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2	

ABSTRACT 34	

A plausible explanation for statistical epistasis revealed in genome wide association 35	

analyses is the presence of high order linkage disequilibrium (LD) between the 36	

genotyped markers tested for interactions and unobserved functional polymorphisms. 37	

Based on findings in experimental data, it has been suggested that high order LD 38	

might be a common explanation for statistical epistasis inferred between local 39	

polymorphisms in the same genomic region. Here, we empirically evaluate how 40	

prevalent high order LD is between local, as well as distal, polymorphisms in the 41	

genome. This could provide insights into whether we should account for this when 42	

interpreting results from genome wide scans for statistical epistasis. An extensive and 43	

strong genome wide high order LD was revealed between pairs of markers on the high 44	

density 250k SNP-chip and individual markers revealed by whole genome sequencing 45	

in the A. thaliana 1001-genomes collection. The high order LD was found to be more 46	

prevalent in smaller populations, but present also in samples including several 47	

hundred individuals. An empirical example illustrates that high order LD might be an 48	

even greater challenge in cases when the genetic architecture is more complex than 49	

the common assumption of bi-allelic loci. The example shows how significant 50	

statistical epistasis is detected for a pair of markers in high order LD with a complex 51	

multi allelic locus. Overall, our study illustrates the importance of considering also 52	

other explanations than functional genetic interactions when genome wide statistical 53	

epistasis is detected, in particular when the results are obtained in small populations of 54	

inbred individuals. 	55	

  56	
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3	

INTRODUCTION 57	

The genetic architecture of most biological traits is complex and involves multiple 58	

genes, whose effects are often influenced by interactions with other genes and 59	

environmental factors. To study the relative contributions by genes, environmental 60	

factors and their interactions in segregating populations, statistical genetic approaches 61	

are commonly used to partition the genetic variance to additive and dominance 62	

variance of individual loci and epistatic interaction variance between them (Lynch 63	

and Walsh 1998). In principle, the variance partitioning is performed by associating 64	

the phenotypic variation for a trait in a population with linear combinations of the 65	

genotypes within and/or across loci. How the genotypes are combined (parameterized) 66	

in the model is determined by the genetic model used in the analysis. The classic 67	

quantitative genetics models are parameterized to capture the genetic variance in a 68	

hierarchical manner. First, a main additive allele-substitution is defined. Then, if 69	

accounted for, dominance is modeled as a single-locus deviation from additivity and 70	

genetic interactions as multi-locus deviations from single locus additivity and 71	

dominance (Nelson et al. 2013). As a consequence of this, the genetic contributions of 72	

individual and combinations of loci described as additive, dominance and epistatic 73	

variances are unlikely to reflect the underlying biological mechanisms (Carlborg et al. 74	

2006; Phillips 2008; Huang et al. 2012; Sackton and Hartl 2016; Forsberg et al. 2017). 	75	

 76	

Although the ultimate aim of a genetic association study is generally to detect 77	

functional polymorphisms, most often genotypes are only scored for a reduced set of 78	

polymorphisms (genetic markers). These reduced marker sets are selected with the 79	

aim to tag as many of the unobserved functional polymorphisms as possible. The 80	

statistical inferences of the underlying genetic architecture made from such reduced 81	

sets of markers can, however, be problematic in some cases. For example, multiple 82	

unobserved functional polymorphisms can lead to associations to individual markers 83	

that do not properly represent the causal variants (Platt et al. 2010), and high order 84	

linkage disequilibrium (LD) to single functional polymorphism can lead to indirect 85	

statistical epistatic associations to pairs of markers (Wood et al. 2014). Here, we focus 86	

on high order linkage disequilibrium defined as when two genotyped markers tag an 87	

un-genotyped polymorphism (see Materials and Methods section). It is still unknown 88	

how prevalent and strong such high order LD is in the genome, making it difficult to 89	
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estimate how many reported pairwise statistical epistatic interactions are due to such 90	

LD. However, the study by Wood et al (Wood et al. 2014) presented results 91	

suggesting that many of the significant statistical epistatic interactions detected 92	

between pairs of local markers by Hemani et al. (Hemani et al. 2014) might be due to 93	

high-order LD to unobserved, linked sequence polymorphisms in the same genomic 94	

region. Many past and current studies of genetic interactions in, for example, 95	

Drosophila, plant, animal and human populations (Shimomura et al. 2001; Anholt et 96	

al. 2003; Caicedo et al. 2004; Segrè et al. 2004; Carlborg et al. 2006; Hemani et al. 97	

2014) rely on genome-wide statistical analyses of pairwise interactions between 98	

selected sets of markers as in (Hemani et al. 2014). With the increasing interest in, 99	

and availability of, sufficiently large datasets for epistatic association analyses it is 100	

therefore important to also evaluate the risk of making false inferences about loci 101	

being involved in functional genetic interactions from findings of statistical epistasis, 102	

when they instead are due to high order LD.	103	

 104	

Here, we empirically explore the prevalence and strength of high order LD within and 105	

between chromosomes in publically available high-density SNP and whole-genome 106	

re-sequencing data from the model plant Arabidopsis thaliana. Two locus LDs are 107	

calculated between the markers selected for the 250k A. thaliana SNP chip that have 108	

been the basis for many GWAS analyses in the past, and the additional SNPs revealed 109	

by whole genome sequencing using data from the 1001 genomes project (Atwell et al. 110	

2010; Cao et al. 2011; Horton et al. 2012; Schmitz et al. 2013; Alonso-Blanco et al. 111	

2016). Strong high order LD was found to be common both within and across 112	

chromosomes between pairs of markers from the SNP-chip and the sequencing 113	

polymorphisms and often the combined genotype of the marker pair tagged the 114	

genotype of the sequencing markers better than any single marker on the SNP chip. 115	

The risk of falsely inferring genetic interactions between markers on different 116	

chromosomes in a two-locus interaction analysis might increase in situations when the 117	

underlying genetic architecture is more complex, for example when a single locus 118	

contains multiple functional alleles. This is illustrated using an empirical example 119	

from a second public A. thaliana dataset (Forsberg et al. 2015). Overall, this study 120	

provides new insights that deepen our understanding about the link between high 121	

order LD and statistical epistasis to guide researchers when interpreting results 122	
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obtained from epistatic genetic association analyses.	123	

 124	

MATERIALS AND METHODS 125	

 126	

Methods 127	

When an individual marker is in complete linkage disequilibrium (r2 = 1) with a 128	

functional polymorphism affecting a studied trait, a single-locus association test 129	

between the marker and the trait will capture all the phenotypic variance contributed 130	

by the functional polymorphism. A basic assumption in genetic association studies is 131	

that at least one genotyped marker will be in sufficiently high LD with each functional 132	

polymorphism to detect it in this way. In reality, however, not all functional 133	

polymorphism will be in such perfect LD with a genotyped marker, and then there is a 134	

risk that the joint genotype of two (or more) markers tags the genotype of the 135	

functional polymorphism better than any single marker (high-order LD > single-136	

marker LD). This will, as discussed below, influence the significances of the trait-137	

marker associations detected in a genetic association analysis and the inferences made 138	

about the genetic architecture of the trait. 139	

 140	

Quantifying high order linkage disequilibrium 141	

We calculate the high order LD between pairs of predictors (here genotyped SNP 142	

markers) and single targets (here un-genotyped SNP polymorphisms) following (Hao 143	

et al. 2007). 	144	

 145	

Consider a pair of bi-allelic predictor SNPs (M1 and M2; Figure 1). These markers can 146	

together form four two-locus genotypes: AB, Ab, aB and ab (Figure 1). We now want 147	

to know whether any two-locus predictor could tag the single locus target genotype 148	

better than any of the individual predictor genotypes (i.e. evaluate whether 149	

max(second-order LD) > max(single order LD)). To calculate the high order LD 150	

between the two predictors (M1 and M2) and the single target (Q), the two-locus 151	

M1M2 genotype is used to create a multi-allelic pseudo marker (P) with four alleles 152	

(Figure 1). In this way, a second-order LD (r2) can be calculated for each of the 153	

possible ways that M1 and M2 together can tag the genotype at Q (Figure 1).  154	

 155	
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The calculation of the second order LD therefore first involves creating the four 156	

possible bi-allelic pseudomarkers (P1, P2, P3 & P4; Figure 1) from the two locus 157	

M1/M2 genotypes. These are  assigned the genotypes P1{AB, non-AB}, P2{Ab, non-158	

Ab}, P3{aB, non-aB} and P4{ab, non-ab}, respectively. The LD-r2 is then computed 159	

between the target (Q) and the four bi-allelic pseudomarkers (P1, P2, P3 & P4). For 160	

each pair of predictors, the second order LD is then defined as the LD-r2 for the 161	

pseudomarker with the highest LD-r2 to the target. Pseudomarkers with higher LD-r2 162	

to the target (Q) than 0.3 are kept for further analyses. The LD-r2 values were 163	

computed using the software LdCompare (Hao et al. 2007).	164	

 165	

Figure 1. Illustration of how the pseudomarkers (P1, P2, P3, P4) used in the estimation of the second 166	

order linkage disequilibrium between a pair of linked or unlinked markers (predictors; M1 and M2,) 167	

and a third linked or unlinked functional polymorphism (target; Q) are created. The pseudomarkers 168	

together represent the possible bi-allelic formulations of the two-locus M1M2 genotypes. The maximum 169	

pairwise LD-r2 between the target and the four pseudomarkers (P4) defines the second order LD 170	

between the predictors (M1, M2) and the target (Q). 171	

 172	

 173	

Statistical epistasis emerging from high order linkage disequilibrium 174	

In a genetic association study in an inbred or haploid population, two-locus epistasis 175	
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is typically modelled as: 	176	

 177	

Y = a1β1+ a2β2 + a1a2β12 + e        [1] 178	

 179	

Here, a1 and a2 are indicator variables for the genotypes at two genotyped markers, M1 180	

and M2, taking values 1/-1 for the two alternative homozygous genotypes AA vs aa 181	

and BB vs bb, respectively. a1a2 is an indicator variable for the interaction between a1 182	

and a2 taking value 1 for the two-locus genotypes AABB and aabb and -1 for AAbb 183	

and aaBB. β1, β2 and β12 are the corresponding estimates for the marginal (additive) 184	

effects and the additive-by-additive interaction between the loci.  185	

 186	

The aim of a statistical epistatic analysis is to include an interaction term in the model 187	

[1] to estimate the deviations of the two-locus genotype-values (AABB, AAbb, aaBB 188	

and aabb) from the predictions obtained by the marginal (additive) effects (Alvarez-189	

Castro and Carlborg 2007). However, a non-zero estimate of the interaction term in 190	

model [1] does not, as noted e.g. by Wood et al. (Wood et al. 2014) necessarily have 191	

to result from a genetic interaction. It could, for example, instead emerge from a 192	

second-order LD between two markers and a single functional polymorphism. Here, 193	

refer back to Figure 1. Now assume that a trait is determined by a single functional 194	

locus (Q). Two markers, M1 and M2, are genotyped but neither of these markers 195	

individually tag the causal genotype (blue) at Q well. However, the causal (blue) 196	

allele at Q is,tagged perfectly by one of the two-locus M1M2 genotypes (ab; Figure 1), 197	

while the other three M1M2 two-locus genotypes (aB, Ab and AA; Figure 1) are only 198	

present together with the no-effect (red) allele at locus Q. When fitting model [1] to 199	

the genotypes of marker M1 and M2, the estimate for the interaction term (β12) will be 200	

non-zero, illustrating how statistical epistasis can emerge from the second-order LD 201	

between M1 and M2 and Q. This example illustrates a scenario similar to what was 202	

empirically observed in (Wood et al. 2014), where physically linked markers in low 203	

LD with each other tagged  haplotypes that were in high order LD with a 204	

polymorphism that was unobserved in the original study.	205	

 206	

Classifying identified high order linkage disequilibrium triplets depending on the 207	

distance between the loci 208	
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Here, we evaluate the prevalence and strength of high order LD between pairs of 209	

markers selected for genotyping on a 250k SNP chip (predictors) and a third locus 210	

revealed by whole genome sequencing (targets) using publicly available datasets in A. 211	

thaliana (Cao et al. 2011; Alonso-Blanco et al. 2016). Three types of high order LD 212	

are defined based on the locations of the predictors relative to the target. If both 213	

predictors are located within 1Mb of the target it is classified as cis-cis. If only one 214	

predictor is closer than 1Mb it is classified as cis-trans. If none is closer than 1Mb it is 215	

classified as trans-trans. The choice of a 1Mb threshold to define cis vs trans 216	

predictors is arbitrary, but we consider it useful for evaluating how common high 217	

order LD is between predictors near (local/cis) and far (global/trans) from the target. 	218	

 219	

Material 220	

 221	

The genome wide prevalence of high order linkage disequilibrium in publically 222	

available Arabidopsis thaliana datasets 223	

The A. thaliana 1001-genomes project has released complete genome sequences for 224	

hundreds of wild collected accessions (http://www.1001genomes.org). Here, we used 225	

whole-genome SNP data on 728 accessions scored by whole genome re-sequencing 226	

(Cao et al. 2011; Alonso-Blanco et al. 2016). The predictors used in our analysis was 227	

a subset of the SNPs selected for the 250k A. thaliana SNP chip (Horton et al. 2012) 228	

(n = 200,352 in total; MAF > 0.05) and the targets a subset of the SNPs revealed 229	

using whole-genome re-sequencing (n = 1,641,240 in total; MAF > 0.05) (Table 1). 230	

Although the results from the analyses of this data will be specific to this species and 231	

dataset, it is assumed that the relationships between targets and predictors will be a 232	

realistic representation of what to be expected also in other populations. This is 233	

because the selection of markers for the high-density 250k SNP chip, was done for the 234	

purpose of genetic association studies following similar procedures as used also in 235	

other species and populations.  236	

 237	

The reason for only studying a subset of the possible targets and predictors is that it 238	

was not computationally feasible to exhaustively evaluate the high order LD between 239	

all possible pairs of predictors selected for the 250k SNP chip and all the targets 240	

revealed by genome sequencing. Instead, the second order LD was exhaustively 241	
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calculated for all targets and predictors i) within a randomly selected 6 Mb window on 242	

chromosome 2 as well as ii) between three randomly selected windows from different 243	

chromosomes (Table 1). Computations were performed for the entire population (n = 244	

728 individuals) and two smaller random samples of n = 100 and n = 50 individuals. 245	

The results for the populations with n = 100 and n = 728 are reported in the main 246	

manuscript and the results for n = 50 is reported in the Supplementary material.  247	

 248	

Table 1. Regions and SNPs selected for evaluation of second order LD.  249	

 Window 1 Window 2 Targets1 Predictors2 Filtered 
targets3 

Region 1 Chr2: 8-14Mb - 70,712 6,053  - 
Regionpair 1 Chr1: 10-12Mb Chr3: 10-12Mb 29,133 6,245 20,239 
Regionpair 2 Chr2: 10-12Mb Chr4: 10-12Mb 23,751 5,302 15,887 
Regionpair 3 Chr2: 10-12Mb Chr3: 10-12Mb 23,751 5,212 15,884 

Genome   1,486,942 154,298 1,229,012 
1Total number of polymorphic SNPs in the evaluated windows/genome in the population revealed via 250	

whole-genome re-sequencing (Alonso-Blanco et al. 2016).  2Total number of polymorphic SNPs in the 251	

two windows/genome included on the 250k AT SNP-chip (Horton et al. 2012); 3Number of target SNPs 252	

in the two windows/genome with LD-r2 < 0.6 to any individual predictor.	253	

 254	

The predictor pairs in the evaluated windows in the genome with high order LD-r2 > 255	

0.6 to a target were classified as cis-cis/cis-trans/trans-trans. To extrapolate these 256	

findings to the genome level, the proportions of all evaluated predictor pairs that 257	

displayed these patterns were calculated and then multiplied with the total number of 258	

possible cis-cis/cis-trans/trans-trans pairs in the genome (Table S1).  259	

 260	

Analyzing a public A. thaliana dataset for two locus statistical epistasis 261	

A publicly available dataset including 340 Arabidopsis thaliana accessions were used 262	

for a genome wide association analysis. In short, the plants were grown in a controlled 263	

environment with 6 biological replicate plants per accession. Analyses by Inductively 264	

Coupled Mass Spectroscopy (ICP-MS) provided estimates of leaf molybdenum 265	

concentration as described in (Baxter et al. 2010; Forsberg et al. 2015). The 266	

accessions were genotyped for 141,385 SNP markers with MAF > 0.15 (Atwell et al. 267	

2010; Baxter et al. 2010; Shen et al. 2012; Forsberg et al. 2015). A more thorough 268	

description of the dataset can be found in (Baxter et al. 2010; Forsberg et al. 2015). In 269	

an earlier study of this dataset (Forsberg et al. 2015), it was revealed that a large 270	
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fraction of the genetic variance for this trait was explained by a single linkage block 271	

containing several low-frequency, large effect structural variants that were poorly 272	

tagged by the genotyped SNPs. This linkage block was originally identified due to its 273	

large marginal, variance heterogeneity effect in the population (Shen et al. 2012). It is 274	

known that statistical epistasis and genetic variance heterogeneity can emerge from 275	

similar genetic architectures (Forsberg et al. 2015),  and this population was therefore 276	

selected for further evaluations of whether high order LD between the genotyped 277	

SNPs and these hidden polymorphisms could lead to statistical epistasis in a two locus 278	

association analysis. We performed an exhaustive, two-dimensional genome scan for 279	

pairwise statistical epistasis between the genotyped markers and the level of 280	

molybdenum in the leaf using the software plink (Purcell et al. 2007) without control 281	

for population structure. Thereafter, each pair of loci that passed the genome wide 282	

significance threshold in the initial scan was fitted in a two-locus epistatic genetic 283	

model [1] using hglm function in hglm package (Rönnegård et al. 2010) to correct for 284	

the possible effects of population structure via the genomic kinship matrix as in 285	

(Forsberg et al. 2015). The significance threshold used to infer significant interacting 286	

pairs (p < 3.2 x 10-10) was defined as a Bonferroni corrected nominal 5% significance 287	

threshold. The correction was done for an estimated number of independent 288	

association tests assumed to equal the number of independent LD blocks in the A. 289	

thaliana genome as described in (Lachowiec et al. 2015).  290	

 291	

Data availability 292	

Genome wide re-sequencing data are available as part of the Arabidopsis thaliana 293	

1001 genomes project http://1001genomes.org/data-center.html. The 250 K SNP chip 294	

data are available as part of the genotype data for the Arabidopsis thaliana Regmap 295	

panel (http://bergelson.uchicago.edu/?page_id=790). The Molybdenum levels for the 296	

340 Arabidopsis thaliana accessions are available in 297	

https://doi.org/10.1371/journal.pgen.1005648.s005  298	

 299	

 300	

RESULTS 301	

This study aims to answer the following questions by analyzing two public A. 302	

thaliana datasets: How common can we expect high order LD to be between pairs of 303	

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 20, 2018. ; https://doi.org/10.1101/305342doi: bioRxiv preprint 

https://doi.org/10.1101/305342
http://creativecommons.org/licenses/by/4.0/


11	

SNPs selected for genotyping and hidden sequence variants in the genome? Is high 304	

order LD primarily observed between predictors tightly linked to a target functional 305	

polymorphism (in cis) as in (Wood et al. 2014), or is it also observed for predictors 306	

unlinked to the target (in trans)? How dependent is the prevalence of high order LD 307	

and cis vs trans predictors on the population size? We also present an empirical 308	

example where high order LD exists between a cis-trans predictor pair with 309	

significant statistical epistasis and a locus displaying a strong genetic variance 310	

heterogeneity due to independent contributions by multiple linked polymorphisms 311	

(Forsberg et al. 2015). This illustrates how complex inheritance patterns of individual 312	

loci, something usually not explored in GWAS data, further complicates the 313	

interpretation of detected statistical epistatic signals.	314	

 315	

The population size affects the prevalence and location of predictors in high order LD 316	

The high order LD-r2 values for all pairs of predictors and individual targets in a 6Mb 317	

window on Chromosome 2 (Table 1) is shown for populations with n = 100 and n = 318	

728 individuals in Figure 2. The strongest second order LD-r2 was observed where at 319	

least one predictor is located near the target (y-axis). When the sample size was 320	

smaller (n = 100; Figure 2A), strong second order LD-r2 was rather common also 321	

when both predictors were located far from the target. For example, 20% of the 322	

targets had a high order LD-r2 > 0.65 with a predictor pair where at least one of the 323	

predictors was located more than 1Mb away from it. Even though the prevalence of 324	

strong high order LD-r2 decreases when the sample size increases, it is still common 325	

in the large population (n = 728; Figure 2B), with the highest prevalence when at least 326	

one of the predictors is located close to the target.  327	
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 328	
Figure 2. Illustration of how the prevalence of high order LD-r2 to the targets in a 6Mb window on A. 329	

thaliana chromosome 2 (8 – 14Mb) depends on distance of the predictors from the target. The color 330	

gradient illustrates the proportion of predictor pairs that reach a particular LD-r2 (x-axis) depending 331	

on the distance between the nearest predictor and the target (y-axis). Results are presented for 332	

populations with n = 100 (A) and n = 728 (B) individuals. 333	

 334	

Strong high-order LD-r2 between a predictor pair and a target is mostly observed 335	

when at least one of the predictors is in strong individual LD-r2 with the target. 336	

However, as illustrated in Figure 3, many cases also exist where the high order LD-r2 337	

is strong while the LD-r2 to the individual predictors is weak. 338	

A B
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 339	

Figure 3. Strong second order LD-r2 exists also when the individual predictor to target LD-r2 is weak. 340	

The intensity of each dot illustrates the number of cases with a particular high order LD-r2 / maximum 341	

individual predictor to target LD-r2 combination. Dots below the line are cases where the high order 342	

LD-r2 stronger than any individual predictor to target LD-r2 (n=728). 343	

 344	

Estimating the genome wide prevalence of strong high order linkage disequilibrium 345	

Figure 2 illustrates that high-order LD-r2 exists where one or both predictors are 346	

located close to the target as well as when one or both predictors are located further 347	

away in the evaluated 6Mb window. The genome-wide prevalence of high order LD-348	

r2 for the three different classes of predictor pairs, cis-cis/cis-trans/trans-trans (as 349	

defined above) were next explored in three pairs of distant 2Mb windows in the 350	

genome (Table 1) to provide data to estimate their genome-wide prevalence. Here, 351	

only cases when individual predictors in the windows had lower individual LD-r2 than 352	

0.6 to the targets were considered.  353	

 354	

Overall, the fraction of predictor pairs that display higher second-order LD (LD-r2 > 355	

0.6) is low. In the smaller population (n = 100), less than 1 out of 106 evaluated 356	

predictor pairs and in the larger population (n = 768) less than 1 out of 107 (Table S1). 357	

However, since the total number of evaluated pairs was very large (around 1011), 358	

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

High order LD−r2

M
ax

im
um

 in
di

vi
du

al
 p

re
di

ct
or

 to
 ta

rg
et

 L
D
−r

2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

80−100% quantile
60−80% quantile
40−60% quantile
20−40% quantile
0−20%

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 20, 2018. ; https://doi.org/10.1101/305342doi: bioRxiv preprint 

https://doi.org/10.1101/305342
http://creativecommons.org/licenses/by/4.0/


14	

many cases were still detected. Regardless of population size, cis-cis and cis-trans 359	

pairs dominated (42/44% for n = 100, and 56/58% for n = 728; Figure 4A-C; Table 360	

S1). Trans-trans pairs existed, but were much less common (~1% for n = 100, <0.01% 361	

for n = 728, respectively, Figure 4A-C; Table S1). When extrapolating these results to 362	

a genome wide scale, this picture, however, changes dramatically (Figure 4D). Trans-363	

trans and cis-trans predictor pairs are now much more common than cis-cis pairs due 364	

to their much higher genome-wide prevalence (35/18-fold for n = 100 and 35/0.3 for n 365	

= 728 more common; Figure 4D, Table S1). This result illustrates that it is a 366	

considerable risk to disregard high-order LD as a possible explanation for statistical 367	

epistatic interactions even at larger sample-sizes.  368	

 369	

 370	
Figure 4. Number of predictor pairs of different classes in strong high order LD-r2 (>0.6) to targets 371	

detected in the evaluated windows and estimated genome wide. The distribution of LD-r2 values > 0.6 372	

A

B

C D
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for the cis-cis, cis-trans,trans-trans predictor pairs for (A; n = 100) and (B; n = 728) The total number 373	

of predictor pairs with high order LD-r2 above 0.6 in the three classes are summarized in (C) and used 374	

to estimate the total expected number of predictor pairs in the entire genome (D; error bars show the 375	

estimation error estimated from the results obtained for the three window (Materials and Methods). 376	

 377	

Linking high order LD and statistical epistasis in a two locus epistatic association 378	

analysis in A. thaliana 379	

A publicly available dataset including 340 Arabidopsis thaliana accessions were used 380	

for a genome wide association analysis for leaf molybdenum concentration This 381	

dataset was earlier used by (Forsberg et al. 2015) to dissect a locus with a highly 382	

significant variance heterogeneity association for leaf molybdenum concentration 383	

(Shen et al. 2012) to the contributions of four independent associations in an extended 384	

LD block on chromosome 2. Several of these associations were found to structural 385	

variants that were poorly tagged by the SNP markers (Forsberg et al. 2015). Our 386	

pairwise genome wide scans for pairs of epistatic loci identified 396 significant SNP 387	

pairs. For 290 pairs both markers were located in the narrow region on chromosome 2 388	

that was earlier dissected in detail (Forsberg et al. 2015). All these are examples of 389	

cis-cis predictor pairs. The remaining 106 pairs contained one predictor in the 390	

chromosome 2 region and another one elsewhere in the genome, being examples of 391	

cis-trans predictor pairs. 	392	

 393	

The strongest pairwise epistasis was detected for a cis-trans predictor pair (Figure 5A). 394	

The accessions with the AA genotype at the predictor located in trans to the 395	

chromosome 2 region (chromosome 1:5,315,502 bp) all have an intermediate 396	

molybdenum level in the leaf (Figure 5A). The accessions with the GG allele at the 397	

trans predictor have different levels of molybdenum in their leaves depending on 398	

whether they carry the CC or TT genotype at the cis predictor in on chromosome 2 399	

(10,928,720 bp). These differences explain the significant statistical epistasis detected 400	

when fitting the two-locus epistatic model [1] to this data.  401	

 402	

This statistical interaction could be due to a true genetic interaction. An alternative 403	

explanation is however presented in Figure 5 There, the overlap between the two 404	

locus genotypes for the cis-trans predictor pair (Figure 5A) and the alleles at the four 405	
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loci earlier reported to be associated with leaf molybdenum levels in this region 406	

(Forsberg et al. 2015) are illustrated. The multi-locus genotypes of the predictor pair 407	

tags different combinations of minor alleles at the four loci that were found to either 408	

increase (mGWA1, mGWA2, 326ins) or decrease (53del) leaf molybdenum levels in 409	

the accessions (Forsberg et al. 2015). The statistical epistatic interaction was detected 410	

due to the difference in molybdenum levels between accessions carrying the GGCC 411	

genotype (low molybdenum) and GGTT (high molybdenum). Figure 5B shows that 412	

the accessions with the GGCC genotype have the lowest frequency of the 413	

molybdenum increasing allele mGWA2 and the highest frequency of the molybdenum 414	

decreasing allele 53del. The accessions with the GGTT genotype instead have the 415	

highest frequencies of the molybdenum increasing alleles at mGWA2, mGWA1 and 416	

326ins. The genotypes AACC and AATT, with intermediate molybdenum levels, both 417	

have intermediate frequencies of the mGWA1 and mGWA1 increasing alleles and 418	

lack the 53del and 326ins alleles. A more parsimonious interpretation of these results 419	

is thus that the statistical epistasis at the predictor pair is due to the high order LD 420	

between them and the genotypes at the four loci located in the region on chromosome 421	

2.	422	

 423	
Figure 5. An illustration of how the high order LD between four polymorphisms affecting the level of 424	

molybdenum in the A. thaliana leaf (Forsberg et al. 2015), likely explains the significant statistical 425	
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epistasis detected for a cis-trans predictor pair. (A) Boxplots illustrating the phenotypic distribution in 426	

the four genotype classes defined by the cis-trans predictor pair with the strongest significant epistatic 427	

interaction to the level of molybdenum in the A. thaliana leaf. (B) Illustration of the connection 428	

between the two-locus genotypes of the predictor pair and the minor alleles at the four linked loci 429	

associated with this trait on chromosome 2 (Forsberg et al. 2015). The top box in (B) illustrates the 430	

two-locus genotype for the predictor pair, with the width of each sub-box indicating the number of 431	

individuals in each genotype class in the population. In the bottom box in (B), each individual is 432	

represented as a column, where green (molybdenum decreasing) and orange (molybdenum increasing) 433	

colors indicates that the individual carry the minor alleles at the four loci identified in (Forsberg et al. 434	

2015). mGWA1 and mGWA2 are SNP markers associated with the trait and 53del and 326 are 435	

structural polymorphisms (Forsberg et al. 2015). 	436	

 437	

DISCUSSION 438	

High order linkage disequilibrium between combinations of genotyped markers, and 439	

unobserved functional polymorphisms, can result in significant statistical epistasis in 440	

genome wide association analyses. This was earlier illustrated empirically for linked 441	

pairs of genotyped predictor SNPs and ungenotyped target polymorphisms in humans 442	

by Wood et al.(Wood et al. 2014). Here, we present a new example from A. thaliana 443	

where significant statistical epistasis between pairs of predictors is due to the effects 444	

at a single loci and that only one of the statistically interacting loci was located near 445	

the target. By exploring the prevalence of second order LD in the genome of the 446	

1001-genomes A. thaliana collection, we find that although the total amount of high 447	

order linkage disequilibrium decreases with increasing population sizes, it is still 448	

highly prevalent both within and across chromosomes even in relatively large 449	

populations (n = 728). It is was found to be most common when one predictor is in 450	

high LD to (and located physically near) the target, but many cases exist where the 451	

LD to the individual predictors is very weak but the high order LD is strong. The 452	

choice of target and predictor SNPs in this study is arbitrary and therefore it it is 453	

difficult to assess how representative they are for the prevalence of high order LD in 454	

other populations. However, they do suggest that strong high order LD can be 455	

prevalent also in larger populations, indicating that statistical epistasis observed in 456	

studies based on reduced representation genotyping (such as SNP-chips) need to be 457	

interpreted with caution.	458	
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 459	

The most prevalent type of high order LD on a genome wide basis is that of cis-trans 460	

predictor pairs, but also cis-cis pairs are common regardless of population size. The 461	

prevalence of trans-trans pairs is high in smaller populations but decreases rapidly as 462	

the population size increases. A possible biological explanation for the observation 463	

that cis-cis and cis-trans high order LD pairs is relatively prevalent also at larger 464	

population sizes would be that the number of, and variation in, the trans located 465	

predictors is sufficiently large on a genome-wide basis to complement any 466	

imperfection in the tagging of the functional polymorphism by the cis located 467	

predictor. Whereas trans-trans high order LD will always result in falsely associated 468	

loci, cis-trans and cis-cis high order LD presents an opportunity to identify true 469	

functional loci for the trait. The problem in a real data analysis is that statistical 470	

epistasis between a pair of predictors can emerge from true interactions or high order 471	

LD within and across chromosomes. However, as the sample sizes increase the risk of 472	

detecting pairs of predictors where none is located close to the true functional 473	

polymorphism decreases. Before concluding that the detected association is due to 474	

two interacting loci, further analyses of the associated pair are however recommended. 475	

 476	

Whole-genome sequencing provides unprecedented opportunities to genotype most 477	

segregating single nucleotide polymorphisms in the genome. Despite this, it is 478	

unlikely that these will be able to tag all functional polymorphisms, such as larger 479	

structural variants or multi-allelic functional loci due to tandem repeats. Hence, even 480	

though the scenario of reduced representation genotyping with SNP-chips or similar 481	

will soon be a technology of the past, association analyses will still be challenged by 482	

the need to tag hidden polymorphisms with imperfect markers as illustrated in our 483	

analyses of the complex locus affecting molybdenum levels in the A. thaliana leaf. In 484	

fact, it is not unlikely that the problem with high order LD between SNP predictors 485	

and hidden, complex functional loci will remain a major challenge in the future as the 486	

increased number of markers generated by sequencing also increases the chance of 487	

finding combinations of cis-cis or cis-trans predictors that tag these functional 488	

polymorphisms better than any single marker. To evaluate the extent of this problem 489	

one will, however, need a more comprehensive dataset than the one studied here 490	

including a more complete scoring of all types of non-SNP polymorphisms in the 491	

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 20, 2018. ; https://doi.org/10.1101/305342doi: bioRxiv preprint 

https://doi.org/10.1101/305342
http://creativecommons.org/licenses/by/4.0/


19	

genome with potential effect on traits of interest.	492	

 493	

The prevalence of high order LD is likely to be more of a concern in populations of 494	

inbred or haploid individuals. These include, for example, inbred lines derived from 495	

bi- and multi-parental crosses of plants and animals, as well as populations of wild 496	

collected inbred plants (Churchill et al. 2004; Valdar et al. 2006; Kover et al. 2009; 497	

Cao et al. 2011; Mackay et al. 2012). As heterozygotes are not present in these 498	

populations, the number of multi locus genotype classes is smaller than in outbred 499	

populations, making them attractive for studies of genetic interactions. As a common 500	

approach to detect interactions in such populations is to identify pairs of loci 501	

displaying significant statistical epistasis, such results need to be interpreted with 502	

caution, as the analyzed populations are generally small. If one, or more, of the 503	

functional polymorphisms in the genome are unknown and poorly tagged by the 504	

genotyped markers, there is a risk that statistical interactions arise from high-order LD 505	

between the genotyped markers and the hidden functional polymorphisms. Hence, 506	

even though these populations increase the power to map loci displaying statistical 507	

epistasis, there is also a risk of falsely concluding that the underlying genetic 508	

architecture involves genetic interactions. 	509	

 510	

CONCLUSIONS 511	

Statistical epistasis detected in genome wide association analyses can result from high 512	

order LD between genotyped markers and unobserved functional polymorphisms. 513	

This study revealed extensive and strong genome wide high order LD between pairs 514	

of markers on a high density 250k SNP-chip and individual markers revealed by 515	

whole genome sequencing in the A. thaliana 1001-genomes collection. The high 516	

prevalence of strong high order LD in this dataset suggests that epistatic variance 517	

detected between pairs of markers in association analyses, especially in small inbred 518	

populations genotyped for reduced representation sets of markers, need to be 519	

interpreted with caution. An empirical example is presented where a pair of markers 520	

with significant statistical epistasis in a genome wide association analysis is in high 521	

order LD with a complex multi allelic locus with large effects on the analyzed trait. 522	

As complex functional loci such as this are unlikely to be captured by individual bi-523	

allelic SNP markers, even if millions of them are scored by whole genome sequencing, 524	
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it is important to evaluate also other explanations of statistical epistasis than 525	

underlying genetic interactions in particular when small populations of inbred 526	

individuals are studied.	527	

 528	
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