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Abstract 

 
Neuroimaging studies have implicated a set of striatal and orbitofrontal cortex (OFC) 

regions that are commonly activated during reward processing tasks.  Resting-state functional 

connectivity (RSFC) studies have demonstrated that the human brain is organized into several 

functional systems that show strong temporal coherence even in the absence of goal-directed 

tasks.  Here we use seed-based and graph-theory RSFC approaches to characterize the systems-

level organization of putative reward regions of at rest. Peaks of connectivity from seed-based 

RSFC patterns for the nucleus accumbens (NAcc, anatomically defined) and orbitofrontal cortex 

(OFC, functionally defined) were used to identify candidate reward regions which were merged 

with a previously used set of regions (Power et al., 2011). Graph-theory was then used to 

determine system-level membership for all regions.  Several regions previously implicated in 

reward-processing (NAcc, lateral and medial OFC, and ventromedial prefrontal cortex) 

comprised a distinct, preferentially coupled system.  This RSFC system is stable across a range 

of connectivity thresholds and shares strong overlap with meta-analyses of task-based reward 

studies.  This reward system shares between-system connectivity with systems implicated in 

cognitive control and self-regulation, including the fronto-parietal, cingulo-opercular, and default 

systems.  Further, differences may exist in the pathways through which control systems interact 

with key regions of this reward system.  Whereas NAcc regions of the reward system are 

functionally connected to cingulo-opercular and default systems, OFC regions of the reward 

system show stronger connectivity with the fronto-parietal system.  We propose that future work 

may be able to interrogate group or individual differences in connectivity profiles using the 

regions delineated in the current work to explore potential relationships to appetitive behaviors, 

self-regulation failure, and addiction.  
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Introduction 

Reward is a multifaceted term which captures multiple components of cognitive 

experience and behavior related to liking, wanting and learning (Berridge & Kringelbach, 2008).  

Non-human animal studies show that consuming rewards (foods, drugs) or engaging in 

rewarding activities (i.e., sex) is associated with activation of mesolimbic dopamine brain 

regions (e.g., the ventral tegmental area and nucleus accumbens/ventral striatum) and the 

orbitofrontal cortex (Boileau et al., 2003; Carelli, Ijames, & Crumling, 2000; Damsma, Pfaus, 

Wenkstern, Phillips, & Fibiger, 1992; Everitt, 1990; M. L. Kringelbach, 2005; Schilström, 

Svensson, Svensson, & Nomikos, 1998).  In humans, functional neuroimaging work has 

similarly shown that activity in the ventral striatum and orbitofrontal cortex (OFC) increases 

during both reward consumption (Breiter et al., 1997; Gottfried, O’Doherty, & Dolan, 2003; 

Kringelbach, O’Doherty, Rolls, & Andrews, 2003) and reward anticipation, such as when 

viewing a food advertisement or when seeing or smelling a cigarette (Carter & Tiffany, 1999; 

Harris, Bargh, & Brownell, 2009; Lambert, Neal, Noyes, Parker, & Worrel, 1991; Rapuano, 

Huckins, Sargent, Heatherton, & Kelley, 2016; Sayette & Hufford, 1997).  In addition to 

activation of the ventral striatum, and OFC, human neuroimaging work has consistently shown 

reward-related activity extending into the thalamus, the dorsal striatum, VTA, medial prefrontal 

cortex, and insula in response to reward cues such as food images, drugs, attractive faces, as well 

as to secondary reward cues such as money (Cloutier, Heatherton, Whalen, & Kelley, 2008; Due, 

Huettel, Hall, & Rubin, 2002; Garavan et al., 2000; Knutson, Taylor, Kaufman, Peterson, & 

Glover, 2005; Sescousse, Caldú, Segura, & Dreher, 2013; Somerville, Hare, & Casey, 2011; van 
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der Laan, de Ridder, Viergever, & Smeets, 2011; Yarkoni, Poldrack, Nichols, Van Essen, & 

Wager, 2011).   

More recently, the field of neuroscience has demonstrated a relationship between reward 

cue-reactivity and real-world appetitive cravings and behaviors such as weight gain, and sexual 

interest (Demos, Heatherton, & Kelley, 2012; Janes et al., 2010; Lopez, Hofmann, Wagner, 

Kelley, & Heatherton, 2014; McClernon, Kozink, & Rose, 2008; Stice, Yokum, Bohon, Marti, & 

Smolen, 2010).  Importantly, experimentally-measured reward responsivity can reflect well-

established sensitivities to rewards.  Casey and colleagues (2011) showed that individuals who 

had difficulty delaying gratification as a child (e.g., Mischel et al., 1989) exhibited heightened 

reward responsivity in the ventral striatum when viewing appetitive cues over 40 years later.  

Given the common pattern of activation across task-based studies of reward and their relation to 

individual differences in reward motivation and behavior, researchers have posited a putative 

human “reward system” that functions to represent reward signal strength and to motivate 

subsequent behavior towards reward cues (Koob & Volkow, 2010; Volkow, Wang, Fowler, 

Tomasi, & Telang, 2011).   

Converging evidence in support of this idea comes from studies examining resting-state 

functional connectivity (RSFC) patterns between the ventral striatum and other brain regions 

(Barnes et al., 2010; Cauda et al., 2011; Choi, Yeo, & Buckner, 2012; Di Martino et al., 2008).  

RSFC measures the degree to which spontaneous activity across brain regions correlates at rest 

(i.e., in the absence of explicit task-constraints) (Biswal et al., 1995). RSFC signal correlations 

are believed to reflect histories of co-activation across brain regions—a pattern of statistical 

coherence that arises throughout development and provides a measure of the long-term 

functional relatedness of brain regions (Crossley et al., 2013; Dosenbach et al., 2010). Thus far, 
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the majority of neuroimaging studies examining RSFC in putative reward regions have primarily 

adopted seed-based approaches whereby a seed is placed in one brain region and the analysis 

identifies other brain regions with similar spontaneous fluctuations in activity.  Such seed-based 

studies of ventral striatum RSFC have commonly identified correlated activity in orbitofrontal 

and ventral regions of prefrontal cortex, posterior cingulate cortex, inferior parietal lobule, 

thalamus, hippocampus and caudate (Barnes et al., 2010; Cauda et al., 2011; Choi et al., 2012; Di 

Martino et al., 2008). Additonally, Choi and colleagues (2012) determined that the ventral 

striatum was primarily connected to a “limbic” system which included ventral prefrontal cortex 

in their 17 system parcellation. There seems to be considerable correspondence between the 

extant seed-based RSFC maps and the task-based maps, lending credence to the notion that 

putative reward regions are preferentially activated and coupled, across both task and resting-

state studies. 

The notion of a reward system makes intuitive sense given the converging evidence from 

meta-analyses of task-based reward studies and seed-based RSFC studies; however, an open 

question is whether the reward-related activations that are commonly observed across task-based 

studies of reward and in seed-based maps of RSFC constitute a discrete functional system, in 

which reward-related regions are preferentially connected to each other at rest, or whether 

reward cue-reactivity tasks engage brain regions across multiple functional systems.  We know 

that a wide-range of regions process reward-related information, is there a distinct subset of 

regions which are preferentially connected to each other at rest which include regions typically 

thought to part of the human reward system.  Put simply, is there a set of brain regions that 

constitute a preferentially coupled functional reward system in the human brain at rest?  
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One fruitful way to identify and characterize discrete brain systems is to apply network 

analyses to RSFC data.  In particular, graph-theory-based network analysis is a powerful 

approach to examining RSFC that reveals the integrity of brain systems as well as how 

connectivity between systems function within wider network contexts (Power et al., 2011).  

Within the context of graph-theory-based network analysis of RSFC data, there are a variety of 

concepts which are critical to fully understand before proceeding.  When observing a RSFC 

network, there are nodes (brain regions) which are connected by ties (correlation between those 

regions).  When observing a network, if you included all of the connections across 264 regions 

(say from Power et al., 2011) you would have to account for over 34,000 connections.  One 

common method with which many researchers chose to reduce the number of connections they 

are observing, is to look at only the strongest X percentage of connections, which is often called 

tie-density.  A tie-density of 4% means that the highest 4% of connections are retained and the 

rest of the connections are excluded. If one were to choose one specific tie-density, then it would 

be a relatively arbitrary thresholding of the network, and could identify properties or 

characteristics which are not representative of the network as a whole.  To reduce the reliance of 

results on a single tie-density, it is preferred to look for consistent results across a variety of tie-

densities.  At low tie-densities, which include a relatively low % of connections (<5%) a highly 

segmented network could be observed, with many subcomponents.  At higher tie-densities 

(<10%) many of these subcomponents would merge, leads to a highly connected network with 

few subcomponents. Above a tie-density of 20% a network with 200+ nodes will generally look 

highly connected mush with few distinguishable subcomponents.   

To observe sparse (only selecting certain connections) networks such you could map it 

out in an anatomical manner, or alternatively, it can be mapped by connectivity strength so that 
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subcomponents of the network which are strongly coupled are near each other.  An example of 

this is spring-embedded graphing, a method where springs between nodes where stronger 

connectivity is mapped as a stronger spring between the nodes, pulling them together while 

weaker connectivity is represented as a weaker spring between the nodes, or for connections 

below the tie-density threshold, no spring is used.  This representation helps position the nodes 

such that groups of nodes which are more strongly coupled are closer together and those that are 

less strongly coupled are further apart, giving a functional representation of the network.  An 

important method which can greatly inform our understanding of network components and 

structure is community assignments.  There are a variety of methods, including Infomap, a 

random walk algorithm, which can identify where systems or subnetworks are located.  

Identifying systems which are present across a wide-variety of tie-densities would suggest that 

they are relatively robust within the set of nodes being tested.  Furthermore, permutation testing 

by selecting different sets of individuals from a cohort then performing the community 

assignment on that subset of individuals allows for formal testing of co-occurance of regions in a 

community.  Less formally, this allows us to ask if regions in a system are preferentially 

connected to each other in a reliable quantitative manner.  

While tie-density is often used as a method to identify important connections but 

selecting the ones with the strongest temporal correlation, multiscale backbone is a method 

which tried to identify relevant connections across a variety of thresholds. An example where 

this might be relevant is looking at the network of air travel across the world. Using tie-density to 

select connections would identify only the busiest connections between major airports such as 

New York City’s JFK and London’s Heathrow while excluding all connections to smaller, local 

airports such as Lebanon Municipal Airport in New Hampshire. Tie-density is very useful for 
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thresholding the network so it can be submitted to community detection methods. One weakness 

of tie-density is that its less accurate at recapitualiting the entire network.  A model which 

identified important connections at local levels, important connections at a national level and 

important connections at a global level might be able to do a better job recapitulating the whole 

network when combined. This type of method is multiscale backbone analysis of a network. In 

the current example, multiscale backbone analysis would be particularly useful for identifying 

how to get from airport A to airport B where tie-density would only be useful for this if the two 

airports you cared about were major global hubs.  In applying this example to brain data we can 

identify the multiscale backbone which could be thought of as a identifying connections across 

multiple levels that could transfer information.  While we are not able to directly test this 

information transfer property using resting-state it does give us insight into possible paths 

through which information could propagate between systems which is particularly relevant 

within the context of reward and self-regulation of reward. 

Network-based approaches to understanding brain organization and function (Power et 

al., 2011) have already identified resting-state systems corresponding to sensory processing, 

motor control, attention, and, importantly, additional resting-state systems that likely support 

aspects of self-regulation—the fronto-parietal system, the cingulo-opercular system, and the 

default mode system (Corbetta, 1998; Dosenbach et al., 2006; Shulman et al., 1997) that may 

function to regulate putative reward-related activity (Kelley et al., 2015; Lopez et al., 2017; 

Somerville et al., 2011; Weiland et al., 2013; Zanto & Gazzaley, 2013).  Several regions within 

the default mode network including regions of the medial prefrontal cortex and poster cingulate 

cortex have been linked to the representation of self (Kelley et al., 2002; Moran, Macrae, 

Heatherton, Wyland, & Kelley, 2006) and these regions may play an important role in 
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establishing long-term goals consistent with one’s sense of self.  The cingulo-opercular system 

has been described as a core system for the maintenance and monitoring of long term goals and 

task sets (Dosenbach et al., 2007; Sadaghiani & D’Esposito, 2015).  Activity within three key 

regions of this system— the left and right anterior insula/frontal operculum and the dorsal 

anterior cingulate extending into the middle superior frontal cortex all show a robust, domain 

general spike in activity at the beginning of goal-directed task performance that is maintained in 

a tonic manner throughout the task and is sensitive to performance related feedback. The fronto-

parietal system incorporates dorsolateral PFC regions, posterior parietal and inferotemporal 

regions that are commonly activated during tasks that place demands on inhibitory control, 

working memory, and attentional filtering (Dosenbach et al., 2007).  Together, these systems 

contain many of the cortical regions which are typically identified in event-related fMRI studies 

of self-regulation. 

Reproducibility of functional architechture and systems across individuals and 

laboratories suggests that RSFC has a common architecture (Biswal et al., 2010).  Noticeably 

absent from network-based RSFC analyses thus far, however is evidence of a distinct reward 

system that resembles the sets of brain regions that are commonly active during task-based 

studies of reward.  This is despite robust overlap in activation patterns between task-based 

studies of reward and seed-based RSFC studies of key reward regions such as the ventral 

striatum.  One possibility is that the brain regions showing strong seed-based functional 

connectivity with the ventral striatum are pieces of separate systems that are jointly recruited 

during tasks that promote reward processing.  If so, then the notion of a true “reward system” 

may be misleading.  Alternatively, prior network-based studies of RSFC failed to identify a 

reward system in part because of the way nodes are chosen for inclusion in graph-theory 
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analyses.  For example, Power and colleagues (2011) used meta-analyses of task-based studies to 

define a set of spherical nodes distributed throughtout the brain for further analysis.  This 

approach provided robust, but not full, brain coverage, omitting nodes for the ventral striatum 

and other subcortical areas which are difficult to define using large spherical nodes.  In short, 

community assignments in network-based RSFC analyses can be highly dependent on how brain 

nodes are chosen, defined, and thresholded whereas seed-based RSFC approaches do not readily 

permit ways to assess community assignments.  Collectively, however, seed-based RSFC and 

graph-theory network analyses may be complementary— seed-based approaches may be useful 

in (1) identifying potential target regions which can then (2) be formally tested for community 

membership using graph theoretical analyses.  

The current work capitalizes on both RSFC approaches in a large cohort of healthy 

individuals.  We used seed-based RSFC patterns from putative reward regions (i.e., the ventral 

striatum and lateral OFC) to identify candidate reward system regions with anatomically defined 

NAcc and functionally defined OFC seeds.  We extended previous work by Power and 

colleagues (2011) using graph theoretical techniques to determine if these regions comprised a 

distinct reward system in the human brain.  Three possible outcomes were considered: 1) no 

resting-state reward system (i.e., all of the candidate nodes are members of other RSFC systems); 

2) all of the candidate reward regions clustered into a distinct system, and 3) a subset of the 

regions comprised a distinct system.  Specifically, we hypothesize that reward-specific regions 

(critically NAcc and OFC) will be preferentially clustered into a distinct community, following 

the third option above.  Characterizing where the communities that candidate reward regions 

were members of and how they interact may prove critical in understanding individual 
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differences that permit some individuals to successfully resist unhealthy temptations in daily life 

and lead others to self-regulation failures.  

 

Material and Methods 
 
Subjects 

Subjects were 1,016 individuals from the Dartmouth College community.  The results 

presented here are from 828 subjects (580 females) with a mean age of 20.8 +/- 3.7 years old 

(range: 18-49), who passed stringent RSFC screening measures developed by Power et al. 

(2014), described below.  Subjects had normal or corrected-to-normal visual acuity.  Each 

subject provided informed consent in accordance with the guidelines set by the Committee for 

the Protection of Human Subjects at Dartmouth College and received either course credit or 

monetary compensation for participating in the study. 

 

Apparatus 

Imaging was performed on a Philips Intera Achieva 3-Tesla scanner (Philips Medical 

Systems, Bothell, WA) using a 32-channel phased array head coil.  During scanning, participants 

viewed a white fixation cross on a black background projected on a screen positioned at the head 

end of the scanner bore, which participants viewed through a mirror mounted on top of the head 

coil.  

 

Imaging 

Anatomic images were acquired using a high-resolution 3-D magnetization-prepared 

rapid gradient echo sequence (MP-RAGE; 160 sagittal slices; TE, 4.6 ms; TR, 9.9 ms; flip angle, 
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8°; voxel size, 1 x 1 x 1 mm).  Resting-state functional images were collected using T2*-

weighted fast field echo, echo planar functional imaging sensitive to BOLD contrast (TR= 2500 

ms; TE= 35 ms; flip angle= 90°; 3 x 3 mm in-plane resolution; sense factor of 2).  Functional 

scanning was performed in two runs; during each run, 120 or 240 axial images (36 slices, 3.5 

mm slice thickness, 0.5 mm skip between slices) were acquired, allowing complete brain 

coverage.  As such, each participant completed between 10 and 20 minutes of RSFC scanning as 

data was collected as part of multiple experiments. 

 

RSFC Analyses 

All processing was performed exactly as in Power et al. (2014) with two exceptions: 

frame-displacement (FD) threshold was set to 0.25mm (instead of 0.2mm) and 36 motion 

parameters (instead of 24) were used for motion regression.  Functional images were 

preprocessed to reduce artifacts, including: (i) slice-timing correction, (ii) rigid body realignment 

to correct for head movement within and across runs, (iii) within-run intensity normalization 

such that the intensity of all voxels and volumes achieved a mode value of 1000 scale with 10 

units equal to ~1% signal change, (iv) transformation to a standardized atlas space  (3 mm 

isotropic voxels) based on (Talairach & Tournoux, 1988), (v) frame censoring, (vi) demeaning 

and detrending each functional run, (vii) nuisance regression (excluding censored frames), (viii) 

interpolation, (ix) bandpass filtering (0.009 < f < 0.08Hz) and (x) spatial blurring using a 6mm 

FWHM kernel following Power et al. (2014).  Final correlation calculations between time-

courses were calculated based upon uncensored frames. Preprocessing steps i-v were completed 

using custom scripts which call 4dfp Tools (ftp://imaging.wustl.edu/pub/raichlab/4dfp_tools/). 
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Steps specific to resting-state function-connectivity processing (vi-x) were completed using 

custom MATLAB (Version R2012b, by MathWorks, Natick, MA) scripts.  

 

Nuisance regressors 

To control for motion, a Volterra expansion (Friston, Williams, Howard, Frackowiak, & 

Turner, 1996) with 36 motion parameters was used. This expansion includes motion (R), motion 

squared (R2), motion at the previous frame (Rt-1) and motion in the previous frame squared (Rt-

1
2). Tissue-based nuisance regressors were calculated by taking the mean signal across voxels 

within each of the following individual masks from FreeSurfer 

(http://surfer.nmr.mgh.harvard.edu) (Dale, Fischl, & Sereno, 1999; Desikan et al., 2006): an 

eroded (up to 4x) ventricular mask for the cerebro-spinal fluid, an eroded white matter mask for 

the white matter signal, and a whole-brain mask for global signal. When eroded masks included 

no voxels, lesser erosions were progressive considered until a mask with qualifying voxels was 

identified. This occurred infrequently for white-matter masks while erosions of 1 were often used 

for CSF masks. The first derivative for each tissue regressor, as calculated by the difference from 

the current from to the previous frame, was also included.  

 

Volume censoring and data retention 

Movement of the head from one volume to the next (FD) was calculated by the sum of 

the absolute values of the differentiated realignment values (x, y, z, pitch, roll, yaw) at each time-

point (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012). A frame displacement threshold of 

0.25mm was used.  Volumes with motion above the frame displacement threshold were 

identified and replaced after multiple regressions but prior to frequency filtering.  Spectral 
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decomposition of the uncensored data was performed and used to reconstitute (stage vii: 

interpolation) data at censored time-points.  The frequency content of uncensored data was 

calculated with a least squares spectral analyses for non-uniformly sampled data (Mathias et al., 

2004) based upon the Lomb-Scargle periodogram (Lomb, 1976).  Segments of data with less 

than 5 contiguous volumes below the FD threshold were flagged for censoring.  Functional runs 

were only included in the final analysis if the run contained 50 or more uncensored frames.  Only 

subjects with at least 120 frames of uncensored data across runs were included in the current 

study (N=828).  Consistent with Power et al., (2014), only uncensored volumes were used when 

calculating temporal correlations. 

 Using these metrics, 828 of 1,016 individuals passed RSFC processing with more than 

120 uncensored frames.  Temporal masks retained 79% +/- 14% (range: 26%-98%) of the data 

across the 828 included subjects.  Subjects retained, on average, 238.5 +/- 93.9 frames (range: 

121 – 470). 

 

Reward regions of interest 

Regions-of-interest (ROIs) for the left and right NAcc were individually defined for each 

subject based on an automated segmentation of the high-resolution MPRAGE anatomical image 

using FreeSurfer’s automated parcellation tool aseg (Fischl et al., 2004).  Voxel-based RSFC 

maps were then generated for each subject using their individually-defined nucleus accumbens 

(NAcc) ROIs.  Bilateral OFC regions were defined based peaks of NAcc connectivity, which 

corresponded to peaks identified in prior task-based studies of reward (Wagner, Boswell, Kelley, 

& Heatherton, 2012) conducted in a subset of the same subjects included in the RSFC analyses 
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reported here.  These peak OFC regions shared strong overlap with OFC peaks identified in the 

task-based meta-analysis of reward (Yarkoni et al., 2011). 

 

Neurosynth analysis 

To determine the extent to which RSFC was similar to task-based activation patterns 

observed in studies of reward, RSFC seed maps were compared to an automated meta-analysis 

performed using Neurosynth (Yarkoni et al., 2011).  Mean bilateral NAcc and OFC RSFC seed 

maps for all 828 subjects were submitted to the Neurosynth Image Decoder which calculates the 

correlation between an activation map and a statistical image for each of the 3000+ feature terms 

in the Neurosynth database (Table I).  

 

Graph analysis 

Graph theoretical community assignments of RSFC data have been performed on regions 

previously identified through task-based meta-analyses (Power et al., 2011), automated whole-

brain anatomical parcellation (Davis et al., 2013) and RSFC-boundary mapping (Gordon et al., 

2014).  Community assignment algorithms can then be used to identify systems (i.e., sub-

networks) within the graph.  Community assignments derived from approaches like these are 

dependent on how nodes are defined for the overall network and the tie-density (connectivity 

threshold retaining the strongest X percentage of connections) range of values considered.  

Although prior graph theoretical community assignments have been performed on a network of 

nodes identified through meta-analyses of task-based studies (e.g., Power et al., 2011), none of 

the currently available parcellation schemes were optimized to include nodes from task-based 
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studies of reward.  Indeed, the initial parcellation scheme employed by Power et al. (2011) did 

not include subcortical NAcc nodes. 

In the present study, we modified the existing set of regions (N = 264, 10 mm spheres) 

from Power et al. (2011) to include peaks identified from the NAcc and OFC RSFC group (N = 

828) seed maps.  NAcc seeds were derived from individual anatomical segmentation, while OFC 

seeds were based on group-map peaks of NAcc RSFC connectivity (MNI: 23, 33, -13; -24, 35, - 

13), which also showed strong similarity to regions identified in task-based reward literature 

(Wagner et al., 2012).  Nodes modified from the original 264 for graph analysis include left, 

right and medial OFC [BA 10/11], left and right dorsal frontal cortex [BA 46], left lateral 

prefrontal cortex [BA 9], left inferior medial temporal gyrus [BA 37], left inferior parietal lobule 

[BA 40], ventral tegmental area (VTA), bilateral thalamus, hippocampus, caudate and right 

putamen.  Where possible, subcortical regions were defined anatomically on a subject-by-subject 

basis using FreeSurfer auto-segmentation (left and right NAcc, left and right caudate, right 

putamen, left and right thalamus, and left and right hippocampus).  Cortical regions that were 

added or modified were added as 10 mm spheres to maintain consistency with Power et al., 

2011.  The VTA was defined as a 4mm spherical seed.  Nodes from Power et al., 2011 within 20 

mm of the center of any regions added to the new dataset were excluded from the updated 

regions set.  These modifications resulted in a final set of 271 regions, with modifications to 

Power and colleagues (2011) described in Table II.    

Average time-courses for each node were calculated and cross-correlated with the time-

courses from every other node to create a 271 x 271 correlation matrix for each subject.  Mean 

connectivity matrices were then created and transformed into thresholded graphs across a wide 

range of tie-densities (strongest 2% to 20% of connections retained; Power et al., 2011).  
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Network structure was assessed using the Infomap algorithm, optimal solution to the map 

equation, a random-walk community assignment method (Rosvall & Bergstrom, 2008) as 

implemented in Graphtools 1.0 available from www.nitrc.org/projects/graphtools/.  Permutation 

testing to assess stability of the networks in a quantitative manner was done by performing 1000 

permutations, with each permutation randomly selecting 25 individuals.  Infomap clustering was 

performed on each permutation and the pairwise co-occurrence of regions within a cluster was 

recorded.  Regions are considered to be significantly coupled if they are in the same community 

95% or more of the time and form an independent community, rejecting the null-hypothesis that 

they are not clustered. 

The network was visualized using a spring-embedded graph (Figure 2, bottom), a type of 

force directed graph drawing, where all ties which are present at the given tie-density, are 

included as springs between nodes where stronger connectivity is mapped as a stronger spring 

between the nodes, pulling them together while weaker connectivity is represented as a weaker 

spring between the nodes, or for connections below the tie-density threshold, no spring is used. 

This representation helps position the nodes such that groups of nodes which are more strongly 

coupled are closer together and those that are less strongly coupled are further apart, giving a 

functional representation of the network.  Community assignments from Infomap were used to 

color nodes in the spring-embedded graph. 

While the tie-density (defined above) is a useful way to identify the strongest percentage 

of connections and determine which connection should be submitted to a community assignment 

algorithm, it preferentially selects only the strongest connections, disregarding weak connections 

which have previously been shown to be underlie individual differences (Santarnecchi, Galli, 

Polizzotto, Rossi, & Rossi, 2014). In order to identify connections which are not necessarily the 
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strongest connections but may be important we used a disparity filter algorithm to construct a 

multiscale backbone of the network (Serrano, Boguñá, & Vespignani, 2009). The term multiscale 

backbone simply means that connections across a variety of connectivity strengths which may be 

important for information transfer and maintaining the overall structure of the network optimally 

were included. Examples of where a multiscale backbone maintains relationships between 

network nodes better than simply using tie-density include complex networks such as the 

internet, food chain webs and the brain, all of which contain connections between nodes that are 

important across multiple orders of magnitude. The disparity filter algorithm identifies 

connections between nodes which significantly deviate from a null model of random local 

assignment of weights to edges thereby preserving much of the network structure while 

decreasing the total number of connections. In the current work, the resulting multiscale network 

backbone can then be used to identify connections which may be important for information 

transfer between a possible reward system and specific self-regulatory and control systems of 

interest.  

 

Visualization 

All results were transformed into MNI space (Montreal Neurological Institute) and 

mapped onto the Conte69 mid-thickness surfaces or volume for visualization (Van Essen, 

Glasser, Dierker, Harwell, & Coalson, 2012).  Group results were viewed in Connectome 

Workbench Version 1.1.1 (Marcus, Fotenos, Csernansky, Morris, & Buckner, 2010). Multiscale 

backbone results were visualized on inflated lateral, medial, and ventral cortical surfaces using 

BrainNet Viewer (Xia et al., 2013). 

 
Results 
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Automated Segmentation of NAcc 

Individual subject regions-of-interest (ROIs) for the left and right NAcc were defined 

using an automated segmentation algorithm (see Methods).  The resulting NAcc masks were 

highly reliable across subjects with peak probabilities of 100% at [-8, 10, -10] and [9, 10, -11] 

(MNI coordinates). Fifty percent of the subjects had overlap in 900 and 880 voxels (mm2) for left 

and right NAcc masks, respectively.  Seventy-five percent of the subjects shared overlap in 500 

and 428 voxels (mm2). Mean volume of normalized individually defined subcortical regions are 

available in Table SI. 

 

Seed-based resting-state functional connectivity 

Voxel-based RSFC maps were created for bilateral NAcc using the individually-defined 

masks from the automated segmentation and for OFC using spherical seeds based on peaks of 

NAcc connectivity which were proximal to regions identified in previous work (Wagner et al., 

2012).  NAcc demonstrated strong RSFC with the contralateral NAcc and bilateral regions of the 

medial and lateral OFC, thalamus, hippocampus, and midbrain/ventral tegmental area (Figure 1).    

To determine if seed-based RSFC for these regions was similar to task-based activation 

patterns observed in studies of reward, bilateral NAcc and OFC seed maps were submitted to 

Neurosynth Decoder, an online tool to determine the similarity between the RSFC seed map and 

thousands of reverse-inference maps generated through automated meta-analyses of task-based 

fMRI studies (Yarkoni et al., 2011).  Results of the reverse inference decoding analysis revealed 

the greatest similarity across all non-anatomical terms in the database between NAcc and OFC 

RSFC seed maps and the feature term “reward” (NAcc r = 0.58; OFC r = 0.27; Figure 1).  Table 

I includes non-anatomical and anatomical terms which were showed the strongest correlation 
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with NAcc (left) and OFC (right) RSFC seed maps.  

 

Community detection 

Consistent with Power et al. (2011), communities were identified that included default, 

visual, fronto-parietal, cingulo-opercular/salience, attention, and somatomotor systems that were 

stable across a range of tie-densities (2%-20%).  Additional systems from Power et al., (2011) 

were identified at lower tie-density thresholds including cerebellar (18%), subcortical (15%) and 

memory (8%) systems.  The somatomotor system was further subdivided into and mouth and 

body somatomotor systems (6%).  Figure 2 shows system assignments at a representative 5% tie-

density.  

In contrast to Power et al. (2011), however, the present work observed a distinct system 

that included the NAcc bilaterally and multiple regions of the medial and lateral OFC.  This 

putative reward system was stable across a broad range of tie densities (4% to 17%).  Two points 

are worth noting regarding this system.  First, not all regions identified from NAcc and OFC 

RSFC seed maps converged into this reward system.  At 5% tie-density, five of the regions 

identified in seed-based RSFC maps were assigned to the fronto-parietal system (lateral and 

dorsolateral frontal cortex), five were assigned to a subcortical system (left and right thalamus, 

left and right caudate, right putamen), two were assigned to a memory system (left and right 

hippocampus),  and the VTA shared no connections to other nodes (at slightly higher tie-

densities, e.g., 6% tie density, VTA was assigned to the memory system) (Figure 3; bold nodes).  

Second, four original nodes from the Power et al. (2011) graph were assigned to the “reward” 

system in the present analysis.  In Power et al. (2011), these regions were previously assigned to 

fronto-parietal, default and an unlabeled system (Figure 3; green nodes without bold emphasis). 
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At the highest tie-densities tested (18-20%) four of the nine reward nodes were subsumed by the 

default system (left and right NAcc and 0, 43, -7; 8, 48, -15), whereas the remaining five reward 

nodes were subsumed by the fronto-parietal system (23, 33, -13; -24, 35, -13; 8, 41, -24; 24, 45, -

15; 34, 38, -12).  

Within the reward system, stability was heterogeneous across regions; eight of the nine 

regions identified as being part of the reward system were stable between tie-densities of 4%-

17% (five of the eight remained in this system down to 2%); at higher tie densities three of these 

regions were associated with the default network and five were associated with the fronto-

parietal network.  The ninth region, a medial OFC region (MNI: 0, 43, -7), was associated 

with the reward network across a more limited range of tie-densities (4%-8%), making it a less 

stable member of the reward network.  This region was associated with the default network at 

tie-densities of 9% and higher. A tenth region was attached to the reward system at two tie-

densities (6 - 7%), was part of the fronto-parietal at higher tie-densities and part of its own 

community at lower tie-densities.  As such, this region should likely not be identified as part of 

the reward system. 

To test the hypothesis that there is a reward system with preferentially coupled regions 

permutation testing was performed across randomly selected groups of 25 individuals. The null-

hypothesis was that no independent system would be identified from the candidate regions. At 

the lowest tie-density (2%) five reward regions were identified as being clustered as a 

preferentially coupled system. Unsurprisingly, these are the same regions identified as being part 

of the reward system by the Infomap algorithm with all 828 individuals. At 4% tie-density these 

five regions were still significantly clustered with each other and also with the remaining four 

regions being part of the reward system in 757 or more of the 1000 permutations.  A modified 
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medial OFC region (MNI: 0, 43, -7) which was part of the reward system at five tie-densities 

was part of the reward system in 905/1000 permutations, not meeting our significance criteria.  

Simply, at 4% tie-density, eight of nine regions meet our criteria to reject the null-hypothesis and 

that they are preferentially coupled at p<=0.001. The medial OFC region (MNI: 0, 43, -7) does 

not meet these criteria and therefore we cannot say it is preferentially connected to the other 

reward regions in a significant manner but that it is coupled to those other regions more often 

than not. Critically, the roughly 11% of the time it was not part of the reward system, it was 

coupled with default system regions. At higher tie-densities the 8 members of the reward system 

identified above were preferentially coupled in a significantly manner (p<0.05) until 17% tie-

density where, some of the regions dropped below p<0.05, which is unsurprising given that the 

N=828 group-level Infomap assignments are then subsumed by supraordinate systems (fronto-

parietal and reward). 

The overall spring-embedded network organization was similar to previously identified 

layouts as observed across large numbers of individuals, with control and attention systems such 

as the fronto-parietal, cingulo-opercular, ventral attention and dorsal attention systems being 

centrally located in the graph (Power et al., 2011).  Canonical processing systems such as visual 

and somatomotor systems were located on the periphery of the graph.  Across all tie-densities, 

the reward system was placed on the periphery of the graph.  At low tie-densities (5%) the 

reward system connected with the default system (N=13 edges), cingulo-opercular (N=1) and 

subcortical (N=1) systems.  At higher tie-densities (10%) the reward system was more densely 

interconnected with the default (N=34), fronto-parietal (N=11), cingulo-opercular (N=5), 

memory (N=3), dorsal attention (N=2) and subcortical (N=1) systems.  As tie-densities increased 
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further (> 17%), all reward system nodes were subsumed by default and fronto-parietal systems 

(Figure 4). 

 Community detection is sensitive to the nodes which are included and the connectivity 

threshold (tie-density) at which it is performed.  For a system to be considered stable it should be 

identified across a variety of tie-densities.  To determine the consistency of community detection 

results across systems and tie-densities, a “system stability” metric was calculated which 

measures the relative amount of tie-densities that a community was identified for a given node.  

Superordinate systems, i.e. systems identified at 20% tie-density included default, fronto-

parietal, visual, somatomotor, and cingulo-opercular/salience.  Subordinate systems (i.e. systems 

which were identified only at tie-densities less than 20%) included reward, memory, subcortical, 

attention (dorsal and ventral), cerebellar, and lateral somatomotor systems.  Critically, the newly 

identified reward system demonstrated system-wide consistency over a wide-range of tie-

densities, and, as such, displayed high mean system stability relative to other subordinate 

systems (Table III).  While community detection is sensitive to the nodes which are included and 

tie-density at which the analysis is performed, in the current work it was relatively stable, with 

qualitatively similar results under a variety of circumstances.  Results across all analysis reliably 

found a reward system which contained similar nodes (more thoroughly described in 

Supplemental Material), including comparisons of high and low motion individuals, longest and 

shortest scan durations (10 vs 20 minutes). 

An additional advantage of using graph-theory analyses on RSFC data is that it affords an 

opportunity to characterize points of interaction between systems.  To identify points of 

interaction between the reward system and other systems, the entire network was submitted to a 

network reduction algorithm to identify the multiscale backbone of the system (Serrano et al., 
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2009).  Backbone connectivity through reward system nodes was restricted to other reward 

system nodes and default system nodes (thresholded at p < 0.01; Figure 5).  At this threshold, no 

other systems were identified as having strong connections to reward system nodes.   

To identify potential interactions between the reward system and systems implicated in 

self-regulation (e.g., default, cingulo-opercular, and fronto-parietal systems) (Kelley et al., 2015), 

the top 5% of between-system connections from reward system regions to regions of these 

putative control systems were identified (Figure 5).  Across all putative control systems, the 

majority of between-system connections were observed between OFC regions of the reward 

system and prefrontal regions of default, cingulo-opercular, and fronto-parietal systems.  This 

was particularly true for between-system connectivity with the fronto-parietal control system, 

which was entirely driven by lateral OFC regions, which are often more associated with 

punishment and motor inhibition (Haber & Knutson, 2010).  By contrast, the primary between-

system connections for the NAcc were with the dorsal anterior cingulate cortex extending into 

the middle frontal gyrus (BA 32; cingulo-opercular system) and the medial prefrontal cortex (BA 

10; default system) for reward to cingulo-opercular and reward to default system connectivity.  

 

Discussion 

The current study applied seed and graph-theory based approaches to RSFC data from a 

large sample of healthy individuals using a set of nodes modified from previous work (Power et 

al., 2011).  Seed-based RSFC from canonical reward regions demonstrated a high degree of 

similarity with task-based meta-analyses on the feature term reward.  Peaks of connectivity from 

these putative reward regions were identified and used to modify an existing set of nodes (Power 

et al., 2011).  Three possible outcomes were considered: 1) no resting-state reward system (i.e., 
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all of the candidate nodes are members of other RSFC systems); 2) all of the candidate reward 

regions clustered into a distinct system, and 3) a subset of the regions comprised a distinct 

system. Graph theory analyses that included this modified set of regions identified a subset 

which were preferentially coupled and formed a distinct community across a wide variety of tie-

densities, falling into the third possible outcome.  Permutation testing suggests that at eight out 

of the nine regions in this system are preferentially coupled more than 95% of the time.  Perhaps 

unsurprising, this distinct “reward” community or system shows strong overlap with regions 

identified through task-based analyses of reward.  Although seed-based and graph-based reward 

maps were consistent in some respects, notable differences were observed across the two 

approaches.  We consider each in turn. 

 

Seed-based RSFC show robust overlap with task-based reward activity 

Seed-based RSFC from individually-defined NAcc regions showed robust overlap with 

task-based studies of reward.  Peak correlations were observed in the striatum, medial and lateral 

OFC, and the hippocampus.  These findings are consistent with prior studies of NAcc RSFC 

using spherical regions-of-interest (Di Martino et al., 2008).  However, the present work also 

identified RSFC peaks in regions not previously reported by Di Martino and colleagues 

including thalamus and midbrain/ventral tegmental area.  The extent to which the present 

findings identify minor differences from prior work may reflect differences owing to a different 

cohort of subjects, increased sample size, the greater specificity afforded by using individual 

NAcc segmentations instead of spherical nodes and different preprocessing approaches.  

Seed-based RSFC for the lateral OFC showed strong overlap with RSFC for NAcc.  The 

OFC was strongly correlated with lateral regions of the left and right OFC, the medial OFC, and 
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bilateral NAcc.  Additional connectivity was observed in lateral and dorsolateral frontal regions 

as well as lateral parietal regions that were not present in the NAcc RSFC map.  These regions 

were identified in subsequent community assignment analyses to belong to the fronto-parietal 

system, however— a finding that suggests that one potential point of communication between 

the reward system and other systems important for self-regulation and control may occur via 

interactions between dorsolateral prefrontal cortex and the lateral OFC (Figure 3).  By contrast, 

the NAcc was more strongly correlated with regions of the default system (i.e., medial prefrontal 

cortex, inferior parietal lobule, and superior temporal gyrus), the memory system (i.e., 

parahippocampal gyrus) and subcortical structures (i.e. VTA/midbrain and thalamus).   

Although the relationship between task-driven functional correlations and RSFC has been 

highlighted across the extant neuroimaging literature (Crossley et al., 2013; Smith et al., 2009; 

Tomasi, Wang, Wang, & Volkow, 2013), the exact nature of this relationship remains somewhat 

speculative.  One possibility is that RSFC represents long-term Hebbian learning, such that 

populations of neurons across brain regions that fire together frequently strengthen spontaneous 

resting state correlations over time.  As such, RSFC may represent the statistical history of co-

activation patterns accumulated across the lifespan.  In the present study, NAcc RSFC, and to a 

lesser extent OFC RSFC shared strong overlap with meta-analyses of task-based reward activity.  

Future studies may be able to capitalize on the similarity between RSFC and task-based reward 

patterns of activation to explore the development and interaction of the reward system with 

control systems, which have been argued to mature along different developmental trajectories 

(BJ J Casey, Jones, & Hare, 2008; Somerville & Casey, 2010) and may be influenced by genetic 

factors that influence the size and responsivity of reward system structures (Rapuano et al., 

2017). 
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Graph-theory identification of a reward system 

The modified set of brain regions was submitted to a community detection algorithm 

where we expected one of three possible outcomes: 1) no resting-state reward system (i.e., all of 

the candidate nodes are members of other RSFC systems); 2) all of the candidate reward regions 

clustered into a distinct system, and 3) a subset of the regions comprised a distinct system.  The 

first possibility was that there was no reward region, such that all of the reward-related nodes 

would disperse into several systems, but we did not observe this.  The second possibility would 

be that all of these nodes were part of a larger, supraordinate system across most tie-densities 

observed.  This was partially observed, in so much that several of the nodes were part of the 

supraordinate default system at extremely high tie-densities (18%+) and there was only a total of 

six systems observed. At lower tie-densities several (eight or nine depending on threshold) 

regions were clustered into a subordinate reward system, suggesting that the third possible 

outcome is what we are observing in the current study.  We observe that several canonical 

reward regions form a preferentially coupled resting-state system; system membership included 

bilateral NAcc, the medial and lateral OFC, and ventromedial prefrontal cortex.  This system was 

stable across a wide range of tie-densities (4-17%) with eight of the nine regions consistently 

assigned to the system across this range, showing a higher system stability score than multiple 

other well-established subordinate systems.  Permutation testing results showed that these eight 

regions were significantly clustered in a preferential manner across multiple tie-densities, 

preferring to couple with each other than other systems, showing that the results mentioned here 

are very stable across individuals.  The ninth region (medial OFC, MNI: 0, 43, -7) likely plays a 

role in reward-related activity as the top non-anatomical term for this region in Neurosynth is 
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“default” followed by “reward”, but it does not meet our criteria for significance through 

permutation testing.  It should be noted that qualitatively similar systems incorporating some of 

the ventromedial PFC and ventral striatum have been observed using different methods (Choi et 

al., 2012; Gerraty, Davidow, Wimmer, Kahn, & Shohamy, 2014). These complementary 

approaches suggest stability not just across tie-densities thresholds, but across datasets and 

methods.  Furthermore, within our own dataset, we observe the reward system across multiple 

analyses.  Individuals with high or low motion (mean frame-displacement or FD), longer or 

shorter scans (10 or 20 minutes) and even using slightly different node selections.  Researchers 

sometimes use an exclusion distance of 20mm to make sure that proximity lead to artificial local 

systems being identified.  The results presented in figures here do not include an exclusion 

distance, but nearly identical results are observed when this is done (see Supplemental Material 

for more information). Moreover, similar results are observed with weighted or binarized 

thresholded networks for each analysis. 

In the current work we strove to optimize the chances of identifying a reward system 

which was preferentially connected at rest, through which we used a moderately intensive 

procedure to select nodes which would give us the best chance of identifying this system. After 

completing this, we backtracked and added bilateral nucleus accumbens to the original Power 

264 region set to see if it would result in a preferentially coupled reward system (Table S2). In 

this is the case, a system which primarily contained OFC regions and NAcc was present from 2-

18% tie-density. At 5% tie-density these 12 regions were identified as part of this system. It is 

likely not as specific as that identified using our ROI modified procedure as in addition to 

including bilateral NAcc and OFC regions it also included a cerebellar seed and a parietal seed. 
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This further highlights the necessity for seed selection, particularly when attempting to optimize 

for a specific task such as attempting to identify a reward system. 

With the exception of regions that reorganized into the reward system identified here, 

there was strong overlap in community assignments across studies.  Similar to Power et al. 

(2011), cognitive control systems such as the frontal-parietal and cingulo-opercular systems were 

centrally placed within the graph whereas somatosensory-motor and visual systems were placed 

on the periphery of the graph.  The reward system, as defined in the current analysis, was placed 

at the periphery of the graph and showed the most connectedness with default, cingulo-opercular, 

and fronto-parietal systems (at liberal tie-densities). The relative locations of subsystems within a 

graph provide insights into whether a system may play a more regulatory role (centrally located 

within the graph), by virtue of their stronger connectedness with multiple systems, or whether a 

system functions primarily as a processing system (located at the periphery of the graph) with 

strong within-system connectivity and relatively weaker between-system connectivity.  In this 

context, the reward system is more similar to other, well-established processing systems, and, as 

such, is likely a target of self-regulatory control via interactions with systems more centrally 

placed within the graph.  Indeed, recent work by Power et al., (2013)  has identified cortical hubs 

in RSFC data that demonstrate strong between-system connectivity in a way that positions hubs 

to interact with multiple systems, and lesions to these hubs have been shown to result in 

profound behavioral impairments across a range of tasks (Warren et al., 2014).  

The present results suggest that the majority of between-system connections to the reward 

system occur between putative control systems (default, cingulo-opercular, and fronto-parietal 

systems) and OFC regions of the reward system.  Interestingly, the OFC seed region identified 

from task-based studies of reward shares its primary between-system connections with the 
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fronto-parietal system, whereas the NAcc shares its primary between-system connections with a 

single region of the cingulo-opercular system (dorsal anterior cingulate cortex; BA 32) and a 

single region of the default system (MPFC; BA 10).  Indeed, at liberal tie-densities (> 17%), the 

OFC seed region associates with the fronto-parietal system, and the NAcc associates with the 

default system.  The MPFC region of the default system has been implicated in the 

representation of self and self-affect (Kelley et al., 2002; Moran, Macrae, Heatherton, Wyland, & 

Kelley, 2006), and recent work by Chavez and Heatherton (2016) has demonstrated that the 

structural integrity of white matter pathways linking NAcc to this region of MPFC is associated 

with individual differences in self-esteem.  The differential connectivity patterns between OFC, 

NAcc and putative control systems may offer critical insights into the differing roles of these 

regions in motivating and evaluating appetitive behaviors that have so far been elusive given the 

common coactivation of these regions during task-based studies of reward.  Although the current 

results do not demonstrate direct evidence of regulation paths between control and reward 

networks, the present work identifies potential points of interaction with the multiscale network 

backbone analysis.  Future work is needed to clarify the extent to which these connections may 

play a role in enhancing or regulating appetitive cravings and behavior.  Towards that end, a 

better understanding of the cortical architecture that permits regulation of these reward regions 

may ultimately permit more targeted intervention strategies for the treatment of maladaptive 

habits and addictions. 

The most notable difference between Power et al. (2011) and the present study was the 

inclusion of NAcc nodes in the present study and the absence of NAcc nodes in the prior work.  

Previous RSFC work using a winner-take-all method using only subcortical regions associated 

much of the ventral striatum with a limbic system that included portions of the temporal poles 
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(Choi et al., 2012). Davis and colleagues (2013) demonstrated that NAcc system membership 

may depend in part on individual differences in reward impulsivity.  In a high impulsivity group, 

NAcc clustered with other subcortical regions such as caudate, amygdala, hippocampus, 

thalamus and brainstem whereas in a low impulsivity group, subcortical regions clustered with 

top-down cognitive control regions, such as medial and lateral portions of the prefrontal cortex.  

Importantly, however, not all of the candidate reward system regions identified from 

seed-based RSFC analyses were formally assigned to the reward system identified using graph-

based network analyses, highlighting the complementary nature of the two approaches (Figure 

3).  Two important distinctions can be made.  First, there is near complete overlap between 

regions assigned to the reward system in the graph analysis and the meta-analysis of task-based 

studies of reward, even though some of these regions (e.g., anterior OFC nodes) were not 

identified as peaks in the seed-based NAcc and OFC RSFC maps.  Second, some of the 

candidate “reward” regions identified from the seed-based RSFC maps were more strongly 

connected to other systems in the graph analysis (e.g., inferior frontal gyrus, hippocampus, and 

thalamus), even though they overlapped with commonly activated regions in task-based studies 

of reward.  This latter finding suggests that task-based studies of reward engage multiple systems 

(reward, subcortical, memory, and fronto-parietal systems) and that seed-based RSFC and task-

based meta-analyses may be less well-suited to capture these distinctions.  As such, it is not 

sufficient to propose a reward system based on voxel-based seed maps, nor is it sufficient to do 

so using meta-analyses of task-based reward studies.  By identifying networks which are 

consistent across a variety of methods, we can better characterize these networks refine them as 

needed. 
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Graph-theoretical approaches are better suited to segregate brain regions into brain 

systems, however this approach too is limited as community assignments are highly dependent 

on how nodes are defined and on the correlation thresholding applied to the graph.  The present 

study used nearly identical methods from prior work (Power et al., 2014) on a set of brain 

regions modified from Power and colleagues (2011) and identified a reward system not 

previously observed using the original set of regions.  The regions were purposefully modified 

using seed-based RSFC to refine the graph to include regions commonly associated with reward 

processing and their neighbors, and, when possible, regions were further refined on a subject-by-

subject basis using anatomical segmentation.  Similar modifications of the canonical Power et al. 

(2011) graph were previously used to demonstrate distinct neurophysiological subtypes of 

depression using RSFC data (Drysdale et al., 2016).  

 

Future Directions and Limitations 

We do not suggest that the current set of regions which constitute the reward system as 

we have defined it is necessarily the optimal one, but instead a starting place from which to 

expand upon.  With this in mind, the reward system delineated in the current work defines a set 

of regions that future studies may capitalize on to better understand reward motivation, appetitive 

behavior and self-regulatory control.  Other groups have identified a similar system or set of 

brain regions using other methods, without the goal of specifically defining a reward system 

(Choi et al., 2012; Davis et al., 2013).  The overlap between the current results and previous 

work, particularly across methods suggests the concept of a set of brain regions which support 

reward processing and are highly coupled at rest.  This also suggests, as one might expect, that 

the regions in this preferentially coupled system subserve multiple purposes.  Although 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 3, 2018. ; https://doi.org/10.1101/304865doi: bioRxiv preprint 

https://doi.org/10.1101/304865


  Huckins et al.  33

additional brain regions are often co-activated with these core regions during reward processing, 

it would be inappropriate to include them in the definition of a reward system as they are better 

members of other RSFC brain systems.  The current set of regions is by no means 

comprehensive, but instead a target approach to modify the Power 264 region set to be focused 

towards reward.  There are many other regions which could possibly be included which play a 

role in reward processing, such as substantia nigra and amygdala, but neither of those showed up 

in our connectivity-based peak selection process.  Furthermore, neither the amygdala and 

substantia nigra were part of the reward system when they were added in a secondary analysis.  

Over the past decade there has been a growing interest in using RSFC data to parcellate the 

human cortex into cortical areas.  Future work may be able to leverage these more sophisticated 

parcellation schemes (e.g., Glasser et al., 2016; Gordon et al., 2014) to further refine reward 

system identification and characterization.  Given enough data on an individual, subject-specific 

brain parcellation may also further this endeavor and could lead to an increased sensitivity to 

detecting individual differences in reward-related behavior (Gordon, Laumann, Adeyemo, & 

Petersen, 2015; Laumann et al., 2015).  Methods to increase functional alignment across cortex 

in individuals such as task-based hyperalignment (Guntupalli et al., 2016) or connectivity based 

hyperalignment (Guntupalli & Haxby, 2017) would increase alignment across individuals and 

may further help delineate the boundaries of the reward system across individuals.  Future work 

could focus on optimizing the integration of cortical surface parcellations with subcortical time-

series, something that could provide promise for individual parcellations or hyperalignment 

methods.  The current work, with continued optimization of a reward-focused parcellation or 

hyperalignment methods which integrate subcortical regions will provide tools to more 

accurately compare individual and group differences as some are starting to do (Ma et al., 
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preprint: 10.1101/296012).  A critical future test of an “optimized” reward system would be 

increased utility in identifying individual differences in reward behavior.  In parallel with this, 

regions responsible for self-regulation and inhibition should continue to be interrogated, perhaps 

within the framework of the connections identified in the current work through the multiscale 

network backbone.  Functional gradients are known to exist within the ventral striatum and the 

OFC.  Methods to identify and characterize these gradients in RSFC, somewhat similarly to 

methods in Barnes et al. (2010) and Choi et al. (2010), mapping maximal connectivity from 

subcortical regions to maximal connectivity in OFC/prefrontal cortex may help determine the 

extent to which these gradients exist.  Ideally, an “optimized” reward system definition 

combined with knowledge of these gradients would help researchers elucidate individual 

differences in reward and self-regulatory behaviors. 

 

Summary  

The current study characterized the systems-level organization of putative reward regions 

of at rest, identifying a heterogeneous set of regions including cortical and subcortical nodes 

which are preferentially coupled to each other and that may reflect a resting reward system.  The 

high degree of similarity between seed-based RSFC maps of putative reward regions and meta-

analytical maps of task-based reward suggested a putative reward system that was formally 

tested using graph-theory analysis.  To afford the best chance of identifying a reward system, a 

previously published set of nodes (Power et al., 2011) was modified to include reward-sensitive 

brain regions and their neighbors.  We then used a data-driven community assignment approach 

and identified a reliable reward system consisting of regions that both overlapped with and 

constrained task-based reward activation maps.  By delineating and characterizing the reward 
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system at rest in this way, future work may benefit from more spatially constrained analyses that 

target individual and group differences in reward processing and self-control. Thus far, the 

regulation of these reward regions has been a highly debated topic (Kelley et al., 2015), in part 

because the reward system has not been formally defined despite a consistent pattern of task-

based reward activity in the literature and also because it is difficult to identify a commonly 

activated set of brain regions associated with self-regulation.  Although it is not yet clear whether 

RSFC can be used to assess directionality of information flow between regions and systems, it 

can be used to constrain the brain regions that comprise a functionally-connected reward system 

and to identify critical through-points between reward and putative control systems that can be 

targeted in future intervention studies.  
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Figure Legends  

Figure 1. Seed-based RSFC for NAcc (A) and OFC (B). Independent connectivity for NAcc (C, 

red) and OFC (C, yellow) are displayed on the same surface, shown with shared connectivity (C, 

orange). Brain regions that are commonly activated in a meta-analysis of task-based studies on 

the feature term "reward" (D) (Yarkoni et al., 2011) are shown in black outline highlights over 

shared connectivity of the NAcc and OFC, shown in orange. RSFC data are thresholded at r > 

0.05 and are displayed on inflated lateral, medial, and ventral cortical surfaces. Seed locations for 

NAcc and OFC are highlighted as black spheres.  

 

Figure 2. Community assignments displayed on an inflated cortical surface (top) at 5% tie 

density. A spring- embedded layout of the network graph visualizing network topology (bottom) 

displays nodes and community assignments at 5% tie density. Modified regions that were 

adapted from NAcc and OFC RSFC seed-based analyses are outlined in bold.  

 

Figure 3. Candidate reward regions identified from seed-based RSFC (highlighted bold, any 

color) and reward system regions identified from graph analysis (green) are displayed on the 

task-based meta-analysis of reward (Yarkoni et al., 2011). Candidate regions are highlighted in 

bold of any color. Several candidate reward regions were assigned to other systems (non-green 

bold regions) and several additional nodes that were not directly identified in seed-based NAcc 

and OFC RSFC were assigned to the reward system via community detection (green non-bolded 

regions).  
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Figure 4. Plots are shown for node assignments into systems (left), with an enlarged view (right) 

which includes default, fronto-parietal, memory (in grey) and reward (in green) at tie densities 

from 20% down to 5% in 1% steps. Shaded rows and * represent modified ROIs.  

 

Figure 5. (A) Multiscale backbone connectivity (p < 0.01) through reward system nodes 

demonstrate strongest between-system integration with the default system. (B-D) The top 5% of 

connections between default (B, red), cingulo-opercular (C, black), and fronto-parietal control 

(D, yellow) and reward system nodes (green) reveal greater connectivity between frontal regions 

of default, cingulo-opercular, and fronto- parietal control systems and OFC regions of the reward 

system. Between-system connectivity with the NAcc was restricted to the dorsal anterior 

cingulate cortex (BA 32; cingulo-opercular system) and the medial prefrontal cortex (BA 10; 

default system). Intra-system connectivity is not shown. Regions and connections are displayed 

on inflated lateral, medial, and ventral cortical surfaces using BrainNet Viewer (Xia et al., 2013).  
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Tables 
 

NAcc OFC

Rank Order Non-Anatomical Terms Correlation Rank Order Non-Anatomical Terms Correlation

1 reward 0.58 4 reward 0.27

8 rewards 0.46 10 value 0.21

9 monetary 0.44 13 rewards 0.19

10 incentive 0.43 16 monetary 0.18

14 motivation 0.40 18 inventive 0.18

15 value 0.40 19 food 0.18

16 anticipation 0.39 25 anticipation 0.17

18 reward anticipation 0.39 27 money 0.17

19 incentive delay 0.37 30 reward anticipation 0.16

21 punishment 0.36 31 working 0.16

Rank Order Anatomical Terms Correlation Rank Order Anatomical Terms Correlation

2 ventral striatum 0.55 1 orbitofrontal cortex 0.38

3 accumbens 0.51 2 orbitofrontal 0.37

4 nucleus accumbens 0.51 3 ofc 0.28

5 striatum 0.50 5 cortex ofc 0.27

6 orbitofrontal 0.47 6 anterior cinulate 0.25

7 orbitofrontal cortex 0.46 7 ventral striatum 0.25

11 ventral 0.43 8 striatum 0.24

12 nucleus 0.40 9 anterior 0.23

13 ventromedial 0.40 11 vmpfc 0.20

17 ventromedial prefrontal 0.39 12 subgenual 0.20
 

Table I. Top 10 non-anatomical  and anatomical feature term correlations between seed-based  
NAcc (left) and OFC (right) RSFC and task-based reverse-inference Z-score images from the 
Neurosynth Decoder (Yarkoni et al., 2011). 
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Brain�Area X Y Z X Y Z

Nucleus�accumbens

Nucleus�accumbens

Medial�orbitofrontal�cortex -3 44 -9 1 44 -7

8 42 -5

Lateral�orbitofrontal�cortex 24 32 -18 23 33 -13

Lateral�orbitofrontal�cortex -21 41 -20 -24 34 -13

Thalamus -2 -13 12

Thalamus 8 42 -5

Hippocampus -21 -22 -20

Hippocampus 17 -28 -17

Ventral�tegmental�area 0 -16 -16

Caudate

Caudate

BA�46 -48 38 21 -47 38 14

BA�46 47 40 10

Putamen 27 16 -17

BA�9 -47 11 23 -49 8 29

BA37 -57 -56 -12

BA40 -60 -39 51

Individually�defined

Nodes�modified�from�Power�et�al.�(2011)�data�set

Removed Added

Individually�defined

Individually�defined

Individually�defined

Individually�defined

Individually�defined

Individually�defined

Individually�defined

Individually�defined

 

Table II.  Peak coordinates are listed for all supplemental nodes and the nodes they replaced 
from the Power et al. (2011) parcellation scheme.   
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Superordinate Systems Mean Std

Visual 0.86 0.29

Somatomotor (Medial at all tie-densities) 0.81 0.18

Default 0.80 0.23

FP 0.73 0.36

CO/Salience 0.59 0.36

Suborinate Systems Mean Std

Cerebellar 0.85 0.07

Reward 0.68 0.27

DAN 0.51 0.33

Subcortical 0.51 0.25

VAN 0.39 0.26

Memory 0.26 0.08

Lateral Somatomotor 0.19 0.06

System Stability

 
Table III. Stability of superordinate and subordinate systems across tie-densities. For each node 
that is a member of a given system at any tie-density between 2% and 20%, those nodes were 
selected, and the stability proportion metric was calculated. Stability proportion was calculated 
as the number of tie-densities a given system was observed at, divided by the number of tie-
densities (19, 2%-20%).  Systems with appearances in less than 1% of 271x19 matrix were 
excluded, including a second subcortical system. 
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