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DivNet: Estimating diversity in
networked communities

Amy D Willis and Bryan D Martin

Abstract: Diversity is a marker of ecosystem health in ecology, microbiol-
ogy and immunology, with implications for disease diagnosis and infection
resistance. However, accurately comparing diversity across environmental
gradients is challenging, especially when number of different taxonomic
groups in the community is large. Furthermore, existing approaches to es-
timating diversity do not perform well when the taxonomic groups in the
community interact via an ecological network, such as by competing within
their niche, or with mutualistic relationships. To address this, we propose
DivNet, a method for estimating within- and between-community diversity
in ecosystems where taxa interact via an ecological network. In particular,
accounting for network structure permits more accurate estimates of alpha-
and beta-diversity, even in settings with a large number of taxa and a small
number of samples. DivNet is fast, accurate, precise, performs well with
large numbers of taxa, and is robust to both weakly and strongly networked
communities. We show that the advantages of incorporating taxon interac-
tions into diversity estimation are especially clear in analyzing microbiomes
and other high-diversity, strongly networked ecosystems. Therefore, to il-
lustrate the method, we analyze the microbiome of seafloor basalts based
on a 16S amplicon sequencing dataset with 1490 taxa and 13 samples.

1. Introduction

Microbial communities are composed of enormous numbers of different microbes,
ranging from highly abundant taxa to rare taxa that are often unobserved. Data
obtained from microbiome surveys often take the form of high-dimensional count
data, generally with additional covariate information regarding the experimental
conditions under which the samples were observed. Detecting patterns in this
data is challenging, partly because of its dimension. Analysis of diversity is a
standard approach to summarizing and comparing high-dimensional community
composition data in ecological studies, and is ubiquitous in the microbiome
literature (Callahan et al. 2016). As well as providing an indicator of human
and environmental health in microbiology (Oakley et al. 2008, Lozupone et al.
2012), diversity metrics are also widely used in immunology (Gibson et al. 2009,
Kaplinsky & Arnaout 2016) and information theory.

Consider a community of C' taxonomic groups (taxa), which are present in
relative abundances z = (z1,.. ., z¢). Depending on the ecosystem under study,
C may be on the order of hundreds, but may also be in the tens of thousands
or greater. An a-diversity index f : $¢~! — R summarizes z, where $¢ is
the d-dimensional simplex. Similarly, S-diversity indices g : $¢~1 x $¢~1 - R
summarize information from two communities (typically, the similarity between
two communities’ relative abundance vectors z(!) and 2(?)). g-diversity indices
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summarize between-community structure, while a-diversity indices summarize
within-community structure. Specific examples of a- and S-diversity indices are
given in Section 2.

Despite the prevalence of a- and [S-diversity analyses in ecology, statistical
methodology to estimate these functions is relatively underdeveloped. In par-
ticular, much of the existing literature focuses on estimating diversity under
the assumption of observations drawn from a multinomial distribution with un-
known probability vector z (Miller 1955, Zahl 1977, Zhang & Zhou 2010, Hsieh
et al. 2016, Cao et al. 2017). Fortunately, there exist sophisticated models for
community composition data that permit more a flexible co-occurrence struc-
ture than that implied by the multinomial distribution. In this paper, we use
models that explicitly permit co-occurrence of taxa (commonly referred to as
ecological networks) to estimate community-level diversity.

In addition to incorporating network structure, the proposed method has
a number of advantages over existing methods for diversity estimation and
diversity-related hypothesis testing. Most notably, while almost all existing
methodology for estimating diversity either estimates the diversity of each sam-
ple (for a-diversity) or pairs of samples (for S-diversity), our method pools
information across multiple samples to estimate the diversity of the ecological
communities from which the samples were drawn. Therefore, rather than esti-
mating the diversity of a sample based only on abundance information obtained
from that sample, abundance information from all samples is used to improve
diversity estimation. This methodology also permits a principled method for pre-
dicting diversity in ecosystems that were not sampled. Our method achieves sub-
stantial improvements in estimation performance. The method, called DivNet,
is available as a R package via github.com/adw96/DivNet.

The manuscript is laid out as follows: Section 2 introduces methods for esti-
mating a- and fS-diversity. In Section 3, we introduce our model for estimating
diversity, and in Section 4, we discuss estimation of the model parameters and
variance estimates. The performance of the method is evaluated in Section 5,
before an example of the method is discussed in Section 6. We conclude with a
discussion of the method and avenues for future research in Section 7.

2. Literature review: Estimating a- and 3-diversity

Suppose that we have samples from 7 = 1,...,n ecosystems. Let C; denote the
set of all taxa in ecosystem 7, and let C; = |C;| denote the number of taxa in
the ith ecosystem. Let C = U;C;, and let @ = |C| denote the number of species
present in one or more ecosystems. Finally, let ¢ = 1,...,Q index the ) taxa.
While not all taxa must be present in all ecosystems, we construct this set to
ensure that the indexing is consistent. We impose the restriction that @ is known
(see Section 7 for a discussion). Let Z;, € [0,1] denote the (unknown) relative
abundance of taxon ¢ in ecosystem 4, noting that Zqul Ziq = 1. Associated
with each ecosystem is a known vector of covariates X; € RP.

Suppose that from the ith ecosystem, M; individuals are observed and clas-
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sified into the ¢ taxonomic groups. Let W;, denote the number of times that
taxon g was observed in sample i. Therefore, to estimate summary statistics
associated with the ¢ ecosystems, the information available on which to base
estimation is W € R"*Q and X € R"*P.

While members of an ecological community may differ in their levels of re-
latedness, to constrain the scope of this paper we do not consider measures of
diversity that are functions of taxonomy, such as Faith’s phylogenetic diversity
(Faith 1992), branch weighted phylogenetic diversity (McCoy & Matsen 2013)
or UniFrac (Lozupone & Knight 2005).

2.1. a-diversity

There are a number of different a-diversity indices that are widely used in the
literature. This is because different indices reflect different features of ecosys-
tems. Two of the most common indices are the Shannon entropy (also called
the Shannon index), and the Simpson index. The Shannon index places more
emphasis on rare species than the Simpson index (because —zlogz > 2?2 for
close to zero; see Eqs. (1) and (5)). Therefore, in ecosystems where rare species
are significant drivers of ecosystem health, the Shannon index may be preferred
over the Simpson index (for example, see Oakley et al. (2008)). While the diver-
sity estimation framework that we will introduce is applicable to any a-diversity
index that is a function of taxon abundance, we will focus on the Shannon and
Simpson indices to illustrate our method.

2.1.1. Shannon entropy

One of the most common «-diversity indices is the Shannon entropy (Shannon
1948). The Shannon index of ecosystem 4 is defined as

Qisn=— Y Ziglog(Zig). (1)
q€C;

This index captures information about both the species richness (number of
species) and the relative abundances of the species. Specifically, as the number
of species in the population increases, so does the Shannon index. As the relative
abundances diverge from a uniform distribution (Z;, = 1/C; for all ¢ € C;) and
become more unequal, the Shannon index decreases: for fixed |C;|, the entropy
is maximized when the abundance of all taxa is equal.

Under the model W; ~ Multinomial(M;, Z;), the maximum likelihood esti-
mate (MLE) of o shannon 1S

R W; W;
& Sh,plug—in = — Z J\;q lOg < ]\jq) ) (2)
q€Cs i i
with the convention that if W;, = 0, then VX;_" log (%) = 0, since

lim,_,o 2 log z = 0. This estimate is almost ubiquitous in the ecological literature
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(Weiss et al. 2017, Willis 2017). The multinomial MLE is often referred to as
the plug-in estimate (Vu et al. 2007). The multinomial MLE is negatively biased

by |02 111 L+ O(M?) (Basharin 1959), for which various corrections have been

proposed, including adding ‘Cl ! (the Miller-Maddow MLE correction, Miller
(1955)), and jackknifing (Zahl 1977)

Noting that unobserved (latent) taxa are often a substantial source of error in
estimating the Shannon index, Chao & Shen (2003) proposed using the Good-
Turing estimate of species richness and adjusting for the missing taxa, obtaining
the estimate

~ i log(Ci7t
Qi Sh,Chao—Shen = — Z Mv (3)
vt — Cifrig)"

where g = Wig/M; and C; = 1 =Y Lgw, =13/ >y Wig- Vut et al. (2007)
show that this estimator is consistent and converges with the optimal rate
Op(1/log(M;)).

More recently, Chao et al. (2013) proposed to correct bias due to latent taxa
by subsampling taxa and extrapolating from the sequentially smaller subsam-
ples. The method is implemented in the R package iNEXT (Hsieh et al. 2016),
against which we compare our method. We note that the subsampling proce-
dure of iNEXT involves subsampling the taxa independently, which reflects the
assumptions of the multinomial model.

An alternative approach to adjusting for latent taxa originates in the com-
positional data analysis literature. To estimate the compositions Z;,, Martin-
Ferndndez et al. (2003) propose replacing observed values of W;; that are ex-
actly zero with 0.5, and so Cao et al. (2017) consider the resulting zero-replace
a-diversity estimator

A Wiq V0.5 ( Wiq V0.5 )
&4 Sh,ZR = — lo (4)
;ZT€CWZTVO5 > ce Wir V05

and also extend this idea to imputing zero elements of W via a low-rank ma-
trix projection using a regularization approach based on a Poisson-Multinomial
model. No publicly available software implements the low-rank matrix method.

2.1.2. Simpson index

Simpson (1949) defined the index now known as the Simpson index:
Q.8 = Z ZiZq. (5)
q€C;

Similar to the Shannon index, the most common estimate of the Simpson index
is the plug-in estimate:

. Wig\
Q5. Si plug—in — Z <J\;> . (6)

q€C; ’
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In comparison with Shannon entropy estimation, research concerning opti-
mality of estimates of the Simpson index is relatively recent. Zhang & Zhou
(2010) demonstrated that under independent sampling from a multinomial dis-
tribution,

. M;

Q4 Si,Zhang—Zhou = mai,Si,plugfin- (7)
is unbiased and asymptotically normally distributed. However, since M; gener-
ally exceeds 1,000 in microbiome studies, the difference between the Zhang &
Zhou (2010) and the plug-in estimate is negligible in our setting.

A number of approaches to estimating the Shannon index are also applicable
to estimating the Simpson index. For example, Cao et al. (2017) investigate
the performance of the zero-replace and low-rank approach to estimating the
Simpson index. The extrapolation approach of Hsieh et al. (2016) also applies
to the Simpson index. We compare our proposal, which we call DivNet, with
these approaches in Sections 5 and 6.

2.1.3. a-diversity with covariates

All of the estimates for a; discussed above are only functions of the abundance
vectors W;. Notably, none utilize the full abundance matrix W nor the covari-
ate matrix X. Recently, Arbel et al. (2016) proposed a nonparametric Bayesian
model that exploits structure in W as well as incorporating covariate informa-
tion. However, the method is computationally expensive, and at present, an
implementation only exists for p = 1. We compare our method to the method
of Arbel et al. (2016) with respect to both estimation error and computation
time in Section 5. We also note the recent method of Ren et al. (2017), which
incorporates an error model into ordination methods, an alternative to diversity
analysis in summarizing compositional data.

2.2. B-diversity

Similar to a-diversity, a large number of different §-diversity metrics exist, each
highlighting different features of differences in ecosystems. Legendre & Legendre
(2012, Table 7.2) provide a list of 26 S-diversity metrics along with some dis-
cussion. However, in comparison to a-diversity estimands, there exists almost
no statistical literature on estimating S-diversity indices: estimating S-diversity
indices is almost exclusively performed using plug-in estimators.

In general, small values of a [-diversity index indicate that the ecosystems
have similar compositions, while large values indicate that the relative abun-
dances differ between ecosystems, or that few taxa are shared by the ecosys-
tems. This interpretation holds for both the Bray-Curtis and Euclidean indices
discussed below.
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2.2.1. Bray-Curtis dissimilarity
The (observed) Bray-Curtis index (Bray & Curtis 1957) is defined as

quciucj min(Wig, Wiq)

8
Mi+Mj ()

Bij,BC plug—in = 1 —2

While we have not found any discussion of the target estimand in the literature,
Eq. (8) suggests that

Bijpe =1=Y_ min(Zig, Z;q) (9)
qeC

is the target estimand. Interestingly, in contrast to the other S-diversity indices
discussed in the section, this estimate is not the MLE under a multinomial
model.

While Arbel et al. (2016) focused on estimating a-diversity, because their
method estimates the latent composition matrix Z, we also compare our pro-
posed method to the estimate

5 . 5 (Arbel) 4 (Arbel
Bij.BC,Arbet = 1 — Y _ min (Zi(q ), Zj(-q )) ; (10)
qeC

where Z(Arbel) is the latent composition matrix estimate based on the procedure
of Arbel et al. (2016).

2.2.2. Fuclidean distance

Finally, we mention the Euclidean distance between the relative abundance vec-

tors,
Bijep = | > (Ziqg — Zjq)?, (11)
qeC
whose plug-in estimate is
A Wie Wi\’
i = - —= . 12
hun=| ¥ (G- (12)
qGCiUC]-

We are not aware of any other estimates for the Euclidean distance between
relative abundances in the literature, but we will also compare to the estimate

Bij,ED,Arbel _ Z(ZAi(;wbel) . ZAJ('?T’bel))Q' (13)
qeC
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3. Estimating diversity in networked composition data

Members of ecological communities interact, displaying repeatable patterns in
many different environmental settings (Faust & Raes 2012). For example, or-
ganisms may compete for resources, prey on each other, or cooperate in a sym-
biotic relationship. In the last decade, many methods have been developed to
estimate the co-occurrence patterns of ecological communities, such as SparCC
(Friedman & Alm 2012) and SPIEC-EASI (Kurtz et al. 2015). We will refer
to co-occurrence patterns as ecological networks. As we show under simulation,
ecological networks can have substantial effects on estimates of diversity. Here
we propose an approach to estimating diversity in the presence of an ecological
network. To our knowledge, this is the first method that explicitly accounts for
co-occurrence patterns in diversity estimation.

3.1. Compositional data models

While the multinomial distribution is the canonical model for compositional
data, the covariance between the number of observations in different categories
is constrained to be negative. To deal with this issue, Aitchison (1982, 1986)
developed the log-ratio model (see also Mandal et al. (2015)).This models the
counts W;, as independent draws from a multinomial distribution,

n Q
pW12) o< [T T] Zia ™ (14)

i=1q=1

where Z € R™ @ is a matrix-valued latent random variable that gives the
underlying composition matrix for each of the samples: Zqul Ziq = 1 for all i.
It then employs the log-ratio transformation by fixing a “baseline” taxon (taxon

D) for comparison:

Z;
Yig = ¢(Ziq) = {log < . )} : (15)
Zi q=1,...,D—1,D+1,...Q
Note that the log-ratio transformation ¢ : RQ — RP1! is invertible with inverse
o
exp(Yiq)
_ SXPWiq) D
> exp(Yig) +1 97
Zig =0 ' (Yig) = q#D
=D.
> exp{Yi} +1 4
q#D
(16)

To permit flexible co-occurrence structures between the taxa, the log-ratios
are modeled by a multivariate normal distribution:

T e iR R STy
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Finally, the mean of Y; is linked to covariates via p; = X8, where 8 €

RP*(@=1)_ Under this model, Bpq gives the expected increase in log (%) for a

one-unit increase in X;,. For a discussion of the interpretation of this model on
the scale of Z;,, we refer the reader to Billheimer et al. (2001).

3.2. Estimating diversity in the presence of a network

We propose using the log-ratio model to estimate a-diversity and [S-diversity.
Let B be an estimate of 5 under the log-ratio model. We discuss maximum
likelihood estimators in detail in Section 4.1, and penalized maximum likelihood
estimators in Section 4.2.

Suppose wish to estimate the a-diversity of an ecosystem with covariate vec-
tor X; € RP. Define

Y, = X['B, (18)

the expected value of the random variable Y;, and define Z- = ¢~ Y(Y;), the
fitted value of the latent composition. We then propose the following estimate
of any a-diversity index f : $¢~! — R:

& = f(Z). (19)
More explicitly,
OAéi,Sh,proposed = - Z Ziq IOg Aiqa (20)
q
di,Si,proposed = (Ziq)2 (21)
q

give our proposed estimates of the Shannon and Simpson indices. Similarly, for
any [-diversity index g : $¢~1 x $¢~1 — R, we propose

Bij = Q(Zi, Zj), (22)
such as
Bi]}BC,proposed =1~ Z min(Ziq7 qu)v (23)
q
Bij,ED,proposed = Z(qu - qu)2 (24)
q

for the Bray-Curtis and Euclidean diversity indices. Note that if f is the max-
imum likelihood estimate of 3, then by invariance, the proposed estimates are
the maximum likelihood estimates of the diversity indices.

This approach to diversity estimation has a number of key advantages not
shared by other methods. Fundamentally, rather than describing a quantity


https://doi.org/10.1101/305045
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/305045; this version posted April 21, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

/ 9

associated with the sample (as is the case with plug-in estimates), the estimand
is the diversity of the population from which the sample was drawn. This means
that information is shared across all samples to obtain more precise and accurate
estimates (see Section 5). In addition, samples ¢ and j such that || X; —X/||cc =0
will have &; = &; and Bik = Bjk for any other sample k. In this way, biological
replicates (samples where || X; —X||oc = 0) have equal diversity index estimates,
in contrast to plug-in estimates and the estimates of Chao & Shen (2003), Hsieh
et al. (2016), and Cao et al. (2017). Furthermore, we can use the model to
estimate the diversity of ecosystems for which ecosystem survey data is not
available but for which covariate information exists. While these advantages
are shared with the method of Arbel et al. (2016), our method is substantially
faster (Figure 3), and is available as an open-source R package with examples
and tutorials illustrating its use.

4. Parameter estimation
4.1. Estimating model parameters

To estimate the parameter set 7 = (3,%), we consider a maximum likelihood
approach. If Y were known, our optimization problem would be to find

i = argmax Y _ [log Pr(W;|Y;) + log f(Yi[n)], (25)
n i=1

where

log Pr(WilY;) = > WigYig — Mlog | Y exp(Yim) + 1 (26)
q#D q#D
and
1 1 .

log f(Yiln) = 3 log(|%]) - i(Yi — )2 (Y — pi)- (27)

Alas, since Y is a latent random variable, we cannot directly optimize Eq. (25).
Instead, we use the Expectation-Maximization algorithm (Dempster et al. 1977).
The expected complete log-likelihood is

Qnn'") = log %)) — ZEYKWn(f) — )" ST Y — )] (28)

To estimate this expectation numerically, we follow Xia et al. (2013) and

use the Metropolis-Hastings (MH) algorithm. Let {Y(T)} . be R draws from
r=

the distribution of Yi|Wi,n(t). Given these draws, we can approximate the
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expectation as follows:
R
_ T t t
By [(Yi = 1) TS (Y5 Z Y{7 =y EN Y - ),
) (29)

where } is the generalized inverse.

To generate the rth draw from f(Y;|W;,n®)), we simulate a proposal YZ(*) ~

NQ,l(YET71)7vIQ,1), where v is a tuning parameter controlling the step size
and Ig_; is the identity matrix of dimension @ — 1. We then calculate the
Metropolis acceptance ratio

Y wy, n®
T(Y,E )\Y(T 1)) min [ 1, f( (Z—1|) ;') ’
f(YLr |Wla W(t))

and simulate u ~ Uniform(0,1). We set YET) = YE*) if u < r(Yi*)|Y§T71)),
otherwise, we set Ylm = YET_I). By initializing Ygo) =¢ (%), setting v =
0.01, and discarding the first 500 draws, we observe convergence to the target
distribution on a variety of microbiome datasets, and acceptance ratios ranging
30-40%.

Having obtained an estimate of the expectation in Eq. (28), we turn our
attention to maximizing Q(n|n*=1). Define ¥ = argmax, Q(nn™*=b). Given
our draws {Y(T)} from f(Y;[W;,n®), our M-step of the EM algorithm

gives the following estlmates

1 & .
geen = L ; [(xTx)IxTy 0], (30)
ugtﬂ) — XTI+, (31)
1 rz (r) (t) (r) O\
E““)—m;;(% — hg )(Yi — H ) : (32)

T
where X € R™ P and Y(") = (YY),...,YH(T)) e R"*(@-1_ TIngpection of

convergence diagnostics (such as trace plots) on a variety of datasets indicates
that R = 500 and /) = n® for t = 10 is generally sufficient to achieve sta-
ble estimates. We run the Metropolis-Hastings algorithm to approximate the
distribution of Yi\Wi,n(t) in parallel over i = 1,...,n to reduce computa-
tion time. Our code is publicly available as an R package and can be found at
github.com/adw96/DivNet.

4.2. Variance estimation

To test hypotheses about changes in diversity over environmental gradients it
is necessary to have accurate estimates of the variance of the diversity esti-
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mates. These variance estimates can then be used in hypothesis testing (e.g.,
using the method of Willis et al. (2016)). We consider both parametric and
nonparametric bootstrap approaches to estimating the variance of the diversity
estimates produced by our model and evaluate them under simulation. For a
given dataset (W, X), let 3 and 3 be the estimated values of 8 and ¥ estimated
by the algorithm described in Section 4.1.

The parametric bootstrap approach to estimating Var(&;) and Var(@lj) for
arbitrary diversity indices works as follows: B datasets are simulated from the
log-ratio model with 4 = X3 and ¥ = . Then, for each of the B simulated
datasets, bootstrap estimates {(3®,2(®))}B | are obtained using the algorithm
described in Section 4.1, and an estimate of the diversity index for sample ¢

is obtained based on each simulated dataset (i.e., {dgb)}le). The parametric

bootstrap estimate of Var(d;) is then Varb( A0 )), where ﬁ”() is the sample
variance. An estimate of the variance of any ﬁ diversity index can be obtained
in the same way.

We also consider a nonparametric bootstrap approach to estimating the vari-
ance of our estimates. We uniformly at random select with replacement n4,
elements frorn {1,...,n} to obtain a set which we call B. We then estimate
(3®) 22(B)) from (W(B) XB)), Where W®B) and X®) are the rows of W and

X with row index in B, and use {(3(8), £(8))} estimates to obtain &\”). We re-

(Bb)}

peat this process B times to obtain a set of estimates {a from which we

calculate the non-parametric bootstrap estimate Var(az) = Varb(&ggb)) (and
similarly for S-diversity).

The parameter X drives the variance in the log-ratio model: as ||X||o, — 0,
the distribution of W converges to a multinomial distribution. Therefore, the
overdispersion of the log-ratio model relative to the multinomial model is driven
by X. However, the number of taxa often greatly exceeds the number of samples
obtained in microbiome surveys, and in this setting, (X)) may be a poor
estimate of ¥ 7! in Eq. (29), even for large t. We therefore consider replacing
(2T in Eq. (29) with a regularized estimate obtained from the graphical lasso
(Friedman et al. 2008, Witten et al. 2011). Following the popular microbial
network estimation software SPIEC-EASI (Kurtz et al. 2015), we use stability
selection to select the regularization parameter (Liu et al. 2010, Kurtz et al.
2015). We also consider replacing (X)) with the maximum likelihood estimate
restricted to the class of diagonal covariance matrices. Note that this approach to
covariance estimation ignores variance attributable to inter-taxon interactions,
but allows for overdispersion relative to the multinomial due to within-taxon
interactions.

We evaluate the performance of these 6 approaches to estimating the vari-
ance of diversity indices (2 approaches to estimating the variance for each of
3 approaches to estimating the inverse covariance) under simulation. We de-
sign our simulation to mimic the dataset analyzed in Section 6, but with vary-
ing @, the number of taxa and the size of the covariance matrix to be esti-
mated. As is the case for the dataset of Section 6, we fix p = 1, n = 12,
and set X = (1%, (02,,/3,11,/3)7). Let W be the columns of the count ma-
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trix W of Section 6 corresponding to the () most common taxa over all sam-
ples. Let Y& = ¢(W?) € RO, and Y? = [Y¥...Y?] € R™(@-1D. We
set 39 = (XTX)7'XTY® and X9 to be the covariance of the columns of
Y@ — X9, and for each Q, we simulate data according to the log-ratio model
with parameters 89, ¥9 and M; = Y Wi,. Specifically, to simulate from
the log-ratio model with parameters (8,%, X, M), we first simulate a matrix
Y € R™*(@-1 with ith row Y; ~ N(XT3,%), then calculate the matrix Z
with ith row Z; = ¢!(Y;) (see Eq. (15)), and finally simulate the matrix
W € Z"*Q with W; ~ Multinomial(M;, Z;). Noting that n is small at n = 12
(as is often the case for microbiome analyses), we choose B = 3 simulated
datasets for the parametric bootstrap and B = 3 subsamples of size ng,, = 6
for the nonparametric bootstrap approach.

Fic 1. A comparison of candidate nonparametric and parametric bootstrap approaches to
estimating the variance of diversity estimates under a model that incorporates microbial co-
occurrence patterns. The parametric bootstrap has lower wvariance than the nonparametric
bootstrap (left panel), and the median difference with true variance close to zero (right panel).
No approach to covariance estimation consistently outperforms other approaches.
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We compare the estimated variance of the 6 methods in Figure 1 for a varying
number of taxa Q). For brevity, only the variance of the Shannon index and Bray-
Curtis index are shown. We observe that both parametric and nonparametric
bootstrap variances are of similar magnitude, with parametric approaches gen-
erally having slightly lower median variance (left panels). In addition, to confirm
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that the estimated variance does not understate the true variance, we compare
the difference between the estimated variance and the true variance for each
method (right panels). The true variance of each method is estimated by re-
peatedly simulating data according to (3%, 9, M), estimating the diversity
index for each simulated dataset and each covariance estimate, and calculating
the variance of the estimated indices. We observe that the median difference
between the true variance and the stated variance is near zero for the paramet-
ric approaches, but negative for the nonparametric approaches, indicating that
nonparametric approaches tend to underestimate the true variance. However,
none of the 3 approaches to covariance estimation show substantial advantage
over the others. This suggests that the primary driver of variance in estimating
diversity in microbial communities is within-taxon interactions (the diagonal el-
ements of ), rather than between-taxon interactions (the off-diagonal elements
of ¥). Given these results, we select the naive (generalized inverse of the sample
covariance) approach to estimating (3()~! as our default method. This ap-
proach is less computationally expensive than fitting the graphical lasso, while
still permitting between-taxon interactions in the model. However, the function-
ality to estimate X via a structured approach is implemented in our R package.

5. Simulation study

Having established estimators for diversity and variance, we now compare the
performance of DivNet to estimates obtained from other methods. We simulate
from the log-ratio model by specifying 8 € RP*?, X € R™*?, ¥ € R?*?, and
M € R™ and simulating W as described in Section 4.2.

Note that the true relative abundance vector for sample 7 is Z; = ¢~ 1(X] 3),
and so the true diversity indices can be calculated for each choice of X and
B. For each of the 4 diversity indices that we consider in this paper (Shannon,
Simpson, Bray-Curtis, and Euclidean), we obtain an estimate under the multi-
nomial model and using the proposed estimation procedure. The procedure of
Arbel et al. (2016) can be applied when p = 2, and so we set p = 2 and choose
X =17, (0,,/2, 1n/2)T) for all simulations. The R package iNEXT (Hsieh et al.
2016) applies to estimating Shannon and Simpson a-diversity indices, but not
to estimating S-diversity indices. Note that many of the Shannon diversity es-
timates are almost identical to the Multinomial MLE for large values of M (M
is commonly 10° or greater in microbiome studies), including the estimates of
Chao & Shen (2003) and Miller (1955), and for this reason we do not compare
them here. For the same reason we also do not show the Simpson diversity es-
timate of Zhang & Zhou (2010). We use the simulator (Bien 2016) to manage
the simulation study.

Throughout this section we evaluate a-diversity estimates using the mean
square error (MSE) over all samples. The MSE of the kth simulation is

n

MSE,(D®) = 1 > (D™ — D;)? (33)
n
=1
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where ¢ indexes the estimates for each of the n samples. We similarly evaluate
the S-diversity estimates:

MSE(D®) = m Z(DE? — Di;)?. (34)

5.1. Estimation error decreases with sample size
We simulate the elements of 3, “ (0,1). To construct X, we construct a
matrix A € R(@-V*(@=1) with elements drawn from a Uniform(—1,1) distri-
bution, and construct a diagonal matrix D with diagonal elements forming an
arithmetic sequence of length ) beginning at 0,4, and decreasing to a minimum
of Opmin. We then set ¥ = ATDA. In this section we set Q@ = 20, opmin = 0.01,
Omaz = D, and M; = 10° for all i, and perform K = 200 simulations.

F1c 2. A comparison of the error of different estimators for a- and B-diversity for commu-
nities where the tara are metworked. When the network is ignored by the estimation proce-
dure (e.g., Chao & Shen (2003), Hsieh et al. (2016) and the widely used “plug-in” estimate
(multinomial MLE)), the error in estimating diversity can be substantial. The proposed esti-
mation procedure, which specifically accounts for metworks, outperforms other estimates for
any sample size n. The distribution of mean squared errors (MSEs) is shown for 200 sim-
ulated datasets. In this simulation, there are M = 10° microbes observed per sample, p = 2
predictors and @ = 20 taza.
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The performance of the proposed method for estimating diversity when data
is simulated under this model is illustrated in Figure 2. For all values of n and
all diversity estimands, the 25%, 50%, and 75% quantiles of { M SE(D®))}; are
uniformly lower for our proposed method compared to all other methods. The
improvement is especially pronounced for the S-diversity indices.

We find that the estimation error decreases as the sample size n increases
for the proposed method and the method of Arbel et al. (2016), but not for
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Fic 3. A comparison of the computing time of different estimators of diversity indices.
Our parallelized EM-MH algorithm for estimation under a network model is competitive
with closed-form estimates, and is substantially faster to compute than the rarefaction-
extrapolation approach of iNEXT (Hsieh et al. 2016) and the nonparametric Bayesian ap-
proach of Arbel et al. (2016). The computation time of the 200 datasets used to produce
Figure 2 is shown.

Method

E Proposed
E Zero-replace
Multinomial MLE

N
o
f

Arbel et. al

(seconds)

=
_l}_..
-1

. e . : . Chao & Shen
o =— =" — - -— giNEXT

10 20 30 40
n: Number of samples

Computation time

the Multinomial MLE and the iNEXT method (Figure 2). This is unsurprising,
since neither the plug-in nor iNEXT estimates use information contained in
the covariate matrix X in their estimates of diversity. Therefore, the additional
information afforded by larger values of n is not leveraged by the plug-in nor
iNEXT estimates, even when experimental replicates are available.

The results shown in Figure 2 are based on fitting our model with ¢t = 10
EM steps and » = 200 MH draws per EM step. For these choices, we show
computation time in Figure 3. Fitting our model with t = 10 EM steps and r =
200 is more computationally expensive than calculating the plug-in estimate,
but less computationally expensive than fitting the model of Arbel et al. (2016)
(with the default 10 chains) or using the package iNEXT (with default 40 knots
and 50 bootstrap resamples). We note that our implementation leverages the
R package parallel (R Core Team 2017) for parallelizing the MH algorithm
employed at each E-step of the EM algorithm.

5.2. FEstimation error is stable across networked communities

We now investigate the effect of varying the co-occurrence structure in the com-
munity on the estimation of diversity. Since larger values of the elements of X
correspond to more strongly co-varying microbial abundances, by varying the
elements of X, we can investigate the effect of the microbial concurrence network
on diversity estimation. To vary the covariance structure in a systematic way,
We Vary op,qq, the largest eigenvalue of . We generate 8 and X as in Section
5.1, set n = 20, Q = 20, opmin = 0.01, M; = 10° for all 4, and perform K = 100
iterations for each choice of 0,,4,- The results are shown in Figure 4. We see
that estimating the diversity in microbial communities with strong occurrence
structures is more challenging than estimating diversity in communities with
co-occurrence structure similar to that of a multinomial model. However, the
proposed method has lower MSE than all other methods that were investigated.
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Additionally, even when microbial abundances are simulated under a model with
strong co-occurrence relationships, the proposed method can estimate the di-
versity with small MSE (Figure 4). In contrast, the estimation error increases as
the co-occurrence relationships strengthen for all other methods. Co-occurrence
relationships in microbial ecosystems are well documented (Faust & Raes 2012),
indicating that a diversity estimation method tailored to networked ecosystems
is of practical utility.

Fic 4. Diversity estimates that incorporate network structure dominate estimators that do not
incorporate network structure in the presence of a strong co-occurrence network. However,
network-based estimates perform well even when there is a very weak network structure. As
Omaz — 0, the network model converges to the multinomial model. However, we see that
the proposed network model performs equally as well or better than estimates based on the
multinomial model for all choices of omaz- This appears to be the case for estimating both
a- and (B-diversity.
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5.3. Estimation error is stable across large communities

Finally, since microbial communities often contain many taxa, we wish to con-
firm the performance of our estimator in large communities. In Figure 5, we see
that the estimation error for the proposed method remains low even as the size
of the community increases, while all other methods have increasing estimation
error. In particular, we note that this is true even though the simulated commu-
nities are networked (0,4 = 5), and the number of taxa exceeds the number
of samples (n = 20). We therefore conclude that the procedure is appropriate
for analyzing the diversity of communities with many taxa, such as microbial
communities.
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Fi1c 5. Diversity estimates that incorporate network structure dominate estimators that do
not incorporate network structure over communities of any size. While most estimators have
increasing error for larger communities, the proposed estimator’s error does not. In the sim-
ulation, we set n = 20 and omaz = 5.
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6. Data analysis: Seafloor microbial diversity

Because of its coarse nature as a community-level summary, diversity analyses
are especially relevant to studies of novel ecological communities. Lee et al.
(2015) collected and analyzed microbial communities living on seafloor rocks
on the Dorado Outcrop, an area of exposed basalt on the East Pacific Rise.
Hydrothermal vents such as the Dorado Outcrop inform our understanding of
microbe-mineral interactions in the subsurface. Samples were collected from the
seafloor rock, including lithified carbonate (“carbonate,” n = 1), glassy, altered
basalts (“glassy,” n = 4), and highly altered basalts (“altered,” n = 8). Analysis
of the microbial communities on these rocks revealed 1490 distinct microbial
taxa after filtering for low quality sequences (see Lee et al. (2015) and Lee
(2018) for details surrounding sequencing and construction of the abundance
table). Here we investigate if the community-level structure differs between the
different rock types.

We investigate 30 choices for the Q-th taxon, whose abundance will be the
denominator in the calculated log ratios. Since 3% log(z/y) = —1/y is smallest
in absolute value for large y, we investigate the effect of setting @ to be a
high abundance taxon. In particular, there were 66 amplicon sequence variants
(ASVs) that were present in all samples, and so we uniformly at random select
10 ASVs from this collection of 66 ASVs, and compare the estimates of diversity
obtained by setting each of these 10 taxa as the denominator taxon. We contrast
these estimates with those obtained from ranging @) across the 10 most abundant
taxa over all samples, i.e., let U; = 2?21 Wi;j, and call taxon d the k-th most
abundant if Uy = Uy for Uy, the k-th order statistic of the {U;};. We also
compare 10 randomly selected taxa. The estimated Shannon, Simpson, Jaccard,
and Euclidean diversities are shown in Figure 6 (right panels), indicating that,
in practice, the diversity estimates are almost invariant to the choice of base


https://doi.org/10.1101/305045
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/305045; this version posted April 21, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

/ 18

taxon. Hereafter we select @ to be ASV 2 (a Nitrospirae of order Nitrospirales),
which was the most abundant taxon that was observed in every sample.

In contrast to the stability of diversity estimates with varying D, we find
that the effect of perturbing the zero counts can be substantial. As noted pre-
viously (Martin-Ferndndez et al. 2003, Cao et al. 2017), W;; is commonly zero
for microbiome data, because many taxa do not occur in every sample (46% of
the entries of our abundance table are zero). However f(z,y) = log(x/y) is only
defined for x,y > 0, and so it is common to perturb the original abundance
data W by adding a perturbation factor p € (0,1) to create a new abundance

table Wi(f) = W;; + p, and the modeling the perturbed data W® _ In Figure
6, we observe sizeable changes in the diversity estimates when varying p close
to zero (at most 24%, -274%, -36% and -53% changes in Shannon, Simpson,
Bray-Curtis, and Euclidean estimates for p = 0.001 compared to p = 0.5), but
smaller changes when p is increased from 0.5 to 1 (at most 5%, -30%, -15% and
-15% changes for p = 0.5 to p = 1). We therefore follow Cao et al. (2017) and

choose p = 0.5 as the perturbation parameter for the remainder of our analysis.

Fic 6. The log-ratio model described in Section 8 can only be fit to data with a minimum
abundance greater than zero. Abundance data for microbiome studies is generally sparse, and
46% of the observed abundances of the Lee et al. (2015) dataset are zero. For this reason, it
is common to add a perturbation offset p to the observed abundance table before fitting the
log-ratio model. Here we see that the estimated diversity does depend on the choice of p.
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Throughout this paper we have argued that the multinomial model is mis-
specified for microbiome data. To investigate this claim for the dataset of Lee
et al. (2015), we fit the log-ratio model and calculate the eigenvalues of of 3.
A test that that the largest eigenvalue of ¥ is zero is rejected with p < 107°
(El = 4610.44, pinp = 1779, 0y = 28.33) (Johnstone 2001, El Karoui 2003).
This is strong evidence that a networked model is appropriate for this dataset.

Finally, we compare the estimates obtained from our method to the estimates
obtained from other methods. Interval estimates are shown in Figure 7. While
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most methods produce similar estimates, we note a number of advantages of our
proposal. Firstly, our method handles multiple covariates, which the method of
Arbel et al. (2016) does not. Secondly, any diversity index that is a function of
relative abundance can be estimated using our method, unlike the methods of
Hsieh et al. (2016) and Chao & Shen (2003). Thirdly, our interval estimates are
more symmetric around the median of the bootstrapped estimates compared to
other estimates, indicating the greater stability of DivNet compared to other
methods.

The final advantage that we note is that for a sample condition which was only
observed once (carbonate), an interval estimate is computable and of nonzero
length. Our method is the only method that achieves this. The method of Arbel
et al. (2016) cannot handle multiple covariates, and the remaining estimators
can only produce point estimates based on a single sample. It is also worth
noting that the interval for the sample observed once is wider than the inter-
val for samples observed more than once (altered and glassy basalts), which is
consistent with the amount of information available about this sample condition.

Fic 7. Lee et al. (2015) collected and analyzed microbial communities living on 3 types of
seafloor basalts on the Dorado Outcrop. Here we compare a variety of estimators for 4 diver-
sity indices (26% and 75% quantiles are shown). Our method works with multiple covariates,
produces approximately symmetric interval estimates, and is the only method which can pro-
duce confidence intervals for the carbonate basalts.
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7. Discussion

Despite substantial evidence that strong co-occurrence networks exist in ecologi-
cal communities, and a growing body of literature concerned with estimating co-
occurrence networks, no methods that explicitly incorporate co-occurrence net-
works into diversity estimation currently exist. Here we propose a new method,
called DivNet, to fill this gap. We have shown that DivNet is accurate, fast, per-
forms well with a large number of taxa, and incorporates replicate and covariate
information. It also permits extrapolation to experimental conditions that were
not observed. It is available as a R package via github.com/adw96/DivNet.

By leveraging information from multiple samples, DivNet can estimate the
relative abundance of a taxon in an ecosystem where it was not observed. How-
ever, a limitation of DivNet is it does not estimate the number of taxa that
were missing in all samples. Therefore, when there are a large number of latent
taxa, DivNet may miss the effects of these low abundance taxa. This weakness
is shared by the estimators of Arbel et al. (2016) and Cao et al. (2016), while
the estimators of Hsieh et al. (2016) and Chao & Shen (2003) adjust for missing
taxa (but are only applicable to a-diversity). However, the latter 2 estimators
cannot handle covariates nor repeated samples, which we believe significantly
contributes to the strong performance of our method. We note that in the sit-
uation when no replicates or covariates are available, there are a large number
of latent taxa, and SB-diversity is not of interest, a practitioner may prefer these
methods.

We suggest 3 avenues for further research that would build upon our proposed
method. The first is to construct an estimator under the log-ratio model that
estimates the number of missing taxa. However, this would require a principled
approach to estimating the ecological network of a taxon that was not observed
in any sample. A second avenue for research is to impose some structure, such
as sparsity, on the relative abundance parameter 5, whose dimension is large
when there are a large number of taxa. Finally, since diversity indices that
simultaneously incorporate relative abundance and phylogenetic information are
commonly used by ecologists, extending the method to incorporate phylogeny
is a challenging open problem.

All code to reproduce the simulations and data analysis, along with tutorials
for using our package, are available at github.com/adw96/DivNet.
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