically decreases with ∆W , ∆X is set as the first value of ∆W that

gives β ≤ 0.05 (SI Fig. 7C).

When the nuclei readout is the average of M identical and independent identical single gene

readouts (F+(j) and F−(j), for j = 1..M), the difference in the averaged readout at the two

locations −∆W/2 and +∆W/2 is:

DM =
1

M

M∑
j=1

(F+(j)− F−(j)), (53)

and β is calculated as β = P (DM ≤ 0).

As M increases, it is expected that the difference in the averaged readout DM at specific nuclei

distance ∆W has reduced variance while maintaining the same mean level. This leads to a smaller

risk level β and consequently smaller values of ∆X when compared with M = 1 case (SI Fig. 8).

7.2 Correlation between readout error and positional resolution

The correlation between the readout error and positional resolution given the same degree of pattern

steepness is demonstrated in the N = 6 equilibrium model. We first find the randomized kinetic

parameter sets that yield the Hill coefficient H = 4. The transcription readout error CVP given

T = 400s varies between 0.12 and 1 (see Section 6). Among these sets, we select 20 parameter sets

yielding CVP linearly spaced between 0.12 and 1 and calculate the positional resolution for each of
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Figure 8: Positional resolution with varying single gene copy number per nuclei M in

the equilibrium model. Results for the “all-or-nothing” model with N = 6 binding sites and M

equal 2 (A-B), 4 (C-D) and 10 (E-F).

(A,C,E) Positional resolution calculated from the equilibrium binding site model for varying bound-

ary steepness H.

(B,D,F) The optimal Hill coefficients H∗ that gives the minimal positional resolution (dashed blue

line), the confidence interval CI(H∗) with 2 %EL tolerance (solid blue lines) and the lowest value

of the positional resolution ∆Xmin (orange dashed line), for varying T . The theoretical results are

compared to the empirical Hill coefficient Hdata (blue crosses) and positional resolution ∆Xdata

(orange crosses) extracted from MS2-MCP live imaging data.

the parameter set. The positional resolution (∆X) as a function of readout error CVP is shown in

SI Fig. 9.
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Figure 9: The correlation between the readout error (CVP ) and positional resolution

(∆X). Demonstrated with N = 6 and H = 4 and T = 400s. The kinetic parameters are selected

so as to generate the same Hill coefficient H = 4 and readout error CVP linearly spaced between

its bound 0.12 and 1.

7.3 Positional resolution for a binomial readout

When the nuclear cycle is very short or when the promoter dynamics is very slow,the positional

readout value any given position X depends only on the promoter activity state at the beginning

of the nuclear cycle. At steady state, this activity state follows a Bernoulli distribution (CVP = 1

as in Fig. ?? of the main manuscript) with a mean value 〈fP (X)〉. We assume that the readout

pattern can be well fitted with a sigmoid curve with a Hill coefficient H:

〈fP (X)〉 =
eHX

1 + eHX
. (54)

For the case M = 1 (single gene readout), at the anterior position ∆W/2, the readout F+ has

a chance fP (∆W/2) to be 1. Similarly, at the opposite position −∆W/2, the readout F− has a

chance 1 − fP (∆W/2) to be 1. Thus, the probability that two opposite nuclei falsely determine

their position from their readout value is:

β = P (F+ ≤ F−) = 1− P (F+ > F−) (55)

= 1− P (F+ = 1, F− = 0)

= 1− fP (∆W/2)2.

When we increase ∆W from 0 until β reaches 5%, we find the positional resolution ∆X = ∆W .

Therefore:

1− fP (∆X/2)2 = 0.05, (56)

or

fP (∆X/2) =
√

1− 0.05 (57)

=
eH∆X/2

1 + eH∆X/2

= 1− 1

1 + eH∆X/2
,
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which gives

∆X =
2

H
ln(

1

1−
√

0.95
− 1) ≈ 7.3

H
. (58)

and the value of ∆X in %EL unit is:

∆X ≈ 7.3

H
∗ 20%EL =

146%EL

H
(59)

In the case M > 1, the positional readout follows a scaled binomial distribution:

F+ ∼
1

M
B(M,fP (∆W/2)), (60)

F− ∼
1

M
B(M,fP (−∆W/2)),

and the value of ∆X is calculated numerically by solving β = P (F+ ≤ F−) = 0.05.

7.4 Positional resolution

To calculate the positional resolution of the hb pattern in live fly embryos, for each position along

the embryo AP axis, we collect the readout of all nuclei in this position (with a bin width of 5%

of the embryo length). We then find the distribution of the difference P (F+ − F−) at position

+∆W/2 and −∆W/2 from the pattern’s boundary, with ∆W increasing from 0 %EL. Assuming

that this difference follows a normal distribution, we calculate the risk β and its confidence interval

(p-value=0.05) (SI Fig. 10). By inspecting when the risk value is tolerable (≤ 5 %), we find

∆X ∼ 14%EL (confidence interval from 11% EL to 20% EL) in nuclear cycle 12 and ∆X ∼ 12%

EL (confidence interval from 8% EL to 18% EL) in nuclear cycle 13.

Figure 10: The risk factor value β as a function of ∆W for the hb proximal promoter

(solid line), plotted with the confidence interval (shaded) with p-value=0.05. The dashed black

line indicates the tolerable risk β = 0.05. (A) Nuclear cycle 12 (8 embryos). (B) Nuclear cycle 13

(4 embryos).

8 Analysis of the non-equilibrium model

The steady state of the non-equilibrium models can be a limit-cycle instead of simple fix points.

Therefore, to assess whether the system has reached steady state we consider both the probability of
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the promoter to be active µP (T, 0) like we did in steady state and the derivative of this probability

over time:

µSS = |µP (T, 0)− 0.5|+ |∂µP (T, 0)

∂T
|. (61)

If the system has reached steady state at time T , at the mid-embryo position, we expect µP (T, 0)

to be equal 0.5 and its derivative term to be 0, and thus µSS ≈ 0. If µSS > 0 the system has not

yet reached steady state.

8.1 Full non-equilibrium model with N = 3 binding sites

We first investigate the “all-or-nothing” non-equilibrium model with 3 OS (N = 3). SI Fig. 11

shows that the model is able to achieve a higher steepness (H ≤ 2N − 1 = 5) than that with the

equilibrium model (H ≤ N = 3), as described in [2]. Similarly to the equilibrium model we observe

a tradeoff between the pattern steepness H, readout error and pattern formation time. In the case

of the steepest pattern (H = 5), the pattern is not yet formed (µSS = 0.5) and the noise is at its

highest value (CVP = 1).

Figure 11: Readout error of a pure non-equilibrium model for N = 3.

(A) The lower bounds for µSS from the non-equilibrium model (grey solid line), for varying values

of T , computed from 3×105 data points. Also shown are the bounds for equilibrium model (colored

dashed lines).

(B) The lower bounds for readout error CVP (T ) for the non-equilibrium model (grey solid lines)

for varying value of T computed from 3 × 105 data points. Also shown are the bounds for the

equilibrium model (colored dashed lines).

8.2 Hybrid non-equilibrium model with N = 3 binding sites

We expand the non-equilibrium model to N = 6. However, we do not use a full model (as in

SI Fig. 1) due to the very large numbers of micro-states (26 = 64) and possible transitions (6 · 26 =

396), which makes numerical optimization of the parameters numerically costly. Instead, we opt to

use a hybrid model with 2 OS arrays. The first array contains 3 identical OS, the interactions of

which with the TF are at equilibrium (as in Eq. 4). The second array contains 3 OS, the interactions

of which with the TF are out of equilibrium (as in SI Fig. 1). To include cooperativity between

the binding sites and decrease the computational time of the numerical parameter optimization we

further assume the dynamics of the two arrays are not independent: TF can only interact with
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the first OS array when the second OS array is completely free, and TF can only interact with the

second OS array when the first array is fully bound.

Figure 12: Readout error of the hybrid non-equilibrium model with N = 6, three equi-

librium and three non-equilibrium OS.

(A) The lower bounds for µSS for a hybrid non-equilibrium model (grey solid lines) for varying

values of T computed from 106 data points.

(B) The lower bounds for the readout error CVP (T ) for a hybrid non-equilibrium model (grey solid

lines), for varying values of T computed from 3× 105 data points.

The hybrid model is able to achieve a steepness of 8 (SI Fig. 12), as expected from equilibrated

activity of 3 OS and non-equilibrated activity of 3 OS. The tradeoff between the pattern steepness

H and the readout error and pattern formation time still holds. Note that the hybrid model is not

nested in the equilibrium model.

The positional resolution for the hybrid model with varying nuclear cycle is shown in SI Fig. 13

and the optimal steepness with varying interphase duration T is plotted in Fig. ??C of the main

text.

Figure 13: Positional resolution in the N = 6 hybrid non-equilibrium model. The results

are shown for the “all-or-nothing” case with N = 6, M = 1. Positional resolution calculated for a

hybrid non-equilibrium binding site model for varying boundary steepness H.
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9 Analysis of the “K-or-more” case

The results concerning the “K-or-more” case is shown in SI Fig. 14, from which qualitatively similar

observations as in the “all-or-nothing” case can be drawn.

Figure 14: The “K-or-more” case is qualitatively similar to the “all or nothing” case.

The results are shown with N = 6 binding sites and an interphase duration of T = 500 s. K = 6

corresponds to the “all or nothing” case. Each curve is computed from ∼ 20000 data points.

(A) The lower bound for the mean promoter activity level at the boundary position µP (T, 0), for

different K values (solid colored lines), as a function of pattern sharpness H. The µ = 0.5 line

(dashed line) indicates the steady-state value.

(B) The lower bound for readout error CVP (T ) for different K values (solid colored lines) as a

function of pattern sharpness H. Also shown is the upper bound for the noise, CV = 1.
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Figure 15: Positional resolution in the “K-or-more” case, with varying K. The results are

shown with N = 6 binding sites and K equal 5 (A-B), 4 (C-D), 3 (E-F). M = 1.

(A,C,E) Positional resolution calculated from the equilibrium binding site model for varying bound-

ary steepness H.

(B,D,F) The optimal Hill coefficients H∗ that gives the lowest value of the positional resolution

(dashed blue line), the confidence interval CI(H∗) with 2 %EL tolerance (solid blue lines) and the

lowest value of the positional resolution ∆Xmin (orange dashed line), for varying T . The theoretical

results are compared to the empirical Hill coefficient Hdata (blue crosses) and positional resolution

∆Xdata (orange crosses) extracted from MS2-MCP live imaging data.
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10 Transcription pattern formed by two transcription factor gra-

dients

We investigate the transcription pattern formation under the independent regulation of two tran-

scription factor gradients: an anterior activator TF (modeled as above) and a repressor TF’, which

is concentrated at either the posterior (e.g. Cad protein) or mid-embryo (Cic protein).

The transcription factors regulate the target gene via interactions with the activator binding site

array A and repressor binding site array B, each with N and L identical binding sites respectively:

A0
k1[TF ]−−−−⇀↽−−−−
k−1

A1
k2[TF ]−−−−⇀↽−−−−
k−2

A2...
kN [TF ]−−−−−⇀↽−−−−−
k−N

AN , (62)

B0

k′1[TF ′]
−−−−−⇀↽−−−−−

k′−1

B1

k′2[TF ′]
−−−−−⇀↽−−−−−

k′−2

B2...
k′L[TF ′]
−−−−−⇀↽−−−−−

k′−L

BL. (63)

We call α and γ the vectors indicating which states are ON (the ith elements of α and γ

respectively indicate whether Ai or Bi is an active or an inactive state). We consider the ”all-

or-nothing” model for the activator (α = [00...1]T ) and a ”zero-or-nothing” model for repressor

(γ = [10...0]T ).

In each nuclear cycle of duration T , A and B produce time traces a(t) and b(t). The mean

activity levels A(T ) and B(T ) are:

A(T ) =
1

T

∫ T

t=0
αᵀa(t)dt (64)

B(T ) =
1

T

∫ T

t=0
γᵀb(t)dt.

We consider the promoter to be active when both the binding arrays are active:

Pactive = αᵀa(t)γᵀb(t). (65)

The promoter readout is given by:

fP (T ) =
1

T

∫ T

t=0
αᵀa(t)γᵀb(t)dt. (66)

At a given position, the two arrays have rate matrices Ua and Ub respectively. We call xa and

xb the steady state solution of Uax = 0 and Ubx = 0 respectively.

10.1 Scenario 1: posterior repressor

In the first scenario, the repressor has an exponentially decay gradient from the posterior, mirroring

the anterior gradient:

[TF ′] = e−X . (67)

We select N = 6, L = 6.
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10.1.1 The pattern steepness

The mean promoter readout is given by:

〈fP (T )〉 =
1

T

∫ T

t=0
〈αᵀa(t)γᵀb(t)〉dt. (68)

Given that a(t) and b(t) are independent and assuming the system is at steady-state, we have:

〈fP (T )〉 =
1

T

∫ T

t=0
〈αᵀa(t)〉〈γᵀb(t)〉dt (69)

= 〈A(T )〉〈B(T )〉,

and at the promoter activity boundary (X = 0,〈P (T )〉 = 0.5) the steepness of the promoter

activity pattern is:

HP = 4(
∂〈fP (T )〉
∂X

)X0 (70)

= 4(
∂(〈A(T )〉〈B(T )〉)

∂X
)X0

= 4〈B(T )〉(∂〈A(T )〉
∂X

)X0 + 4〈A(T )〉(∂〈B(T )〉
∂X

)X0

= 〈B(T )〉HA + 〈A(T )〉HB.

Given Eq. 70, we have:

HP ≤ 4N〈B(T )〉〈A(T )〉(1− 〈A(T )〉) + 4L〈A(T )〉〈B(T )〉(1− 〈B(T )〉) (71)

= 4〈P (T )〉(N + L−N〈A(T )〉 − L〈B(T )〉)
= 2(N + L−N〈A(T )〉 − L〈B(T )〉)

In the case N = L, we have the upper bound for HP :

HP ≤ 4N − 2N(〈A(T )〉+ 〈B(T )〉) (72)

≤ 4N − 4N
√
〈A(T )〉〈B(T )〉

= 4N(1− 1√
2

) ≈ 1.17N.

The equality in Eq. 72 occurs when 〈A(T )〉 = 〈B(T )〉 = 1√
2
. From Eq. 72, we found that having

two independent binding site arrays does not yield significant higher pattern steepness than that

achievable with a single array.

10.1.2 Mean promoter activity out-of-steady-state

We call a0 and b0 the initial state of the OS arrays A and B. At the end of the interphase of

duration T , the mean probability that the promoter is active is:

〈fP (T )〉 = 〈αᵀa(T )〉〈γᵀb(T )〉 (73)

= (αᵀeUaTa0)(γᵀeUbT b0).

The upper bound for the mean promoter activity level at the end of each nuclear cycle interphase

is shown in SI Fig. 16A for N = L = 6.
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10.1.3 The readout error

Assuming the system is at steady state, the mean square of the readout:

〈(fP (T ))2〉 = 1/T 2

∫ T

u=0
du

∫ T

s=0
ds〈p(u)p(s)〉 (74)

= 1/T 2

∫ T

u=0
du

∫ T

s=0
ds〈αᵀa(u)αᵀa(s)〉〈γᵀb(u)γᵀb(s)〉

= 2/T 2

∫ T

s=0
ds(T − s)αᵀeUa|u−s| (xa.α) γᵀeUb|u−s| (xb.γ) .

is calculated numerically given the transition matrices Ua and Ub and used to calculate the promoter

activity readout relative error (the . here corresponds to term by term multiplication of the vectors

coordinates).

The lower bound for promoter activity readout error after each nuclear cycle is shown in

SI Fig. 16B for N = L = 6.

When H approaches its maximal value and τactive goes to infinity, the integrated activity of each

transcription factor becomes binomial. If p is the probability of the activator binding array being

full bound and and q the probability of the repressor binding array being free, we have 〈fP (T )〉 = pq

and CVP (T ) = (1− pq)/pq. If pq = 1/2 we recover CVP (T ) = 1. Consistently, the limit of Eq. 74

when all non-zero eigenvalues of Ua and Ub go to −∞ yields the same result.

Figure 16: The trade-off between pattern steepness (H), pattern formation time and

readout error in the case of transcription regulation by two transcription factors.

Results for N = L = 6. M = 1. Each curve is computed from > 20000 data points.

(A) The lower bounds for the mean promoter activity level at the boundary position µSS for varying

nuclear cycles.

(B) The lower bounds for readout error CVP (T ) for varying nuclear cycles. Also plotted is the

dashed line CV = 1.

10.2 Scenario 2: mid-embryo repressor

In the second scenario, the repressor is concentrated at the boundary position. The repressor

gradient is modelled as a Gaussian curve with standard deviation σ = 1.25 (equivalent to 25 %EL).

[TF ′] = e
X2

σ2 . (75)
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Figure 17: Positional resolution in the case of transcription regulation by two mirror

transcription factor gradients. The results are shown for N = L = 6, M = 1. Positional

resolution calculated from equilibrium binding site model for varying boundary steepness H.

TF can interact with the promoter via L = 1 binding site, corresponding to the number of

known Cic binding sites found on hb promoter [12]. For simplicity, we consider k′1 = k′−1 = 1.

At the boundary position, given the local flat repressor concentration, the pattern steepness is

dependent on the regulation function of only the activator:

∂〈fP (T )〉
∂X

=
∂〈A(T )〉〈B(T )〉

∂X
=
∂〈A(T )〉
∂X

= HA ≤ N (76)

We plot the positional resolution of the readout in SI Fig. 18. The kinetic parameters ki and k−i
are selected so as to minimize the readout error from 6 activator binding sites for varying pattern

steepness.

Figure 18: Positional resolution in the case of transcription regulation by an anterior

activator and a mid-embryo repressor. The results are shown for N = 6, L = 1, M = 1.

The positional resolution calculated from the equilibrium binding site model for varying boundary

steepness H.
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Figure 19: Optimal positional resolution with different values of τbind. (A) τbind = 0.4s

(B) τbind = 40s. The optimal positional resolution and Hill coefficient are calculated for the hybrid

non-equilibrium model N = 6, M = 1 in the “all-or-nothing” case.

11 τbind needed to achieve experimentally observed pattern steep-

ness and positional resolution in the hybrid non-equilibrium

model

We vary the TF searching time for a single binding site τbind so as to fix the pattern steepness to

the experimentally measured Hdata = 7 and find the minimal value of the positional resolution ∆X

given this constraint. ∆X as a function of τbind in each cycle is shown in SI Fig. 20. From SI Fig.

20, we find that values close to the experimentally observed positional resolution (∆Xdata ∼ 14%

EL in nc 12 and ∆Xdata ∼ 12% EL in nc 13) and pattern steepness (Hdata = 7) can be achieved

simultaneously with small τbind (τbind ∼ 1.2s in nc12 and τbind ∼ 0.12s in nc13).

12 Expression pattern of proximal hb promoter in live Drosophila

embryos

We observe the transcription dynamics of a 700bp hb P2 minimal promoter using the RNA-tagging

MS2-MCP system [13, 14]. Here, the nascent RNAs in each transcription loci are visualized as

bright spots under the confocal microscope, due to the co-localization of fluorescent tagged MS2-

GFP molecules [15]. The data for the analysis can be obtained in Lucas et al., 2013 [16].

12.1 The pattern steepness

From each nucleus, we obtain a single gene readout fP – the total spot intensity observed during

the interphase. We fit the readout values along the AP axis with a sigmoid curve using least-mean-

square and infer the Hill coefficient (SI Fig. 21). The inferred Hill coefficients in nuclear cycle 12

is from 6.9, with the confidence interval from 5.80 to 8.64 (p-value=0.05). In nuclear cycle 13, the

Hill coefficient is 7.1,with the confidence interval from 6.20 to 8.32 (p-value=0.05).
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Figure 20: Positional resolution ∆X of the hybrid non-equilibrium model as a function

of TF searching time for a binding site τbind for nc 12 (A) and nc 13 (B). The kinetic

parameters are selected to achieve the experimentally observed Hill coefficient Hdata = 7. Also

shown are the observed positional resolution ∆Xdata in nc 12 (dashed green line in A) and nc 13

(dashed green line in B) and the 95% confidence intervals (shaded stripe in A and B).

Figure 21: The transcription readout pattern by hb proximal promoter along AP axis.

normalized fluorescence (blue crosses), the mean readout 〈fP 〉 (dashed black line), the fitted Hill

function (dashed red line) and fP = 0.5 (solid yellow line) as a function of nuclei position. The

normalized fluorescence and mean expression curves are normalized by the fitted Hill function’s

maximum value. (A) Nuclear cycle 12 (8 embryos). (B) Nuclear cycle 13 (4 embryos).

12.2 Transcription readout error

From the fitted sigmoid curve, we identify the hb pattern boundary position at ∼ −5% EL from

the middle of the embryo for both nc 12 and nc 13. The readout distributions around the boundary

(within ±2.5% EL) are shown in SI Fig. 22. From the distributions, we calculate readout errors

CVP to be ∼ 0.82 in nc 12 and ∼ 0.69 in nc 13.
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Figure 22: Distributions of hb transcription readout at mid-boundary position in (A)

nuclear cycle 12 (8 embryos) and (B) nuclear cycle 13 (4 embryos).
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