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Partially methylated domains are hypervariable in breast cancer

and fuel widespread CpG island hypermethylation
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SUMMARY

Global loss of DNA methylation and CpG island (CGI) hypermethylation are regarded as

key epigenomic aberrations in cancer. Global loss manifests itself in partially methylated

domains (PMDs) which can extend up to megabases. However, the distribution of PMDs

within and between tumor types, and their effects on key functional genomic elements

including CGIs are poorly defined. Using whole genome bisulfite sequencing (WGBS) of

breast cancers, we comprehensively show that loss of methylation in PMDs occurs in a

large fraction of the genome and represents the prime source of variation in DNA

methylation. PMDs are hypervariable in methylation level, size and distribution, and

display elevated mutation rates. They impose intermediate DNA methylation levels

incognizant of functional genomic elements including CGIs, underpinning a CGI

methylator phenotype (CIMP). However, significant repression effects on cancer-genes are

negligible as tumor suppressor genes are generally excluded from PMDs. The genomic

distribution of PMDs reports tissue-of-origin of different cancers and may represent tissue-

specific ‘silent’ regions of the genome, which tolerate instability at the epigenetic,

transcriptomic and genetic level.

Global loss of methylation was among the earliest recognized epigenetic alterations of cancer

cells1. It is now known to occur in large genomic blocks that partially lose their default

hypermethylated state, termed partially methylated domains (PMDs)2–6. PMDs have been

described for a variety of cancer types and appear to represent repressive chromatin domains that

are associated with nuclear lamina interactions, late replication and low transcription. PMDs are

not exclusive to cancer cells and have also been detected in some normal tissues2,7–11, but not in

pluripotent cells and brain tissue12,13. PMDs can comprise up to half of the genome3,4, and it has

been suggested that PMDs in different tissues are largely identical3. PMDs have been shown to

harbor ‘focal’ sites of hypermethylation that largely overlap with CGIs3. Questions remain as to

what instigates such focal hypermethylation, whether loss of methylation inside PMDs is linked

to repression of cancer-relevant genes and whether the genomic distribution of PMDs is invariant

throughout primary tumors of the same type, perhaps determined by tissue-of-origin. In breast

cancer, PMDs have been detected in two cultured cancer cell lines5, but their extent and variation
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in primary tumors is hitherto unknown. A major limitation of most DNA methylation studies is

that only a small subset of CpGs are interrogated. This prevents accurate determination of the

extent and location of PMDs. Few samples of a certain tissue/tumor have typically been analyzed

using whole-genome bisulfite sequencing (WGBS). Thus, observations cannot be extrapolated to

individual cancer types, let alone generalized to other cancers. Here, we analyzed DNA

methylation profiles of 30 primary breast tumors at high resolution through WGBSsThis allowed

us to, and delineate PMD characteristics in detail. We show that PMDs define (breast) cancer

methylomes and are linked to other key epigenetic aberrations such as CGI hypermethylation.

RESULTS

Primary breast tumors display variable loss of DNA methylation

To study breast cancer epigenomes we performed WGBS encompassing ~95% of annotated

CpGs (Suppl. Fig. 1A, Suppl. Table 1). For 25/30 and 24/30 of these tumors we previously

analyzed their full genomes14,15 and transcriptomes16, respectively. Of the 30 tumors, 25 and 5

are ER-positive and ER-negative, respectively (Suppl. Fig. 1B).

To globally inspect aberrations in DNA methylation patterns we generated genome-wide and

chromosome-wide methylome maps by displaying mean methylation in consecutive tiles of 10

kb (see Methods). These maps revealed extensive inter-tumor variation at genome-wide scale

(Fig. 1A), that lacked obvious association with ER-status (p=0.15, t-test, Suppl. Fig. 2A). At

chromosome level, we observed stably hypermethylated regions next to regions that were

hypomethylated to various extents and across tumors (Fig. 1B). Chromosomes 1 and X were

exceptionally prone to methylation loss. At megabase scale (Fig. 1C) DNA methylation profiles

showed that the widespread loss of methylation occurred in block-like structures previously

defined as PMDs2. Across primary breast tumor samples, DNA methylation levels and genomic

sizes of PMDs differ extensively between tumors and PMDs do appear as separate units in some

tumors and as merged or extended in others, underscoring the high variation with which

methylation loss occurs. Despite this variation, however, we observed common PMD boundaries

as well.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2018. ; https://doi.org/10.1101/305193doi: bioRxiv preprint 

https://doi.org/10.1101/305193
http://creativecommons.org/licenses/by/4.0/


5

Given the variation between tumors, we asked whether the patterns of methylation loss were

associated with distribution of copy-number variations (CNVs) throughout the genome. We

found no evidence for such association (Pearson R=0.17), although we noticed that chromosomes

with the most pronounced loss of methylation (chr1, chrX, chr8-p) frequently contained

amplifications (Suppl. Fig. 1C). Next, we asked whether loss of methylation was associated with

aberrant expression of genes involved in writing, erasing, or reading the 5-methylcytosine

modification. However, we found no such correlation (Suppl. Fig. 1D).

To provide a reference for the observed patterns of methylation loss we compared WGBS

profiles of primary breast tumors to that of 72 normal tissues (WGBS profiles from Roadmap

Epigenomics Project and10, Suppl. Fig. 2A,B). In sharp contrast to breast cancer, most normal

tissues were almost fully hypermethylated (except for pancreas and skin), with heart, thymus,

embryonic stem cell(-derived), induced pluripotent stem cells and brain having the highest levels

of methylation. Importantly, inter-tissue variation was much lower as compared to breast tumors

(p < 2.2e-16, MWU-test on standard deviations). Thus, breast tumors show widespread loss of

DNA methylation in PMDs, and the extent and patterns appear to be hypervariable between

tumor samples. In line with this, principal component analysis confirmed that methylation inside

PMDs is the primary source of variation across full-genome breast cancer DNA methylation

profiles (Fig. 1D): the first principal component (PC1) is strongly associated with mean PMD

methylation (p=6.8e-07). The second-largest source of variation, PC2, is associated with ER

status (p=1.9e-06, Fig. 1D), while successive PCs were not significantly associated with any

clinicopathological feature. It should be noted that with 30 tumors only very strong associations

can achieve statistical significance. Taken together, breast tumor whole-genome DNA

methylation profiles reveal global loss of methylation due to PMDs, the extent of which is

hypervariable across tumors and represent the major source of variation between tumors.

Distribution and characteristics of breast cancer PMDs

We set out to further characterize breast cancer PMDs and their variation (see Methods: data

access). The genome fraction covered by PMDs varies greatly across our WGBS cohort of 30

tumors, ranging between 10% and 50% across tumors, covering 32% of the genome on average
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(Fig. 2A). We define ‘PMD frequency’ as the number of tumors in which a PMD is detected. A

PMD frequency of 30 (PMDs common to all 30 cases) occurs in only a very small fraction of the

genome (2%), while a PMD frequency of 1 (representing the union of all PMDs from 30 cases)

involves 70.2% of the genome (Fig. 2B). We tested to which extent PMD distribution is random,

by counting PMD borders in 30-kb genomic tiles (Fig. 2C). Randomly shuffled PMDs yield a

normal distribution centered at a PMD frequency of four. In contrast, observed PMDs show a

skewed distribution: the mode was for a PMD frequency of 0 suggesting that many tiles (23,492,

25%) do not coincide with any PMD borders. The majority of tiles (62%) had a low PMD border

frequency (1-10). The tail represents low numbers of tiles with up to maximal PMD frequency of

30. We conclude that PMD distribution is not random: part of the genome appears not to tolerate

PMDs while PMDs occur in a large fraction of the genome with varying frequencies.

PMDs have been shown to coincide with lamin-associated domains (LADs)3,4: large repressive

domains that preferentially locate to the nuclear periphery17. LADs are characterized by low gene

density and late replication17,18. Accordingly we found that PMDs show reduced gene densities

(Fig. 2E, Suppl. Fig. 3A), have high LaminB1 signals (associated with LADs17, Fig. 2D), are late

replicating (ENCODE data, Fig. 2D) and have a low frequency of (Hi-C) 3D loops19, an

indicator of lower levels of transcription. Finally, we observed a local increase in binding of the

transcription factor CTCF at the borders of PMDs (Fig. 2D) as shown in previous reports3,17,20–

22.

We previously analyzed the full transcriptomes (RNA-seq) in a breast cancer cohort of 266

cases16 from which our WGBS cohort is a subset. We determined the mean expression of genes

as a function of PMD frequency. Genes inside PMDs are expressed at consistently lower levels

than genes outside of PMDs (Fig. 2F, p < 2.2e-16, t-test), with a tendency towards lower

expression in highly-frequent PMDs (p < 2.2e-16, linear regression). Given the variable nature of

DNA methylation patterns of PMDs, we also determined the variation in gene expression as a

function of PMD frequency and found higher variation for genes inside PMDs (Fig. 2F, p < 2.2e-

16, MWU-test). Even when restricting this analysis to only the subset of 24 overlapping cases

from the transcriptome and WGBS cohort we observed the same trends, with similar statistical

significance (Suppl. Fig. 3B, p < 2.2e-16, t-test for expression; p < 2.2e-16, MWU-test for

variation). Given the observed variability of DNA methylation and gene expression inside PMDs,
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we asked whether genetic stability, i.e. the number of somatic mutations, was also altered within

PMDs. In our cohort of 560 full breast cancer genomes14, substitutions, insertions, and deletions

occur more frequently within than outside PMDs, with a clear increase in highly frequent PMDs

(p < 2.2e-16 for each mutation type, logistic regression, Fig. 2G). In contrast, rearrangements are

more abundant outside of PMDs (p < 2.2e-16, logistic regression), in keeping with the

hypothesis that regions with higher transcriptional activity are more susceptible to

translocations23. As above, a restrictive analysis of only the 25 overlapping cases from the full

genomes and WGBS cohorts revealed the same trends except for insertions (p < 2.2e-16

(substitutions); p = 0.362 (insertions), p = 1.7e-05 (deletions), p = 1.1e-09 (rearrangements),

logistic regressions, Suppl. Fig. 3C). Taken together, breast cancer PMDs share key features of

PMDs including low gene density, low gene expression, and colocalization with LADs,

suggesting that they reside in the ‘B’ (inactive) compartment of the genome24. Importantly, in

addition to epigenomic instability, breast cancer PMDs also tolerate transcriptomic variability

and genomic instability.

Relationship between CpG island methylation and PMDs in breast cancer

To determine how PMDs affect methylation of functional genomic elements we accordingly

stratified all CpGs from all tumors and assessed the methylation distribution in these elements

(Fig. 2H). We found that the normally observed near-binary methylation distribution is lost

inside PMDs; the hypermethylated bulk of the genome and hypomethylated CGIs/promoters

acquire intermediate levels of DNA methylation inside PMDs. DNA methylation deposition

inside PMDs thus appears incognizant of genomic elements, resulting in intermediate

methylation levels regardless of the genomic elements’ functions. Among all elements, the effect

of incognizant DNA methylation deposition is most prominent for CGIs as they undergo the

largest change departing from a strictly hypomethylated state. This has been described also as

focal hypermethylation inside PMDs3.

We further focused on methylation levels of CGIs. When indiviual PMDs are regarded, CGIs

inside of them lose their strictly hypomethylated state and become more methylated to a degree

that varies between tumors (Fig. 3A). Across all tumors and all CGIs, this effect is extensive (Fig.
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3B,C), affecting virtually all CGIs inside PMDs: on average 92% of CGIs lose their

hypomethylated state and gain some level of methylation (Fig. 3B, left panel). Outside of PMDs

only 25-30% of the CGIs is hypermethylated, although to a higher level (Fig. 3B, right panel).

Thus, incognizant deposition of DNA methylation inside PMDs results in extensive

hypermethylation of virtually all PMD-CGIs.

Concurrent hypermethylation of CGIs in cancer has been termed CIMP25, and in breast cancer

this phenomenon has been termed B-CIMP26–28. To determine whether CIMP is directly related

to PMD variation we defined B-CIMP as the fraction of CGIs that are hypermethylated (>30%

methylated), and determined its association with the fraction of CGIs inside PMDs. Regression

analysis (see Methods) showed that this association is highly significant (Fig. 3D, p=2.1e-08,

R2=0.51, n=30). The fraction of hypermethylated CGIs is generally higher than the fraction of

hypermethylated CGIs in PMDs, suggesting that CGI hypermethylation is not solely dependent

on PMD occurrence. However, CGI methylation levels outside PMDs are far more stable than

inside PMDs (Fig. 3E), which likely represents an invariably methylated set of CGIs (Suppl.

Table 2).

We applied the same regression analysis to other tumor types (TCGA,29, Fig. 3F). Although

sample sizes were small, we found significant CIMP-PMD associations for lung adenocarcinoma

(LUAD), rectum adenocarcinoma (READ), uterine corpus endometrial carcinoma (UCEC) and

bladder urothelial carcinoma (BLCA). We did not find significant associations for Burkitt's

lymphoma (BL), lung squamous cell carcinoma (LUSC), follicular lymphoma (FL), and

glioblastoma (GBM), even though G-CIMP has been previously described30. Taken together, we

conclude that PMD occurrence is an important determinant for CIMP.

PMD demethylation effects on gene expression

To assess whether widespread hypermethylation of CGI-promoters within PMDs instigates gene

repression we analyzed expression as a function of gene location inside or outside of PMDs.

Overall, CGI-promoter genes showed a mild but significant downregulation when inside PMDs

(p=4.5e-12, t-test), while strong downregulation was specifically restricted to low-frequency

PMDs (Fig. 3G). For non-CGI-promoter genes this trend was very weak or absent (Suppl. Fig.
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4A). As healthy controls were not included in transcriptome analysis of our cohort16 we used

gene expression (RNA-seq) profiles from breast tumors (769) and normal controls (88) from

TCGA. Similar to our cohort (see Fig. 2F) we found that overall gene expression for the TCGA

tumors is lower inside PMDs, with lowest expression for genes inside high-frequent PMDs (Fig.

3H, p < 2.2e-16, linear regression). However, the expression of genes in tumor PMDs is very

similar to healthy control samples (p = 0.807, linear regression). To analyze this in more detail

we selected normal/tumor matched pairs (i.e. from the same individuals, n=86) and analyzed the

fold change over the different PMD frequencies (Fig. 3I). As in our cohort, downregulation is

restricted to genes with low PMD-frequency (p < 2.2e-16 for PMD frequency 1-3, linear

regression). No obvious changes occur in high-frequency PMD genes, nor in non-CGI-promoter

genes (Suppl. Fig. 4B). Taken together, widespread cancer-associated repression of all genes

inside PMDs is limited: downregulation is restricted to low-frequency (i.e. the more variable)

PMDs and affects only CGI-promoter genes, which undergo widespread hypermethylation inside

PMDs.

Given the widely accepted model of hypermethylated promoter-CGIs causing repression of

tumor suppressor genes (TSGs) we determined whether breast cancer PMDs overlap with these

genes to instigate such repression. For non-TSGs as a reference we found that 64% (14,037) are

located outside of PMDs (Fig. 3J), while 36% are located inside, (see also Fig. 2E). Strikingly,

TSGs (Cancer Gene Census) overlap poorly with PMDs: most TSGs (218/254, 86%) are located

outside of PMDs. Only 14% overlap with mostly low-frequency PMDs, implying exclusion of

TSGs from PMDs (p=8.8e-16, hypergeometric test). When we specifically focused on breast

cancer-related TSGs (Cancer Gene Census), this exclusion was even stronger: practically all

(27/28, 96%) breast cancer TSGs are located outside of PMDs (p=3.5e-06, hypergeometric test).

Similarly, from our previously identified set of genes containing breast cancer driver mutations14:

86/93 (92%) were located outside of PMDs (p=2.0e-11, hypergeometric test). Alltoghether, only

31 breast cancer-mutated genes were not excluded from PMDs. We assessed whether these genes

are downregulated in tumors when inside PMDs. 24/31 (74%) genes were downregulated (Suppl.

Fig. 5A,B), and an overall negative correlation between CGI-promoter methylation and

expression was evident (Suppl. Fig. 5C). For 16 out of these 24 genes we confirmed that

significant downregulation also takes place in cancer relative to normal in an independent breast

cancer expression dataset (TCGA, Suppl. Fig. 5D and data not shown). Among the
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downregulated genes in PMDs are EGFR (epidermal growth factor receptor) and PDGFRA

(platelet-derived growth factor receptor α) that have tumor promoting mutations (Suppl. Fig.

5A,B,C). Paradoxically, both genes are significantly downregulated in our as well as the TCGA

breast cancer dataset (Suppl. Fig. 5D). Taken together, despite the large number of

hypermethylated CpG islands inside breast cancer PMDs (13,013 CGIs; 47%, Suppl. Fig. 4C),

these CGIs do not generally co-occur with TSGs and other breast cancer-relevant genes.

Repression of these genes through classical promoter-hypermethylation in PMDs does not occur

at large scale, and is likely limited to a few genes.

We next identified genes that are downregulated when inside PMDs regardless of any

documented TSG function or mutation in breast cancer. 400 genes were downregulated at least

2.5 log2-fold (Suppl. Table 3). Gene set enrichment analysis showed that these genes were

involved in processes such as signaling and adhesion (Suppl. Fig. 6A). In addition, there is a

significant enrichment of genes downregulated in luminal B breast cancer (and upregulated in

basal breast cancer)31. This suggests that PMDs are involved in downregulation of luminal B-

specific genes. Examples of luminal B-downregulated genes include CD3G, encoding the

gamma polypeptide of the T-cell receptor-CD3 complex (gene sets ‘signaling’ and ‘adhesion’),

and RBP4, encoding retinol binding protein 4 (gene set ‘signaling’) (Suppl. Fig. 6B).

Stratification of tumors according to low and high median expression of the 400 PMD-

downregulated genes revealed significant differences in overall survival of the corresponding

patients (p=2.6e-03, chi-square test, Suppl. Fig. 6C), suggesting clinical significance of PMD-

associated gene repression. Taken together, downregulation of genes inside PMDs occurs rarely

and is restricted to low-frequency PMDs. However, these rare cases include genes relevant to

breast cancer given the overlap with previously identified luminal B breast cancer-relevant genes

and differential overall survival.

PMDs are not unique to cancers, but reduced DNA methylation in PMDs is a feature of

many cancers

To assess the generality of PMD occurrence in cancer, we extended our analysis to other cancer

types and normal tissues. We performed PMD detection in a total of 134 WGBS profiles (57
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tumors from TCGA,29 and 77 normal tissues from the Roadmap Epigenomics Project and5).

PMDs are detectable in virtually all tumors, but also in 30% of normal tissues (Fig. 4A, see

Methods: data access). However, mean DNA methylation inside detected PMDs is much lower

in tumors as compared to normal tissues (Fig. 4B, Suppl. Fig. 7A, p=1.0e-18, t-test), and is not

associated with tumor tissue origin: upon ranking the samples according their mean PMD

methylation, tumors of the same type are dispersed rather than clustered together (Fig. 4B). Thus,

PMDs are not unique to tumors per se but the overall loss of methylation inside PMDs is

consistently greater in tumors. Still, the absolute loss does not typify tumor tissue origin,

underscoring the variable nature of methylation within PMDs. To assess whether CGI

hypermethylation in PMDs is as extensive in these additional tumor types as in breast cancer, we

analyzed CGI methylation of the 57 tumor samples in total (Suppl. Fig. 7B, see Methods: data

access). As in breast cancer, widespread hypermethylation of CGIs inside PMDs was consistent

in most tumor types. The levels of hypermethylation in Burkitt’s lymphoma (BL)29 were among

the highest of all tested tumors, while hypermethylation levels in lung

adenocarcinoma/squamous cell carcinoma (LUAD/LUSC) were slightly lower than in other

tumors. Possibly, these differences are linked to tumor cellularity of the samples. In two

glioblastoma multiforme tumors, CGI hypermethylation was not restricted to PMDs, which is

suggestive of inaccurate PMD detection due to high methylation inside glioblastoma PMDs (see

Fig. 4B). Importantly, these results extend the observed tendency of CGI hypermethylation

inside PMDs to other tumors.

Lastly, to assess whether the distribution of tumor PMDs reflects tissue of origin we scored the

presence of PMDs in genomic tiles of 30 kb and subsequently clustered the resulting binary

profiles. The analysis showed that the majority of tumors of the same type clustered together,

although not fully accurately (Fig. 4C), suggesting that the genomic distribution of PMDs is

linked to tissue of origin. Thus, even though methylation levels of PMDs are independent of

tissue-of-origin (Fig. 4B), the distribution of PMDs associates with tissue of origin, likely

reflecting differences in the genomic parts that tolerate PMDs.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2018. ; https://doi.org/10.1101/305193doi: bioRxiv preprint 

https://doi.org/10.1101/305193
http://creativecommons.org/licenses/by/4.0/


12

DISCUSSION

In this study we analyzed breast cancer DNA methylation profiles to high resolution. The main

feature of breast cancer epigenomes is the extensive loss of methylation in PMDs and their

hypervariability. Directly linked to this is the concurrent CGI hypermethylation, for which PMDs

appear to be a major driver or even causal. Although various features of PMDs have been

described before, our study is the first to include a larger WGBS cohort from one tumor type,

while integrating sparse WGBS data from other tumor types. PMDs may be regarded as tissue-

type-specific inactive constituents of the genome: the distribution shows tissue-of-origin

specificity, gene expression inside PMDs is low and they are late replicating. Inside PMDs the

accumulation of breast cancer mutations is higher than outside of them. The resulting domain-

like fluctuation in mutation density is likely related to the fluctuating mutational density along

the genome in cancer cells observed by others32–34. The phenomena observed in breast cancer

extend to tumors of at least 10 additional tissue types underscoring the generality of our findings.

We conclude that loss of methylation in PMDs and concurrent CGI hypermethylation is a

general hallmark of most tumor types with the exception of AMLs (data not shown).

The phenomena that we describe for breast cancer have remained elusive in genome-scale

studies that only assessed subsets of the CpGs; the sparsity of included CpGs does not allow

accurate PMD detection. Typical analysis strategies include tumor stratification by clustering of

the most highly variable CpGs which at least in our breast cancer cohort are located in PMDs. In

effect such approaches are biased towards CGIs due to their design and consequently, the

hypermethylation groups represent tumors in which PMDs are highly abundant (e.g.30,35–43). It is

very likely that for some tumor types hypermethylation groups associate with clinicopathological

features, amongst which a positive association with tumor cellularity is recurrent36,40–42. This

suggests that PMDs are more pronounced in tumor cells than in the non-tumor tissue of a cancer

sample. This makes hypermethylated CGIs useful diagnostic markers but less likely informative

as prognostic markers informing about tumor state, progression and outcome.

Since PMDs are domains in which instability at the genetic, epigenetic, and transcriptome level

is tolerated, they may provide plasticity that is beneficial for the heterogeneity of tumor cells.
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METHODS

Data access

Tables containing CpG methylation values (bigwig), genomic coordinates and mean methylation

values of PMDs and CGIs are available via DOI 10.5281/zenodo.1217427 or DOI

10.17026/dans-276-sda6. Raw data for whole-genome bisulfite sequencing of the 30 breast

tumor samples of this study is available from the European Genome-phenome Archive

(https://www.ebi.ac.uk/ega) under dataset accession EGAD00001001388.

Sample selection, pathology review and clinical data collection

Sample selection, pathology review and clinical data collection for this study has been described

in14.

Processing of whole-genome bisulfite sequencing data

WGBS library preparation, read mapping, and methylation calling was done as described

before44. The genome build used for mapping of bisulfite sequencing reads, and throughout this

study was hg19 (GRCh37).

Principal component analysis of WGBS data

For principal component analysis (PCA) of WGBS profiles, CpGs with coverage of at least 10

were used. Subsequently, the top 5% most variable CpGs were selected. We used the

FactoMineR package45 for R to perform PCA and to determine association of principal

components with clinicopathological features.

Detection of PMDs

Detection of partially methylated domains (PMDs) in all methylation profiles throughout this

study was done using the MethylSeekR package for R46. Before PMD calling, CpGs overlapping

common SNPs (dbSNP build 137) were removed. The alpha distribution46 was used to determine

whether PMDs were present at all, along with visual inspection of WGBS profiles. After PMD

calling, the resulting PMDs were further filtered by removing regions overlapping with

centromers (undetermined sequence content).
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Mean methylation in PMDs and genomic tiles

Wherever mean methylation values from WGBS were calculated in regions containing multiple

CpGs, the ‘weighted methylation level’47 was used. Calculation of mean methylation within

PMDs or genomic tiles involved removing all CpGs overlapping with CpG island(-shores) and

promoters, as the high CpG densities within these elements yield unbalanced mean methylation

values, not representative of PMD methylation. For genome/chromosome-wide visualizations

(Fig. 1), 10-kb tiles were used. For visualization, the samples were ordered according

hierarchical clustering of the tiled methylation profiles, using ‘ward.D’ linkage and [1-Pearson

correlation] as a distance measure.

Clustering on PMD distribution

For each sample, the presence of PMDs was binary scored (0 or 1) in genomic tiles of 5 kb.

Based on these binary profiles, a distance matrix was calculated using [1-Jaccard] as a distance

metric, which was used in hierarchical clustering using complete linkage.

Tumor suppressor genes and driver mutations

For overlaps with tumor suppressor genes, Cancer Gene Census

(http://cancer.sanger.ac.uk/census, October 2017) genes were used. Overlaps with genes

containing breast cancer driver mutations were determined using the list of 93 driver genes as

published previously by us14.

CIMP

To determine the association between B-CIMP (fraction of CGIs that are hypermethylated,

>30% methylated) and PMD occurrence we used beta-regression using the ‘betareg’ package in

R48.

Survival analysis

Survival analysis of patient groups stratified by expression of genes downregulated in PMDs. For

each tumor sample of our breast cancer transcriptome cohort (n=266,16), the median expression

of all PMD-downregulated genes (Suppl. Table 3) was calculated. The obtained distribution of

these medians was used to stratify patient groups, using a two-way split over the median of this
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distribution. Overall survival analysis using these groups was done using the ‘survival’ package

in R, with chi-square significance testing.
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FIGURE LEGENDS

Figure 1 | Visualization of inter-tumor variation at genome-wide scale.

(A), Genome-wide and (B), chromosome-wide maps of WGBS DNA methylation profiles from

30 breast tumor samples. Mean methylation is displayed in consecutive tiles of 10 kb (see

Methods). Ordering of tumor samples is according clustering of the tiled profiles. (C), WGBS

DNA methylation visualization at megabase-scale. Pink coloring indicates common methylation

loss (PMDs), although tumor-specific PMD borders vary. A scale bar (100 kb) is shown at the

top of each panel. CpG islands are indicated in green. (D), Principal component analysis of

WGBS DNA methylation profiles (see Methods). Each tumor sample is represented with its

estrogen-receptor (ER) status (point shape) and mean PMD methylation (point color).

Figure 2 | Characterization of breast cancer PMDs.

(A), Fraction of the genome covered by PMDs. Each dot represents one tumor sample, the

boxplot summarizes this distribution. (B), Fraction of the genome covered by PMDs that are

common between breast tumors. PMD frequency: the number of tumors in which a genomic

region or gene is a PMD. (C), Breast cancer PMDs are not distributed randomly over the genome.

The genome was dissected into 30-kb tiles, PMD frequency (number of boundaries) was

calculated for each tile. The same analysis was done after shuffling the PMDs of each tumor

sample. (D), Average profiles of LaminB17, repliSeq (DNA replication timing, ENCODE), 3D

chromatin interaction loops (HiC21, and CTCF (ENCODE) over PMD borders. If available, data

from the breast cancer cell line (MCF7) and mammary epithelial cells (HMEC) was used,

otherwise data from fibroblasts (IMR90, Tig3) was used. (E), Gene distribution inside PMDs (as

a fraction of all annotated genes). (F), Gene expression inside PMDs. Gene expression (top) and

standard deviation (bottom) was plotted as a function of PMD frequency. (G), Somatic mutations

inside PMDs. Substitutions, insertions, deletions, and rearrangements were calculated for each of

the 560 fully sequenced breast cancer genomes14, and plotted as a function of PMD frequency.

(H), Distribution of DNA methylation over functional genomic elements, inside and outside

PMDs. CpGs were classified according PMD status and genomic elements, and the distribution

of DNA methylation within each element was plotted.
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Figure 3 | CpG island hypermethylation inside PMDs.

(A), Example of a genomic region with CGI hypermethylation inside PMDs. Red bars, PMDs for

each tumor sample; below, CGI methylation for each tumor sample (same ordering). Green bars,

CGIs. (B), Distribution of CGI methylation, represented as the fraction of all CGIs (x-axis). Each

horizontal bar represents one tumor sample. (C), Average profile of methylation over all CGIs

inside (red) or outside (black) PMDs, over all 30 tumor samples. Black/red lines, median;

grey/pink area, 1st and 3rd quartiles. (D), Regression analysis of B-CIMP (y-axis) as a function

of the fraction CGIs inside PMDs (x-axis). B-CIMP is defined as the genome-wide fraction of

hypermethylated CGIs (>30% methylation). (E), Variation of CGI methylation (standard

deviation) as a function of PMD frequency. (F), Summary of regression analysis as in (D),

including additional cancer types. n, the number of samples for each type. For abbreviations of

cancer type names, see Fig. 4C. (G), Expression change of CGI-promoter genes inside vs.

outside of PMDs, as a function of PMD frequency. (H), Gene expression levels as a function of

PMD frequency in an independent breast cancer dataset (TCGA). PMD frequency for each gene

was taken from our own dataset. (I), Expression change of CGI-promoter genes of tumor vs.

normal, as a function of PMD frequency. From the TCGA breast cancer dataset, matched

tumor/normal pairs were selected. PMD frequency for each gene was taken from our own dataset.

(J), Tumor-suppressor genes (TSGs) are excluded from PMDs. For each TSG its PMD

frequency was determined and the resulting distribution was plotted. Main plot, relative

distribution; inset, absolute number of genes. ‘Non-TSGs’, genes not annotated as TSGs; ‘TSGs

all cancers’, genes annotated as TSGs regardless of cancer type; ‘TSGs breast cancer’, genes

annotated as TSG in breast cancer; ‘Nik-Zainal breast cancer driver mutations’, genes with driver

mutations in breast cancer14.

Figure 4 | PMD methylation in normal tissues and tumors of various tissues.

(A), PMDs are detectable in virtually all tumors, but only in a fraction of normal tissues. WGBS

data was used for PMD detection. (B), Mean PMD methylation of normal tissues and tumors of

various tissues. Each dot represents one sample. Arrows represent breast tumor samples from

this study. (C), Hierarchical clustering of tumor samples based on genomic distribution of their

PMDs.
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Supplemental Figure 1

(A), CpG coverage in WGBS DNA methylation profiles of 30 breast tumor samples used in this

study (see also Suppl. Table 1). (B), Clinicopathological features of the 30 tumor samples. (C),

Mean copy-number profiles of 25/30 tumor samples used in this study. Copy-number data was

taken from our previous work14. (D), Association between mean PMD methylation and

expression of genes involved in writing, erasing, or reading the 5-methylcytosine modification.

Each dot represents one tumor sample. Linear regression was used to determine the variation

explained (R2) and the p-value of the association. Expression data was taken from our previous

work16.

Supplemental Figure 2

Visualization of inter-tumor variation at genome-wide scale, as in main Figure 1, but including

WGBS data from 72 additional, non-tumor tissues (Roadmap Epigenomics Project and ref.10).

(A), Genome-wide and (B), chromosome-wide maps. Mean methylation is displayed in

consecutive tiles of 10 kb (see Methods). For breast tumors of this study, the ER-status is

indicated at the right (A).

Supplemental Figure 3

(A), Gene coding density plotted as a function of PMD frequency. (B), Gene expression as a

function of PMD frequency, as in main Figure 2F, but here restricted to the 24 cases overlapping

between our WGBS cohort and the breast tumor (RNA-seq) transcriptomes cohort16. Top, gene

expression; bottom, standard deviation. (C), Somatic mutations plotted as a function of PMD

frequency, as in main Figure 2G, but here restricted to the 25 cases overlapping between our

WGBS cohort and the breast tumor full genomes cohort14.

Supplemental Figure 4

(A), Expression change of non-CGI-promoter genes inside vs. outside of PMDs, as a function of

PMD frequency. (B), Expression change of non-CGI-promoter genes of tumor vs. normal, as a

function of PMD frequency. From the TCGA breast cancer dataset, matched tumor/normal pairs

were selected. PMD frequency for each gene was taken from our own dataset. (C), Number of
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CGIs inside and outside of breast cancer PMDs. CGIs are classified as ‘in’ when inside a PMD

in at least one tumor sample.

Supplemental Figure 5

(A), Expression change of TSGs/breast cancer driver mutated genes when inside PMDs. 31 of

such genes are located inside PMDs in a subset of tumor samples. ‘TSGs all cancers’, genes

annotated as TSGs regardless of cancer type; ‘TSGs breast cancer’, genes annotated as TSG in

breast cancer; ‘Nik-Zainal breast cancer driver mutations’, genes with driver mutations in breast

cancer14. (B), Examples of genes from panel (A) being repressed when inside PMDs. Blue line,

DNA methylation (WGBS); green bars, CGIs; red bars, PMDs. Gene expression (RNA-seq) of

the corresponding gene is represented at the right of each panel. (C), Pearson correlation between

CGI-promoter methylation and expression. Gene classes are indicated as in panel (A). (D),

Expression changes (RNA-seq) of genes in panel (B), breast tumor vs. normal. Data is from an

independent cohort (TCGA). Left panels, non-matched normal (n=88) and tumor samples

(n=769); right panels, matched normal/tumor samples (n=86). p-values were calculated using a t-

test.

Supplemental Figure 6

(A), Gene set enrichment analysis (GSEA) of genes downregulated when inside PMDs (>2.5

log2-fold, 400 genes, Suppl. Table 3). (B), Examples of downregulated genes inside PMDs.

CD3D encodes the gamma polypeptide of the T-cell receptor-CD3 complex (gene sets

‘signalling’, ‘adhesion’, and ‘breast cancer luminal B down’); RBP4 encodes retinol binding

protein 4 (gene set ‘signalling’, and ‘breast cancer luminal B down’). Blue line, DNA

methylation (WGBS); green bars, CGIs; red bars, PMDs. Gene expression (RNA-seq) of the

corresponding gene is represented at the right of each panel. (C), Overall survival of patient

groups stratified according expression of the 400 PMD-downregulated genes (see Methods).

Supplemental Figure 7

(A), Boxplot summarizing mean PMD methylation of normal tissues and tumors of various

tissues (summary of Fig. 4B). (B), Distribution of CGI methylation, represented as the fraction of

all CGIs (x-axis). Each horizontal bar represents one tumor sample (WGBS). Top panel, tumor
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samples other than breast cancer (TCGA and ref.29, abbreviations are given below); bottom panel,

repeated from main Figure 3B for comparison.

Supplemental Table 1

Quality metrics and global methylation values from whole-genome bisulfite sequencing (WGBS)

of 30 breast tumor samples from this study.

Supplemental Table 2

PMD frequency of all annotated CpG islands (. For each CGI, PMD frequency indicates the

number of tumors in which the CGI is inside a detected PMD.

Supplemental Table 3

Genes that are downregulated when inside PMDs. 400 genes are downregulated at least 2.5 log2-

fold.
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Figure 2
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Figure 4
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Supplementary Figure 1
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Supplemetary Figure 2
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Supplementary Figure 3
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Supplementary Figure 4
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Supplementary Figure 5
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Supplementary Figure 6

A 0.0 2.5 5.0 7.5 10.0

biological adhesion

system process

extracellular space

FDR (-log10)

breast cancer luminal B down (Smid et al.)

breast cancer basal up (Smid et al.)

signalling

PD4970a

PD10014a

PD7216a

PD14439a

0 5
CD3G expr.

(log2 FPKM)

PD4981a

PD4985a

CD3G
CD3DCD3E

UBE4A

ATP5L

LOC100131626

PMDs
CGI

0 20
RBP4 expr.

(log2 FPKM)

PMDs
CGI

RBP4
FRA10AC1

PDE6C

CEP55

FFAR4

PD4962a

PD4967a

PD11365a

PD11390a

PD4985a

PD6684a

B

p = 2.6e-03

expression high

expression low

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

overall survival (years)

s
u
rv

iv
a
l 
p
ro

b
a
b
ili

ty

C

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 20, 2018. ; https://doi.org/10.1101/305193doi: bioRxiv preprint 

https://doi.org/10.1101/305193
http://creativecommons.org/licenses/by/4.0/


Supplementary Figure 7
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