
1 

 

 

Unifying mutualism diversity for interpretation and prediction 

Feilun Wu1, Allison J. Lopatkin1, Daniel A. Needs1, Charlotte T. Lee2, Sayan Mukherjee3, Lingchong You1, 

4, 5* 

1. Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708, USA 

2. Department of Biology, Duke University, Durham, North Carolina, 27708, USA 

3. Departments of Statistical Science, Mathematics, Computer Science, and Bioinformatics & 

Biostatistics, Duke University, Durham, North Carolina, 27708, USA 

4. Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, 27708, 

USA 

5. Department of Molecular Genetics and Microbiology, Duke University School of Medicine, NC 27710, 

USA 

*.   Corresponding author. Department of Biomedical Engineering, Duke University, CIEMAS 2355, 101 

Science Drive, Box 3382, Durham, North Carolina, 27708, USA  

Tel.: +1 (919)660-8408; Fax: +1 (919)668-0795; E-mail: you@duke.edu  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 20, 2018. ; https://doi.org/10.1101/304295doi: bioRxiv preprint 

mailto:you@duke.edu
https://doi.org/10.1101/304295


2 

 

 

Coarse-grained rules are widely used in chemistry, physics and engineering. In biology, 

however, such rules are less common and under-appreciated. This gap can be attributed to the 

difficulty in establishing general rules to encompass the immense diversity and complexity of 

biological systems. Even when a rule is established, it is often challenging to map it to mechanistic 

details and to quantify these details. We here address these challenges on a study of mutualism, an 

essential type of ecological interaction in nature. Using an appropriate level of abstraction, we 

deduced a general rule that predicts the outcomes of mutualistic systems, including coexistence and 

productivity. We further developed a standardized calibration procedure to apply the rule to 

mutualistic systems without the need to fully elucidate or characterize their mechanistic 

underpinnings. Our approach consistently provides explanatory and predictive power with various 

simulated and experimental mutualistic systems. Our strategy can pave the way for establishing and 

implementing other simple rules for biological systems.  
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How populations interact to generate various outcomes is a key question in biology. Mutualism, 

where two or more populations provide reciprocal benefit, is an essential type of ecological interaction (1). 

In marine ecosystems, coral reefs are based on mutualistic interactions between coral and algae that provide 

ecosystem services for humans and habitats for diverse organisms (2). Plant-bacterial mutualism is 

estimated to generate 60% of the annual terrestrial nitrogen input (3). Cross-feeding in microbial 

communities is also a mutualistic interaction that influences community structures and is the cornerstone 

of various microbial metabolic tasks (4, 5). Although mutualistic coexistence is beneficial in maintaining 

the biodiversity, function and stability of ecosystems, under some conditions mutualistic systems can 

collapse, where one or more mutualistic partners is lost. This perturbation can further trigger the extinction 

or invasion of other populations and alter ecosystem functions (6-9). A framework to interpret and predict 

mutualistic outcomes is useful to prevent undesirable system behaviors and provide guidance for 

modulating and engineering synthetic mutualistic systems.  

 

Quantitative rules have been developed to elevate our understanding and provide predictive power 

for various biological systems (10-13). However, such a framework is not yet available for determining 

mutualism outcomes. Main barriers in developing such a framework are the diversity of mutualistic 

interaction mechanisms and the complexity of underlying dynamics. Indeed, even engineered mutualistic 

systems that are by-design capable of cooperation, may not coexist. For example, it is still difficult to predict 

a priori whether an engineered microbial auxotrophic pair can persist or not (14-16). Previously, theoretical 

criteria in the form of model parameter inequalities have been developed for specific mutualistic systems 

such as cross-feeding mutualisms (17), plant-pollinator mutualisms (18), seed-dispersal mutualisms (19), 

ant-plant mutualisms (20), and plant-mycorrhizal mutualisms (21). These criteria depend on the underlying 

mechanisms assumed in the models and are not applicable to other types of mutualistic systems. General 

criteria have been developed (22-25), such as the classic criterion which states that intraspecific competition 

must be greater than mutual benefit for a mutualistic system to be stable (26). However, these criteria 
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usually describe transitions between stable coexistence and unbounded growth, and fail to address the 

transitions between coexistence and collapse and other mutualism dynamics (27, 28) (Fig. S1, 

Supplementary Text section I).  

 

Results 

Abstraction reveals a general rule 

To reveal any commonality of mutualistic systems, we first summarized the logic of mutualism 

(Fig. 1a). Mutualism can be defined as the collective action of two or more populations, where each 

population produces benefit (𝛽) that reduces the other’s stress (𝛿) at a cost (휀) to itself. 𝛽, 𝛿, and 휀 are 

universal features of mutualistic systems (Table 1). In addition to benefit and cost, which are conventionally 

considered as the driving forces of mutualistic outcomes (29-31), it has been shown that stress factors such 

as nutrient limitations (32), rising temperature (33, 34), rising CO2 levels (35), invasive species (36) are 

also determining factors of mutualistic outcomes. Although stress is not always explicitly acknowledged in 

previous models, it has been implemented as decrease in growth rate (37), increase in linear turnover rate 

(32, 38-41), or increase in intraspecific competition (22, 25). Here we use stress as an umbrella term to 

capture the effects of stress factors in reducing baseline fitness of individual populations to provide a more 

complete picture of mutualism (see section II.A of Supplementary Text for the detailed reasoning).  

 

To reflect the diversity of natural mutualistic systems, we systematically generated a total of 52 

ordinary differential equation models based on the basic logic of mutualism with various implementation 

details (see Materials and Methods and section II.B of Supplementary Text for model assumptions). These 

implementation details are designed to comprehensively cover the various common and plausible forms of 

kinetic models that have been adopted in previous studies (see section II.C of Supplementary Text for a 

summary). Specifically, the models all revolve around the logistic growth equation but differ in the 

locations of 𝛽, 휀, and 𝛿 and in the complexities the models capture, such as competition, partner-density-
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dependent cost and asymmetry (see section II. D of Supplementary Text). We only increased the model 

complexity to an extent that closed-form steady state solutions are obtainable. We derived coexistence 

criteria for all 52 models and found that these criteria exhibit diverse structures (Fig. 1b; Table S1-S2; 

Supplementary MATLAB code). The diversity of our derived criteria is consistent with the diversity of 

criteria that already exist in the literature (17-21). This diversity highlights the need to have a general 

criterion, since the appropriate model formulation for a specific system is often unknown a priori and its 

selection can also be non-trivial (42).  

 

Despite the diversity, at an appropriate abstraction level, however, all criteria follow a simple 

general form (Fig. 1c):  

 𝐵(𝜽) > 𝛿 (𝐸𝑞. 1) 

where 𝜽 denotes model parameters accounting for 𝛽 and 휀. 𝐵(𝜽) represents the effective benefit produced 

through mutualistic interaction. Quantitatively, 𝐵(𝜽) increases with increasing 𝛽 and decreasing 휀 and its 

structure differs depending on the specific model. 𝛿 represents stress; regardless of the model structure, it 

can always be quantified as 1 − 𝑟𝑚, where 𝑟𝑚 is the growth rate of the population in the absence of its 

mutualistic partner and normalized by its maximum growth rate. The interpretation of our criterion is 

intuitive: mutualistic partners can coexist if the effective benefit exceeds stress (Fig. 1d). Note that although 

alternative forms of the criterion may exist, Eq.1 is the most intuitive and parsimonious structure that 

decouples the effect of mutualistic interaction (𝐵(𝜽)) from the baseline stress level of single populations 

without interaction (𝛿).  

 

Beyond determining qualitative system outcomes (coexistence versus collapse), 𝐵 𝛿⁄  defines a 

general metric that is positively correlated with quantitative mutualistic outcomes (Fig. 1e), such as final 

population density, probability of coexistence, and resistance to cheater exploitation. This quantitative 

predictive power of the metric is robustly maintained for both symmetric and asymmetric systems, 
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including obligate and facultative mutualistic systems (Fig. S2a-f; Supplementary Text section IV). Further, 

the prediction accuracy of our criterion for qualitative outcomes is also robustly maintained in the presence 

of noise (Fig. S2g). The generality of the metric indicates that it is a property of mutualism. If so, 𝐵 is a 

high-level feature that, along with 𝛿, provides a unifying framework for interpreting and predicting diverse 

mutualistic systems.  

 

A calibration approach to use the metric 

Quantification of both 𝐵 and 𝛿 are required to use the metric. Although 𝛿 is easy to measure by the 

growth of single populations using a model-independent approach (see Fig. S3 for the general procedure), 

quantification of 𝐵, which describes the interactions, can often be challenging. Beyond the difficulties of 

selecting an appropriate structure of 𝐵(𝜽), quantification of its underlying parameters often requires non-

trivial mechanistic characterizations, such as model parameter fitting and specific biochemical assays. 

These mechanistic characterizations are especially challenging for cooperative traits, even in well-defined 

synthetic systems (43-45). Applications of the criterion would thus be difficult for individual systems, let 

alone enabling streamlined applications for diverse mutualistic systems.  

 

To bypass these challenges, we developed a calibration procedure to use qualitative outcomes to 

directly quantify 𝐵 as an empirical function of system context 𝒗, denoted by 𝐵(𝒗) (Fig. 2a). 𝒗 is comprised 

of system variables that modulate system behaviors, such as temperature, nutrient availability and genetic 

variation. 𝒗 measurements are often readily available, especially in laboratory settings where they are 

experimentally controlled independent variables. Thus, using simple measurements, we can approximate 

the true 𝐵(𝜽(𝒗)) that describes the diverse and complex interaction mechanisms without characterizing the 

specific mechanistic details. 𝐵(𝒗) along with 𝛿, will serve as the basis for interpretation and prediction 

beyond initial data. Although the procedure requires initial measurements of qualitative outcomes, 𝐵(𝒗)/𝛿 

can also provide predictive power for quantitative outcomes (Fig. 1e). 𝐵(𝒗)/𝛿 is positively related to the 
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final density (Fig. 1f; Fig. S2c-d), probability of coexistence (Fig. S2a, e), and cheater resistance (Fig. S2b, 

f). Further, 𝐵(𝒗) can be used to reveal how multiple system variables collectively alter the effectiveness of 

the interaction, which is a major challenge in studying context dependency of mutualistic outcomes (46).  

 

We first defined the input-output relationship of the calibration procedure (Fig. 2b). Measurements 

of qualitative outcomes are denoted as 𝒀 = [𝑦1, 𝑦2, 𝑦3, … 𝑦𝑛] (𝑦𝑖 = 1 for coexistence and −1 for collapse; 

𝑖 represents the index of an observation; 𝑛 represents the total number of observations). Measurements of 

 𝛿  for the same set of observations are denoted as 𝜹 = [𝛿1, 𝛿2, 𝛿3, … 𝛿𝑛] . Note that theoretically, 

quantification of 𝛿 for any partner is sufficient. However, choosing the partner with a larger dynamic range 

of 𝛿  is preferable since it can contain more information content. System context is denoted by 𝒗 =

[𝒗1, 𝒗2, 𝒗3, … 𝒗𝑛], where 𝒗𝑖 is a vector that contains the values of all system variables for observation 𝑖. 

With inputs 𝒀, 𝜹 and 𝒗, we can establish a smooth boundary between coexistence and collapse described 

by 𝐹(𝛿, 𝒗) = 0. To ensure 𝐵 > 𝛿 for coexistence and 𝐵 < 𝛿 for collapse, we constrain 𝐹(𝛿, 𝒗) > 0 for 

coexistence and 𝐹(𝛿, 𝒗) < 0 for collapse. Because 𝐵 = 𝛿  is true at the boundary, we can deduce that 

𝐹(𝐵, 𝒗) = 0. According to the implicit function theorem, if 𝐹(𝐵, 𝒗) = 0 is continuously differentiable, the 

output 𝐵(𝒗) is implied. A calibrated 𝐵(𝒗) can then enable downstream interpretation and prediction.  

 

To implement the calibration, we used support vector machine (SVM), a machine-learning 

algorithm for supervised classification (see Supplementary MATLAB code of the implementation). 

Assuming continuity of 𝐵(𝒗), we designed kernels that are separable in 𝛿  and 𝒗 to train the function 

𝐹(𝛿, 𝒗) = 0. We implemented linear, quadratic, cubic and sigmoidal kernels to describe different possible 

shapes of 𝐵(𝒗). Because there are infinite number of 𝐵(𝒗) that can provide equivalently high classification 

accuracy, we ranked the 𝐵(𝒗) obtained from different kernel parameters to find the 𝐵(𝒗) that are closer to 

the true 𝐵(𝜽(𝒗))  (Fig. S4a). The ranking method is established using simulated data where the true 

𝐵(𝜽(𝒗)) is known, so that each 𝐵(𝒗) can be evaluated against it by coefficient of determination (R2). We 
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found that our procedure consistently optimizes for R2 (Fig. S4b-c; Supplementary Text section V). The 

proper sample size for the calibration can be evaluated based on the exponential decay of bias with 

increasing sample size (47) (Fig. S4d).  

 

Using this procedure, we first tested whether 𝐵(𝒗)/𝛿 can be applied to mutualism models in which 

no explicit form exists for 𝐵(𝜽). To do so, we constructed an overwhelmingly complex model with 

competition, partner-density-dependent cost, high Hill coefficient and asymmetric function structures (see 

Supplementary Text section V.F, Fig S5a). Using an input data set of 100 points, 𝐵(𝒗) 𝛿 ⁄ correctly predicts 

coexistence versus collapse for 97.2% of test data beyond the initial 100 data points. As expected, 𝐵(𝒗) 𝛿⁄  

provides predictive power for quantitative outcomes including total population size (Fig. 2c), probability 

of coexistence (Fig. S5b) and resistance to cheater exploitation (Fig. S5c). The confidence of 𝐵(𝒗) can be 

evaluated by the consistency of top 𝐵(𝒗) and their relative standard deviation (RSD) (Fig. 5 d, e).  

 

Experimental application of the metric  

We next applied our framework to three experimental systems to test its applicability. As the first 

example, we engineered two synthetic mutualistic partners in Top10F’ strain of Escherichia coli, denoted 

by M1 and M2 (Fig. 3a, Fig. S6a). In this system, stress is modulated by the concentration of Isopropyl β-

D-1-thiogalactopyranoside (IPTG) which induces the expression of CcdB (a toxin). Anhydrotetracycline 

(aTc) induces quorum sensing (QS) modules in both strains to each produce a unique QS signal that triggers 

the production of CcdA (the antitoxin of CcdB) in the partner population. The production of aTc-induced 

expression of the QS module can impose cooperation cost to both strains. Consistent with circuit design, 

our experimental results demonstrated IPTG-mediated growth suppression and aTc-mediated mutual rescue 

(Fig. S6b).  
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We cocultured the two strains starting from the same initial density with different concentrations 

of IPTG and aTc, which are the two dimensions of 𝒗.  The outcomes of coexistence and collapse are evident 

in the bimodal distribution of optical density (OD) at 32 hours of culturing (Fig. S6c). 𝛿can be quantified 

by treating monocultures with the same set of [IPTG] and [aTc]. We used 𝛿 for M2 since it has a wider 

dynamic range (Fig. S6d). Using these data (Fig. 3b), we obtained a calibrated 𝐵(𝒗). The confidence of 

𝐵(𝒗) is evaluated by the consistency of the top 5 𝐵(𝒗) and relative standard deviation of each 𝐵(𝒗) (Fig. 

S6e). Consistent with the circuit logic, 𝐵(𝒗) increases with increasing [aTc]. The calibration reveals that 

[IPTG] also modulates 𝐵(𝒗), which indicates unintended system complexities, such as QS cross-talk and 

unequal fitness of the two populations (Fig. 3c). We used cross-validation to evaluate how well new 

observations can be predicted. We found that 𝐵(𝒗) 𝛿⁄  provides a cross validation accuracy of 96.8% for 

coexistence versus collapse and it is also predictive of total final density (Fig. 3d).  

 

We then applied our procedure to data on a pair of Saccharomyces cerevisiae auxotrophs that is  

previously published (32). In this system, one strain cannot produce tryptophan (Trp) and the other cannot 

produce leucine (Leu). The mutualistic interaction of this system is realized by the exchange of the two 

amino acids in cocultures (Fig. 3e). Because [Leu] is maintained as 8 times of [Trp], we use [Trp] as one 

of the dimensions of 𝒗 to represent overall concentration of supplemented amino acid. The ratio of initial 

densities of the two strains composes the other dimension of 𝒗 (Fig. 3f, Fig. S7a). All top 5 𝐵(𝒗) reveal 

that intermediate ratios of initial density and increasing amino acid concentrations elevate 𝐵(𝒗) (Fig. 3g). 

However, at the highest level of supplemented amino acid ([Trp] = 16nM, [Leu] = 128nM), top-ranked 

𝐵(𝒗) have qualitatively different trends, indicating a low confidence of 𝐵(𝒗) at high concentration (Fig. 

S7b). Interestingly, this high variability coincides with the system transitioning into competitive exclusion 

(32). Nevertheless, 𝐵(𝒗) 𝛿⁄  is still predictive of final densities (Fig. 3h). Furthermore, we explored using 

the concentration of supplemented amino acid as a single system variable. 𝐵(𝒗) 𝛿⁄  in this case can also 

predict the probability of coexistence as the ratio of initial densities varied (Fig. S7c).  
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In the third example, we applied our framework to previously published measurements of 14 

engineered auxotrophic E. coli strains that compose 91 pairwise mutualistic systems (48) (Fig. 3i). The 

genetic context of the two partners vary while the growth environment is kept the same. The classification 

of coexistence versus collapse is based on the bimodal distribution of total density (Fig. 8a). 𝛿 of each 

auxotroph is determined based on final cell densities of monocultures when supplemented with different 

concentrations of its corresponding amino acid (Fig. S8b). We sorted the auxotrophs by the number of 

partners they coexist with to convert categorical indices into an ordinal scale. Thus, 𝒗 is composed of 

ordinal rankings of the two strains and measurements of coexistence versus collapse and 𝛿  are both 

arranged accordingly (Fig. 3j). We used strain 1 as the reference strain for the calibration. The calibrated 

𝐵(𝒗) generated a cross validation accuracy of 91.8% and we verified that 𝐵(𝒗)/δ is predictive of final total 

density (Fig. 3k-l, Fig. S8c). We noticed a relatively high level of variability of total density when 

𝐵(𝒗)/δ > 1, which can be due to system-specific properties that are not fully accounted for by mutualistic 

interactions.  

 

Generalization of the framework  

In nature, mutualism can occur among three or more partners (49). Thus, we tested our framework 

with simulations and experimental measurements of N-mutualist systems. Here we show the calibration 

procedure with simulated data from a 5-mutualist system and found that the quality of the calibration results 

is well-maintained (Fig. 4a; Fig. S9a; Supplementary Text section VI.A). The same 14 auxotrophs (48) 

presented above were also used to construct all possible three-member systems. Using the same procedure 

with a 3-dimensional 𝒗, where each dimension represents the genetic context of one strain, we found the 

predictor 𝐵(𝒗) 𝛿⁄  provides an 89.3% cross validation accuracy and remains predictive of the total density, 

which indicates the scalability of the framework in experimental settings (Fig. 4b, Supplementary Text 

section VI.B). We hypothesized that 𝐵(𝒗) calibrated for pairwise interactions can be used to directly 
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construct a metric for 3-member systems, since theoretical analysis shows that n-member 𝐵(𝜽) can be 

approximated by pairwise 𝐵(𝜽) (Table S2). We assume 𝐵 of a 3-member system is the average of 𝐵 for all 

3 combinations of its underlying 2-population systems and the same is true for 𝛿. The constructed 𝐵 𝛿⁄  for 

3-member systems explains 80.8% of system outcomes (Fig. S9b). This result suggests the possibility of 

directly extending 𝐵 and 𝛿 from simple systems to more complex systems without further calibration.  

 

Beside static environments, mutualistic systems can also inhabit dynamic environments where they 

experience fluctuating physical and chemical cues or cohabitate with other populations. We verified that 

the theoretical criterion generally holds in both cases (Fig. S10a). However, the transition between collapse 

and coexistence does not strictly occur at 1, which further advocates for the necessity of the calibration 

process. With simulated data, we carried out the calibration procedure and verified that the applicability of 

our framework is well-maintained (Fig. 4c-d, Fig. S10b, Supplementary Text section VI.C-D). The 

robustness of the framework suggests that it can be used to study microbial communities, of which 

advancements in both interpretation and prediction are in demand (50).  

 

Discussion 

The immense complexity and diversity of biological systems is intriguing and inspires the 

exploration of mechanistic details. However, these details can distract us from simple rules that emerge at 

a higher level. By abstracting away from low-level details, many simple rules for biological systems have 

been developed to enhance our understanding and provide predictive power (51, 52). A classic example is 

the Hamilton’s rule, which states that a cooperative trait will persist if 𝑐/𝑏 > 𝑟, where 𝑟 is the relatedness 

of the recipient and the actor; 𝑏 is the benefit gained by the recipient; and 𝑐 is the cost to the actor. More 

recent examples include linear correlations underlying cell-size homeostasis in bacteria (53-55), ranking of 

quorum sensing modules according to their sensing potential (56, 57), and the growth laws resulting from 

dynamic partitioning of intracellular resources (58, 59). Beyond establishing another simple rule, we also 
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demonstrated that one can purposefully seek an appropriate abstraction level where a simple unifying rule 

emerges over system diversity. If this rule anchors in the basic definition of a type of system, it can then be 

applied to diverse systems of the same type. Beyond microbial systems that we tested, our criterion in 

principle can also be applied to other systems of larger or smaller scales that share the same logic.  

 

Although simple general rules in biology are powerful tools, their applicability to experimental 

systems can be limited by the difficulties in associating the abstracted parameters to lower-level mechanistic 

details and quantifying these details experimentally. This is evident in the application of Hamilton’s rule 

to, for example, to experimental systems (43-45). For simple rules that are dictated by inequalities, our 

calibration procedure provides a tool to apply these rules directly to experimental systems. If one side of 

the inequality and some final outcomes can be measured, the other side can be calibrated as an empirical 

function. Although the procedure cannot further dissect the empirical function into specific mechanistic 

parameters, the function can serve as an overall summary of the underlying mechanistic details while 

bypassing the requirement of characterizing them individually. Our approach thus enables the downstream 

interpretation and prediction by these simple rules with readily-accessible measurements.   
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Tables 

Category by 

function 

Mutualistic 

partners 

Benefit Cost Stress 

Transportation 

mutualism 

Plants Increased fecundity (60)  Seed consumption and 

energy loss (60, 61) 

Limited spatial range 

for reproduction 

Seed dispersers 

or pollinators 

Access to nutrient-rich 

food 

Energy loss or by-

product mutualism 

Starvation  

Protection 

mutualism 

Cancer cells Increased fitness and  

biochemical cues for 

proliferation (62) 

Energy loss or by-

product mutualism 

Host defense such as 

immune response 

Stromal cells Shared growth factors and 

altered microenvironments 

(62) 

Energy loss or by-

product mutualism 

Growth-suppressing 

factors in the host 

environment 

Nutritional 

mutualism 

Bacterial and 

archaeal 

auxotrophs 

Increased nutrient 

availability in the 

environment 

Energy loss (or 

byproduct mutualism) 

Nutrient-poor 

environments 

Nutritional 

mutualism  

Corals Higher rate of calcification 

and conservation of 

nutrient (63) 

Reduced cover, 

growth and fecundity 

(64) 

Nutrient-poor marine 

environment 

Algae Better habitat and 

increased availability of 

inorganic compound (65)  

Energy loss, possible 

restricted growth by 

coral (65) 

Nutrient-poor marine 

environment  

 

Table 1: Examples of benefit, cost, and stress in diverse mutualistic systems   
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Figures and figure legends 

 

Figure 1: 𝐵 and 𝛿 are two driving forces that determine qualitative and quantitative mutualistic outcomes  

(a) The basic logic of mutualistic systems. The two partner populations are denoted by 𝑋1  and 𝑋2 . 𝛽1  and 𝛽2 

describe the strength of benefit the partners provide each other. 휀1  and 휀2  describe the cooperation cost of 

providing benefit. Each population also experience stress 𝛿1 and 𝛿2.  

(b) Models originating from the basic logic of mutualism yield diverse coexistence criteria. Each line represents 

the generation of a model from the basic mutualism logic and branching represents different implementation 

details and system complexities. The circles represent the models and different colors represent diverse 

coexistence criteria derived from these models. This process aims to reflect the diversity of mutualistic systems 

in nature.  

(c) A simple rule emerges at an appropriate level of abstraction. The lines represent the abstraction process that 

establishes 𝐵(𝜽) > 𝛿 as the common structure shared by diverse criteria in panel b. 𝐵(𝜽) represents effective 

benefit and is a complex function of model parameters 𝜽, which include 𝛽 and 휀. In general, 𝐵 increases with 

increasing 𝛽 and decreasing 휀. The heatmap is generated using the following model:  

dΧ1

dτ
=

1

휀1

Χ1(1 − Χ1) −
𝛿1 

𝛽2Χ2 + 1
Χ1 

dΧ2

dτ
=

1

휀2

Χ2(1 − Χ2) −
𝛿2

𝛽1Χ1 + 1
Χ2 

𝛿 is the stress experienced by one population in the absence of its partner.  

(d) Intuitive interpretation of the simple rule. The effective benefit 𝐵 must overcome stress 𝛿 for the system to 

coexist. Solid black line represents coexistence boundary and dashed black line represents baseline fitness level 

in the absence of partner. Blue represents a 𝐵 that is greater than 𝛿 (coexistence) and yellow represents a 𝐵 that 

is smaller than 𝛿 (collapse).  

(e) 𝑩 𝜹⁄  can predict various system outcomes. If the two features 𝐵  and 𝛿  are known, many downstream 

predictions, both qualitative and quantitative, can be made.  

(f) Quantitative outcomes versus 𝑩 𝜹⁄ . Simulation results show when 𝐵 𝛿⁄ > 1, it is predictive of total density. 

Note that the points do not necessarily lie on a single curve, but a positive trend is well-maintained. Other 

quantitative outcomes also follow similar positive trends when plotted against 𝐵 𝛿⁄ .   
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Figure 2: A streamlined approach to calibrate for an empirical 𝐵(𝒗). 

(a) The rationale behind the calibration procedure. Conventional approaches (denoted by dashed gray arrows) 

require quantifications of mechanistic parameters as functions of contextual variables 𝜃(𝒗) and finding the 

appropriate structure of 𝐵(𝜃) to construct 𝐵(𝜃(𝒗)). However, both steps are challenging and require case-by-

case applications due to the diversity of mutualistic interactions. Instead, using qualitative outcomes of the system, 

we can distill an empirical function 𝐵(𝒗) to approximate the true 𝐵(𝜃(𝒗)). 𝐵(𝒗)/𝛿 can then predict qualitative 

and quantitative outcomes. Dark blue indicates the data that are relatively easy to measure without requiring 

mechanistic understanding of the interaction.  

(b) A schematic demonstrating the mathematical basis of the calibration procedure. 𝑣1 and 𝑣2 represent two 

system variables. A circle represents an observation 𝑖 at a particular 𝒗𝒊 = (𝑣1𝑖 , 𝑣2𝑖). 5 observations are shown. 𝒀 

contains qualitative system outcomes for each observation. Closed circles indicate coexistence and open circles 

indicate collapse; the same notation scheme is used for all following figures. 𝜹 contains the measurement of stress 

for each observation (lighter colors indicate higher values). Using 𝒗, 𝒀 and 𝜹, a boundary that separates the two 

types of outcomes can be established (the red curve). According to our simple rule, 𝐵 = 𝛿 is true at the boundary; 

𝐵 > 𝛿 is true for coexistence and 𝐵 < 𝛿 is true for collapse. Using these data and our simple rule, we can calibrate 

for a 𝐵(𝒗) which then enables the interpretation and prediction of system outcomes. Refer to Movie S1 for a 3D 

visualization of the calibration.  

(c) Proof of principle using simulated data. Simulations were performed using a complex mutualism model that 

does not have an explicit form of 𝐵(𝜽) (see Supplementary Text section section V.F). The input data set contains 

100  observations. 𝛿  and calibrated 𝐵(𝒗) share the same axes with 𝒀  (this applies to all following figures). 

𝐵(𝒗)/𝛿 correctly classifies 97.2% of 2500 new data points. 𝐵(𝒗)/𝛿 is also predictive of total densities (only 100 

data points are shown out of 2500). Black trace in the plot named “Prediction” represents binned averages of total 

density (this applies to all following figures).   
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Figure 3: Implementation of the simple rule in experimental systems (Movie S2-4 for 3D visualizations) 

(a) The QS-based mutualism system. IPTG modulates stress and aTc induces QS-mediated mutualistic interaction.  

(b) Measurements of coexistence and collapse and corresponding 𝜹  values. Coexistence and collapse are 

measured by co-culturing the two strains starting from the same initial densities. 𝛿 is measured by OD of M2 

mono-culture after 32 hours of culturing.  

(c) Empirical calibration of 𝑩(𝒗). 𝐵(𝒗) reveals how [IPTG] and [aTc] together modulate the effectiveness of the 

interaction.  

(d) 𝑩(𝒗) /𝜹 is predictive of coexistence versus collapse and total final density. The x-axis range of [0.5, 1.5] is 

used to highlight the transition (this also applies to other prediction plots). The trend continues to hold beyond 

this range. The y axis represents normalized final cell density (the same applies to panel h and l). 

(e) The pair-wise yeast auxotroph system. The growth of both auxotrophs are suppressed in monocultures. With 

increasing Trp and Leu supplemented to the co-culture, the growth suppression can be alleviated.  

(f) The amount of supplemented amino acid and ratio of initial densities modulate system behavior. Only [Trp] 

is shown and [Leu] is 8 times of [Trp]. The total initial density of the two strains are kept constant. Corresponding 

𝛿 values are measured based on growth yield of ∆𝐿𝑒𝑢 monocultures, assuming 𝛿 is independent of initial density 

(Fig. S7a).  

(g) Optimal effective benefit occurs at an intermediate ratio of initial density. The calibrated 𝑩(𝒗) provides a 

cross validation accuracy of 95.0%.  

(h) 𝑩(𝒗)/𝜹 is predictive of normalized total cell number per culture well.  

(i) The 91 mutualism systems constructed by 14 engineered E. coli auxotrophs. Growth suppression is evident 

in their inability to survive individually in minimal medium. However, two auxotrophs can potentially survive 

through mutualistic interaction in a coculture by exchanging amino acids. The metabolic burden of the exchanging 

amino acid can be minimal.  

(j) System outcomes for all 91 pairs and 𝜹 for each of the 14 auxotrophs. Note that for one pair, the calibration 

is done twice with 𝛿 of either strain.  

(k) The predictive power of 𝑩(𝒗)/𝜹. The calibrated 𝐵(𝒗) and 𝛿 measurements provide a 91.8% cross validation 

accuracy.  

(l)  𝐵(𝒗)/𝛿 is predictive of the normalized fold change of final total density relative to initial density.   
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Figure 4: Our framework is generalizable to mutualistic systems with more than two partners and systems that inhabit 

dynamic environments. Please refer to section VI of Supplementary Text for simulation details.  

(a) A simulated mutualistic system with 5 partners. Parameters in the model are functions of two independent 

variables. Using 100  data points, we obtained a 𝐵(𝒗)  through clibration. 𝐵(𝒗)/𝛿  successfully predicts 

coexistence versus collapse for 98.6% of a new set of 2500 data points (100 points are shown) and it is also 

predictive of total density. 

(b) Experimental auxotrophic triplets that are comprised of 14 E. coli auxotrophs. The same auxotrophic strains 

presented in Fig. 3i-k were used to construct three-way mutualistic systems. This experimental validation 

demonstrates the generality of framework beyond pairwise interactions.  

(c) A system that is modulated by an oscillatory signal. The oscillatory signal S is described by I (intensity) and L 

(duration). The signal temporally modulates 𝛿 and 𝛽. I and L are the two system variables used in calibration. 

The procedure achieves a prediction accuracy of 97.3% for new data. 

(d) A simulated mutualistic system that coinhabits with 5 other populations. X1 and X2 are the mutualistic 

partners. X3 to X7 are bystander populations that either modulate or are modulated by X1 and X2. 𝐵(𝒗)/𝛿 

successfully predicts 92.3% of new data in this example.  
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Materials and Methods 

 

Model development.  

We built mutualism models based on four key assumptions:  

a) Benefit shall increase growth rate or carrying capacity and is positively dependent on partner density.  

b) Cost shall decrease growth rate or carrying capacity. 

c) Stress shall produce negative growth of populations at some parameter combinations.  

d) Negative growth of a population shall be potentially counteracted by benefit provided by a partner, but 

further strengthened by cost.  

See SI section II for detailed reasoning and implementation of each assumption. 

 

Criteria derivation.  

We calculated the analytical solutions of fixed points of the 52 models using MATLAB R2017a. 

Then we identified the fixed points that represent stable coexistence. The coexistence criteria are derived 

by ensuring the fixed points are real positive numbers. We can then rearrange the inequality to have 𝛿 on 

one side. The other side of the inequality is then an expression of other parameters, which is expressed as 

𝐵(𝜽). More details are presented in SI section III. The MATLAB code of the models and the derivation 

and testing process is included in the Supplementary Materials.  

 

Calibration of benefit landscape using SVM. 

We used support vector machine (SVM) algorithms in MATLAB to implement the calibration. The 

input data are formulated into the following format: 

Label of coexistence versus collapse:  𝒀 = [𝑦1, 𝑦2, ⋯ , 𝑦𝑛]  (Eq. 1) 

System variables:  𝒗 = [𝒗𝟏, 𝒗𝟐, ⋯ , 𝒗𝒏]  (Eq. 2) 

Stress of the reference population:  𝜹 = [𝛿1, 𝛿2, ⋯ , 𝛿𝑛]  (Eq. 3) 

In Eq. 2-4, 𝑛 represents total number of observations and each index represents one observation. 𝒀 takes 

values of 1  or −1 , which represent coexistence versus collapse for each observation. 𝒗  contains the 
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coordinates in the independent variable space where observations are obtained. 𝜹 contains the stress levels 

of the reference population for each observation.  

We designed kernels that have additive separability between 𝒗 and 𝜹, which can be expressed in a 

general form: 

 𝐾〈[𝒗𝟏, 𝛿1], [𝒗𝟐, 𝛿2]〉 = 𝐾𝑣〈𝒗𝟏, 𝒗𝟐〉 + 𝑘𝛿(𝛿1 ∙ 𝛿2),  (Eq. 4) 

where 𝐾𝑣 is the kernel that dictates the shape of the empirical function of 𝐵 and 𝑘𝛿 is a constant that varies 

the weight of 𝜹. The predictor trained using SVM can then be expressed as:  

 𝑓([𝒗, 𝛿]) =∑𝛼𝑖𝑦𝑖𝐾𝑥〈𝒗𝑖, 𝒗〉

𝑖

+ 𝑘𝛿𝛿∑𝛼𝑖𝑦𝑖𝛿𝑖
𝑖

+ 𝜆0. (Eq. 5) 

According to our criterion, we know that 𝐵 = 𝛿 when 𝑓([𝒗, 𝛿]) = 0. We can then derive from Eq. 6 a 

function of 𝐵 in terms of system variables 𝒗:  

 𝐵(𝒗) = 𝛿 =
−∑ 𝛼𝑖𝑦𝑖𝐾𝑥〈𝒗𝑖, 𝒗〉𝑖 − 𝜆0

𝑘𝛿 ∑ 𝛼𝑖𝑦𝑖𝛿𝑖𝑖
. (Eq. 6) 

With each set of inputs, we used linear, quadratic, cubic, and sigmoidal kernels with different kernel 

parameters to train 𝐵(𝒗) . We then find the  𝐵(𝒗)  with lowest cross-validation classification loss and 

bootstrapped variance. The top ranked 𝐵(𝒗) is then used along with 𝛿 measurements for interpretation and 

prediction. See section V of SI for detailed calibration method and the Supplementary Materials for the 

MATLAB code of the calibration process and sample data sets. 

 

QS-based mutualism strains.  

The two strains were constructed based on circuit components from a synthetic predator-prey 

system (66, 67). Both populations carry two plasmids. Briefly, M1 carries plasmids identical to the predator 

plasmids, denoted A1 for the module carrying ccdA (tet promoter (68) driving luxR and lasI followed by 

lux promoter driving ccdA) and B1 for the module carrying ccdB (Lac promoter (68) upstream of ccdB 

followed by tet promoter upstream of gfp). To construct M2, A1 was used as backbone. To obtain orthogonal 

communication, KpnI and NotI restriction digest cloning was used to replace luxR/lasI genes from A1 with 
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lasR/luxI genes from the previously published prey plasmid (consisting of pLac lasRluxI CcdB (KanR, p15A 

ori)). Reporter plasmid B1 is from (66). To construct B2, enzymes XhoI and KpnI were used to replace the 

tet promoter on prey plasmid with the ccdB module from B1. All M1 and M2 plasmids were verified using 

restriction digest and sequencing.  

 

Growth conditions of QS-based synthetic system.  

The experiments of QS-based mutualistic system were done in 96-well microtiter plates. PH-

buffered M9 medium (M9 salt supplemented with 1mM thiamine, 0.2% casamino acid, 0.4% glucose, 2mM 

MgSO4, 0.1mM CaCl2 and buffered with 100mM MOPS with PH adjusted to 7.0) was used. 50 g/mL 

kanamycin and 100 g/mL chloramphenicol were added to the culture to maintain plasmids.  

To measure circuit function, 4 ml LB media in a 14 ml culture tube was inoculated from single 

colony and incubated overnight at 37 oC at 250 r.p.m. The optical density is adjusted to 0.5 in M9 media 

(measured at 600 nm with TECAN microplate reader) before use. Cocultures are created by mixing both 

strains in a 1:1 volume ratio. The culture is then diluted 106 fold and cultured in 200L batch culture at 

30oC in TECAN plate reader to record OD for 32 hours with 10 minutes between each reading. The inducers 

were added to the media at the beginning with cell culture.  
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I. Previous mutualism models 
 

Here we briefly summarize some limitations of previously published models in studying the transition 

between mutualism coexistence and collapse.  

 

A. The Lotka-Volterra model 
Consider the following model that follows the basic form of Lotka-Volterra model of mutualism. This 

formulation is a nondimensionalized form of previous models (69-74). The parameters are renamed 

according to our parameter assignments.  

 
dΧ1
dτ

=  Χ1(1 − 𝛿1Χ1) + 𝛽1Χ2Χ1, (I. 1) 

 
dΧ2
dτ

=  𝜌Χ2(1 − 𝛿2Χ2) + 𝛽2Χ1Χ2. (I. 2) 

 

Although the model formulation captures the logic of mutualism, it can generate unbounded growth of the 

two partners, which is not a biologically relevant state. For example, when 𝜌 = 1, 𝛽1 = 𝛽2 = 2 and 𝛿1 =

𝛿2 = 1, the two populations are not bounded by their carrying capacities, but both grow exponentially. 

Importantly, the model does not capture population collapse so it cannot explain the transition between 

collapse and coexistence. Thus, this model formulation is not suitable for our purpose.  

 

A coexistence criterion for mutualism can be derived using L-V model formulation and is previously 

demonstrated (69-73):  

 β1β2 < 𝜌δ1δ2.  (I. 3) 

 

However, this criterion captures the transition between stable coexistence and unbounded growth. It also 

suggests that mutualism is destabilizing, since increasing the strength of mutualistic interaction (β1β2) tends 

to violate the above condition (I. 3). The interpretation of this criterion can be contradictory to empirical 

observations that mutualism stabilizes community (75-77). Although Lotka-Volterra models are sufficient 

to answer many questions related to mutualistic systems, it has been proposed that this discrepancy between 

model dynamics and empirical observations can be attributed to its unrealistic assumptions (78-81).  

 

B. Other variants  

We found that general mutualism models that generate unbounded growth usually do not capture the 

transition between coexistence and collapse. For example, the following three models were established 

previously to find structurally stable mutualistic models (78). In contrast to the L-V model which 

implements the interaction as a linear term, the following models present three alternative ways of adding 

the interaction to the basic logistic growth equation.  

 

 

d𝑁1
dt

= 𝑟1𝑁1
𝐾1 −𝑁1 + 𝛼12𝑁2
𝐾1 + 𝛼12𝑁2

 

d𝑁2
dt

= 𝑟2𝑁2
𝐾2 − 𝑁2 + 𝛼21𝑁1
𝐾2 + 𝛼21𝑁1

 

(I. 4) 
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d𝑁1
dt

= 𝑟1𝑁1
𝐾1 −𝑁1 + 𝛼12𝑁2

𝐾1
 

d𝑁2
dt

= 𝑟2𝑁2
𝐾2 − 𝑁2 + 𝛼21𝑁1

𝐾2
 

(I. 5) 

 

 

d𝑁1
dt

= 𝑟1𝑁1

(1 +
𝛼12𝑁2
𝐾1

) (𝐾1 −𝑁1)

𝐾1
 

d𝑁2
dt

= 𝑟2𝑁2

(1 +
𝛼21𝑁1
𝐾2

) (𝐾2 −𝑁2)

𝐾2
 

 

(I. 6) 

In all these three cases, some parameter combinations generate unbounded growth. For example, 𝑟1 = 𝑟2 =

1; 𝐾1 = 𝐾2 = 1; 𝛼12 = 𝛼21 = 2; 𝑁10 = 𝑁20 = 0.1 generates unbounded growth for I.4 and I.5 and 𝑟1 =

𝑟2 = −1; 𝐾1 = 𝐾2 = 1; 𝛼12 = 𝛼21 = 2; 𝑁10 = 𝑁20 = 2 generates unbounded growth for I.6. Unbounded 

growth has been recognized as a limitation of many mutualism models (82-84). In addition, although 

population collapse can be simulated by 𝑟1 < 0 and/or 𝑟2 < 0, in all cases, the fitness of the benefit-receiver 

decreases with increasing partner density, which is contradictory to the basic logic of mutualism.  

 

To avoid generating unbounded growth, one strategy is to introduce saturating benefit (73). However, 

although preventing unbounded growth, these models may still not generate negative growth which can be 

potentially countered by the increase of partner density. For example, the following model is adapted from 

a previous work (81) which falls into this category. In addition, if no decreasing density is captured, this 

model will stabilize at its coexistence state with any positive initial density for both populations.  

 

 

dX1
dτ

= 𝑟1N1 (1 − δ1𝑁1 +
β12N2

1/β2 + N2
) 

dX2
dτ

= 𝑟2N2 (1 − δ2𝑁2 +
β21N1

1/β1 + N1
) 

 

(I. 7) 

Due to the limitations of previous mutualism models in studying the transition between coexistence and 

collapse, a more systematic way of modeling mutualism is required to both ensure the basic logic of 

mutualism and capture the transition between stable coexistence and collapse.  

 

II. Building various mutualism models 
 

The diversity of mutualistic systems impedes the formulation of a general mutualism model and the general 

proof of a single criterion. We generated various mutualism models to reflect the diversity of mutualistic 

systems in nature and examine how diverse the coexistence criteria are. We also aim to investigate whether 

there exists an invariant form that is preserved regardless of specific model implementations. If such an 

invariant form exists, it will then reveal a fundamental coexistence criterion that is originated from the basic 

logic of mutualism.  
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A. Incorporation of stress 
We explicitly define stress as a reduction of growth rate or productivity of biological systems, which is 

consistent with previous works (85-88). Stress is universal in biology because it is present whenever growth 

rate is lower than the optimal growth rate. In mutualistic systems, many studies have shown that stress 

factors alter the basal fitness of individual mutualists. These factors include nutrient limitation (89), rising 

temperature (90, 91), rising CO2 levels (92), invasive species (93), etc. Beyond benefit and cost, it is known 

that these stress factors also determine mutualistic outcomes (94).  

 

To study quantitatively how stress affects mutualistic outcomes, we include stress as a model parameter 

that reduces the growth rate or carrying capacity of individual mutualists in various biotic/abiotic contexts. 

In previous models, stress has been included as linear turn-over rate (66, 89, 95-97) or intraspecific 

competition (69, 70). Although these studies have more specific terms describing the downward pressure 

they capture, we use “stress” as an appropriate umbrella term.  

 

Stress, thus defined, plays an essential qualitative role in mutualism. First, an absence of stress would mean 

that populations operate at maximum fitness.  Such populations could not benefit from mutualism, because 

they would already be operating at their optimal level. Second, in mutualistic models the downward 

pressure can resolve the unrealistic exponential growth of mutualistic partners by imposing an upper limit 

to mutual benefit (78). Third, using stress can dissect the baseline fitness of individual mutualists caused 

by biotic/abiotic factors from the effect of mutualistic interaction on fitness.  

 

B. Model assumptions 

The key step of generating various mutualism models is to establish the set of assumptions the models 

should follow. We first start off with the most apparent aspects of mutualism: benefit and cost. These two 

aspects lead to two assumptions:  

 

e) Benefit shall increase growth rate or carrying capacity and is positively dependent on partner 

density. 

f) Cost shall decrease growth rate or carrying capacity. 

 

To study the transition between coexistence and collapse in mutualism systems, the models must be able to 

simulate collapse, leading to the third assumption where we explicitly introduce stress to achieve negative 

growth. In addition to generating negative growth, stress has a physical meaning which is the difference 

between maximal fitness and baseline fitness in the absence of the partner: 

 

g) Stress shall produce negative growth of populations with some parameter combinations.  

 

The fourth assumption follows assumption c) to reinforce the effects of benefit and cost in mutualistic 

interaction: 

 

h) Negative growth of a population shall be potentially counteracted by benefit provided by a partner, 

but is further strengthened by cost.  

 

Even when all the above assumptions are satisfied, we still need to verify that the models do not generate 

unbounded growth with any parameter set.  
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C. Modifications of the logistic growth equation 

After establishing a minimal set of assumptions, we then need to establish a systematic way of generating 

diverse models.  

 

Mathematically, there are infinite possible implementations of a mutualistic system. We attempt to cover 

the different common and plausible forms of kinetic models that have been adopted in previous studies. 

Previous models have captured benefit, cost and stress in many ways. The following is a short summary of 

how benefit, stress and cost are modeled previously that serve as building blocks for our own models. Many 

models use Hill equations to capture saturating benefit (66, 81, 89, 98, 99). Cost is also an aspect that is 

widely modeled, which can be implemented many ways (81, 100), such as independent or dependent of 

partner density. Although stress is not often generally discussed, one possible form of stress is self-

regulation, also called density dependence or inter-population competition, which often appears in large-

scale models (69-71). Linear death rate (often imposed by dilution) is also another common form of stress 

(66, 89, 95-97).  

 

Inspired by these observations, we first examined different methods to modify a logistic growth equation.  

 

Consider a basic logistic growth equation:  

 
dN

dt
= 𝜇N(1 −

N

𝑁𝑚
). (II. 1) 

 

This equation only has two parameters, growth rate 𝜇 and carrying capacity 𝑁𝑚. If we can derive a non-

dimensionalized logistic growth equation, it can be rewritten as:  

 
dX

dτ
= X(1 − X)  (τ = 𝜇t,  Χ = N Nm⁄ ). (II. 2) 

 

The followings are common modifications of the above equation: 

1. The growth rate can be modified by multiplying the right-hand-side with a constant:  

 
dX

dτ
= 𝛼X(1 − X). (II. 3) 

This equation modifies the growth rate from 1 to 𝛼, where increasing 𝛼 increases growth rate and 

leaves the carrying capacity the same. 𝛼 can take any real number in this case.  

2. The carrying capacity can also be modulated, leaving the growth rate unchanged:  

 
dX

dτ
= X(1 − 𝛼X). (II. 4) 

The carrying capacity becomes 1 𝛼⁄  and 𝛼 > 0. This formulation does not generate negative growth.  

3. The "1" in the logistic growth equation can also be modified:  

 
dX

dτ
= X(𝛼 − X).   (II. 5) 

It can be rewritten as the same form of logistic growth equation:  

 
dX

dτ
= 𝛼X(1 −

X

𝛼
). (II. 6) 
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In this case, both growth rate and carrying capacity are scaled by a factor of 𝛼. 𝛼 can take any real 

number because if the carrying capacity is negative, the growth rate will also be negative and thus the 

model will only generate bounded growth.  

4. A first order term can be added to the equation:  

 
dX

dτ
= X(1 − X) − 𝛼X. (II. 7) 

Although this modification is equivalent to the previous one, it is worth noting since this form is 

commonly used to represent death rate or turnover rate.  

 

The above analysis demonstrates that 1, 3, and 4 are robust modifications that provide consistent model 

modulations with any real value of 𝛼 parameter. Following this analysis, we will then model stress, benefit 

and cost at these three locations in the logistic growth equation to capture the assumptions presented above 

for mutualistic interactions.  

 

D. Specific implementations of benefit, stress and cost 

To capture the model assumptions of a), b) and c), we used the following formulations to modify simple 

logistic growth equations at location 1, 3 or 4 mentioned above to capture the logic of mutualistic interaction.  

 

a) Benefit shall be positively dependent on partner density.  

This assumption can be modeled at all three locations by 

 
𝛽′𝑋2

𝑋2 + 1/𝛽
 (𝛽 ≥ 0, 𝛽′ > 0) or 

−1

𝛽𝑋2 + 1
 (𝛽 ≥ 0),  (II. 8) 

where 𝑋2 represents partner density (same as below) and 𝛽 and 𝛽′ are measures of strength of benefit. 

In both cases, the benefit function is bounded, which facilitates the stabilization of population densities 

(73). 

 

b) Cost shall decrease growth rate or carrying capacity. 

We use 휀  as a measure of level of cost. Specifically, this is implemented at location 1 or 3 by 

multiplication 

 
1

휀
(휀 ≥ 1) (density-independent) or 

1

휀𝑋2 + 1
 (휀 ≥ 0) (density-dependent). (II. 9) 

Cost can also be implemented as a turnover rate at location 4  

 −휀 (휀 ≥ 0) (density-independent) or − 휀𝑋2 (휀 ≥ 0) (density-dependent). (II. 10) 

 

c) Stress shall produce negative growth of populations with some parameter combinations.  

We use 𝛿 as a measure of stress. Specifically, this is implemented by modifying the logistic growth 

equation at location 1 or 3 by  

 1 − 𝛿 where (𝛿 ≥ 0). (II. 11) 

 

Stress can also serve as a turnover rate at location 4  

 −𝛿. (II. 12) 

 

Two or more of the parameters can share one location, so we permutated the three factors in the three 

locations and systematically generated 81 models (Table S1). The 81 models are then checked against 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 20, 2018. ; https://doi.org/10.1101/304295doi: bioRxiv preprint 

https://doi.org/10.1101/304295


11 
 

assumption d) and verify that the models do not generate unbounded growth. See Supplementary Materials 

for the MATLAB code that investigates the model assumption d) and unbounded growth behavior. Out of 

the 81 models, 48 satisfy all 4 assumptions and do not generate unbounded growth with positive parameter 

values and positive initial densities.  

 

III. Derivation of diverse criteria  
 

This section demonstrates the diversity of criteria with various model formulations. We first use an example 

model to serve as the base model to demonstrate a detailed process to derive coexistence criteria. We then 

show the process of building various mutualism models with more complexity and deriving or 

approximating the corresponding criterion.  

 

A. An example 

Consider the following model as our base model for the analytical analyses:   

 
dN1
dt

=
μ

ε
N1 (1 −

N1
Nm

) −
d K

N2 + K
N1, (III. 1) 

 
dN2
dt

=
μ

ε
N2 (1 −

N2
Nm

) −
d K

N1 + K
N2. (III. 2) 

 

The non-dimensionalized version of the model is (model 21 in Table S1):  

 
dΧ1
dτ

=
1

ε
Χ1(1 − Χ1) −

δ 

βΧ2 + 1
Χ1, (III. 3) 

 
dΧ2
dτ

=
1

ε
Χ2(1 − Χ2) −

δ

βΧ1 + 1
Χ2. (III. 4) 

 

Where τ = 𝜇t, Χ1 = Χ2 =
N

Nm
, δ =

d

𝜇
, β =

𝑁𝑚

K
. The ranges of the parameters are: 휀 ≥ 1, δ ≥ 0, β ≥ 0 

 

This system has 5 fixed points:  

 (0, 0), (III. 5) 

 (1 − 휀δ, 0), (III. 6) 

 (0, 1 − 휀δ), (III. 7) 

 (
β − 1 + √(β + 1)2 − 4β휀𝛿

4β
,
β − 1 + √(β + 1)2 − 4β휀𝛿

4β
), (III. 8) 

 (
β − 1 − √(β + 1)2 − 4β휀𝛿

4β
,
β − 1 − √(β + 1)2 − 4β휀𝛿

4β
), (III. 9) 

 

By calculating the Jacobian, we found that the 4th fixed point (III.8) represents stable coexistence. The 5th 

fixed point is a saddle point and is unstable. For the 4th fixed point to be in the first quadrant of the Real 

domain, 2 conditions must be satisfied at the same time:  

 (β + 1)2 − 4β휀𝛿 ≥ 0, (III. 10) 
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β − 1 + √(β + 1)2 − 4β휀𝛿

4β
> 0. (III. 11) 

 

The first condition (III.10) derives the coexistence criterion 
(β+1)2

4β  
≥ 𝛿 and when this criterion is satisfied, 

the second condition is automatically satisfied if β > 1. When β ≤ 1, only facultative mutualism can be 

captured. Bifurcation analysis of the system shows Allee effect and how final density increases with 

increasing β, decreasing 𝛿 or decreasing 휀.  

 

B. Summary of criteria derived from symmetric models  

Symmetric models in general generate interpretable analytical solutions. In Table S1, all the models are 

assumed to be symmetric between two populations. We found that these symmetric models already generate 

a diverse set of coexistence criteria.  

 

Most of these criteria are derived using the same logic used for the base model presented above, except for 

the criteria of model 1, 4, 28, 31, 55 and 58 in Table S1, which are derived from setting the analytical 

solution of the saddle point lower than the initial density Χ0. This is because the steady states that represent 

coexistence for these models are constants, whereas the saddle points are modulated by model parameters. 

For a detailed example of the derivation, refer to section III.C.2.  

 

In natural mutualism systems, cost can also scale with its partner’s density (100). In general, we observed 

that inclusion of density-dependent cost increases the complexity of the criteria. In addition, mutualists can 

also compete in within the same niche (101). In this case, the effective benefit term in general decreases 

from the model without competition, indicating the criteria also lumps the effect of competition.  

 

C. Criteria from models with additional complexities 

To relax some additional assumptions, such as complete symmetry, we also included additional levels of 

complexities to the base model by including asymmetry and turnover rate:  

 
dN1
dt

=
𝜇1
휀1
N1 (1 −

N1 + α N2
Nm

) −
d1 𝐾2
N2 + 𝐾2

N1 − d01N1, (III. 12) 

 
dN2
dt

=
𝜇2
휀2
N2 (1 −

α N1 + N2
Nm

) −
d2𝐾1
N1 + 𝐾1

N2 − d02N2. (III. 13) 

 

After non-dimensionalization, the model becomes:  

 
dΧ1
dτ

=
1

휀1
  Χ1(1 − Χ1 − α Χ2) −

δ1 

β2Χ2 + 1
Χ1 − δ01Χ1, (III. 14) 

 
dΧ2
dτ

=
1

휀2
𝜌Χ2(1 − α Χ1 − Χ2) −

δ2
β1Χ1 + 1

Χ2 − δ02Χ2, (III. 15) 

where τ = 𝜇1t, Χ1 =
N1

Nm
, 𝜌 =

𝜇2

𝜇1
, δ1 =

d1

𝜇1
, β1 =

𝑁𝑚

K1
, Χ2 =

N2

Nm
, δ2 =

d2

𝜇1
, β2 =

𝑁𝑚

K2
. 
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1. Criterion with two populations competing for resources  

Our base model assumes the two populations having separate carrying capacities. However, in natural 

settings, mutualists often share resources (83). We can impose competition between them by adding −𝛼Χ2 

or −𝛼Χ1 to location 3 in logistic growth equations of Χ1 and Χ2, respectively (number 82 in Table S2):  

 
dΧ1
dt

=
1

휀
Χ1(1 − Χ1 − 𝛼Χ2) −

δ

βΧ2 + 1
Χ1, (III. 16) 

 
dΧ2
dt

=
1

휀
Χ2(1 − 𝛼Χ1 − Χ2) −

δ

βΧ1 + 1
Χ2. (III. 17) 

 

Using the same method described in section III.A, we derived the criterion of this model: 
(β+α+1)2

4β(α+1)
> 𝛿.  

 

2. Criterion considering initial density 

For this analysis, we used a symmetric model (number 83 in Table S2):  

 
dΧ1
dτ

=
1

ε
Χ1(1 − Χ1) −

δ 

βΧ2 + 1
, (III. 18) 

 
dΧ2
dτ

=
1

ε
Χ2(1 − Χ2) −

δ

βΧ1 + 1
. (III. 19) 

 

Because most mutualism models generate Allee effect, coexistence can also be affected by initial density 

(𝑥0). However, we can derive a benefit term that depends on the initial density 𝑥0 (for both Χ1 and Χ2) to 

predict deterministically whether the two populations coexist or not. To coexist, 𝑥0 needs to be greater than 

the saddle point:  

 𝑥0 >
β − 1 − √(β + 1)2 − 4β휀𝛿

4β
. (III. 20) 

If we rearrange this inequality, we get  

 
(1 − 𝑥0)𝑥0𝛽 + (1 − 𝑥0)

휀
> 𝛿. (III. 21) 

 

 

3.  Criterion with asymmetric growth rate, cost, stress, and benefit 

Asymmetric parameters of the mutualism are more realistic in capturing real-world mutualism systems, so 

we relaxed the assumptions that cost (휀 ), rescue strength (β) and stress (δ) are symmetric for both 

populations. The asymmetry of growth rate is captured by 𝜌. In the following model (number 84 in Table 

S2), we assumed Χ1 and Χ2 share the same carrying capacity. We found that separated carrying capacity 

also yields similar results.  

 
dΧ1
dτ

=
1

휀1
  Χ1(1 − Χ1 − Χ2) −

δ1 

β2Χ2 + 1
Χ1 (III. 22) 

 
dΧ2
dτ

=
1

휀2
𝜌Χ2(1 − Χ1 − Χ2) −

δ2
β1Χ1 + 1

Χ2 (III. 23) 

 

This model has 5 fixed points:  

 (0, 0), (III. 24) 

 (1 − 휀1δ1, 0), (III. 25) 
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 (0, 1 −
휀2δ2
𝜌
), (III. 26) 

 (
    
휀2𝛿2
𝜌 √Α − β2휀2𝛿2 + β1휀2𝛿2 − 2β1휀1𝛿1𝜌 + β1β2휀2𝛿2

2β1(β1휀1𝛿1𝜌 + β2휀2𝛿2)
,
   휀1𝛿1√Α− β1휀1𝛿1𝜌 + β2휀1𝛿1𝜌 − 2β2휀2𝛿2 + β1β2휀1𝛿1𝜌

2β2(β1휀1𝛿1𝜌 + β2휀2𝛿2)
), (III. 27) 

 (
−
휀2𝛿2
𝜌 √Α − β2휀2𝛿2 + β1휀2𝛿2 − 2β1휀1𝛿1𝜌 + β1β2휀2𝛿2

2β1(β1휀1𝛿1𝜌 + β2휀2𝛿2)
,
−휀1𝛿1√Α− β1휀1𝛿1𝜌 + β2휀1𝛿1𝜌 − 2β2휀2𝛿2 + β1β2휀1𝛿1𝜌

2β2(β1휀1𝛿1𝜌 + β2휀2𝛿2)
), (III. 28) 

 

where Α = ρ2(β1β2 + β1 + β2)
2 − 4β1β2ρ(β1휀1𝛿1ρ + β2휀2𝛿2). 

 

Use the same logic presented in section III.A, the following criterion is a necessary condition for the 4th 

fixed point to be present in the positive Real domain: 

 
ρ(𝛽1𝛽2 + 𝛽1 + 𝛽2)

2

4𝛽1𝛽2
≥ 𝛽1휀1𝛿1ρ + 𝛽2휀2𝛿2. (III. 29) 

 

This criterion can also be rewritten as 
𝝆(𝜷𝟏+

𝟏

𝜽𝟏
+𝟏)

𝟐

𝟒𝜷𝟏𝜺𝟏(
𝝆

𝜽𝟏
+𝜽𝟐)

≥ 𝜹𝟏 where the asymmetry is captured by 𝜃1 = 
𝛽2

𝛽1
 and 

𝜃2 = 
2𝛿2

1𝛿1
 . Note that we specifically used Χ1 as the reference population.  

 

4. Criterion with turnover rate and asymmetric growth rate 

If we consider both the asymmetry in growth rate (𝜌) and a turnover rate 𝛿0, the model becomes (number 

85 in Table S2):  

 
dΧ1
dτ

=
1

휀
  Χ1(1 − Χ1 − Χ2) −

δ 

βΧ2 + 1
Χ1 − 𝛿0Χ1, (III. 30) 

 
dΧ2
dτ

=
1

휀
𝜌Χ2(1 − Χ1 − Χ2) −

δ

βΧ1 + 1
Χ2 − 𝛿0Χ2. (III. 31) 

 

The analytical solution of this model is complex and involves solving 4th order polynomials. However, we 

can introduce the concept of correction terms to approximate the criterion. When we only add 𝜌 in the 

model and assume 𝛿0 = 0, we get the following criterion:  

 
(β + 2)2

4β휀
(
𝜌

𝜌 + 1
) ≥ 𝛿. (III. 32) 

 

In addition, when we only add the 𝛿0 term in the model and assume 𝜌 = 1, we get  

 
(β(1 − 휀𝛿0) + 2)

2

4β휀
≥ 𝛿. (III. 33) 

We hypothesized that the criterion with both correction terms (
𝜌

𝜌+1
) and (1 − 휀𝛿0) can approximate the 

criterion for model III.30-31. The criterion for 𝛿0 > 0 is:  

 
(β(1 − 휀𝛿0) + 2)

2

4β휀
(
𝜌

𝜌 + 1
) ≥ 𝛿 (III. 34) 
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The accuracy of this criterion is evaluated by substitution of variables:  

 {

𝑧1 = (1 − Χ1
∗ − Χ2

∗) − 𝛿0휀

𝑧2 = Χ2
∗ +

1

β

 (III. 35) 

where Χ1
∗ and Χ2

∗ represent fixed points of the model. 
dΧ1

dτ
= 0 and 

dΧ2

dτ
= 0 can then be written as  

 

{
 

 𝑧2 =
𝛿휀

β𝑧1

𝜌𝑧1 + (𝜌 − 1)𝛿0휀 + 
𝛿휀

β(𝑧1 + 𝑧2) − (β(1 − 𝛿0휀) + 2)
= 0

 (III. 36) 

 

After substitution of 𝑧2 with 𝑧1 in the second equation, we get 

 
β𝑧1

2 − (β(1 − 𝛿0휀) + 2)𝑧1 +
𝜌 + 1

𝜌
𝛿휀 =

𝜌 − 1
𝜌

𝛿0𝛿휀
2

𝜌𝑧1 + (𝜌 − 1)𝛿0휀
 

(III. 37) 

 

The left-hand side is a quadratic equation of has 𝑧1, which has ∆= (β(1 − 𝛿0휀) + 2)
2 − 4

𝜌+1

𝜌
β𝛿휀.  

 ∆≥ 0 ⟺
(β(1 − 휀𝛿0) + 2)

2

4β휀
(
𝜌

𝜌 + 1
) ≥ 𝛿 (III. 38) 

 

Thus, we know that the criterion is more accurate when 

𝜌−1

𝜌
𝛿0𝛿

2

𝜌𝑧1+(𝜌−1)𝛿0
⟶ 0. The approximated criterion is 

accurate when 𝜌 = 1.When 𝜌 → +∞ and 𝛿0 → 0, the criterion will also provide good approximations.  

 

5. The criterion for N-mutualist systems 

The following model is used to determine the criterion with N-mutualist model:  

 
dXi
dτ

=
1

ε
Xi (1 −∑Χk

n

k=1

) −
δ

β∑ Χk
n
k≠i + 1

Χi. (III. 39) 

 

The non-trivial steady state can be solved by solving the following equation for X∗: 

 
n

ε
X∗(1 − nX∗) −

nδ

β(n − 1)X∗ + 1
X∗ = 0 (III. 40) 

 

Using the same strategy in III.A, we derive the criterion for coexistence:  

 
(β +

n
n − 1)

2

4βε
n

n − 1

> δ. (III. 41) 

 

where benefit becomes a function of both β and n. This result suggests that mutualism system can tolerate 

higher stress levels with increasing number of mutualists.  

 

6. Mutualism model including cheater exploitation 

The mutualism model including cheaters is adapted from III.22-23:  
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dΧ1
dτ

=
1

ε
Χ1(1 − Χ1 − Χ2 − Χ1c − Χ2c) −

δ 

βΧ2 + 1
Χ1 − 𝜑Χ1, (III. 42) 

 
dΧ2
dτ

=
1

ε
Χ2(1 − Χ1 − Χ2 − Χ1c − Χ2c) −

δ

βΧ1 + 1
Χ2 − 𝜑Χ2, (III. 43) 

 
dΧ1c
dτ

= Χ1c(1 − Χ1 − Χ2 − Χ1c − Χ2c) −
δ 

βΧ2 + 1
Χ1c + 𝜑Χ1, (III. 44) 

 
dΧ2c
dτ

= Χ2c(1 − Χ1 − Χ2 − Χ1c − Χ2c) −
δ

βΧ1 + 1
Χ2c + 𝜑Χ2. (III. 45) 

 

We assume 1) cheaters and cooperators share the same carrying capacity, 2) cheaters accept benefit 

produced by cooperators but do not provide benefit, thus do not experience cost, and 3) there is a constant 

transfer rate (𝜑) from cooperator to cheater, representing mutation from the cooperator phenotype to cheater 

phenotype. Although this model does not generate stable coexistence of the cooperators, the time it takes 

for cheaters to take over the cooperators can serve as a metric for how stable the mutualistic system is.  

 

7. Model structures that generate lower boundary for stress  

We notice that to coexist, some model formulations not only require an upper boundary of 𝛿, but also 

require a lower boundary as well. If 𝛿 is lower than a threshold, the system can be dominated by the 

population that is more fit. However, this lower boundary occurs due to the system dynamic shifting from 

a mutualism-dominated mode to a competition-dominated mode.  

 

There are two types of system dynamics that can lead to a loss of partner. One is due to high stress where 

the weaker partner will go extinct and the stronger partner will suffer from the loss of its partner. The other 

is due to lack of stress where the system shifts to a competition-dominated interaction where the fitter 

partner survives better by excluding its partner. In our study, we only focus on the first type of partner loss 

since the second type is a dynamic of competitive systems instead of mutualistic systems.  

 

In general, we observed that a model needs to be both asymmetric and potentially competitive to create a 

scenario where the fitter population excludes the weaker population. The lower boundary for 𝛿 decreases 

when the weaker population gives out more benefit to its partner or reduction of competition. This 

observation can potentially explain why some mutualistic systems collapse when external stress is reduced 

(89, 102).  

 

IV. Theoretical generality of the simple metric 
 

To establish the generality of the theoretical criterion, we verified that it is applicable to both symmetric 

and asymmetric mutualistic systems. We also want to test that the predictive power of the predictor is 

maintained when the partners are obligatory or facultative. Because mutualists can compete for the same 

resources in nature, we also verified that coexistence of partners that compete for resources also can be 

depicted by the criterion. We show some typical results of the predictive power of the criterion in these 

cases with Fig. S2.  
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A. Establish the general predictive power of 𝑩/𝜹 
Fig. 1f is generated using the model presented by equation III.16-17, where ε ∈ [1, 1.2], δ ∈ [0, 2], β ∈

[2, 5] and 𝑎 = 1. The positive trend holds even when the mutualism is facultative (δ < 1).  

 

Fig. S2a is also generated using the model presented by equation III.16-17. Both are generated with β ∈

[2, 10], δ ∈ [1.2, 2], ε ∈ [1, 1.2] and 𝑎 = 1. The panel on the left assumes Χ1 and Χ2 have the same initial 

density which is a uniformly distributed between 0 and 0.5. The panel on the right assumes changing of 

individual initial densities in a linear fashion while maintaining the sum of initial density of Χ1 and Χ2 at 1.  

 

Fig. S2b is generated with the model presented above in equation III.42-III.45, where 𝜑 = 10−3 , β ∈

[5, 20] δ ∈ [1.2, 1.3], and ε ∈ [1.2, 1.3]. The initial densities are Χ10 = 0.1, Χ10 = 0.1, Χ1c = 0 and Χ2c =

0. The time to cheater exploitation is quantified by the first time point where the total density of cooperators 

drops below their initial total density due to overwhelming competitions from the cheater populations. Other 

time to cheater exploitation in this study is quantified using the same method.  

 

Fig. S2c is generated by  

 
dΧ1
dτ

=
1

ε1
Χ1(1 − Χ1) −

δ1 

β2Χ2 + 1
Χ1 (IV. 1) 

 
dΧ2
dτ

=
1.2

ε2
Χ2(1 − Χ2) −

δ2
β1Χ1 + 1

Χ2 (IV. 2) 

 

Where the left panel uses parameter values of β1 = 2, β2 ∈ [2, 5], δ1 = 1.2, δ2 ∈ [0.5, 2], ε1 = 1.1, and 

ε2 ∈ [1, 1.2]. The initial densities are Χ10 = 1 and Χ20 = 1. The right panel uses parameter values of β1 =

2 , β2 ∈ [2, 5], δ1 = 0.8 , δ2 ∈ [1, 2], ε1 = 1.1 , and ε2 ∈ [1, 1.2]. The initial densities are Χ10 = 1 and 

Χ20 = 1. This panel specifically tests the cases where the survival of the partners is fully dependent on each 

other.  

 

Fig. S2d is generated by III.22-III.23, where the left panel uses parameter values of 𝜌 = 1.2, β1 = 2, β2 ∈

[5, 10], δ1 = 1.2, δ2 ∈ [0.5, 2], ε1 = 1.1, and ε2 ∈ [1, 1.2]. The initial densities are Χ10 = 1 and Χ20 = 1. 

The right panel uses parameter values of β1 = 2, β2 ∈ [5, 10], δ1 = 0.8, δ2 ∈ [1, 2], ε1 = 1.1, and ε2 ∈

[1, 1.2]. The initial densities are Χ10 = 1 and Χ20 = 1. This panel specifically tests the cases where one 

mutualist’s survival is not fully dependent on the other.   

 

Fig. S2e is generated using the same model as the above. Where the parameter values are β1 = 5, β2 ∈

[2, 10], δ1 = 1.2, δ2 ∈ [1.2, 2], ε1 = 1.1, and ε2 ∈ [1, 1.2]. The sum of initial densities is kept at 0.3 and 

the values of Χ10 and Χ20 are changed in a linear fashion. 1000 different combinations of parameters are 

used and 50 different Χ10: Χ20 simulations are performed with each parameter combination to calculate the 

probability of coexistence.  

 

Fig. S2f is generated using the following model, which is based on the symmetric model presented in 

equation III.42-45, while adding asymmetry:  

 
dΧ1
dτ

=
1

ε1
Χ1(1 − Χ1 − Χ2 − Χ1c − Χ2c) −

δ1 

β2Χ2 + 1
Χ1 − 𝜑Χ1 (IV. 3) 
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dΧ2
dτ

=
1.3

ε2
Χ2(1 − Χ1 − Χ2 − Χ1c − Χ2c) −

δ2
β1Χ1 + 1

Χ2 − 𝜑Χ2 (IV. 4) 

 
dΧ1c
dτ

= Χ1c(1 − Χ1 − Χ2 − Χ1c − Χ2c) −
δ1

β2Χ2 + 1
Χ1c + 𝜑Χ1 (IV. 5) 

 
dΧ2c
dτ

= 1.3Χ2c(1 − Χ1 − Χ2 − Χ1c − Χ2c) −
δ2

β1Χ1 + 1
Χ2c + 𝜑Χ2 (IV. 6) 

 

Where 𝜑 = 10−3 ,  β1 = 4 , β2 ∈ [40, 60] , δ1 = 1.8 , δ2 ∈ [1.4, 1.5], ε1 = 1.4 , ε2 ∈ [1, 1.2]. The initial 

densities are Χ10 = 0.05, Χ10 = 0.05, Χ1c = 0 and Χ2c = 0.  

 

B. The predictive accuracy is maintained in the presence of noise 

In addition to investigating the probability of coexistence when initial density is randomly distributed (Fig. 

S2a, e), we also explicitly modeled noise to test the effect of noise on the prediction accuracy of the criterion. 

We added Gaussian noise to our base model (𝜂):  

 
dΧ1
dτ

=
1

ε
Χ1(1 − Χ1) −

δ 

βΧ2 + 1
Χ1 + 𝜂, (IV. 7) 

 
dΧ2
dτ

=
1

ε
Χ2(1 − Χ2) −

δ

βΧ1 + 1
Χ2 + 𝜂. (IV. 8) 

 

In Fig. S2g, we used the model above and the criterion tested is III.19. Multiple sets of initial densities are 

tested. Although we observed a decreasing accuracy with increasing noise, the prediction accuracy is 

robustly maintained (above 90%) even when the standard deviation of noise reaches 50% of signal strength. 

The high maintenance of prediction accuracy is due to the stability of the mutualistic model. Because the 

two stable steady states exist on opposite sides of the separatrix, only when noise pushes densities across 

the separatrix (against the vector field), the outcome of the system will be altered. Otherwise, noise will not 

influence the final steady state.  

 

 

V. Calibration using SVM 
 

We chose SVM because it is a well-established algorithm and it only requires information of the support 

vectors which are usually data points along the boundary to obtain a classification boundary. Note that other 

algorithms can also be implemented for the same purpose. For example, when predicting probability of 

coexistence, logistic regression can be more suitable to directly predict probability of coexistence. See the 

Supplementary Materials for our MATLAB program which performs the calibration procedure using SVM.  

 

A. Kernels 
We used four types of kernels to cover different general shapes of the 𝐵 landscape:  

  Linear kernel:  𝐾𝑣〈𝒗𝟏, 𝒗𝟐〉 = 𝒗𝟏 ∙ 𝒗𝟐 + 𝑘𝛿(𝛿1 ∙ 𝛿2)  (V. 1) 

  Quadratic kernel:  𝐾𝑣〈𝒗𝟏, 𝒗𝟐〉 = (𝒗𝟏 ∙ 𝒗𝟐 + 𝑘𝑥)
2 + 𝑘𝛿(𝛿1 ∙ 𝛿2)  (V. 2) 

  Cubic kernel:  𝐾𝑣〈𝒗𝟏, 𝒗𝟐〉 = (𝒗𝟏 ∙ 𝒗𝟐 + 𝑘𝑥)
3 + 𝑘𝛿(𝛿1 ∙ 𝛿2)  (V. 3) 

  
Sigmoidal kernel:  𝐾𝑣〈𝒗𝟏, 𝒗𝟐〉 =

(𝒗𝟏∙𝒗𝟐)
2

‖𝒗𝟏−𝒗𝟐‖
2+𝑘1

+ 𝑘𝛿(𝛿1 ∙ 𝛿2)  (V. 4) 
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Where in equation V.4,‖𝒗𝟏 − 𝒗𝟐‖
2 = ∑ (𝑣1𝑖 − 𝑣2𝑖)

2
𝑖 .  

 

These four kernels follow the same structure:  

𝐾〈[𝒗𝟏, 𝛿1], [𝒗𝟐, 𝛿2]〉 = 𝐾𝑣〈𝒗𝟏, 𝒗𝟐〉 + 𝑘𝛿(𝛿1 ∙ 𝛿2), 

Our procedure allows any kernel structure that is supplied by the user, so other customized kernels can also 

be used for the calibration.  

 

B. Standardizing input data 
Standardizing input data is essential for robust learning of 𝐵(𝒗). Before training the model with SVM, we 

first standardize the system variables 𝑣 and stress 𝛿 to mean 0 and variance 1.  

 𝑣𝑛𝑜𝑟𝑚 =
𝑣 −𝑚𝑒𝑎𝑛(𝑣)

𝑣𝑎𝑟(𝑣)
 (V. 5) 

 𝛿𝑛𝑜𝑟𝑚 =
𝛿 −𝑚𝑒𝑎𝑛(𝛿)

𝑣𝑎𝑟(𝛿)
 (V. 6) 

 

C. From SVM output to calibrated 𝑩(𝒗)  
SVM will output a predictor that separates coexistence and collapse indicated in the 𝒀 vector. Our program 

requires that the two classes are represented by 1 and -1 in the 𝒀 vector. Using kernels V.1-4 , we can write 

the predictor in the general form:  

 𝑓([𝒗, 𝛿]) =∑𝛼𝑖𝑦𝑖𝐾𝑥〈𝒗𝑖, 𝒗〉

𝑖

+ 𝑘𝛿𝛿∑𝛼𝑖𝑦𝑖𝛿𝑖
𝑖

+ 𝜆0 (V. 7) 

 

where 𝑘𝛿 is a kernel parameter; 𝛼𝑖 represents coefficients associated with each input observation that are 

optimized by the SVM algorithm; 𝜆0 is the bias that is optimized by the algorithm. If we impose 𝐵 = 𝛿 at 

𝑓([𝒗, 𝛿]) = 0, we can obtain a function of 𝐵 in terms of input data:  

 𝐵(𝒗) =
−∑ 𝛼𝑖𝑦𝑖𝐾𝑥〈𝒗𝑖, 𝒗〉𝑖 − 𝜆0

𝑘𝛿 ∑ 𝛼𝑖𝑦𝑖𝛿𝑖𝑖
 

(V. 8) 

Using this function, we can obtain a value of 𝐵 with any system variable dictated by 𝒗 based on the limited 

number of observations used as inputs.  

 

𝐵(𝒗) can sometimes have wrong directionality, meaning that 𝐵/𝛿 > 1 is associated with collapse and 

𝐵/𝛿 < 1 is associated with coexistence. We identify these cases by calculating 

 ∑𝑦𝑖 ∙ 𝑠𝑖𝑔𝑛(𝐵𝑖 − 𝛿𝑖)

𝑛

1

 (V. 9) 

 

If the above expression is negative (when the trained boundary have a learning accuracy greater than 50%), 

the calibrated 𝐵(𝒗) has a wrong directionality. Flipping of the 𝐵 landscape is then required, and it is done 

by assuming:  

 −(
𝐵

𝛿
− 1) =

𝐵𝑓𝑙𝑖𝑝𝑝𝑒𝑑

𝛿
− 1 (V. 10) 

 
Thus, 

𝐵𝑓𝑙𝑖𝑝𝑝𝑒𝑑 = 2𝛿 − 𝐵 (V. 11) 
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We name the output 𝐵 landscape with properly adjusted directionality 𝐵′. This landscape 𝐵′ describes the 

shape of the final calibrated 𝐵(𝒗) but still needs to be rescaled for prediction purpose. The final 𝐵(𝒗) is 

calculated by rescaling it back according to the mean and variance of the 𝛿 measurements.  

 𝐵 = 𝐵′ ∙ 𝑣𝑎𝑟(𝛿) + 𝑚𝑒𝑎𝑛(𝛿) (V. 12) 

 

D. Cross validation and bootstrapping  
All the cross validations in this work are 10-fold cross validations. The cross-validation accuracy is 

represented by the average values. Bootstrapping is used to evaluate the degree of variation of quantified 

𝐵 . The same number of data points as the input data is randomly sampled from the input data with 

replacement.  We performed bootstrapping for 500 times. The variance and relative standard deviation 

(RSD) are then calculated based on the 500 bootstrapped 𝐵(𝒗) quantified with 500 sets of sampled training 

data. The mean cross validation accuracy, the bootstrapped variance and relative standard deviation are 

then used to evaluate the accuracy of the 𝐵(𝒗) outputs.  

 

E. Twenty sets of simulations to establish and test the calibration procedure 
To establish the calibration process, we first developed the method with simulated data where the true 𝐵(𝒗) 

are known. This allows us to evaluate calibration results against the true function. We used the model 

presented in equation III.22-23 to conduct this set of analyses. Using 𝑋1 as the reference population, the 

𝐵(𝒗) can be expressed as:  

 𝐵(𝜽) =
𝜌 (𝛽1 +

1
𝜃1
+ 1)

2

4𝛽1휀1 (
𝜌
𝜃1
+ 𝜃2)

, 𝜃1 = 
𝛽2
𝛽1
, 𝜃2 = 

휀2𝛿2
휀1𝛿1

 (V. 13) 

 

However, depending on how system variables change the model parameters (𝜽(𝒗)) in the system variable 

space, the true 𝐵(𝜽(𝒗)) can exhibit diverse shapes. With 𝑣1, 𝑣2 ∈ [0,1], we constructed 20 arbitrary set of 

equations with different underlying functions. We also made sure the generated data have around 50:50 

split of coexistence and collapse in the simulated results to reduce bias in the input data. This 50:50 split 

constraint also applies to the all other simulated data. Note that these functions are arbitrary and only serve 

the purpose of generating true 𝐵(𝒗) that has various underlying functions. The data generated using these 

20 models are included in the MATLAB code in the Supplementary Materials.  

 

The 20 sets of 𝜽(𝒗) are grouped into 5 types with each type containing 4 different examples. The 5 types 

of functions that describe 𝜽(𝒗) include linear, quadratic, cubic, and Hill equation and another type of 

functions that are a mixture of the previous four types. As examples, the following are four sets of 𝜽(𝒗) 

used to generate simulation results shown in Fig. S4b.  

 

 Linear Quadratic 

β1 = 10𝑣1 − 2𝑣2 + 7 −3.5(𝑣1 + 0.2)
2 − 5(𝑣2 − 0.2)

2 + 9 

β2 = −5𝑣1 + 18𝑣2 + 6 4(𝑣1 − 0.2)
2 + 5(𝑣2 − 0.2)

2 + 6.25 

δ1 = 0.2𝑣1 + 0.4𝑣2 + 1.0 0.07(𝑣1 − 0.2)
2 + 0.05(𝑣2 + 0.2)

2 + 1.09 

δ2 = −0.5𝑣1 + 2𝑣2 + 1.7 0.05(𝑣1 + 0.1)
2 + 0.1(𝑣2 + 0.2)

2 + 1.3 
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휀1 = 0.2𝑣1 + 0.1𝑣2 + 1 0.05(𝑣1 + 0.5)
2 + 0.2(𝑣2)

2 + 1.1 

휀2 = 0.05𝑣1 + 0.1𝑣2 + 1 0.18(𝑣1 + 0.2)
2 + 0.6(𝑣2 + 0.1)

2 + 0.9 

 

 Cubic 

β1 = 0.2𝑣1
3 − 5(𝑣1 − 1)

2 + 5 + 0.2𝑣2
3 − 5(𝑣2 + 0.2)

2 + 10 

β2 = 0.16𝑣1
3 + 4(𝑣1 + 0.5)

2 − 0.1𝑣2
3 − 0.25(𝑣2)

2 + 3.5 

δ1 = 0.28𝑣1
3 + 0.14(𝑣1)

2 − 0.12𝑣2
3 − 0.06(𝑣1 − 0.2)

2 + 1.2 

δ2 = 0.04𝑣1
3 + 0.12(𝑣1 + 0.1)

2 + 0.01𝑣2
3 − 0.25(𝑣2 + 0.2)

2 + 4.95 

휀1 = 0.16𝑣1
3 + 0.02(𝑣1 − 0.3)

2 + 0.003𝑣2
3 + 0.06(𝑣2 + 0.2)

2 + 1.22 

휀2 = −0.28𝑣1
3 + 0.14(𝑣1)

2 + 0.28 + 0.12𝑣2
3 − 0.06(𝑣2 − 0.2)

2 + 0.9 

 

 Hill equation 

β1 = 10
𝑣1
2

𝑣1
2 + 0.52

− 6
𝑣2

𝑣2 + 1
+ 12 

β2 = 2
𝑣1

𝑣1 + 1
− 5

𝑣2
𝑣2 + 1

+ 9 

δ1 = 0.4
𝑣1
3

𝑣1
3 + 0.53

+ 0.2
𝑣2

𝑣2 + 1
+ 1.01 

δ2 = 0.1
𝑣1
2

𝑣1
2 + 12

+ 0.05
𝑣2

2

𝑣2
2 + 0.32

+ 1.2 

휀1 = 0.1
𝑣1
5

𝑣1
5 + 0.85

+ 0.2
𝑣2

4

𝑣2
4 + 14

+ 1 

휀2 = 0.2
𝑣1
5

𝑣1
5 + 0.55

+ 0.1
𝑣2

2

𝑣2
2 + 0.22

+ 1 

 

The training data are 10 × 10 on the 𝑣1, 𝑣2 space. 𝑅2 between calibrated 𝐵 landscape (𝐵𝑐) and the true 

landscape (𝐵𝑡) is calculated by first performing a least square linear fit of 𝐵𝑡 with 𝐵𝑐. This fitting process 

aims to get a linear transformation of 𝐵𝑐 that conforms with the scale of 𝐵𝑡 while maintaining the shape of 

𝐵𝑐. The absolute scale of the calibrated 𝐵(𝒗) is less crucial than its shape, and an absolute scale is also 

challenging to obtain.  

 𝐵𝑐
′ = 𝑎𝐵𝑐 + 𝑏 (V. 14) 

 

Then 𝑅2 is then calculated by:  

 1 −
∑(𝐵𝑐

′ − 𝐵𝑡)
2

∑(𝐵𝑡 − 𝐵𝑡̅̅ ̅)
2
 (V. 15) 

 

 

F. Calibration with simulated data with unknown 𝑩(𝜽): an example 
We want to test whether we can apply the calibration procedure to data that are generated by an arbitrary 

mutualism model. The specific model structure we used to generate data in Fig. 2c is:  
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dΧ1
dτ

=
1

휀1 (1 +
Χ2

Χ2 + 0.2
)
Χ1(1 − Χ1 − Χ2) −

δ1

β2
3Χ2

3 + 1
Χ1 

(V. 16) 

 
dΧ2
dτ

=
1.5

휀2
Χ2(1 − 0.8Χ1 − Χ2) −

δ2

β1
2Χ1

2 + 1
Χ2 (V. 17) 

 

The analytical solution of this model cannot be expressed in a simple and explicit form. However, using 

simulated data, we can obtain an empirical function of 𝐵 on the system variable space that allow further 

prediction in the system variable space. The simulations are done using initial densities of [0.01, 0.01] for 

10 unit-time.  

 

To get the probability of coexistence, we ran the model 100 times with varying ratios of initial density while 

keeping the total initial density constant as 0.02. The density for a population is varied in a linear fashion 

from 0 to 0.02 and we terminated the simulation after 10 unit-time.  

 

To calculate how well the systems can resist cheater exploitation, we modified the equations V. 16 − 17 to 

account for the emergence of cheaters:  

 dΧ1
dτ

=
1

휀1 (1 +
Χ2

Χ2 + 0.2
)
Χ1(1 − Χ1 − Χ2 − Χ1c − Χ2c) −

δ1

β2
3Χ2

3 + 1
Χ1 − 𝜑Χ1 

(V. 18) 

 
dΧ2
dτ

=
1.5

휀2
Χ2(1 − 0.8Χ1 − Χ2 − Χ1c − Χ2c) −

δ2

β1
2Χ1

2 + 1
Χ2 − 𝜑Χ2 (V. 19) 

 dΧ1c
dτ

= Χ1(1 − Χ1 − Χ2 − Χ1c − Χ2c) −
δ1

β2
3Χ2

3 + 1
Χ1 + 𝜑Χ1 

(V. 20) 

 dΧ2c
dτ

= 1.5 Χ2(1 − 0.8Χ1 − Χ2 − Χ1c − Χ2c) −
δ2

β1
2Χ1

2 + 1
Χ2 +𝜑Χ2 

(V. 21) 

   

The simulations were done with 𝜑 = 10−3. The initial densities are [0.01, 0.01, 0, 0] for Χ1, Χ2, Χ1c, and 

Χ2c, respectively. The simulations were terminated after 1300 unit-time.  

VI. Framework generality verified by complex mutualistic systems 
 

A. A 5-mutualist system 
The data presented in Fig. 4a and Fig. S9a are generated with the following mutualism model based on the 

general model structure presented in equation III.39:  

 
dX1
dτ

=
1

ε1
X1 (1 −∑Χk

5

k=1

) −
δ1

∑ β𝑘Χk
n
k≠i + 1

Χ1 (VI. 1) 

 
dX2
dτ

=
1.1

ε2
X2 (1 −∑Χk

5

k=1

) −
δ2

∑ β𝑘Χk
n
k≠i + 1

Χ2 (VI. 2) 

 
dX3
dτ

=
1.2

ε3
X3 (1 −∑Χk

5

k=1

) −
δ3

∑ β𝑘Χk
n
k≠i + 1

Χ3 (VI. 3) 
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dX4
dτ

=
1.3

ε4
X4 (1 −∑Χk

5

k=1

) −
δ4

∑ β𝑘Χk
n
k≠i + 1

Χ4 (VI. 4) 

 
dX5
dτ

=
1.4

ε5
X5 (1 −∑Χk

5

k=1

) −
δ5

∑ β𝑘Χk
n
k≠i + 1

Χ5 (VI. 5) 

 

All the parameters are linear combinations of 𝑣1, 𝑣2 ∈ [0,1] and the coefficients are randomly generated. 

The initial densities are [0.001, 0.001, 0.001, 0.001, 0.001] for X1 to X5 respectively. The simulations were 

terminated after 5 unit-time.  

 

B. The experimental 3-member mutualistic systems 
The calibration shown in Fig. 4b is done on all 384 systems with triplicates that alternatively use each strain 

in a system as the reference strain. The δ  measurements used in this calibration is the same as the 

measurements presented in Fig. 3j and Fig. S8b with the pairwise systems.  

 

C. A mutualistic system in an oscillatory environment 
The oscillatory signal is implemented as square pulses, where 

 𝑆 = {
𝐼,          ⌈𝜏/𝐿⌉ is odd

0,        ⌈𝜏/𝐿⌉ is even
 (VI. 6) 

 

𝜏 is time; 𝐿 is the duration of the pulses and the duration between the end of one pulse and the start of the 

next pulse; 𝐼 is the intensity of the signal. Throughout the simulation, δ1, δ2, β1, and β2 are affected by this 

oscillating signal, where 

 δ1 = δ2 = 0.8 + 𝑆 (VI. 7) 

 β1 = β2 = 2(1 + 𝑆) (VI. 8) 

   

To simulate the data, we used a logarithm scale that vary 𝐿 from 10−2 to 102 and vary 𝐼 from 10−1 to 101. 

The model used to generate the set of data in Fig. 4c and the left column of Fig. S10 is presented in equation 

III.22-III.23, where 𝜌 = 1.5 . The initial densities used are [0.2, 0.2] for X1  and X2  respectively. The 

simulations are performed for 500 unit-time. The theoretical 𝐵(𝜃(𝒗)) is calculated using III.32 with δ1 =

δ2 = 0.8 + 𝐼 and β1 = β2 = 2(1 + 𝐼).  

 

D. A mutualistic system cohabiting with other populations 
To generate simulated data presented in Fig. 4d and the right column of Fig. S10, we used the following 

arbitrary 7-population model, where Χ1  and Χ2  are mutualistic and their population dynamics are 

modulated by the other 5 populations.  

 
dΧ1
dτ

=
1

ε
Χ1 (1 −∑𝑋𝑖) −

𝜹 

𝜷Χ2 + β51Χ5 + 1
Χ1 − Χ6Χ1 (VI. 9) 

 
dΧ2
dτ

= 𝜌
1

ε
Χ2 (1 −∑𝑋𝑖) −

𝜹

𝜷Χ1 + β62Χ6 + 1
Χ2 − Χ5Χ2 (VI. 10) 

 
dΧ3
dτ

= Χ3 (1 −∑𝑋𝑖) −
δ3

β13Χ1 + β23Χ2 + 1
 Χ3 (VI. 11) 
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dΧ4
dτ

= Χ4 (1 −∑𝑋𝑖) −
δ4

β34Χ3 + β23Χ2 + 1
 Χ4 (VI. 12) 

 
dΧ5
dτ

= Χ5 (1 − 2∑𝑋𝑖) (VI. 13) 

 
dΧ6
dτ

= Χ6 (1 − 2∑𝑋𝑖) (VI. 14) 

 
dΧ7
dτ

= Χ7 (1 − 3.3∑𝑋𝑖) +
Χ1

Χ1 + 0.5
Χ7 − Χ2Χ7 (VI. 15) 

 

In the simulation, only 𝛿 and 𝛽 are modulated by system variables 𝑣1, 𝑣2 ∈ [0,1], while other parameters 

were kept constants.  

 𝛿 = 0.5𝑣1 + 1.2𝑣2 + 0.8 (VI. 16) 

 𝛽 = −15𝑣1 − 10𝑣2 + 30 (VI. 17) 

 

The initial densities are [1, 1, 1, 1, 1, 1, 1] for X1 to X7 respectively. The simulations were performed for 

5000 unit-time. The theoretical 𝐵(𝜃(𝒗))/𝛿 in the right panel of Fig. S10a is directly calculated using III.32.  
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Effect of cost (𝜺) is independent of partner density 

𝐝𝚾𝟏
𝐝𝐭

= (𝟏 − 𝛅𝟏)𝚾𝟏(𝟏 − 𝚾𝟏) 

1.
dΧ1
dτ

= (1 − δ휀
1

βΧ2 + 1
)Χ1(1 − Χ1) 2.

dΧ1
dτ

= (1 − δ)
1

휀
Χ1 (1 +

β′Χ2
Χ2 + 1 β⁄

− Χ1) 3.
dΧ1
dτ

= (1 − δ휀)Χ1(1 − Χ1) +
β′Χ2

Χ2 + 1 β⁄
Χ1 

βΧ0 + 1

휀
> δ Violates assumption d) and unbounded growth Unbounded growth 

4.
dΧ1
dτ

= (1 − δ
1

βΧ2 + 1
)Χ1 (

1

휀
 − Χ1) 5.

dΧ1
dτ

=  (1 − δ)Χ1 (1 +
1

휀

β′Χ2
Χ2 + 1 β⁄

− Χ1) 6.
dΧ1
dτ

=   (1 − δ)Χ1 (
1

휀
− Χ1) +

β′Χ2
Χ2 + 1 β⁄

Χ1 

βΧ0 + 1 > δ Violates assumption d) and unbounded growth Violates assumption d) and unbounded growth 

7.
dΧ1
dτ

= (1 − δ
1

βΧ2 + 1
)Χ1(1 − Χ1) − 휀Χ1 8.

dΧ1
dτ

=  (1 − δ)Χ1 (1 +
β′Χ2

Χ2 + 1 β⁄
− Χ1) − 휀Χ1 9.

dΧ1
dτ

=   (1 − δ)Χ1(1 − Χ1) +
1

휀

β′Χ2
Χ2 + 1 β⁄

Χ1 

(√β + 1 − √β휀)
2
> δ Violates assumption d) Unbounded growth 

𝐝𝚾𝟏
𝐝𝐭

= 𝚾𝟏((𝟏 − 𝛅𝟏) − 𝚾𝟏) 

10.
dΧ1
dτ

=
1

휀

β′Χ2
Χ2 + 1 β⁄

Χ1((1 − δ) − Χ1) 11.
dΧ1
dτ

=
1

휀
Χ1 ((1 − δ

1

βΧ2 + 1
) − Χ1) 12.

dΧ1
dτ

=
1

휀
Χ1(1 − δ − Χ1) +

β′Χ2
Χ2 + 1 β⁄

Χ1 

Violates assumption d) 
(β + 1)2

4β
> δ Violates assumption d) 

13.
dΧ1
dτ

=
β′Χ2

Χ2 + 1 β⁄
Χ1 ((1 − δ)

1

휀
 − Χ1) 14.

dΧ1
dτ

=  Χ1 ((1 − δ
1

βΧ2 + 1
)
1

휀
 − Χ1) 15.

dΧ1
dτ

=   Χ1 (
1

휀
− δ − Χ1) +

β′Χ2
Χ2 + 1 β⁄

Χ1 

Violates assumption d) Violates assumption d) 
(√ββ′휀 − √휀)

2

+ β

β휀
> δ 

 

16.
dΧ1
dτ

=
β′Χ2

Χ2 + 1 β⁄
Χ1((1 − δ) − Χ1) − 휀Χ1 17.

dΧ1
dτ

=  Χ1 ((1 − δ
1

βΧ2 + 1
) − Χ1) − 휀Χ1 18.

dΧ1
dτ

=   Χ1(1 − δ − Χ1) +
1

휀

β′Χ2
Χ2 + 1 β⁄

Χ1 

Violates assumption d) 
(β − β휀 + 1)2

4β
> δ 

(√β′β − √휀)
2

+ β휀

β휀
> δ 

𝐝𝚾𝟏
𝐝𝐭

= 𝚾𝟏(𝟏 − 𝚾𝟏) − 𝛅𝟏𝚾𝟏 

19.
dΧ1
dτ

=
1

휀

β′Χ2
Χ2 + 1 β⁄

Χ1(1 − Χ1) − δΧ1 20.
dΧ1
dτ

=
1

휀
Χ1 (

β′Χ2
Χ2 + 1 β⁄

− Χ1) − δΧ1 21.
dΧ1
dτ

=
1

휀
Χ1(1 − Χ1) − δ

1

βΧ2 + 1
Χ1 

2β′ − 2β′√β+ 1 + ββ′

β휀
> δ 

(√ββ′ − 1)
2

+ β

β휀
> δ 

(β + 1)2

4β휀
> δ 

22.
dΧ1
dτ

=
β′Χ2

Χ2 + 1 β⁄
Χ1 (

1

휀
 − Χ1) − δΧ1 23.

dΧ1
dτ

=  Χ1 (
1

휀
 
β′Χ2

Χ2 + 1 β⁄
− Χ1) − δΧ1 24.

dΧ1
dτ

=   Χ1 (
1

휀
− Χ1) − δ

1

βΧ2 + 1
Χ1 

2β′휀 − 2β′√β휀 + 휀2 + ββ′

β휀
> δ 

(√ββ′ − √휀)
2

+ β휀

β휀
> δ 

(β + 휀)2

4β휀2
> δ 

25.
dΧ1
dτ

=
β′Χ2

Χ2 + 1 β⁄
Χ1(1 − Χ1) − δ휀Χ1 26.

dΧ1
dτ

=  Χ1 (
β′Χ2

Χ2 + 1 β⁄
− Χ1) − δ휀Χ1 27.

dΧ1
dτ

=   Χ1(1 − Χ1) − δ휀
1

βΧ2 + 1
Χ1 

2β′ − 2β′√β+ 1 + ββ′

β휀
> δ 

(√ββ′ − 1)
2

+ β

β휀
> δ 

(β + 1)2

4β휀
> δ 
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Sharing carrying capacity 

𝐝𝚾𝟏
𝐝𝐭

= (𝟏 − 𝛅𝟏)𝚾𝟏(𝟏 − 𝚾𝟏) 

28.
dΧ1
dτ

= (1 − δ휀
1

βΧ2 + 1
)Χ1(1 − Χ1 − Χ2) 29.

dΧ1
dτ

= (1 − δ)
1

휀
Χ1 (

β′Χ2
Χ2 + 1 β⁄

− Χ1 − Χ2) 30.
dΧ1
dτ

= (1 − δ휀)Χ1(1 − Χ1 − Χ2) +
β′Χ2

Χ2 + 1 β⁄
Χ1 

βΧ0 + 1

휀
> δ Violates assumption d) and unbounded growth Unbounded growth 

31.
dΧ1
dτ

= (1 − δ
1

βΧ2 + 1
)Χ1 (

1

휀
 − Χ1 − Χ2) 32.

dΧ1
dτ

=  (1 − δ)Χ1 (
1

휀

β′Χ2
Χ2 + 1 β⁄

− Χ1 − Χ2) 33.
dΧ1
dτ

=  (1 − δ)Χ1 (
1

휀
− Χ1 − Χ2) +

β′Χ2
Χ2 + 1 β⁄

Χ1 

βΧ0 + 1 > δ Violates assumption d) and unbounded growth Violates assumption d) and unbounded growth 

34.
dΧ1
dτ

= (1 − δ
1

βΧ2 + 1
)Χ1(1 − Χ1 − Χ2) − 휀Χ1 35.

dΧ1
dτ

=  (1 − δ)Χ1 (
β′Χ2

Χ2 + 1 β⁄
− Χ1 − Χ2) − 휀Χ1 36.

dΧ1
dτ

=   (1 − δ)Χ1(1 − Χ1 − Χ2) +
1

휀

β′Χ2
Χ2 + 1 β⁄

Χ1 

1

2
(√β + 2 − √β휀)

2
> δ Violates assumption d) Unbounded growth 

𝐝𝚾𝟏
𝐝𝐭

= 𝚾𝟏((𝟏 − 𝛅𝟏) − 𝚾𝟏) 

37.
dΧ1
dτ

=
1

휀

β′Χ2
Χ2 + 1 β⁄

Χ1((1 − δ) − Χ1 − Χ2) 38.
dΧ1
dτ

=
1

휀
Χ1 ((1 − δ

1

βΧ2 + 1
) − Χ1 − Χ2) 39.

dΧ1
dτ

=
1

휀
Χ1(1 − δ − Χ1 − Χ2) +

β′Χ2
Χ2 + 1 β⁄

Χ1 

Violates assumption d) 
(β + 2)2

4β
> δ Violates assumption d) 

40.
dΧ1
dτ

=
β′Χ2

Χ2 + 1 β⁄
Χ1 ((1 − δ)

1

휀
 − Χ1 − Χ2) 41.

dΧ1
dτ

=  Χ1 ((1 − δ
1

βΧ2 + 1
)
1

휀
 − Χ1 − Χ2) 42.

dΧ1
dτ

=   Χ1 (
1

휀
− δ − Χ1 − Χ2) +

β′Χ2
Χ2 + 1 β⁄

Χ1 

Violates assumption d) Violates assumption d) 
휀(√ββ′ − √2)

2

+ β

β휀
> δ 

43.
dΧ1
dτ

=
β′Χ2

Χ2 + 1 β⁄
Χ1((1 − δ) − Χ1 − Χ2) − 휀Χ1 44.

dΧ1
dτ

=  Χ1 ((1 − δ
1

βΧ2 + 1
) − Χ1 − Χ2) − 휀Χ1 45.

dΧ1
dτ

=   Χ1(1 − δ − Χ1 − Χ2) +
1

휀

β′Χ2
Χ2 + 1 β⁄

Χ1 

Violates assumption d) 
(β + 2 − β휀)2

8β
> δ 

(√β′β − √2휀)
2

+ β휀

β휀
> δ 

𝐝𝚾𝟏
𝐝𝐭

= 𝚾𝟏(𝟏 − 𝚾𝟏) − 𝛅𝟏𝚾𝟏 

46.
dΧ1
dτ

=
1

휀

β′Χ2
Χ2 + 1 β⁄

Χ1(1 − Χ1 − Χ2) − δΧ1 47.
dΧ1
dτ

=
1

휀
Χ1 (

β′Χ2
Χ2 + 1 β⁄

− Χ1 − Χ2) − δΧ1 48.
dΧ1
dτ

=
1

휀
Χ1(1 − Χ1 − Χ2) − δ

1

βΧ2 + 1
Χ1 

4β′ − 2β′√2β + 4 + ββ′

β휀
> δ 

(√ββ′ − √2)
2

β휀
> δ 

(β + 2)2

8β휀
> δ 

49.
dΧ1
dτ

=
β′Χ2

Χ2 + 1 β⁄
Χ1 (

1

휀
 − Χ1 − Χ2) − δΧ1 50.

dΧ1
dτ

=  Χ1 (
1

휀
 
β′Χ2

Χ2 + 1 β⁄
− Χ1 − Χ2) − δΧ1 51.

dΧ1
dτ

=   Χ1 (
1

휀
− Χ1 − Χ2) − δ

1

βΧ2 + 1
Χ1 

4β′휀 − 2β′√2β휀 + 4휀2 + ββ′

β휀
> δ 

(√ββ′ − √2휀)
2

β휀
> δ 

(β + 2휀)2

8β휀2
> δ 

52.
dΧ1
dτ

=
β′Χ2

Χ2 + 1 β⁄
Χ1(1 − Χ1 − Χ2) − δ휀Χ1 53.

dΧ1
dτ

=  Χ1 (
β′Χ2

βΧ2 + 1
− Χ1 − Χ2) − δ휀Χ1 54.

dΧ1
dτ

=   Χ1(1 − Χ1 − Χ2) − δ휀
1

βΧ2 + 1
Χ1 

4β′ − 2β′√2β + 4 + ββ′

β휀
> δ 

(√ββ′ − √2)
2

β휀
> δ 

(β + 2)2

8β휀
> δ 
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Effect of cost (𝜺) increases with partner density 

𝐝𝚾𝟏
𝐝𝐭

= (𝟏 − 𝛅𝟏)𝚾𝟏(𝟏 − 𝚾𝟏) 

55.
dΧ1
dτ

= (1 − δ(1 + 휀Χ2)
1

βΧ2 + 1
)Χ1(1 − Χ1) 56.

dΧ1
dτ

= (1 − δ)
1

(1 + 휀Χ2)
Χ1 (

β′Χ2
Χ2 + 1 β⁄

− Χ1) 57.
dΧ1
dτ

= (1 − δ(1 + 휀Χ2))Χ1(1 − Χ1) +
β′Χ2

Χ2 + 1 β⁄
Χ1 

βΧ0 + 1

휀Χ0 + 1
> δ Violates assumption d) and unbounded growth Unbounded growth 

58.
dΧ1
dτ

= (1 − δ
1

βΧ2 + 1
)Χ1 (

1

(1 + 휀Χ2)
 − Χ1) 

59.
dΧ1
dτ

=  (1 − δ)Χ1 (
1

(1 + 휀Χ2)

β′Χ2
Χ2 + 1 β⁄

− Χ1) 60.
dΧ1
dτ

=   (1 − δ)Χ1 (
1

(1 + 휀Χ2)
− Χ1) +

β′Χ2
Χ2 + 1 β⁄

Χ1 

βΧ0 + 1 > δ Violates assumption d) and unbounded growth Violates assumption d) and unbounded growth 

61.
dΧ1
dτ

= (1 − δ
1

βΧ2 + 1
)Χ1(1 − Χ1) − (휀Χ2)Χ1 62.

dΧ1
dτ

=  (1 − δ)Χ1 (
β′Χ2

Χ2 + 1 β⁄
− Χ1) − (휀Χ2)Χ1 63.

dΧ1
dτ

=   (1 − δ)Χ1(1 − Χ1) +
1

(1 + 휀Χ2)

β′Χ2
Χ2 + 1 β⁄

Χ1 

(√β휀 − √(휀 + 1)(β + 1))
2

> δ Violates assumption d) Unbounded growth 

𝐝𝚾𝟏
𝐝𝐭

= 𝚾𝟏((𝟏 − 𝛅𝟏) − 𝚾𝟏) 

64.
dΧ1
dτ

=
1

(1 + 휀Χ2)

β′Χ2
Χ2 + 1 β⁄

Χ1((1 − δ) − Χ1) 65.
dΧ1
dτ

=
1

(1 + 휀Χ2)
Χ1 ((1 − δ

1

βΧ2 + 1
) − Χ1) 66.

dΧ1
dτ

=
1

(1 + 휀Χ2)
Χ1(1 − δ − Χ1) +

β′Χ2
Χ2 + 1 β⁄

Χ1 

Violates assumption d) 
(β + 1)2

4β
> δ Violates assumption d) 

67.
dΧ1
dτ

=
β′Χ2

Χ2 + 1 β⁄
Χ1 ((1 − δ)

1

(1 + 휀Χ2)
 − Χ1) 68.

dΧ1
dτ

= Χ1 ((1 − δ
1

βΧ2 + 1
)

1

(1 + 휀Χ2)
 − Χ1) 69.

dΧ1
dτ

=   Χ1 (
1

1 + 휀Χ2
− δ − Χ1) +

β′Χ2
Χ2 + 1 β⁄

Χ1 

Violates assumption d) Violates assumption d) 𝑓(β, β′, 휀) > δ 

70.
dΧ1
dτ

=
β′Χ2

Χ2 + 1 β⁄
Χ1((1 − δ) − Χ1) − (휀Χ2)Χ1 71.

dΧ1
dτ

=  Χ1 ((1 − δ
1

βΧ2 + 1
) − Χ1) − (휀Χ2)Χ1 72.

dΧ1
dτ

=  Χ1(1 − δ − Χ1) +
1

(1 + 휀Χ2)

β′Χ2
Χ2 + 1 β⁄

Χ1 

Violates assumption d) 
(β + 휀 + 1)2

4β(휀 + 1)
> δ 𝑓(β, β′, 휀) > δ 

𝐝𝚾𝟏
𝐝𝐭

= 𝚾𝟏(𝟏 − 𝚾𝟏) − 𝛅𝟏𝚾𝟏 

73.
dΧ1
dτ

=
1

(1 + 휀Χ2)

β′Χ2
Χ2 + 1 β⁄

Χ1(1 − Χ1) − δΧ1 74.
dΧ1
dτ

=
1

(1 + 휀Χ2)
Χ1 (

β′Χ2
Χ2 + 1 β⁄

− Χ1) − δΧ1 75.
dΧ1
dτ

=
1

(1 + 휀Χ2)
Χ1(1 − Χ1) − δ

1

βΧ2 + 1
Χ1 

ββ′ (√(β + 1) − √(휀 + 1))
2

(β − 휀)2
> δ 

(√β2β′ − √ β − 휀 + ββ′휀)
2

(β − 휀)2
> δ 

(√β − √(1 + 휀)(β − 휀))
2

휀2
+ 1 > δ 

76.
dΧ1
dτ

=
β′Χ2

Χ2 + 1 β⁄
Χ1 (

1

(1 + 휀Χ2)
 − Χ1) − δΧ1 77.

dΧ1
dτ

=  Χ1 (
1

(1 + 휀Χ2)
 
β′Χ2

Χ2 + 1 β⁄
− Χ1) − δΧ1 78.

dΧ1
dτ

=   Χ1 (
1

(1 + 휀Χ2)
− Χ1) − δ

1

βΧ2 + 1
Χ1 

𝑓(β, β′, 휀) > δ 𝑓(β, β′, 휀) > δ 𝑓(β, β′, 휀) > δ 

79.
dΧ1
dτ

=
β′Χ2

Χ2 + 1 β⁄
Χ1(1 − Χ1) − δ(1 + 휀Χ2)Χ1 80.

dΧ1
dτ

=  Χ1 (
β′Χ2

Χ2 + 1 β⁄
− Χ1) − δ(1 + 휀Χ2)Χ1 81.

dΧ1
dτ

=   Χ1(1 − Χ1) − δ(1 + 휀Χ2)
1

βΧ2 + 1
Χ1 

ββ′ (√(β + 1) − √(휀 + 1))
2

(β − 휀)2
> δ 

(√β2β′ − √ β − 휀 + ββ′휀)
2

(β − 휀)2
> δ 

(√β − √(1 + 휀)(β − 휀))
2

휀2
+ 1 > δ 
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Table S1: Diverse coexistence criteria derived from a set of 81 mutualism models. The formulations are 

based on the locations of benefit (𝛽, 𝛽′), cost (휀), and stress (𝛿) in logistic growth equations (see section II 

of SI for detailed method). Each 3 × 3 block represents different locations of the 𝛿 term. Each column and 

row represent a location of the benefit and cost term, respectively. Because we assume symmetry between 

the two populations, only the equation representing Χ1 is shown for simplicity of presentation. Models in 

the first table assume cost is independent of partner density. In natural mutualism systems, mutualists can 

also compete for resources, so the third table contains models that describe the two partners sharing the 

same carrying capacity. In addition, cost can also scale with partner densities, so models in the second table 

add density-dependent cost as linear dependencies. Models highlighted in grey either violate model 

assumption (see Method section) or generate unbounded growth, or both. The rest of the 48 models satisfy 

the 4 model assumptions and have bounded growth. For criteria that have a long left-hand side are written 

as 𝑓(β, β′, 휀) > 𝛿. The specific forms of 𝑓(β, β′, 휀) > 𝛿 can be found in the supplemented MATLAB code. 

The MATLAB code also includes all 81 models in this table and the process of testing assumptions, 

calculating and verifying the above criteria.  
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Adding complexities Inequality Parameters  

Base model criterion 21.
(𝛽 + 1)2

4𝛽휀
> δ 𝛽, 휀 

Include competition 82.
(β + a + 1)2

4β휀(a + 1)
> δ 𝛽, 휀, 𝑎 

Include initial density 83.
1

휀
(1 − 𝑥0)𝑥0𝛽 +

1

휀
(1 − 𝑥0) > 𝛿 𝛽, 휀, 𝑥0 

Include asymmetry 84.
𝜌(𝛽1 + 1/𝜃1 + 1)

2

4𝛽1휀1(𝜌/𝜃1 + 𝜃2)
> 𝛿1 𝜃1 =  

𝛽2
𝛽1
, 𝜃2 =  

휀2𝛿2
휀1𝛿1

 𝛽, 휀, 𝜌, 𝜃1, 𝜃2 

Include turnover rate 85.
(𝛽(1 − 휀𝛿0) + 2)

2

4𝛽휀
(
𝜌

𝜌 + 1
) > 𝛿 𝛽, 휀, 𝜌, 𝛿0 

N-mutualist system 86.
(β +

n
n − 1

)2

4βε
n

n − 1

> δ 𝛽, 휀, 𝑛 

 

Table S2: Increasing model complexity increases criterion complexity. The base model is identical to 

model 21 in Table S1. Number 82-86 and their corresponding criteria are obtained by relaxing assumptions 

in model 21. Including the 48 models in Table S1, we in total obtained coexistence criteria of 52 models. 

Note that number 21 and number 83 used the same model structure. The detailed models and criterion 

derivations are shown in section III of SI. Also see Supplementary Materials for the MATLAB code of 

above models and the process of calculating and verifying the corresponding criteria.   
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Figure S1: Typical bifurcation diagrams of models that create unbounded growth. Previously-developed 

general coexistence criteria describe the boundary between stable coexistence (white regions) and 

unbounded growth (grey regions). Solid lines represent stable steady state for coexistence. Grey dashed 

lines represent steady states of a mutualist in the absence of its partner. This diagram is generated using 

model:  

dΧ1
dτ

=  Χ1(1 − δΧ1) + βΧ2Χ1 

dΧ2
dτ

=  Χ2(1 − δΧ2) + βΧ1Χ2 

The left panel is generated with β = 1 and the right panel is generated with δ = 1.  
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Figure S2: The predictor 𝐵 δ⁄  is a general metric for predicting performance of symmetric (panel a, b) and 

asymmetric mutualistic systems (panel c-f). All the traces are comprised of individual dots. Each dot 

represents result from one set of model parameter. a. Mutualistic systems have initial-density-dependent 

coexistence. In the left panel, we assume the same initial density of both populations that is a uniform 

random variable. In the right panel, we varied the ratio of the two initial densities and kept the total initial 

density constant. In both cases, 𝐵 𝛿⁄  is predictive of coexistence probability. b. When cheaters can arise in 

a system, 𝐵 𝛿⁄  is predictive of the time duration the system can persist before cheater exploitation. c. An 

asymmetric mutualistic system can be either obligatory (left panel), where both populations extinct when 

𝐵 𝛿⁄ < 1 or facultative (right panel), where one population can persist even when 𝐵 𝛿⁄ < 1. The black dots 

represent total density and the two colors represent the total density of the two partners. The same 

representations are used in panel d. d. The predictive power of 𝐵 𝛿⁄  for total density also holds for 

asymmetric systems that share carrying capacity. e. 𝐵 𝛿⁄  is predictive of probability of coexistence for 

asymmetric systems. f. The predictive power of 𝐵 𝛿⁄  for resistance to cheater exploitation also holds for 

asymmetric systems. Please refer to SI for models and parameter values used in generating this figure. g. 

The accuracy of criterion is robustly maintained after addition of extrinsic Gaussian noise. X axis indicates 

the standard deviation of the Gaussian noise. Note that the noise is significant considering the maximum 

total density of the system is 1. Please see Supplementary Text section IV.B for the simulation details. 
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Figure S3: A general method for quantifying 𝛿. Regardless of different model formulations, 𝛿 can always 

be measured using either growth rate or final population size of an individual population. a. We simulated 

the growth of a population that is modulated by a death term 𝑑. Stress 𝛿 is simply 𝑑 normalized by growth 

rate 𝑟. In the simulations, the true 𝛿 (𝛿𝑡) depends on an independent variable 𝑣. b. One type of model 

structure has 𝛿 modulating both growth rate (𝑟) and yield (𝑦, final density). 𝑁 is the population size and 𝐾 

is the carrying capacity. Based on the growth curve or final population size, measurements of growth rate 

(𝑟𝑚) and yield (𝑦𝑚) can be obtained when varying 𝑣. The 𝛿 measurement (𝛿𝑚) can be calculated by 1 −
𝑟𝑚

max (𝑟𝑚)
 or 1 −

𝑦𝑚

max (𝑦𝑚)
. Note that since 𝑦𝑚 is always non-negative, 1 −

𝑦𝑚

max (𝑦𝑚)
 is always positive, but 𝛿 

can be greater than 1 when the population size decreases. To address this discrepancy, extrapolation of 𝛿𝑚 

is needed to capture death rate (the black trace in the 𝛿𝑚  versus 𝑣  plot). c. In another type of model 

formulation, 𝛿 only modulates growth rate. Simulation shows that 𝑦𝑚 either equals to carrying capacity or 

0. Thus, in this case, only 𝑟𝑚  can be used to calculate 𝛿 . The right-most panels show the comparison 

between the measured 𝛿 (𝛿𝑚) and true 𝛿 (𝛿𝑡). In all cases, 𝛿𝑚 is a good approximation of 𝛿𝑡 (the solid black 

line represents 𝛿𝑚 = 𝛿𝑡).  
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Figure S4: The calibration procedure using SVM. a. Measurements are first arranged in matrix forms and 

each standardized to have mean of 0 and standard deviation of 1. The standardized data are used as inputs 

to train SVM models with different kernels and kernel parameters. 10-fold cross validation accuracy loss 

(𝐶𝑉𝑙𝑜𝑠𝑠 ) and variance (𝑉𝑎𝑟 ) are calculated for each trained 𝐵(𝒗) . Top 𝐵(𝒗)  are selected based on 

minimizing the metric 0.2 ∙ 𝑉𝑎𝑟 + 0.8 ∙ 𝐶𝑉𝑙𝑜𝑠𝑠 . We then output the top 𝐵(𝒗)  (usually 5) and their 

corresponding relative standard deviation (𝑅𝑆𝐷 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒/𝑚𝑒𝑎𝑛) obtained by bootstrapping to evaluate 

the confidence of the calibrated 𝐵(𝒗). b. To show that 0.2 ∙ 𝑉𝑎𝑟 + 0.8 ∙ 𝐶𝑉𝑙𝑜𝑠𝑠 is a consistent indicator of 

high correlation (indicated by R2 values) between 𝐵(𝒗) and the true 𝐵, we constructed 20 models that have 

known 𝐵(𝒗) (each subplot represents one model). Each dot represents the result of one set of kernel 

parameter and the colors represent the type of kernel used. These models show that minimizing 0.2 ∙ 𝑉𝑎𝑟 +

0.8 ∙ 𝐶𝑉𝑙𝑜𝑠𝑠 leads to higher R2 values (indicated by the black arrows). See SI for details of the specific model 

and model parameters used to generate data in this panel. c. 0.8 in the metric is picked by sweeping 𝜆 in 

(1 − 𝜆) ∙ 𝑉𝑎𝑟 + 𝜆 ∙ 𝐶𝑉𝑙𝑜𝑠𝑠. Mean R2 calculated using the top 3 𝐵(𝒗) of each 20 model varies with 𝜆 values. 

The max mean R2 occurs at 𝜆 = 0.8. d. Bias decreases exponentially with increasing sample size. This 

analysis is done using the model corresponding to the third subplot in the first column of panel b. A subset 

of the 100 data points is randomly sampled without replacement to train 𝐵(𝒗) and the bias of 𝐵(𝒗) is 

calculated. The black trace represents the data points fitted to the function 𝐵𝑖𝑎𝑠 =  𝑎 ∙ (𝑆𝑎𝑚𝑝𝑙𝑒 𝑠𝑖𝑧𝑒)−𝛼 +

𝑏.   
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Figure S5: Application of the simple rule to a complex model with no explicit form of 𝐵. a. 𝛿1, 𝛿2, 𝛽1, 𝛽2, 

휀1 , and 휀2  vary with 𝑣1  and 𝑣2 . b. The calibrated 𝐵(𝒗)  along with 𝛿  is predictive of probability of 

coexistence. To get the probability of coexistence, at each (𝑣1, 𝑣2 ), we ran 100 simulations with 100 

different ratios of initial densities while keeping the total initial density the same. c. 𝐵(𝒗)/𝛿  is also 

predictive of how well the system can resist cheater exploitation. The y axis indicates the time the system 

can persist before the exploitation of cheater populations. d. The high pairwise R2 values of the top 5 𝐵(𝒗) 
indicate high confidence of the calibration results. e. The top 5 𝐵(𝒗) from the calibration procedure. The 

title for each 𝐵(𝒗) indicates its index corresponding to panel d and its corresponding training accuracy. 

Each 𝐵(𝒗) can also be evaluated based on their bootstrapped relative standard deviation (𝑅𝑆𝐷).  

  

𝑣2 

𝑣
1
 

𝐵
( 𝒗
)  

𝑅
𝑆
𝐷

 

𝑣2 

𝑣
1
 

a 

e 

d 

1 2 3 4 5 

R
2
 

# of 𝐵(𝒗)  

# 
o

f 
𝐵
( 𝒗
)  

 

휀1 

휀2 𝛽2 

𝛽1 𝛿1 

𝛿2 

𝐵(𝒗) 𝛿⁄  𝐵(𝒗) 𝛿⁄  

P
(c

o
ex

is
te

n
ce

) 

Ti
m

e 
b

ef
o

re
 

ex
p

lo
it

at
io

n
 

b c 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 20, 2018. ; https://doi.org/10.1101/304295doi: bioRxiv preprint 

https://doi.org/10.1101/304295


37 
 

 

Figure S6: The QS-based mutualism system. a. The schematic of the synthetic gene circuit. 𝛿1, 𝛿2, 𝛽1, 

𝛽2 , 휀1 , and 휀2  are indicated in the diagram to show the molecular mechanisms each term is primarily 

associated with. b. Verification of the basic system dynamics. The final OD values of coculture and 

monocultures are recorded. Monocultures of M1 and M2 are significantly suppressed by IPTG, while the 

cocultures exhibit synergistic growth. The total density of the cocultures increases with increasing [aTc]. 

The comparison between experimental and simulated temporal dynamics indicate that our model captures 
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the basic mutualistic dynamics observed empirically. The four red dots in the heatmaps indicate the four 

experimental conditions of the simulated and experimental time courses. We used equations III.22 and 23 

in the Supplementary Text for the simulation. The parameter values are: 𝛿1([IPTG] = 0) = 𝛿2([𝐼𝑃𝑇𝐺] =
0) = 0 ; 𝛿1([IPTG] = 1000μM) = 0.63 ; 𝛿2([IPTG] = 1000μM) = 0.68 ; 𝛽1([aTc] = 0μM) =
𝛽2([aTc] = 0μM) = 2 ; 𝛽1([aTc] = 1nM) = 𝛽2([aTc] = 1nM) = 200;  휀1 = 휀2 = 1 ; 𝜌 = 1  c. Using 

higher resolution of [aTc] and [IPTG] gradients, we obtained the total density of cocultures using OD 

measurements. At 32 hours, a bimodal distribution of final densities emerges with a trough at OD=0.3. d. 

Quantification of 𝛿  based on OD of M2 monoculture at 32 hours. The final OD is fitted using 

𝑂𝐷([𝑎𝑇𝑐], [𝐼𝑃𝑇𝐺]) = 𝑉𝑎
[𝑎𝑇𝑐]𝑛𝑎

[𝑎𝑇𝑐]𝑛𝑎+𝑘𝑛𝑎
+ 𝑉𝐼

𝑘𝑛𝐼

[𝐼𝑃𝑇𝐺]𝑛𝐼+𝑘𝑛𝐼
+ 𝑏  to reduce noise of the resulting 𝛿 

measurements. 𝛿  is then calculated by 𝛿 = 1 −
𝑂𝐷([𝑎𝑇𝑐],[𝐼𝑃𝑇𝐺])

max (𝑂𝐷([𝑎𝑇𝑐],[𝐼𝑃𝑇𝐺]))
. e. The top 5 𝐵(𝒗)  and their 

corresponding relative standard deviation (𝑅𝑆𝐷) (the axes are the same as heatmaps in panel c and d).   
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Figure S7: The yeast auxotroph system. a. The normalized equilibrium density of ∆𝑇𝑟𝑝 and ∆𝐿𝑒𝑢 were 

used to quantify 𝛿 for each strain. We only fitted density that is above the detection limit (10,000 cells/well). 

Since ∆𝐿𝑒𝑢 reaches below detection limit when [Leu] is relatively low, extrapolation is done to estimate 

the death rate at lower [Leu] (see Fig. S3a for the reasoning).  As a result, 𝛿 of ∆𝐿𝑒𝑢 has a higher dynamic 

range than that of ∆𝑇𝑟𝑝. b. 5 top 𝐵(𝒗) show both consistency and discrepancy. All 𝐵(𝒗) indicate an 

optimal initial density at an intermediate level. However, when [Trp] increase to 16μM, 𝐵(𝒗) can either 

increase or decrease. c. Our approach can also predict probability of coexistence. We excluded the ratio of 

initial density, leaving [Trp] to construct a one dimensional 𝒗. The boundary between coexistence and 

collapse is between 0.1 μM tryptophan, 0.8 μM leucine and 0.5μM tryptophan, 4.0 μM leucine. To calibrate 

a 𝐵(𝒗) for this system, we assume supplementing the two amino acids does not change the cooperation 

capability. This calibration demonstrates that our procedure can also predict probability of coexistence for 

experimental systems.   
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Figure S8: The 92 pairwise e. Coli mutualistic systems constructed using 14 auxotrophic strains. a. 

The logarithm of fold change (FC) of total final density for the 92 systems exhibit a bimodal distribution. 

The trough of the bimodal distribution corresponds to FC=10 (dashed grey line), which is used to classify 

coexistence and collapse. b. Quantification of 𝛿  for all 14 auxotrophs by fitting yield of the strain at 

different concentrations of their corresponding amino acid. Since none of the auxotrophs can grow without 

supplementary amino acid, 𝛿 ≥ 1 is expect for all auxotrophs at [AA]=0 (AA denotes the corresponding 

amino acid). Therefore, according to the reasoning demonstrated in Fig. S3, extrapolation of the data is 

required. We only fitted the data points that have OD>0.1, since OD<0.1 can be below the linear detection 

range of microplate readers. The data are fitted and extrapolated with Hill equations (red curves) or using 

a linear extrapolation of the fitted curves (the black trace). Green circles represent the values of OD of the 

fitted Hill equations at [AA]=0. 𝛿  is then calculated by 1 −
OD([AA]=0)

max (OD([AA]))
 for all 14 strains using 

OD([AA] = 0) obtained from either Hill equation or linear function. The two methods yield comparable 

results. We chose the 𝛿 calculated using the Hill equation for the calibration process. c. The top calibrated 

𝐵(𝒗) and their variability are indicated by relative standard deviation (𝑅𝑆𝐷).  
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Figure S9: Mutualistic systems comprised of more than two partners. a. A mutualistic model with 5 

partners. All the parameters in the model are linear functions of  𝑣1 and 𝑣2 and the parameters of the linear 

function are randomly generated. b. Constructing a predictive metric for 3-member systems from calibrated 

results of 2-member systems. We first normalized the range of calibrated 𝐵 of 2-member systems (𝐵2) to 

[0, 1]. The effective benefit of 3-member system is simply the average of 𝐵2 for all underlying 2-member 

systems and stress is the average of 𝛿 for all 3 members. The subscripts of 𝐵2 and 𝛿 represent the indices 

of the 3 members. We swept a threshold for 𝐵 𝛿⁄  between 0 and 1 to classify coexistence (FC≥10) versus 

collapse (FC<10). The prediction accuracy reaches the maximum of 80.8% at a threshold equals to 0.24.  
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Figure S10: Mutualistic systems in dynamic environments. a. Two systems were analyzed: one system 

is a pairwise mutualism system that is modulated by oscillatory signals (the left panel) and the other system 

contains a pair of mutualists and 5 bystander populations that interact with the mutualists (the right panel). 

We verified that theoretically calculated 𝐵/𝛿 roughly holds as a predictor for total density. The transition 

between coexistence and collapse, however, do not occur strictly at 1. Each dot represents a simulation 

result from one set of model parameters. b. The data used for the calibrations and the calibrated 𝐵(𝒗). The 

two 𝐵(𝒗)’s are used for the prediction plots shown in Fig. 4c, d.  
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Movie S1. This video demonstrates the relative position of the boundary surface 𝐹(𝛿, 𝒗) = 0  and 5 

observations in the schematic shown in Fig. 2b. Input data in Fig. 2b can be represented in a 3D space. The 

color of the dots and the z axis positions both indicate 𝛿 values. Coexistence is indicated by closed circles 

and collapse is indicated by open circles. The gray boundary surface separates coexistence and collapse. 

The surface is above observations that represent coexistence (𝐵 > 𝛿) and below observations that represent 

collapse (𝐵 < 𝛿). This surface can be directly interpreted as 𝐵(𝒗) since 𝐹(𝛿, 𝒗) = 0 ⟹ 𝐹(𝐵, 𝒗) = 0 ⟹
𝐵(𝒗) .  
 

Movie S2 – S4. These 3 videos show the calibrated surface of 𝐵(𝒗) relative to input data in 3D space. The 

blue surfaces are the boundary 𝐹(𝛿, 𝒗) = 0 that separate coexistence and collapse. The surface is also 

equivalent to 𝐵(𝒗). The indices on x and y axes in video 4 correspond to the same strain orders in Fig. 3j.  
 

MATLAB code and movie S1 – S4 can be found using the following Dropbox link:  

https://www.dropbox.com/sh/c65vqo0vw4sxb6k/AAC4QpRXs9KyiCZV1RjMaPfqa?dl=0   
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