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ABSTRACT

Single-variant based genome-wide association studies have successfully detected many

genetic variants that are associated with many complex traits. However, their power is lim-

ited due to weak marginal signals and ignoring potential complex interactions among genetic

variants. Set-based strategy was proposed to provide a remedy where multiple genetic vari-

ants in a given set (e.g., gene or pathway) are jointly evaluated, so that the systematic effect

of the set is considered. Among many, the kernel-based testing (KBT) framework is one of

the most popular and powerful methods in set-based association studies. Given a set of can-

didate kernels, method has been proposed to choose the one with the smallest p-value. Such

a method, however, can yield inflated type I error, especially when the number of variants in

a set is large. Alternatively one can get p-values by permutations which, however, could be

very time consuming. In this work, we proposed an efficient testing procedure that can not

only control type I error rate but also generate power close to the one obtained under the

optimal kernel. Our method is built upon the KBT framework and is based on asymptotic

results under a high-dimensional setting. Hence it can efficiently deal with the case where
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the number of variants in a set is much larger than the sample size. Both simulation and

real data analysis demonstrate the advantages of the method compared with its counterparts.

Key words: Multiple kernels; Gene-set association; Pathway association; High dimension;

Non-linear effect

1 Introduction

Driven by the advancements in microarray and next generation sequencing technologies, in-

creasing number of genetic variants such as single nucleotide polymorphisms (SNPs), indels

and copy number variation, are generated in a daily basis. Traditional genome-wide asso-

ciation studies (GWAS), aiming at associating single SNPs with complex traits, have been

proven to be a powerful tool to unveil the genetic architecture of many complex traits. How-

ever, the power of traditional GWAS analyses by assessing the effect of SNPs one at a time,

is limited due to weak marginal signals and the lack of considering potential interactions

among genetic variants. Such limitation has been partially addressed by the recent wave of

set-based association studies (e.g., Subramanian et al., 2005). The extension to a set-based

analysis is a natural choice because genetic variants in a set (e.g., a gene or a pathway) tend

to work coordinately to fulfill their joint task. On one hand, the subtle effects in multiple

variants can be combined so that the joint signal of the set could be potentially boosted

and be detected. On the other hand, the set-based strategy improves the power by captur-

ing the complicated interactions among variants if any. There are a variety of biologically

meaningful methods to create a SNP-set or gene-set, such as the annotated gene models (for

SNP-set), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway (Kanehisa, 2000),

Reactome (Croft et al., 2011) and Gene Ontology (Ashburner et al., 2000).

The kernel-based testing (KBT) framework, which measures the similarity between ge-
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netic variants through a kernel function then compares with the phenotype similarity, is one

of the most popular and powerful methods in set-based association studies (Liu et al. 2007;

Liu et al. 2008; Kwee et al. 2008). KBT is a very general framework and many other

similarity based approaches (e.g., Reiss et al. 2010; Wessel and Schork 2006; Mukhopadhyay

et al. 2010; Tzeng et al. 2009) are closely related to it. As observed in the literature (e.g.,

Wessel and Schork 2006; Wu et al. 2010; Lin et al. 2011), the power of KBT generally

depends on the choice of the kernel function. Assuming that the relationship between a

gene set and a disease phenotype can be described by a function h(·), if the true function

h(·) comes from the function space generated by the specified kernel, then analysis based on

the corresponding kernel will ideally achieve the optimal power. However, the underlying

genetic function on a phenotypic response, hence the true function h(·), is generally unknown

in practice. As a result, it is difficult to choose what kernel should be used. Given a set of

candidate kernels in the KBT framework, a common practice is to choose the one leading to

the smallest p-value. This, however, could inflate the type I error rate due to the choice of

kernel selection. To overcome this, Wu et al. (2010) proposed a data dependent perturbation

method. However, this strategy is over-conservative in a high-dimensional setting in which

the number of variants could be much larger than the sample size. Moreover, it needs com-

putationally intensive procedures to evaluate the statistical significance. The computation

burden can further hamper its applicability to large scale genomic data.

In a gene-set association analysis, the number of variants (e.g., SNPs), denoted as p, is

typically larger than the sample size, denoted as n, especially in a pathway-based analysis.

Such a large p small n problem brings statistical challenges in developing a set-based testing

procedure. Therefore, our interest is to find an efficient kernel testing procedure that can

maintain nominal type I error rate while achieving high power in a high-dimensional setting

(i.e., p > n), under the KBT framework. We mainly focus on a high-dimensional setting

and assume a set of candidate kernels are given. We propose an effective and efficient
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testing procedure when multiple candidate kernels are available. We introduce a new test

statistic taking the maximum of the test statistics using the standardized kernels across

the candidate set under a high-dimensional setting. We demonstrate the performance of

the strategy through a real data application and extensive simulation studies under both

continuous and discrete variable settings. The simulation studies show that the proposed

approach can maintain the nominal type I error rate, and the maximum method enables the

power to be close to the one obtained using the best candidate kernel function in a set, while

the perturbation method proposed by Wu et al. (2010) suffers from power loss. Our method

enriches the literature of kernel based association methods in genetic association studies, and

has broad applications in other fields where the interest is to evaluate the joint (potentially

nonlinear) effect of a set of variants with a response.

2 Statistical methods

2.1 The model setup

We assume that n independent subjects from a population are observed in a study design.

For the ith subject, let Yi be the quantitative measurement; Xi = (Xi1, · · · , Xip)
T be a

vector of measurements for a gene set, which could be SNP genotypes in a SNP set, or

gene expression profiles in a gene expression set; Wi = (Wi1,Wi2, · · · ,WiL)T be a vector of

L-dim covariates, where L is finite and i = 1, 2, · · · , n. These covariates can be any clinical

variables such as age, gender, and smoking status. In this work, we focus our attention on

a p-dim SNP set or gene expression set, where p is assumed to be large and could be larger

than the sample size n. For SNP genotype values, an additive model is assumed where Xij

is typically coded as 0, 1 and 2 corresponding to the number of minor alleles that subject

i possesses at the jth specific locus. The gene expression values are measured as intensity

in microarray studies or FPKM values in RNA-seq studies. In this work, we do not assume
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any specific distribution assumption on Xi. This makes our method more general in which

it can deal with gene set based association analysis for both gene expression and SNP data.

In the follows, we use gene set to denote a SNP set or gene expression set.

To model the relationship between a quantitative trait and a gene set, we consider the

following semi-parametric regression model,

Yi = µ+αTWi + h(Xi) + εi, i = 1, 2, · · · , n, (1)

where h(·) is an unknown function, εi is a random subject-specific error term following a

certain distribution (not necessarily normal) with E(εi) = 0, Var(εi) = σ2 and is independent

of (Xi,Wi). The identifiability of the h function is assured by the side condition E[h(Xi)] =

0. Our interest is to test association between a gene set and a continuous trait of interest,

which can be done by testing the following hypotheses,

H0 : h(·) = 0 vs H1 : h(·) 6= 0. (2)

2.2 Kernel function

Our method is built upon the KBT idea (Liu et al. 2007; Kwee et al. 2008), but with

a different testing strategy. Before proceeding to the KBT statistic, we introduce some

basics about the kernel function, which is widely used to measure the similarity between

two subjects. Kernel function is commonly used to generate the functional space for the

underlying true function h(·). A function K : X × X → R is called a kernel function if it is

symmetric and positive semi-definite (i.e., K(x1, x2) = K(x2, x1) for any x1, x2 ∈ X , and the

N × N kernel matrix K = (Kij)
N
i,j=1 is positive semi-definite, for any x1, x2, · · · , xN ∈ X )

with the (i, j)-th component Kij = K(xi, xj). In our context, K(Xi,Xj) is a measure of

similarity between the ith and the jth subject based on the SNP genotype or gene expression

values.

5

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/304055doi: bioRxiv preprint 

https://doi.org/10.1101/304055


For any positive definite kernel K∗ with corresponding matrix K∗, we can defined its

centralized kernel

K(x1, x2) = K∗(x1, x2)−K∗1(x1)−K∗1(x2) + µK∗ (3)

satisfying E{K(X1, X2)} = 0, where K∗1(x1) = E{K∗(x1, X2)}, and µK∗ = E{K∗(X1, X2)}.

Empirically, centralized kernel matrix K can be replaced by its estimator

Kn = K∗ − (n− 1)−1[J(K∗)0 + (K∗)0J] + n−1(n− 1)−1J(K∗)0J,

where J is an n × n matrix with all the elements as 1, and D0 = D − diag(D) is a zero-

diagonal matrix defined for any square matrix D which sharing all non-diagonal elements

with D. For notation simplicity, hereafter we use K∗, K and Kn to represent the original

kernel function, centralized kernel function and the empirical version of the centralized kernel

matrix, respectively.

Some commonly used kernel functions include linear kernel K∗(x1, x2) = xT1 x2, polyno-

mial kernel K∗(x1, x2) = (xT1 x2 + c)d, Gaussian kernel K∗(x1, x2) = exp(−‖x1 − x2‖2/ρ)

where c, ρ > 0, d ∈ N are tuning parameters, and IBS kernel defined as K∗(x1, x2) =

(2p)−1
∑n

j=1 IBS(x1j, x2j) = (2p)−1
∑n

j=1(2 − |x1j − x2j|). The IBS kernel is for discrete

genotype data only. For a review of genomic similarity and more kernel functions, please

refer to Schaid (2010a, 2010b).

Throughout this work, we focus on centralized kernel in the testing since the asymptotic

distribution of the test statistic using non-centralized kernel is largely determined by the

centralized kernel except a location shift. More benefits of using centralized kernel can be

found in Lindsay et al. (2008, 2014). Furthermore, we can define the standardized kernel

K(x1, x2) = K(x1, x2)/E{K(X,X)}

from which it is easy to verify that E{K(X,X)} = 1. Next let us briefly look at the

eigen-decomposition of a kernel function, which is an important way to characterize a kernel
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function. Assume K(·, ·) is a kernel function defined on X × X . Then the spectral decom-

position theorems (Lemma 1 of Chapter 2, Steinwart and Scovel, 2012) implies that the

standardized kernel K(·, ·) enjoys the following representation

K(x1, x2) =
S∑

m=1

λK,mψm(x1)ψm(x2), ∀x1, x2 ∈ X ,

where the eigenfunctions {ψm(·)}Sm=1 form a complete orthonormal system (i.e., E{ψ2
m(X)} =

1 for any m, E{ψm(X)ψm′(X)} = 0 for m 6= m′), and λK,1 ≥ λK,2 ≥ · · · ≥ λK,S > 0 are

the non-zero eigenvalues satisfying
∑S

m=1 λK,m = 1. The standardization is required because

E{K(X,X)} could diverge in the high-dimensional case, and it ensures E{K(X,X)} <∞ so

that the eigen-decomposition can be properly defined. By denoting λm = E{K(X,X)}λK,m,

we can get the pseudo eigen-decomposition of kernel function K(·, ·)

K(x1, x2) =
S∑

m=1

λmψm(x1)ψm(x2), ∀x1, x2 ∈ X .

It should be noticed that the eigen-decomposition not only depends on the expression of the

kernel, but also implicitly depends on the space X (e.g., dimension p).

A functional space HK , namely a reproducing kernel Hilbert space (RKHS), can be

generated by any positive semi-definite kernel function K(·, ·). The form of the functions

that reside in HK is characterized by the kernel function K. Here we assume that the h(·)

function in model (1) is a member of the RKHS HK . Therefore, by specifying the kernel

function, we assume that h(·) function has some structure defined byHK . For example, linear

kernel indicates that the overall genetic effect is a linear combination of the individual effects

in the set, i.e., h(Xi) = βTXi; polynomial kernel with (c, d) = (1, 2) implies a quadratic

model h(Xi) = βTXi + XT
i ΛXi, where interactions are modeled in addition to the linear

effects, β and Λ are coefficient vector and matrix, respectively. Because different kernel

functions are associated with different functional spaces, the kernel based approach is very

flexible for modeling different types of functions as well as complicated (potentially nonlinear)

interactions among variants. On the other hand, challenges arises given that the true function
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is generally unknown in practice. It is expected that the power of KBT is limited if a kernel

function is misspecified. In the following sections, we start with the hypothesis testing

problem using a single kernel function, followed by the ones using multiple kernel functions

through which the power can be greatly boosted.

2.3 Hypothesis test based on a single kernel

We consider the following kernel-based U-statistic (KU)

Tn =
1

n(n− 1)

∑
i6=j

K(Xi,Xj)(Yi − Ŷi)(Yj − Ŷj)/σ̂2, (4)

where Ŷi and σ̂2 are the sample estimates under the null model Yi = µ + αTWi + εi.

Specifically, let W̃n×(L+1) = [1n,Wn×L], A = W̃(W̃TW̃)−1W̃T , then Ŷ = AY and

σ̂2 = YT (I−A)Y/(n − L − 1). Define Vk =
∑∞

m=1 λ
k
m for any positive integer k. Then

the asymptotic normality of the test statistic Tn under the null hypothesis is stated in the

following theorem.

Theorem 1 Assume the density function of error ε is symmetric around 0 with E(ε4i ) =

τ4 <∞. Then, (i) under the null hypothesis of no genetic effect ( i.e., h(·) = 0),

σ−1Tn nTn
d→ N(0, 1),

if

V4/V
2
2 → 0 as p(n)→∞, (5)

where σ2
Tn

is the variance of nTn and can be estimated by the following estimator

σ̂2
Tn =

1

n2

{
(2− 12

n2
+

6∆̂

n
)tr(B2)− (

2

n
+

∆̂

n
)tr2(B) + ∆̂tr(B ◦B)

}
,

where B = HK0
nH; H = I−A; ◦ denotes the Hadamard product (elementwise product); and

∆̂ = n−1
∑n

i=1[(Yi− Ŷi)/σ̂]4−3. (ii) Assume that E{ψ4
m(X)} <∞ for all integers m. Under
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the local alternative H1n : h(x) = dn(x), where dn satisfies two conditions: nδK = O(
√
V2)

with δK = E {K(X1,X2)dn(X1)dn(X2)} and n2E{d8n(X)} = o(V 2
2 /V

4
1 ), we have

σ−1Tn nTn −Ψ(dn)
d→ N(0, 1)

if (5) holds, where Ψ(dn) = nδK/(σ
2σTn) is the location shift.

A sketch of proof to Theorem 1 is relegated to Appendix. Given the asymptotic normality,

we can then obtain the p-value for testing H0 : h(.) = 0, i.e.,

p-value = 1− Φ(σ−1Tn nTn), (6)

where Φ(·) is the cumulative density function for a standard normal distribution. As we can

see from Theorem 1, the asymptotic normality holds if the condition V4/V
2
2 → 0 holds. It

was mentioned earlier that this ratio depends on the kernel function, the dimension p of the

space where the kernel is defined, and the probability measure on X . To highlight the effect

of dimension, define πp = V4/V
2
2 . In the following, we take a further look at the conditions

for some commonly used kernel functions.

Example 1 Consider the linear kernel K∗(x1, x2) = xT1 x2, and assume a multivariate ran-

dom variable Xi = (Xi1, · · · , Xip) with covariance matrix Σ, i = 1, · · · , n. Then πp =

tr(Σ4)/tr2(Σ2).

Example 2 Consider the quadratic kernel K∗(x1, x2) = (xT1 x2 +1)2, which is a special poly-

nomial kernel. Denote XB
i = (X2

i1, · · · , X2
ip,
√

2Xi1Xi2, · · · ,
√

2Xi(p−1)Xip,
√

2Xi1, · · · ,
√

2Xip)
T

as a J-dim random vector with covariance matrix ΣB, where J = (p2 + 3p)/2. Then

πp = tr(Σ4
B)/tr2(Σ2

B).

Example 3 Consider the IBS kernel

K∗(x1, x2) = (2p)−1
p∑

m=1

IBS(x1m, x2m) = (2p)−1
∑
m=1

(2− |x1m − x2m|).

9

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/304055doi: bioRxiv preprint 

https://doi.org/10.1101/304055


Denote XI
i = (Xi1, · · · , Xip, 1{Xi1=1}, · · · , 1{Xip=1})

T as a 2p-dim random vector with covari-

ance matrix ΣI . Then πp = tr(Σ4
I)/tr2(Σ2

I).

The proofs to Example 1-3 are relegated to Appendix. From the above examples we can

see that under the three widely-used kernels, condition (5) is equivalent to a condition on

the covariance matrix of a random vector whose length depends on p. Besides, it is a weak

condition that brings little constraint to the growth rate of p relative to n. Moreover, if all

the eigenvalues of the covariance matrix Σ is bounded, then it is not difficult to see that πp

is of orders p−1, p−2 and p−1 respectively for the linear, quadratic and IBS kernel defined

earlier, and πp → 0 as p → 0. For more discussion on the condition tr(Σ4)/tr2(Σ2) → 0,

please refer to Chen et al. (2010).

Although the explicit condition for the covariance matrix of many kernel functions is

typically unknown, there do exist consistent estimators for V2 and V4 that can provide us

the empirical version of πp. Specifically, V̂2 = (P 2
n)−1tr{(K0

n)2}, V̂4 = (P 4
n)−1tr{(K0

n)4},

π̂p = V̂4/V̂
2
2 , and P k

n is the number of k-permutations of n.

2.4 Hypothesis test under multiple candidate kernels

In the previous section, we proposed a test statistic based on a single candidate kernel, and we

showed its asymptotic normality under a high-dimensional setting. Since the optimal kernel

is generally unknown in practice, we consider a set of M (finite) candidate kernel functions

K1(·, ·), K2(·, ·), · · · , KM(·, ·) with kernel matrix Kn,1,Kn,2, · · · ,Kn,M . Two testing methods

are proposed under this setting. In the first one, a new kernel function is generated by taking

the simple average of the normalized candidate kernels and then apply it to the single kernel

based testing procedure. The second method uses a maximum test statistic and the well-

developed results on multivariate normal distribution. Both methods are computationally

efficient and easy to implement in practice.
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2.4.1 Test based on kernel average

Without any prior knowledge of the nonparametric function h(·) in (1), taking the simple

average among a set of normalized kernels is a natural choice, where the normalization is

necessary for equal-metric consideration. In particular, denote the standardized kernels with

their empirical matrix forms as

Km(·, ·) =
Km(·, ·)

E{Km(X,X)}
, Kn,m =

nKn,m

tr(Kn,m)
, m = 1, 2, · · · ,M

and the simple average kernel with its matrix form as

K̃(·, ·) =
1

M

M∑
m=1

Km(·, ·), K̃n =
1

M

M∑
m=1

Kn,m.

Intuitively, the performance of the test using K̃ is most likely a compromise between the

best and the worst ones. Its power will not be close to the optimal one among a candidate

set, but it is a conservative option to improve the power over the weakest choice in the set

given the fact that the truth is unknown in practice. We call this test as the simple average

test.

2.4.2 Maximum test among a candidate set

An alternative strategy to the average kernel testing is to perform the test for individual

kernels, then taking the maximum as the test statistic. Taking the maximum test statistic

is the same as taking the minimum p-value which has been proposed in literature. However,

the minimum p-value method often requires computationally expensive techniques such as

permutation or perturbation to evaluate the null distribution. Here we focus on the maximum

test statistic among all the candidate kernels and take advantage of the derived asymptotic

normality under the high dimensional assumption. Let nTn,m and σ2
Tn,m

be respectively

the test statistic and the corresponding variance using the mth kernel function, and denote

Qm = σ−1Tn,m
nTn,m, m = 1, · · · ,M . As we can see from (6), the p-value is fully determined
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by Qm, hence maximizing Qm is equivalent to minimizing a nonlinear function of p-values.

We focus on the following maximum statistic

Qmax = max
1≤m≤M

Qm.

Let ρkl,n = cov(Qk, Ql) and ρkl,n → ρ0kl as n → ∞, k, l = 1, · · · ,M . The following theorem

states the the asymptotic distribution of the maximum statistic Qmax.

Theorem 2 Assume condition (5) in Theorem 1 is satisfied for each candidate kernel Km,

then

Qmax
d→ max

1≤m≤M
Zm,

where Z = (Z1, Z2, · · · , ZM)T follows a multivariate normal distribution with mean 0M and

covariance matrix Ω0 = (ρ0kl). Moreover, under the local alternative H1n, the power of the

maximum test achieves what the optimal one does among a candidate set, when the location

shift of the optimal kernel, specified in Theorem 1, is large enough.

The proof of Theorem 2 is relegated to Appendix. Based on Theorem 2, the p-value of

the maximum test can be calculated as

P(Qmax > qmax) = 1− P(Qmax ≤ qmax) = [1− P (Z ≤ qmax1M)] {1 + o(1)},

where the leading order term can be efficiently and accurately calculated in many popular

platforms (e.g., mvnorm package in R). Although the true covariance matrix Ω0 is unknown,

it can be approximately substituted by its consistent estimator Ω̂n = (ρ̂kl,n), where

ρ̂kl,n =
1

n2

{
(2− 12

n2
+

6∆̂

n
)tr(B̃kB̃l)− (

2

n
+

∆̂

n
)tr(B̃k)tr(B̃l) + ∆̂tr(B̃k ◦ B̃l)

}
,

where B̃m = HK0
n,mH/σ̂Tn,m , i = 1, · · · ,M . This maximum test strategy enjoys several

merits. First, the nature of maximum strategy enables the best power among a set of candi-

date kernels. Second, the asymptotic normality results obtained under the high-dimensional
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asymptotics greatly reduce our computational burden, and protects the size from being

inflated or over-conservative. Although the maximum method is designed for the high-

dimensional case, we found in the extensive simulation studies that the method is also

applicable when the dimension p is low. Specifically, type I error rate was well-protected and

only slightly conservative when p is very low (e.g., p = 10). Under a low-dimensional case,

the distribution of Qmax can be approximately viewed as the maximum among M correlated

chi-square random variables. Although its asymptotic behavior is beyond the scope of this

paper, from our simulation studies, we found that as p grows (p ≥ 20), the empirical type I

error is very close to the nominated level and the shape of the distributions Qm(m = 1, ...,M)

gets closer to a normal distribution. As the number of variants in a gene set (e.g., in a path-

way) is typically large, the proposed test is generally safe to apply in practice. We call this

test as the maximum test.

3 Simulation studies

Extensive simulation studies were conducted to evaluate the type I error rate and the em-

pirical power of the proposed methods. A continuous trait was simulated from the following

model,

Yi = 0.03Wi1 + 0.5Wi2 + h(Xi) + εi, i = 1, · · · , n,

where εi are independent and identically distributed random errors generated from N(0, 1)

distribution, Wi1 ∼ N(2, 1) and Wi2 ∼ Ber(0.6) are independent covariates, and Xi is a

p-dim discrete or continuous vector representing genotypes or gene expression profiles. To

evaluate the type I error, we generated data sets under the null hypothesis of no association

(i.e., h(·) = 0), and recorded the proportion of (incorrectly) rejecting the null hypothesis.

To assess the power, we generated data sets by specifying the h function, and recorded

the proportion of (correctly) rejecting the null hypothesis. We conducted 1000 simulation
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Table 1: Empirical type I error rates of different tests under the continuous variant setting

p n Gau Linear Poly SimplyAv Pertb Max

50 500 0.061 0.056 0.046 0.056 0.020 0.054
1000 0.055 0.058 0.047 0.057 0.025 0.056
2000 0.052 0.048 0.050 0.050 0.036 0.049

100 500 0.055 0.051 0.063 0.051 0.012 0.058
1000 0.055 0.055 0.056 0.053 0.015 0.058
2000 0.052 0.051 0.046 0.051 0.021 0.047

replications in each case and set the significance level as 0.05. In the following, we assessed

the performance of the proposed methods under the continuous and discrete variant settings

separately.

3.1 Continuous variants

Under the continuous variant setting, we simulated Xi = (Xi1, · · · , Xip) from a multivariate

normal distribution with mean 0p and covariance matrix Γ = (0.6|j−k|), where p = 50, 100 and

i = 1, · · · , n. The sample was assumed to be n = 500, 1000, 2000. The candidate set consists

of three commonly used kernels, including linear kernel, polynomial kernel (c = 1, d = 2)

and Gaussian kernel K∗(x1, x2) = exp(−‖x1 − x2‖2/p). In addition to a single kernel based

test, the kernel average method (denoted as SimplyAv), the perturbation method (denoted

as Pertb) (Wu et al. 2010) and the maximum method (denoted as Max) were also applied.

Table 1 reports the type I error rates of tests with varying sample size. We can see that the

type I error was not well-protected using the perturbation method, and others are reasonably

controlled (close to the nominal level 0.05). This finding implies that the perturbation

method is relatively conservative under the high-dimensional setup, while the other method

works reasonably well.

To evaluate the testing power, we considered four different scenarios. Under each scenario,

14

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/304055doi: bioRxiv preprint 

https://doi.org/10.1101/304055


the h(·) function was set differently as follows:

A : h(x) = τp{0.4x1x3},

B : h(x) = τp{0.1x1 + 0.1x3 + 0.4x1x3}

C : h(x) = τp{0.1(x1 − x3) + 0.8 cos(x3) exp(−x23/5)},

D : h(x) =

Sp∑
k=1

{
(−0.01)kxk + 2 exp(−x2k/100)H2(xk/100)

}
+ 0.01{x1x3 + cosx23},

where Hk(·) is the kth order Hermite polynomial, τp and Sp are two constants that were set

differently for each p to adjust for the overall effect. Specifically, (τp, Sp) = (0.8, 8) when

p = 50, and (τp, Sp) = (1, 30) when p = 100. For each scenario, 1000 simulation replicates

were generated to estimate the empirical power. Figure 1 and Figure 2 show the empirical

power under different scenarios for p = 50 and p = 100 respectively. We can see that different

kernels have different powers, depending on the underlying trait architecture. Simple average

kernel gives intermediate power among the candidate kernels, and the power of maximum

test under each scenario was generally close to the optimal kernel. For example, under

scenario A the polynomial kernel was the optimal kernel in terms of best power. Among

the three competitive ones (i.e., SimplyAv, Pertb and Max), the maximum test gives power

more close to the best one and performs the best among the three. The same pattern can

be seen under other three scenarios for both p = 50 and p = 100 settings. It is also worth

mentioning that the perturbation method suffers tremendously from power loss when the

sample size is small (see cases with n = 500 and n = 1000). This implies that the Pertb

method was not suitable for large p. The simulation study demonstrates that the maximum

strategy is a good solution in practice to maintain proper power over the weak choices of

kernels under the high-dimensional setting.
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Figure 1: Empirical testing power of different tests under different scenarios and sample sizes
with the continuous variant setting when p = 50.

3.2 Discrete variants

For the discrete variant setting, we generated genotypes based on 378 HAPMAP SNPs

located within the KEGG thyroid cancer pathway using the HAPGEN software (Marchini

et al. 2007). This pathway was detected as a significant pathway associated with birth

weight in our real data analysis given in Section 4. We simulated the quantitative trait for

n = 1000, 2000, under three scenarios E, F, and G. Under scenario E, we let the h(·) function

take the form of

h(x) = 0.2(x1 − x4) + cos(x4) exp(−x24/5)
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Figure 2: Empirical testing power of different tests under different scenarios and sample sizes
with the continuous variant setting when p = 100.

where the fourth SNP has a nonlinear effect on the response in addition to the main effects

of SNP 1 and 4 with different effect directions.

To mimic the situation where a large number of SNPs contributes to the trait variation,

we considered the following model,

h(x) = aM
∑
k∈SM

βkxk + aI
∑

(k,k′)∈SI

αkk′xkxk′ ,

where SM is a pre-defined set of 30 SNPs with main effects, SI consists of 60 SNP-pairs

representing 60 simple interactions. Both {βk, k ∈ SM} and {αkk′ , (k, k′) ∈ SI} were in-

dependently generated from Unif(0, 0.02), and were fixed once generated for all simula-
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tion replicates. We set the coefficients (aM , aI) = (0.01, 1.5) under scenario F, indicat-

ing the combination of weak main effects and relatively strong interaction effects. We let

(aM , aI) = (3.5, 0) under scenario G, which implies a pure main-effect model.

In addition to linear and polynomial kernels, we added the IBS kernel to the candidate

set, since it is commonly used to measure SNP similarity between two subjects in genetic

association studies. Similar to the previous section, the SimplyAv, Pertb and Max methods

were applied. Table 2 displays the type I error rates of different tests under different sample

sizes. We can see that all the tests maintained reasonable type I error rate except the

Pertb method which is a little conservative. Again, the reason might be due to the high

dimensionality of which the Pertb method cannot handle very well.

Table 2: Empirical type I error rates of different tests under the discrete variant setting.

n IBS Linear Poly SimplyAv Pertb Max

1000 0.052 0.050 0.047 0.050 0.037 0.054
2000 0.053 0.045 0.046 0.043 0.038 0.050

The power simulation results are shown in Table 3, where the best and second best

powers among all the tests are shown with the underline and bold font, respectively. Again,

we observed the power difference of applying different kernels. Among the different methods,

the perturbation method has the smallest power which might be due to the issue of high-

dimensionality. The maximum test always achieves the power as close as the best power

indicating the robustness of the testing procedure by taking the maximum among the three

individual ones. We also noticed the power improvement as the sample size increases.

In summary, the simulation results indicate that it is generally safe to apply the maximum

test strategy given a set of candidate kernels. The maximum test can control the type I

error reasonably well, while it also maintains relatively high power. Without knowing the

underlying truth, the maximum test procedure is safely recommended in practice under a
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Table 3: Empirical power of testing with single kernel and multiple kernels under the discrete
variants setting∗

n Scenario IBS Linear Poly SimplyAv Pertb Max

1000 E 0.526 0.457 0.429 0.480 0.388 0.488
F 0.397 0.412 0.475 0.428 0.383 0.452
G 0.390 0.423 0.444 0.422 0.356 0.431

2000 E 0.967 0.932 0.913 0.954 0.927 0.961
F 0.738 0.753 0.813 0.781 0.745 0.796
G 0.769 0.790 0.808 0.798 0.748 0.799

∗ The best power across all the tests is underlined, and the second best is shown as bold font.

high-dimensional setup.

4 Application to real data

We illustrated our methods via the analysis of a Thai baby birth weight data set to in-

vestigate significant pathways that are associated with birth weight. As part of Hyper-

glycemia and Adverse Pregnacy Outcome (HAPO) study, this data collect genotype and

phenotype information for 1209 Thai infants and their mothers. For more details about

the HAPO study, please refer to http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/

study.cgi?study_id=phs000096.v4.p1&phv=163690&phd=2831&pha=&pht=2446&phvf=&phdf=

&phaf=&phtf=&dssp=1&consent=&temp=1. We removed infants with large proportion of

missing SNPs (> 10%), and SNPs with minor allele frequency (MAF) less than 0.05 or

showing deviation from Hardy-Weinberg equilibrium (p-value< 0.001). The final data set

contains 970,342 SNPs in 1189 infants (580 males, 509 females). The pathways were defined

by Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto, 2000). SNPs

that are within 5kb up- and down-stream of a gene were firstly assigned to the corresponding

gene based on Human Genome Build v38, and then grouped into 186 pathways based on the

KEGG pathway information retrieved from the Molecular Signature Database (MSigDB)
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(Subramanian et al., 2005). The size of the pathways ranges from 167 to 9,912 (SNPs),

where > 86% of the pathways are of dimension higher than 500.

We tested the association of each pathway with birth weight, adapting gender (1=male,

2=female) and baby’s gestational age at delivery (in weeks) as two covariates. Since we had

little knowledge about the underlying true functional mechanism, we applied three different

kernels in the test, including IBS kernel, linear kernel and polynomial kernel (c = 1, d = 2).

We applied simple average kernel test, the perturbation method (Wu et al. 2010) and the

maximum statistic method. The false discovery rate was controlled using q-value significance

levels (0.05 and 0.1) (Storey and Tibshirani, 2003). Table 4 summarizes the significant KEGG

pathway index using different methods. The corresponding p-values and information of the

significant pathways are reported in Table 5.

Table 4: Significant KEGG pathway index using different methods.

q-level IBS Linear Poly SimAv Perturb Max

0.10 {36,44,101,169} {36,80,123,169} {36,48,80,169} {36,80,169} NA {36,44,80,101,169}
0.05 {101,169} {36,80,169} {36,169} {169} NA {36,101,169}

The result shows that the perturbation method (Wu et al. 2010) fails to detect any

signal, which is probably due to the over-conservative behavior under the high-dimensional

setting. Among the seven distinct pathways detected by the three kernels at q-level 0.1, the

maximum test was able to capture five of them, while individual kernel and simple average

kernel identified four and three of them, respectively. At q-level 0.05, the observations were

quite similar. One important observation is that the p-value of the maximum test is generally

close to the smallest p-value among the three kernels, which implies that the maximum test

tends to improve the power over the weak choice of kernels. Simply taking average did not

achieve the power as the maximum test did.
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Table 5: List of significant KEGG pathways and the p-values using the corresponding kernel
functions.

idx # of SNPs Name∗ IBS Linear Poly SimAv Max

169 485 KTC 1.93E-05 1.42E-07 1.32E-08 1.95E-07 1.32E-08
101 914 KP 1.71E-04 2.27E-02 2.38E-02 5.50E-03 2.84E-04
36 785 KGBCS 3.13E-03 8.14E-04 5.25E-04 9.76E-04 8.54E-04
80 914 KPSP 1.16E-02 1.06E-03 1.53E-03 2.20E-03 1.77E-03
44 1052 KAAM 1.38E-03 8.06E-02 8.28E-02 2.68E-02 2.32E-03
48 419 KGBLANS 3.55E-02 5.18E-03 3.19E-03 7.56E-03 5.41E-03
123 555 KNLRSP 1.32E-02 3.78E-03 7.43E-03 6.02E-03 5.99E-03

∗KTC: KEGG thyroid cancer; KP: KEGG peroxisome; KGBCS: KEGG glycosaminoglycan biosynthesis
chondroitin sulfate; KPSP: KEGG ppar signaling pathway; KAAM: KEGG arachidonic acid metabolism;
KGBLANS: KEGG glycosphingolipid biosynthesis lacto and neolacto series; KNLRSP: KEGG nod like
receptor signaling pathway.

5 Discussion

In this work, we developed testing procedures to test relationship between multiple variants

in a gene set and a quantitative trait, while adjusting for other covariates’ effects. We

considered a general setting where the variants work coordinately in a (non)linear way, and

the dimension of the variants p is high in the sense that p can go to infinity as sample size

n goes to infinity. We first proposed a test statistic based on a single kernel function, and

derived its asymptotic distribution under the null hypothesis. Based on this, we proposed

a practical and efficient testing strategy when multiple candidate kernels are available. We

demonstrated, via extensive simulation studies and real data analysis, that under a high-

dimensional setting the maximum method can reasonably control the false positive rate while

they can also improve the power over a set of weaker choices of kernels. In particular, the

maximum method performs as good as the optimal one for a given set of candidate kernels,

hence should be recommended in practice. Compared to the perturbation method (Wu et

al., 2013), the maximum method outperformed it uniformly in various simulation settings.

Our methods enjoy several advantages as described below. The first advantage lies on

the ability to accommodate high-dimensional variants and to maintain reasonable type I
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error rate, even if the utilized kernel functions do not reflect the underlying relationship

between the variants and the trait. Another advantage is the flexibility, which is revealed

in two aspects. On one hand, we consider a general model which can potentially capture

any complex interaction mechanism and is different from many models restricted to linear

relation and/or linear interactions. On the other hand, when there are a range of kernels that

can be selected to form the candidate set, the proposed maximum kernel testing strategy is

shown to maintain improved power over the poor choices of kernels in the set, without the

prior knowledge of the underlying genetic function.

Thirdly, our method is easy to implement and is free of computational burden, by ap-

plying the asymptotic result of the test statistic. This can greatly facility the applications

in pathway (or gene-set) association studies where the variants (SNPs or gene expression

profiles) are typically in high dimensions. The unique feature of our method under a high-

dimensional setup distinguishes itself from many existing ones. Given the typical norm of

high-dimensionality in gene set association studies, our method should be a good choice to

implement. Our method relies on the asymptotic results where the dimension p is relatively

large. Although large p is very typical in gene set association studies, in case of low dimen-

sion our method still performs well and can be an alternative to the perturbation method

by Wu et al. (2010).

In our proposed methods, we only consider continuous responses. Extension to a binary

response is natural and will be considered in our future investigation. Besides, our current

methods were developed without prior knowledge. However, the kernel function actually

allows for the inclusion of known information, such as the minor allele frequencies or asso-

ciation signals from an independent study. For example, weighted linear, quadratic, or IBS

kernels can be constructed by assigning weights to variables individually. Thus, extension

to weighted kernel is another direction that needs further investigation. With the next-

generation sequencing data, identifying rare variants under the kernel machine framework
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has been a standard means in rare variants detection (Wu et al. 2011). Our method can also

be applied to sequencing data under the KBT framework to improve power by integrating

multiple kernel functions. This will also be investigated in our future work.
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Appendix

Sketch Proof of Theorem 1: Under the null hypothesis, the leading order of the test

statistic can be written as the sum of U-statistics of different orders. The asymptotic distri-

bution can be then studied using U-Statistic theory (Lee, 1990). Under the local alternative,

the test statistics can be decomposed into two parts, where the first part corresponds to the

null distribution, and the leading order of second part converges to the location shift. See

detailed proof in (He et. al 2018).

Proof of Example 1: By the definition of centralized kernel in (3), we can obtain the

centralized linear kernel as K(x1, x2) = (x1 − µ)T (x2 − µ), where µ = (µ1, µ2, · · · , µp)T

is the mean of random vectors Xi, i = 1, · · · , n. Assuming the covariance matrix has

decomposition Σ = QTΛQ with Λ being the diagonal matrix. Let X̃i = Λ−1/2QT (Xi−µ),

where it is obvious to see E(X̃i) = 0 and Var(X̃i) = I, for i = 1, · · · , n. Noting that the
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centralized kernel can be written as

K(x1, x2) = X̃T
1 ΛX̃2 =

p∑
m=1

ΛmmX̃1mX̃2m.

We can obtain our claim by letting λm = Λmm and φm(x1) = X̃1m, m = 1, · · · , p.

Proof of Example 2: We first derive the closed form of the centralized kernel function for

the quadratic kernel K∗(x1, x2) = (xT1 x2 + 1)2. Decompose the kernel K∗ into the sum of

three parts

K∗(x1, x2) = (xT1 x2)
2 + 2xT1 x2 + 1. (A.1)

In the following we study each part separately, because the centralized function of the K∗ is

essentially the sum of individual centralized functions. For the constant 1, the corresponding

centralized version is 0. Since we have studied the centralized version of inner product xT1 x2

in Example 1, it remains to investigate the first term (xT1 x2)
2. It is easy to show that

E(xT1 X2)
2 = xT1 Rx1,

E(XT
1 X2)

2 = E{XT
1 RX1} = tr(RΣ0) + µTRµ,

where R = (Rij) = Σ0 +µµT is a constant matrix, and µ, Σ0 are the mean and covariance

matrix of Xi respectively. Thus the centralized version of (xT1 x2)
2 is

(xT1 x2)
2 − xT1 Rx1 − xT2 Rx2 + tr(RΣ0) + µTRµ

=

p∑
i,j=1

(x1ix1j −Rij)(x2ix2j −Rij)

=

p∑
i=1

(x21i −Rii)(x
2
2i −Rii) +

∑
i<j

(
√

2x1ix1j −
√

2Rij)(
√

2x2ix2j −
√

2Rij).

Combing the centralized expansions for the three terms in (A.1), we can rewrite

K(x1, x2) =

p∑
i=1

(x21i −Rii)(x
2
2i −Rii) +

∑
i<j

(
√

2x1ix1j −
√

2Rij)(
√

2x2ix2j −
√

2Rij)

+

p∑
i=1

(
√

2x1i −
√

2µi)(
√

2x2i −
√

2µi).
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Assuming random vector XB
i = (X2

i1, · · · , X2
ip,
√

2Xi1Xi2, · · · ,
√

2Xi(p−1)Xip,
√

2Xi1, · · · ,
√

2Xip)

follow some distribution with covariance matrix Σ = QTΛQ, then we can achieve our con-

clusion, i.e., πp = tr(Σ4
B)/tr2(Σ2

B), by performing the similar orthogonal transformations we

proposed in the proof of Example 1.

Proof of Example 3: For the IBS kernel taking the form of

K∗(x1, x2) =
1

2p

∑
m=1

(2− |x1m − x2m|),

it is defied based on the total number of alleles shared identical by state (IBS) by two subjects

at the SNPs within a SNP set. Noticing Xim ∈ {0, 1, 2}(1 ≤ i ≤ n, 1 ≤ m ≤ p), it is not

difficult to verify that K∗ has an alternative form of

K∗(x1, x2) =
1

2p

p∑
m=1

1

2
(x1m − 2)(x2m − 2) +

1

2
x1mx2m + 1{x1m=1}1{x2m=1},

hence the centralized kernel has the following expansion

K(x1, x2) =
1

2p

p∑
m=1

(x1m − 2qm)(x2m − 2qm) +
[
1{x1m=1} − θm

] [
1{x2m=1} − θm

]
,

where qm is the minor allele frequency of the mth SNP, and θm = P(xim = 1) = 2qm(1− qm).

Using the similar arguments as the proof of Example 1, we can obtain the result.

Proof of Theorem 2: Assume condition (5) is satisfied for each candidate kernel Km, then

Qm
d→ Zm, m = 1, · · · ,M.

By using Cramèr-Wold device, (Q1, · · · , QM)T
d→ Z where Z follows a standard multivariate

normal distribution. Then the first conclusion can be immediately obtained through the

continuous mapping theorem. Since by Theorem 1 the power of single kernel test Qm depends

on the location shift Ψm, we thus denote the m∗th kernel that has largest location shift Ψm∗

(i.e., m∗ = arg max1≤m≤M Ψm) as the optimal kernel in the candidate set. Let ZM
max,1−α be
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the critical value of the maximum test at level α, then the power of the maximum test is

P (Qmax ≥ ZM
max,1−α) = 1− P (Qmax < ZM

max,1−α) = 1− P (Q1 < ZM
max,1−α, ..., QM < ZM

max,1−α)

≥ 1− P (Qm < ZM
max,1−α) = P (Qm ≥ ZM

max,1−α)

= P (Qm −Ψm ≥ ZM
max,1−α −Ψm) = 1− Φ(ZM

max,1−α −Ψm).

Therefore, the power of Qmax ≥ max1≤m≤M 1−Φ(ZM
max,1−α−Ψm) = 1−Φ(ZM

max,1−α−Ψm∗) =

1− Φ(Z1−α −Ψm∗) + Φ(Z1−α −Ψm∗)− Φ(ZM
max,1−α −Ψm∗), where we can reach the second

conclusion because Φ(Z1−α −Ψm∗)− Φ(ZM
max,1−α −Ψm∗) = o(1) when Ψm∗ is large enough.
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