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Abstract 
Motivation: More than 20 years ago, our laboratory published an original statistical test (referred to as 

the Audic-Claverie (AC) test in the literature) to identify differentially expressed genes from the pairwise 

comparison of counts of cognate RNA-seq reads (then called “expressed sequence tags”) determined 

in different conditions. Despite its antiquity and the publications of more sophisticated software pack-

ages, this original article continued to gather more than 200 citations per year, indicating the persistent 

usefulness of the simple AC test for the community. This prompted us to propose a fully revamped 

version of the AC test with a user interface adapted to the diverse and much larger datasets produced 

by contemporary omics techniques.  

Results: We implemented ACDtool as an interactive, freely accessible web service proposing 3 types 

of analyses: 1) the pairwise comparison of individual counts, 2) pairwise comparisons of arbitrary large 

lists of counts, 3) the all-at-once pairwise comparisons of multiple datasets. Statistical computations 

are implemented using standard R functions and mathematically reformulated as to accommodate all 

practical ranges of count values. ACDtool can thus analyze datasets from transcriptomic, proteomic, 

metagenomics, barcoding, ChIP-seq, population genetics, etc, using the same mathematical approach. 

ACDtool is particularly well suited for comparisons of large datasets without replicates. 

Availability: ACDtool is at URL: www.igs.cnrs-mrs.fr/acdtool/ 

Contact: Jean-Michel.Claverie@univ-amu.fr  

Supplementary information: none. 

 

 

1 Introduction  

Sequence-based approaches started to supersede micro-array hybridiza-

tion-based platforms for the measurement of gene expression following 

the introduction of the concept of “expressed sequence tags” (Adams et 

al., 1993). This trend was amplified by the “Serial analysis of gene ex-

pression” (SAGE) approach (Velculescu et al., 1995; Velculescu et al. 

1997) that provided an increased output and decreased cost over the se-

quencing of regular cDNA libraries. At this point, the nature of the raw 

data collected to quantify the level of gene expression changed from fluo-

rescence intensities to numbers (i.e. counts) of gene-specific sequence 

tags. Accordingly, new bioinformatic methods had to be introduced to 

help biologists interpret the data from “digital” gene expression profiling 

experiments. Our laboratory was among the first to propose a relatively 

rigorous statistical framework to compare digital expression profiles ob-

tained from two different samples, point out the genes most likely to be 

differentially expressed, and study the influence of random fluctuations 

and sampling size on the reliability of these inferences (Audic and Clav-

erie, 1997). This approach, specifically published in the context of inves-

tigating differential expression, is in fact applicable to the analysis of 

counts of any type of event rare enough to be adequately modeled by a 

Poisson distribution. As the sequence tags approaches became increas-

ingly popular (becoming known as “RNA-seq” following the advent of 

next generation sequencing systems), more specific bioinformatic pack-

ages have been developed (reviewed in Hunag et al., 2015). Among the 

most cited are Limma (Ritchie et al., 2015), DESeq (Anders et al., 2013; 

Love et al. 2014), or EdgeR (Robinson et al. 2010; Anders et al., 2013). 

More recently, new bioinformatics packages have been proposed to spe-

cifically handle single-cell RNA sequencing data (Kharchenko et al., 

2014; Finak et al., 2015; Sengupta et al., 2016; Li and Li, 2018). All the 

above RNA-seq analysis tools are provided as R/Bioconductor packages 

the implementation of which requires in-house bioinformatics expertise. 

To alleviate this requirement, a few tools are now starting to be proposed 

as web-service to the end-users (Zhang et al., 2017; Zhu et al., 2017). Sur-

prisingly, despite the lack of follow up, our initial paper (Audic and Clav-

erie, 1997) continued to receive sizable number citations over the years 

with a large increase since 2012. The continuous usage (hence usefulness) 
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of this statistical test now commonly referred to as the “Audic-Claverie 

test” (e.g. Bortoluzzi et al., 2005; Metta et al., 2006; Kim et al., 2008; 

Tino, 2009; Wong et al., 2013) prompted us to revisit its mathematical 

formulation and adapt its numerical calculation to the much larger datasets 

and count values generated today. We then implemented this modernized 

R-library-based version of the test as an interactive web-service targeted 

to biologist end users, allowing three types of analyzes: 1) the basic pair-

wise comparison of individual counts, 2) the pairwise comparisons of ar-

bitrary large lists of counts, 3) the all-at-once pairwise comparisons of 

multiple datasets. ACDtool is proposed as an easy-to-use generic tool ca-

pable of processing the immense variety of modern omics techniques 

(RNA-seq, metagenomics, barcoding, proteomics, population genetics, 

etc) generating very large (albeit often very sparse) count datasets. Given 

the straightforward and general mathematical principles on which the Au-

dic-Claverie (AC) test was based, ACDtool is not intended to compete 

with the multiple specialized packages accompanying each of the above 

techniques. However, the ACDtool web service might remain quite useful 

to picture the global trends emerging from a given data sets (especially in 

absence of replicate), and decide whether the amount of information they 

contain justify the much larger investment required by specialized bioin-

formatic approaches. 

2 Methods  

We originally introduced our statistical test in the sole context of detecting 

differentially expressed genes by comparing their cognate tag counts ob-

tained from two different sampling experiments (Audic and Claverie, 

1995). ACDtool now extends its application to any sampling protocol 

where a large number of distinct and independent events (organisms, ob-

jects, labels, etc) are detected and counted, each of them representing a 

small fraction of the total counts. We then made the reasonable assumption 

that a Poisson distribution is underlying the counts of each of these indi-

vidual events.  

If we perform two sampling experiments, a given event will be counted x 

times in the first experiment and y times in the second. Audic and Claverie 

(1995) established that the probability that these counts were generated 

from the same but unknown Poisson distribution is given by: 

𝑝(𝑦|𝑥) = (
1

2
)

𝑥+𝑦+1 (𝑥+𝑦)!

𝑥!𝑦!
      (1) 

In the general case, where the total numbers of counted events differs in 

the first (N1) and second (N2) sample, the probability that the counts x 

and y are generated from samples containing an identical proportion of the 

corresponding event is given by: 

𝑝𝑁1,𝑁2(𝑦|𝑥) = (
𝑁1

𝑁2
)

(𝑥+𝑦)!

𝑥!𝑦!(1+
𝑁2

𝑁1
)

𝑥+𝑦+1  (2) 

Thus, under the null hypothesis that the tag counts are generated from 

Poisson distributions with equal means (or proportional to the respective 

sample sizes), Equation (2) can be used for principled Bayesian infer-

ences, construction of confidence intervals, and statistical testing (Tino, 

2009). In the latter case, a cumulative form of Equation (2) (e.g. summing 

up all the terms in the range [y, 0] if y/N2 <x/N1) will be used to compute 

the p-value. 

However, a plain implementation of such simple calculation scheme be-

comes problematic when applied to the huge range of x and y values en-

countered in modern omic experiment (RNA-seq, metagenomic, barcod-

ing, etc.).  
 

2.1 Unveiling a link with the negative binomial distribution 

A significant improvement of our original implementation of the test came 

after we noticed an unexpected relationship between Equation (2) and the 

classical negative binomial distribution (NB). Following a little bit of al-

gebra (documented at URL: www.igs.cnrs-mrs.fr/acdtool/) one realizes 

that 

𝑝𝑁1,𝑁2(𝑦|𝑥) ≡ 𝑁𝐵𝑟,𝑝(𝑦) = 𝑝𝑟(1 − 𝑝)𝑦 (𝑦+𝑟−1)!

𝑦!(𝑟−1)!
 (3) 

 with 𝑝 =
𝑁1

(𝑁1+𝑁2)
     and    𝑟 − 1 = 𝑥 

where 𝑁𝐵𝑟,𝑝(𝑦) is the probability of observing y failures before obtain-

ing r =(x + 1) successes, each one of them with a probability p. 

This result calls for two remarks. First, the sampling scheme correspond-

ing to the negative binomial in Equation (3) bears no relationship with the 

experimental setting at the origin of Equation (2). However, the equiva-

lence between the two expressions nicely establishes a formal link be-

tween our Poisson-based initial Bayesian model and the use of the nega-

tive binomial distribution arbitrarily assumed for RNA-seq data in subse-

quent, more specialized, analysis tools (Anders and Huber, 2010; Robin-

son et al., 2010; Di, 2015). 

2.2 Cumulative form of the negative binomial distribution 

An important consequence of the above is that the cumulative form of 

Equation (2) can be computed using its identity to the negative binomial 

distribution (Equation (3)) according to: 

𝑃(𝑥, 𝑦) = ∑ 𝑁𝐵𝑥+1,𝑝(𝑘)
𝑘=𝑦
𝑘=0 = 𝐼𝑝(𝑥 + 1, 𝑦 + 1)       (4)                                    

Where Ip denotes the incomplete regularized beta function (with values 

in  [0-1]), with  𝑝 =
𝑁1

(𝑁1+𝑁2)
       

This function is directly available in the R package. 

By symmetry, the above formula, valid for  
𝑦

𝑁2
<

𝑥

𝑁1
, is replaced by 

𝑃(𝑥, 𝑦) = ∑ 𝑁𝐵𝑦+1,1− 𝑝(𝑘)𝑘=𝑥
𝑘=0 = 𝐼1−𝑝(𝑦 + 1, 𝑥 + 1) (4’)   

when   
𝑦

𝑁2
>

𝑥

𝑁1
  .      

2.3 Introducing a distance 

In addition to the calculation of a p-value from a pair of counts associ-

ated to the same event (organism, object, label, etc), the ACDtool web 

service now implements the possibility of comparing whole datasets at 

once. For this, we introduced a Shannon-inspired measure of distance in-

volving the logarithm of the p-values as computed above, normalized by 

the relative contribution of each event to the total count. Each event con-

tributes the distance: 

 𝑑 = −
(𝑥+𝑦)

(𝑁1+𝑁2)
𝑙𝑛(𝑃(𝑥, 𝑦))   (5) 

to the global distance D, computed for all K events as: 

 

𝐷 = − ∑
(𝑥+𝑦)𝑘

(𝑁1+𝑁2)
𝑙𝑛(𝑃𝑘

𝐾
𝑘=0 )  (6) 

2.4 Computing p-values using the hypergeometric function 

To avoid potential numerical problems arising from very small p-values, 

and/or the large range of x, y values, a peculiar attention was devoted to 

the calculation of Equation (4), (4’) and  (5). Using standard R functions, 

a robust implementation was found to use the following formula (Boik and 

Robinson-Cox, 1999): 

𝐼𝑝(𝑥 + 1, 𝑦 + 1) = 

2𝐹1(−𝑦, 1, 𝑥 + 2; −
𝑁1

𝑁2
)

(
𝑁2

𝑁1+𝑁2
)𝑦(

𝑁1

𝑁1+𝑁2
)𝑥+1

(𝑥+1)𝐵𝑒𝑡𝑎(𝑥+1,𝑦+1)
     (7) 
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Where 2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) is the ordinary hypergeometric function of z, with 

parameters a, b and c. The standard hypergeometric2F1 R function is 

called with the method flag set as “Laplace”. 

3 Results 

The new ACDtool web service is using the AC statistics in three different 

contexts. Those different usages are extensively described in the online 

documentation (accessed via the button tags “document” and “example”). 

They correspond to the three tools displayed on the home page (URL: 

www.igs.cnrs-mrs.fr/acdtool/). Their purposes are presented below. 

3.1 Tool 1: comparing a pair of counts 

The input screen of Tool1 requests a pair of counts characterizing the 

same event (organism, object, label, etc) and the total counts of the two 

samples from which they were drawn. Each count must be small enough 

before the corresponding total counts (e.g. smaller than 5%) to justify 

our assumption that each event is drawn according to its own Poisson 

distribution. Tool1 then return the probability (and its logarithm) that the 

compared samples contain the same proportion of the event (Equation 

(7)). At variance with other inference methods, all reasonable integer 

values (e.g. in [0, 106]) return a valid result. Tool1 is also helpful at the 

stage of experimental design to determine which combination of counts 

and sample sizes are required to diagnose differences reaching a given 

threshold of statistical significance.   

3.2 Tool 2: comparing lists of paired counts 

This new tool performs the pairwise comparison of two lists of counts 

associated to the same set of events (organisms, objects, labels, etc) 

drawn from two samples, and determine which events exhibit the most 

significant differences. The minimal input format is a count table: the 

first column lists the different labels and subsequent columns list the 

counts associated to these labels. The first line of the table displays the 

heading of each column: label, then sample names. If needed, accessory 

columns can be embedded to display non-numerical attributes associated 

to each label. ACDtool2 is expecting a tab-delimited file such as that 

produced by the Excel spreadsheet (“save as” tab-delimited text, .txt). 

Such format allows a convenient back-and-forth between Excel editing 

and ACDtool analyses.  

The input screen of Tool2 requests 1) the count table file name, 2) the 

headings of the two columns of counts to be compared, 3) optionally, the 

heading(s) of the lists of attributes one wish to add to the output. 

The output is an interactive display of the events ranked by increasing p-

values (Equation (7)), the sense of (proportional) variation, the original 

counts, the corresponding normalized distances (Equation (5)), and the 

selected accessory attributes, if any. This output can be saved as a tab-

delimited file (.txt) compatible with the Excel spreadsheet. 

3.3 Tool 3: evaluating the pairwise distances of multiple 

datasets 

This new tool performs the complete set of pairwise comparisons of mul-

tiple lists of counts (associated to the same set of events) all at once, de-

livering an interactive heatmap of their relative distances (Equation (6)). 

The corresponding distance matrix can be saved as a tab-delimited file 

(.txt), for further use such as an input for various clustering algorithms. 

The input screen of Tool3 solely requests a count table file name. At var-

iance with Tool2, Tool3 will processed all columns as counts, except for 

the first one. The accessory columns tolerated by Tool2 must then be re-

moved (e.g. using the Excel spreadsheet) from the input file.  

Tool3 and Tool2 are often complementary. First, Tool3 will be used to 

reveal the overall similarity/discrepancy between a large number of sam-

pling experiments. Tool2 will then be used to identify which of the events 

(organisms, objets, labels, etc) are the most discrepant between them. 
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