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ABSTRACT 10 

Accurate species-level taxonomic classification and profiling of complex microbial communities 11 

remains a challenge due to homologous regions shared among closely related species and a 12 

sparse representation of non-human associated microbes in the database.  Although the database 13 

undoubtedly has a strong influence on the sensitivity of taxonomic classifiers and profilers, to 14 

date, no study has carefully explored this topic on historical RefSeq releases and explored its 15 

impact on accuracy.  In this study, we examined the influence of the database, over time, on k-16 

mer based sequence classification and profiling.  We present three major findings: (i) database 17 

growth over time resulted in more classified reads, but fewer species-level classifications and 18 

more species-level misclassifications; (ii) Bayesian re-estimation of abundance helped to recover 19 

species-level classifications when the exact target strain was present; and (iii) Bayesian re-20 

estimation struggled when the database lacked the target strain, resulting in a notable decrease in 21 

accuracy.  In summary, our findings suggest that the growth of RefSeq over time has strongly 22 

influenced the accuracy of k-mer based classification and profiling methods, resulting in 23 
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different classification results depending on the particular database used.  These results suggest a 24 

need for new algorithms specially adapted for large genome collections and better measures of 25 

classification uncertainty. 26 

 27 

Keywords: Taxonomic classification, Reference database, Metagenomics, Microbiome, 28 

Comparative analysis 29 

 30 

INTRODUCTION 31 

Fundamental questions of a metagenomic survey are: (i) what microbes are present in each 32 

sample, (ii) how abundant is each organism identified in a sample, (iii) what role might each 33 

microbe play (i.e. what gene functions are present) and (iv) how do the previous observations 34 

change across samples and time?  Specifically, there have been numerous studies highlighting 35 

the utility of metagenomic datasets for pathogen detection, disease indicators, and health 1,2.  36 

Addressing each of these fundamental questions is predicated on the ability to assign taxonomy 37 

and gene function to unknown sequences. 38 

 39 

Several new tools and approaches for taxonomic identification of DNA sequences have emerged 40 

3–5, in addition to community-driven ‘bake-offs’ and benchmarks 6.  k-mer based classification 41 

methods such as Kraken or CLARK 3,7 are notable for their exceptional speed and specificity, as 42 

both are capable of analyzing hundreds of millions of short reads (ca. 100 base pairs) in a CPU 43 

minute.  These k-mer based algorithms use heuristics to identify unique, informative, k-length 44 

subsequences (k-mers) within a database to help improve both speed and accuracy.  A challenge 45 

for k-mer based classification approaches is that closely related species and strains often contain 46 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 19, 2018. ; https://doi.org/10.1101/304972doi: bioRxiv preprint 

https://doi.org/10.1101/304972
http://creativecommons.org/licenses/by/4.0/


 3 

many identical sequences within their genomes.  This challenge is typically addressed by 47 

assigning the query sequence with the lowest common ancestor (LCA) of all species that share 48 

the sequence.  A comprehensive benchmarking survey indicated that Kraken offered the best F1 49 

score (a measure considering both precision and recall) among the k-mer based taxonomic 50 

classifiers evaluated at the species level 8.  Bracken, a Bayesian method that refines Kraken 51 

results, is capable of estimating how much of each species is present among a set of ambiguous 52 

species classifications by probabilistically re-distributing reads in a taxonomic tree 9.  We thus 53 

selected Kraken and Bracken as representative tools from the genre of k-mer based classification 54 

methods.  The focus on this study was not to examine a specific software tool, but rather to 55 

decouple the performance of k-mer based methods from the underlying database. 56 

 57 

Available k-mer based methods for taxonomic identification and microbiome profiling rely on 58 

existing reference databases.  While several investigations have examined the influence of 59 

contamination in specific database releases, and identified idiosyncrasies specific to a release 60 

10,11, no study has examined the specific influence of perhaps the most popular database from 61 

which to build classification databases, the repository of sequenced and assembled microbes 62 

(RefSeq), across all releases of the database.  Additionally, metagenomic classification and 63 

profiling tools are commonly compared to each other using simulated datasets on a fixed 64 

database, with leave-one-out analysis, but never compared to each other across recent trajectories 65 

in database growth.  The aim of this study was to elucidate the influence of RefSeq database 66 

growth over time on the performance of k-mer based taxonomic identification tools. 67 

 68 

RESULTS 69 
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RefSeq database growth 70 

Since its release in June 2003 bacterial RefSeq, on average, has doubled in size (giga base pairs, 71 

Gbp) every 1.5 years (Fig. 1A), with the number of unique 31-mers in the database growing at a 72 

similar rate (Fig. 1B).  A more recent release, bacterial RefSeq version 84 (released 9/11/2017), 73 

totaled over 700 Gbp of sequence data.  The Simpson’s index of diversity is a metric with values 74 

between zero and one that reports the probability that two individuals randomly selected from a 75 

sample will not belong to the same species.  Samples with a high Simpson’s index of diversity 76 

(i.e. closer to one) may be considered more diverse than those with low values (i.e. closer to 77 

zero).  The diversity for each version of the bacterial RefSeq database increased until April 2013 78 

where the Simpson’s index of diversity for each subsequent bacterial RefSeq release has trended 79 

downward (Fig. 1C).  A slower growth is also seen in the number of new bacterial species in 80 

each RefSeq version, indicating many of the same species are being sequenced repeatedly (Fig. 81 

1D). 82 

 83 

Taxonomic classification over time with a simulated metagenome 84 

Kraken’s own simulated validation set of ten known genomes was searched against nine versions 85 

of bacterial RefSeq (1, 10, 20, 30, 40, 50, 60, 70, 80) and the MiniKraken database (4GB 86 

version) (Fig. 2).  The accuracy of each Kraken run depends on the RefSeq version used in the 87 

search (Fig. 2; Table 1).  Correct genus-level classifications increased as RefSeq grew, but 88 

correct species-level classifications peaked at version 30 and tended to decline thereafter (Fig. 2).  89 

The decrease in correct species classifications is due to more closely-related genomes appearing 90 

over time in RefSeq, making it difficult for the classifier to distinguish them and forcing a move 91 

up to the genus level.  Overall, misclassified species-level calls were consistently rare, as reads 92 
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were misclassified at the species level an average of 7% of the time (Table 1; Fig. 2).  The 93 

fraction of reads classified at any taxonomic level, regardless of accuracy, increases as RefSeq 94 

grows over time (Fig. 3).  However, the fraction of species-level assignments (again, regardless 95 

of accuracy) peaks at RefSeq version 30 and begins to decline thereafter, while the fraction of 96 

genus-level classifications begins to increase. 97 

 98 

Bracken was used to re-estimate the abundances of classifications made by Kraken when 99 

searching the simulated reads against eight bacterial RefSeq database versions (1, 10, 20, 30, 40, 100 

50, 60, 70).  Bracken first derives probabilities that describe how much sequence from each 101 

genome is identical to other genomes in the database.  This step requires searching a Kraken 102 

database against itself with Kraken, which could not be performed for the MiniKraken DB (as 103 

there is no FASTA file for this database) or bacterial RefSeq version 80 (as it would require 104 

extensive computation for a database that size).  Bracken was able to re-estimate species 105 

abundances for 95% of the input data using RefSeq version 70, while Kraken only classified 106 

51% of reads at the species level.  Because Bracken may probabilistically distribute a single 107 

read’s classification across multiple taxonomy nodes, its performance must be measured in terms 108 

of the predicted abundances.  Bracken typically included the correct species in its re-estimation, 109 

but sometimes included incorrect species in the abundance estimation (on average 15% of reads 110 

were associated with a genome outside of the ten knowns). 111 

 112 

Taxonomic classification of difficult to classify genomes over time 113 

The challenging nature of classifying sequences belonging to the Bacillus cereus sensu latu 114 

group has been previously documented 12,13.  The B. anthracis species within this group is a well-115 
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defined monophyletic subclade of the larger B. cereus group, and the base of the B. anthracis 116 

clade is commonly denoted by a single nonsense mutation in the plcR gene 14 which is conserved 117 

in all known B. anthracis genomes and has been shown to confer a regulatory mutation essential 118 

for maintaining the pXO1 and pXO2 plasmids that carry the virulence factors characteristic of 119 

anthrax 15.  However, not all B. anthracis cause disease in humans, such as B. anthracis Sterne 120 

(missing the pXO2 plasmid) and some B. cereus strains do cause anthrax-like disease 16, 121 

complicating a precise species definition.  Thus, it is not a surprise that accurate species-level 122 

classification within this group has proven challenging for k-mer based methods, especially those 123 

methods not based on phylogenetic evidence.  To demonstrate how difficult sequences from this 124 

group have been to classify over time, simulated reads were created for two Bacillus cereus 125 

strains.  The first, B. cereus VD118, is a strain available in RefSeq version 60 and beyond, and 126 

the second, B. cereus ISSFR-23F 17, was recently isolated from the International Space Station 127 

and is not present in any of the RefSeq releases tested. It is phylogenetically close to B. 128 

anthracis, but lacks the phylogenetic and species characteristics of B. anthracis.  Again, as 129 

bacterial RefSeq grows over time, the number of genus-level classifications made by Kraken 130 

increases (Fig. 4).  While the number of genus-level calls made by Kraken increases over time 131 

the number of unclassified and misclassified species calls decreases (most commonly B. 132 

anthracis, B. thuringensis, and B. weihenstephanensis). 133 

 134 

Bracken made species-level predictions for all reads no matter which version of bacterial RefSeq 135 

was used (Fig. 4).  However, the increased rate of species-level predictions came at the cost of 136 

accuracy, as Bracken correctly identified B. cereus VD118 and B. cereus ISSFR-23F an average 137 

of 72% and 29% of the time, respectively, across RefSeq versions 1 through 70.  The fraction of 138 
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reads assigned to each Bacillus species varied substantially from each database tested.  The range 139 

of Bacillus species predictions for B. cereus VD118 were: B. cereus 81% (max=100%, 140 

min=18%), B. anthracis 48% (max=48%, min=0%), B. thuringiensis 23% (max=23%, min=0%), 141 

and B. weihenstephanensis 76% (max=76%, min=0%).  While the range of Bacillus species 142 

predictions for B. cereus ISSFR-23F were: B. cereus 45% (max=50%, min=5%), B. anthracis 143 

90% (max=95%, min=5%), and B. thuringiensis 54% (max=54%, min=0%). 144 

 145 

CPU/Memory performance over time 146 

Historical bacterial RefSeq versions were recreated and used to build Kraken databases with 147 

default settings.  While most databases were constructed with ease and in less than a day, version 148 

70 required 500 GB of RAM and 2 days (single compute node using on 64 cores), while version 149 

80 required ca. 2.5 TB of RAM and ca. 11 days (single compute node using on 64 cores).  Given 150 

this trend, future releases will likely require over 4 TB of RAM and weeks of computation to 151 

build, putting into question the feasibility of building and profiling k-mer databases on future 152 

RefSeq versions.  Recent studies 18 have suggested alternative approaches for database 153 

construction that would help to circumvent future computational bottlenecks. 154 

 155 

DISCUSSION 156 

The results of our study support three conclusions: (i) the RefSeq bacterial database composition 157 

and diversity is dynamic, varying from release to release; (ii) the database composition strongly 158 

influences the performance of k-mer based taxonomic identification methods, and (iii) Bayesian 159 

based methods can help mitigate some of the effect, but struggle with novel genomes that have 160 

close relatives in the database.  161 
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 162 

Database influences on k-mer based taxonomic classification 163 

Using Bracken, the majority of Bacillus cereus ISSFR-23F simulated reads were not correctly 164 

assigned to B. cereus but were more frequently mis-assigned as Bacillus anthracis or Bacillus 165 

thuringiensis (Fig. 4B). This, in part, is not surprising as two of the three species in this group, B. 166 

cereus and B. thuringiensis, have no clear phylogenetically defined boundary, though B. 167 

anthracis is phylogenetically distinct from B. cereus and B. thuringiensis. Furthermore, any two 168 

genomes within the Bacillus cereus sensu lato group are likely to be over 98% identical 9.  Given 169 

that k-mer based methods are not phylogenetically-grounded, but rather based on sequence 170 

composition, they are susceptible to misidentification in clades where the taxonomy is in partial 171 

conflict with phylogeny, such as the Bacillus cereus sensu lato group.  One clear example of 172 

misidentification within this group was the false identification Anthrax in public transit systems 173 

19,20. 174 

 175 

Another observation worth highlighting is that the fraction of simulated reads classified as one of 176 

the three B. cereus sensu lato species varied across database versions (Fig. 4), with the exception 177 

of B. cereus VD118, which was present in RefSeq releases 60 and 70 (Fig. 4A).  The variation in 178 

species classifications across database versions indicates that even when using the same tools to 179 

analyze the same dataset, the conclusions derived from this analysis can vary substantially 180 

depending on which version of a database you are searching against, especially for genomes 181 

belonging to difficult to classify species (i.e. require phylogenetic-based approaches). 182 

 183 

Imperfect data 184 
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The genomic data deluge has helped to expand public repositories with a broader and deeper 185 

view of the tree of life, but has also brought with it contamination and misclassification.  186 

Contamination in public databases is well-documented 21 and represents an additional 187 

confounding factor for k-mer based methods.  While several custom tools have been built to deal 188 

with imperfect data 22, there is a need for database ‘cleaning’ tools that can preprocess a database 189 

and evaluate it for both contamination (genome assemblies that contain a mixture of species) and 190 

misclassified species and strains (genomes that are assigned a taxonomic ID that is inconsistent 191 

with its similarity to other genomes in the database).  The misclassification issue often is in the 192 

eye of the beholder; species have been named based on morphology, ecological niche, toxin 193 

presence/absence, isolation location, 16S phylogenetic placement, and average nucleotide 194 

identity across the genome.  This, coupled with an often ambiguous species concept in microbial 195 

genomes due to horizontal gene transfer and mobile elements 23, brings into question the reliance 196 

on the current taxonomic structure for assigning names to microbes sequenced in metagenomic 197 

samples.  A more robust approach would be for the classification databases to derive their own 198 

hierarchical structure directly from the data, rather than taxonomy, and then map back the 199 

internally derived hierarchy to widely-used taxonomic names. 200 

 201 

CONCLUSION 202 

Our findings demonstrate that changes in RefSeq over time have influenced the accuracy of k-203 

mer based classification and profiling methods.  Bayesian re-estimation approaches are helpful 204 

for species or strain level prediction but can result in false positives and are computationally 205 

prohibitive with larger databases.  Despite recent progress in k-mer based methods for 206 

metagenome profiling and classification these tools should likely be used as step one in a multi-207 
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 10 

step process, which also includes read mapping, assembly, feature prediction, and annotation.  208 

Additionally, priority should be given to the breadth, not depth, of species added to reference 209 

databases over time. 210 

 211 

METHODS 212 

Acquisition of bacterial RefSeq databases versions 1 through 80 213 

FASTA files of previous versions of bacterial RefSeq are not publically available for download. 214 

Therefore, sequences from previous versions of bacterial RefSeq were acquired using custom 215 

scripts (https://github.com/dnasko/refseq_rollback).  Briefly, the process involved downloading 216 

the current bacterial RefSeq release (ver. 84 as of the date of the analysis) FASTA files 217 

(ftp.ncbi.nlm.nih.gov/refseq/release/bacteria) and concatenating them into one file.  Then, the 218 

catalog file associated with the desired version is downloaded 219 

(ftp.ncbi.nlm.nih.gov/refseq/release/release-catalog/archive), which contains the identifiers for 220 

sequences present in that version of bacterial RefSeq.  Sequence identifiers in that version’s 221 

catalog file are pulled from the current RefSeq FASTA file and written to a new file.  Using the 222 

refseq_rollback.pl script any version of bacterial RefSeq can be created.  For this study only 223 

versions 1, 10, 20, 30, 40, 50, 60, 70, and 80 were recreated. 224 

 225 

Taxonomic classification on simulated datasets 226 

Two simulated read datasets were used to test Kraken and Bracken performance with different 227 

versions of the bacterial RefSeq database.  The first simulated dataset was downloaded from the 228 

Kraken website (ccb.jhu.edu/software/kraken) and was previously used in the Kraken manuscript 229 

as a validation set 3.  Briefly, this simulated dataset was composed of 10 known bacterial species: 230 
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Aeromonas hydrophila SSU, Bacillus cereus VD118, Bacteroides fragilis HMW 615, 231 

Mycobacterium abscessus 6G-0125-R, Pelosinus fermentans A11, Rhodobacter sphaeroides 232 

2.4.1, Staphylococcus aureus M0927, Streptococcus pneumoniae TIGR4, Vibrio cholerae 233 

CP1032(5), and Xanthomonas axonopodis pv. Manihotis UA323.  Each genome had 1,000 234 

single-end reads (101 bp in size) for a total of 10,000 reads.  We selected this dataset as it has 235 

been widely used as a benchmark for other k-mer based classification methods 3,7 and represents 236 

a breadth of species.  This simulated read dataset was classified against each of the recreated 237 

bacterial RefSeq databases using Kraken (ver 1.0) with default settings. 238 

 239 

To test the ability to classify reads from genomes not in the bacterial RefSeq database 10,000 240 

simulated single-end Illumina reads (101 bp) were created using Grinder 24 with default settings 241 

from: (i) a Bacillus cereus genome, B. cereus VD118, not present in RefSeq until verion 60 and 242 

beyond; and (ii) a novel B. cereus genome, B. cereus ISSFR-23F 17, never present in any of the 243 

RefSeq versions tested.  We decided to use these genomes as they are members of the B. cereus 244 

sensu lato group, containing a collection of species that are known to be challenging for k-mer 245 

methods to distinguish between 19,20.  These datasets were classified with Kraken (ver. 1.0) and 246 

Bracken (ver. 1.0.0) 9 both with default settings (Bracken “read-length” set to 101). 247 

 248 

Running Bracken on Kraken output 249 

Bracken (ver. 1.0.0) was run on the output of each Kraken search (except for release 80 and 250 

KrakenMiniDB).  Default parameters were used except for “read-length”, which was set to 101. 251 

 252 
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Bacterial RefSeq diversity metric calculations 253 

Diversity metrics were calculated for every version of bacterial RefSeq (1-84) by parsing the 254 

catalog files for each version.  An operational taxonomic unit (OTU) table was constructed using 255 

the NCBI taxonomy identifiers as taxonomic units (see create_otu_table.pl in the refseq_rollback 256 

repository).  The OTU table was imported to QIIME (ver. MacQIIME 1.9.1-20150604) 25. 257 

Diversity metrics (Simpson, Shannon, Richness) were calculated using the “alpha_diversity.py” 258 

script and plotted using the R base package. 259 

 260 

ABBREVIATIONS 261 

OTU: Operational taxonomic unit; LCA: Lowest common ancestor 262 
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Table 1. Fractions of unclassified (Unclass.), correctly classified (Correct), and misclassified 360 

(Misclass.) simulated reads from ten genomes using Kraken against different versions of 361 

bacterial RefSeq. 362 

   Genus Species 

Release Date Unclass. Correct Misclass. Correct Misclass. 

1 2003-06-30 0.62 0.38 0.00 0.29 0.08 

10 2005-03-06 0.53 0.46 0.01 0.38 0.07 

20 2006-11-05 0.49 0.49 0.01 0.40 0.08 

30 2008-07-07 0.25 0.74 0.00 0.60 0.07 

40 2010-05-07 0.22 0.77 0.00 0.54 0.08 

50 2011-11-08 0.21 0.78 0.01 0.52 0.07 

60 2013-07-19 0.03 0.96 0.00 0.57 0.09 

70 2016-03-03 0.03 0.95 0.01 0.42 0.09 

80 2017-01-09 0.03 0.94 0.01 0.28 0.08 

 363 
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 364 

Figure 1: Simpson diversity index of bacterial RefSeq has decreased every release since 365 

April 2013. (A) The number of base pairs in bacterial RefSeq continues to grow exponentially, 366 

but (B) the number of unique 31-mers and (D) the number of bacterial species added increases 367 

slower. (C) The Simpson’s diversity index grew every release up to April 2013 where it has 368 

declined every release since. 369 
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 372 

Figure 2: The fraction of correct species classifications (right) decreases in later RefSeq 373 

database versions because they are only being classified at the genus level (left).  Kraken 374 

classification results of simulated reads from known genomes against nine versions the bacterial 375 

RefSeq database and the MiniKraken database.  Misclassifications at the genus and species 376 

levels remain consistently low across database versions. 377 
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 388 

Figure 3: Species-level classifications decrease, and genus-level classifications increase as 389 

bacterial RefSeq grows.  Fraction of simulated reads classified at different taxonomic levels, 390 

regardless of accuracy, using Kraken against ten databases.  The circles below indicate when 391 

each genome’s species/strain is in a database.  Although the MiniKraken database contains all 10 392 

genomes it yields results comparable to bacterial RefSeq version 40. 393 
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 396 

Figure 4: The fraction of simulated reads classified among Bacillus species varied 397 

considerably depending on which RefSeq version was used, demonstrating the influence of 398 

the database on a k-mer based taxonomic classification. (A) Classifying simulated B. cereus 399 

VD118 reads with Kraken (left) and Bracken (right) against different version of RefSeq.  400 

Species-level classifications varied, and the fraction of unclassified reads decreased with Kraken, 401 
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as the database grew.  Once B. cereus VD118 appeared in the database (ver. 60) Bracken 402 

correctly classified every read. (B) Species-level classifications decrease with Kraken as RefSeq 403 

grows using simulated reads from an environmental Bacillus cereus not in RefSeq.  Fraction of 404 

simulated B. cereus ISSFR-23F reads classified using Kraken ver. 1.0 (left) and Bracken ver. 405 

1.0.0 (right) against different versions of bacterial RefSeq. Bracken classification pushed all 406 

reads to a species-level call, though these classifications were often for other Bacillus species. 407 
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