—

10

11
12
13
14
15
16
17
18
19
20

21

bioRxiv preprint doi: https://doi.org/10.1101/303875; this version posted August 18, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY-NC-ND 4.0 International license.

Determining protein structures using genetics

Jorn M. Schmiedel', Ben Lehner'®

! Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of

Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
2 Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain

® Institucié Catalana de Recerca i Estudis Avancats (ICREA), Pg. Lluis Companys 23, 08010

Barcelona, Spain

*email: ben.lehner@crg.eu

Summary

Determining the three dimensional structures of macromolecules is a major goal of biological
research because of the close relationship between structure and function. Structure
determination usually relies on physical techniques including x-ray crystallography, NMR
spectroscopy and cryo-electron microscopy. Here we present a method that allows the high-
resolution three-dimensional structure of a biological macromolecule to be determined only from
measurements of the activity of mutant variants of the molecule. This genetic approach to
structure determination relies on the quantification of genetic interactions (epistasis) between
mutations and the discrimination of direct from indirect interactions. This provides a new
experimental strategy for structure determination, with the potential to reveal functional and in

vivo structural conformations at low cost and high throughput.
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Introduction

Mutations within a protein or RNA can have non-independent effects on fitness . Indeed, the
effects of double mutants have long been used to probe the energetic couplings between
positions in a protein to understand determinants of protein folding and stability *°. Early work
revealed that at least some strongly interacting positions within a protein are in direct structural
contact >®. Deep mutagenesis of proteins *'> and RNAs '*'® has further confirmed this
conclusion that some — but by no means all — genetic (or epistatic) interactions occur between

structurally proximal mutations.

Further support for the idea that non-independence between mutations provides structural
information comes from the analysis of amino acid and nucleotide sequence evolution. Here,
correlated pairs of amino acids or nucleotides in multiple sequence alignments identify co-

17-19

evolving positions within proteins and RNAs These patterns of co-evolution have been

2021 Moreover,

used to identify energetically-coupled positions and ‘sectors’ within proteins
when very large numbers of homologous proteins and RNAs are avaiable in sequence
databases, the application of global statistical models has proven sufficient to discriminate direct

22-24

structural contacts from patterns of co-evolution , allowing the prediction of macromolecular

structures and interactions 2>,

Could epistatic interactions quantified from deep mutational scanning experiments be used to
determine macromolecular structures? If successful, structure determination by deep
mutagenesis would offer a number of advantages over established techniques. First, it requires
no specialized equipment or expertise beyond the ability to mutate a molecule, select functional
variants, and quantify enrichments by sequencing. Appropriate in vitro and in vivo selection
assays already exist for very many molecules of interest and generic assays based on folding,

stability, and physical interactions have also been developed %2>

. Second, it could be applied
to molecules whose structures are difficult to determine by physical techniques such as
intrinsically disordered and membrane proteins. Third, unlike evolutionary coupling analysis
there is no requirement for large numbers of homologous sequences and so it could be applied

to fast-evolving, recently-evolved and de novo designed proteins and RNAs 26323

. Finally, and
perhaps most importantly, it would provide a general strategy to determine the physiologically
relevant structures of molecules whilst they are performing particular functions that can be
selected for, including in vivo within cells. A cheap and straightforward approach for studying

macromolecular structures in vivo would be a very exciting new frontier for cell biology.
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Here we show that deep mutational scanning (DMS) of proteins can provide sufficient
information to determine their high-resolution three-dimensional structures. Our statistical
approach quantifies how often mutations between positions interact epistatically and how such
epistatic interaction patterns correlate. These metrics accurately identify individual tertiary
structure contacts as well as secondary structure elements within a protein. The same
approach also identifies contacts between protein interaction partners. DMS data alone
suffices to determine protein structures with accuracies down to 1.9A backbone root mean
square deviation (RMSD) compared to known reference structures. Moreover, we show that
deep learning can further improve prediction performance, allowing the use of much sparser
and lower quality DMS datasets for structure determination. This approach therefore provides a
new experimental strategy for structure determination that can reveal functional and in vivo

structural conformations at low cost and high throughput.
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Results

Epistasis is enriched in but not exclusive to structural contacts

To investigate how genetic — or epistatic — interactions between mutations in a protein relate to
structure we first used deep mutational scanning data for the immunoglobulin-binding protein G
B1 domain (GB1) generated by Olson, et al. ''. This dataset is the most complete double mutant
deep mutagenesis of a protein domain reported to date and was generated by replacing each of
55 residues of the wild-type domain with all 19 alternative amino acids both individually and as
double mutant pairwise combinations, resulting in a library of more than half a million variants
(55*19 = 1,045 single mutants plus nearly 55*54/2*19*19 = 536,085 double mutants). mRNA
display was used to combine an in vitfro immunoglobulin G binding assay with a sequencing
readout to determine protein fithess via changes in variant frequencies in the library before and
after binding (Extended Data Figure 1, steps 1-4); resulting in a two orders of magnitude
measurement range with a median relative error of fithess estimates of 2.8% (see Figure 2A,
Table 1 and Methods).

We first computed which double mutant variants show epistatic fitness effects, i.e. non-
independent fitness effects of the constituting single mutant variants (Figure 1B). Non-specific
dependencies between mutants might be introduced by non-linearities in the fitness assay,
systematic biases in error magnitudes as well as non-specific epistatic behavior, e.g. from
thermodynamic stability effects 9 We thus applied a non-parametric null model - the running
median of double mutant fitness values given the constituting single mutant fitness values - for
the independence of mutations. Equivalently, we calculated 5th and 95th percentile fitness
surfaces; and classified double mutants with fitness lower than the 5" percentile as negative
epistatic and double mutants with fitness higher than the 95™ percentile as positive epistatic. We
restricted the evaluation of positive or negative epistasis, however, to specific subsets of the
data, where measurement errors do not impede epistasis classification (Extended Data Figure
2C, see Methods), which results in about 80% and 55% of double mutants being suitable for
positive or negative epistasis classification, respectively, with a lot of variability across the

position matrix (Extended Data Figures 2D-F and Table 1).

Consistent with previous observations '°'?, both positive and negative epistatic double mutants
are enriched for proximal variants, for example, more than 2-fold at 8A distance (side-chain

heavy atom minimal distance, Figure 1C). However, about 75% of epistatic interactions are


https://doi.org/10.1101/303875
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/303875; this version posted August 18, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

99 Dbetween positions that are not in direct contact in the tertiary protein structure (as judged by an

100  8A distance cutoff), suggesting that indirect effects often underlie epistatic interactions within a

20,21

101 molecule . The challenge for structure determination therefore becomes how to infer direct

102  structural contacts from the mixture of direct and indirect effects that must underlie epistasis.

Figure 1
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104  Figure 1: Extracting epistatic mutational effects from deep mutational

105  scanning of a protein domain

106 A. Premise: If epistatic interactions relate to structural contacts then quantifying epistatic
107 interactions should suffice to predict a molecule’s structure. Structure: protein G B1
108 domain (PDB entry: 1pga) with residues a, b, and c colored.

109 B. Classifying epistatic variants based on deviations from expected fithess (based on
110 quantile fitness surface approach). Variants above the 95th or below the 5th percentile of
111 double mutant fitness given their single mutant fitness values were classified as positive
112 (red, €*) or negative (yellow, ™) epistatic, respectively. Shown is a random sample of
113 10* variants in GB1 domain "
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114 C. Distance distribution of epistatic variants separated by more than 5 amino acids in the
115 linear sequence. (side-chain heavy atom distance in reference structure). Positive and
116 negative epistasis subsets refer to the sets of variants applicable for epistasis analysis
117 (see Extended Data Figure 2C). All variants, n = 400647; positive epistatic variants €™, n
118 = 14127; positive epistasis subset, n = 315862; negative epistatic variants ¢~, n = 9837;
119 negative epistasis subset, n = 208442.

120

121

122 Aggregated epistatic interactions predict tertiary structure
123 contacts

124  To distill direct contacts from a list of thousands of epistatic double mutants we first aggregated
125  epistatic information on the amino acid position-pair level by calculating the fraction of positive

126  or negative epistatic double mutant variants per position pair (Figure 2A).

127 In the GB1 epistasis dataset even moderate enrichments for positive and negative epistatic
128  variants are mutually exclusive (Extended Data Figure 3A). Moreover, the strongest positive and
129  negative epistatic enrichments are separated in two clusters of proximal positions in the protein
130 that exhibit mostly either positive or negative interactions among themselves, but hardly any
131  epistatic interactions between clusters (Figures 2B,D and Extended Data Figure 3B), as also

132 noted before by Olson, et al. '

133  Consistent with epistatic interaction clusters forming a dense network of proximal positions, we
134  find that, of the top 55 epistatic pairs, 42% and 35% are direct contacts (connected by one edge
135  smaller than 8 Angstrom (A), 3.9 and 3.2-fold over expectation) and another 45% and 55%
136  share a common neighbor (connected via two edges < 8A), for positive and negative epistatic
137 interactions respectively, while interactions across more edges are depleted (Figure 2C;
138 throughout the manuscript we only consider position pairs spaced by more than 5 amino acids
139 in the linear sequence; closer positions are trivially also close in 3D space, and their proximity

140  contributes little to successful structure prediction 2®).

141 While aggregation of epistatic information between position pairs thus better discriminates
142  structural contacts than individual epistatic interactions, positive and negative epistatic
143  interactions still contain disparate structural information of the protein domain. We therefore

144  merged positive and negative epistatic information by computing the weighted averages of
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145  epistatic fractions per position pair given their uncertainty due to fitness measurement errors
146  and the finite number of observed double mutant variants via a resampling approach (Extended
147 Data Figure 1 and Methods). A final epistasis score per position pair was obtained by
148 normalizing these weighted averages by their uncertainty (a z-score), thus giving priority to

149  position pairs with high confidence enrichments.

150 The position pairs with highest epistasis scores are well distributed across the domain (Figures
151  2D,E), and the number of direct contacts (one edge < 8A) among the top 55 epistasis score
152  pairs increases to 60% (Figure 2D), thus showing that the epistasis score successfully
153 incorporates information from both positive and negative epistasis to discriminate direct
154  contacts. Moreover, direct contacts as a whole are enriched for high epistasis scores, while
155  further away position pairs show a gradual decrease of epistasis scores (Pearson correlation
156  coefficient R = -0.39, p < 10°®, Figure 2F).

157  Thus, although many interactions are indirect, physical contacts are an important determinant of
158 epistasis and aggregating information on position pairs and merging positive and negative
159  epistasis information better discriminates these direct structural contacts across the protein

160 domain.
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162  Figure 2: Aggregated epistasis scores enrich for direct structural contacts

163 A. Workflow for aggregating positive and negative epistatic interactions on the position-pair
164 level and merging them into a final epistasis score.

165 B. Top 28 position pairs (> 5 amino acids in linear sequence) each with highest positive
166 (red) and negative (yellow) epistatic fractions marked on the reference structure (PDB
167 entry 1pga).

168 C. Minimal number of edges (contact with distance < 8A in reference structure) connecting
169 position pairs. One edge — positions are direct contacts, two edges — positions have a
170 common contact and so forth.

171 D. Interaction score map for top 28 position pairs each with highest positive (red) and
172 negative (yellow) epistatic fractions (lower left triangle) and top 55 position pairs with
173 highest epistasis score (upper right triangle). Dot size indicates relative epistatic
174 enrichments or score; dot fill indicates distance below 8A. Underlying in grey is the
175 contact map of the reference structure (PDB entry 1pga, distance < 8A) and shown on
176 top its secondary structure elements (wave — alpha helix, arrow — beta strand).

177 E. Top 28 position pairs (> 5 amino acids in linear sequence) with highest epistasis scores
178 marked on the crystal structure (PDB entry 1pga).

179 F. Distance of position pairs as a function of epistasis scores. Boxplots are spaced in
180 distance intervals [0,8), [8,16), [16,24) and [24,32) A. Dashed horizontal line indicates
181 8A. Pearson correlation coefficient is indicated.

182

183  Tertiary structure neighborhood leads to correlated epistatic
184 patterns

185  If epistasis arises mainly from structural interactions, a position's epistatic interaction profile with
186  all other positions in the protein should provide a signature of its structural location (Figure 3A).
187  Comparing these signatures between positions should thus reveal structurally close positions -
188 similar to how correlated epistasis profiles in genetic interaction networks serve to identify

189  physical and functional interaction partners “°.
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190 To test the idea that pattern correlation should reveal structural proximity, we calculated the
191 correlations between the epistatic enrichment vectors for all position pairs (Figure 3B).
192  Consistently, pair-distances and similarity of epistasis patterns between positions are strongly
193  correlated (Pearson correlation coefficient = -0.43, p < 10° n = 1225, Figure 3D). Top
194  correlated pairs from positive or negative interaction patterns do, however, form mutually
195  exclusive clusters within the protein domain that are nearly identical to the clusters observed for
196  direct positive and negative interactions (Figure 3C and E, c.f. Figure 2B). Thus, while
197  correlations of epistatic interaction patterns are a good indicator of distance within the protein
198  structure, they suffer from the same issues as epistatic enrichments, namely poor discrimination

199  of direct and indirect interactions and disparate structural information.

200 We reasoned that partial correlations - the association between two positions after accounting
201 for the global correlation structure - might provide the possibility to eliminate the dependencies
202 observed in the epistasis pattern structure and thus help to distinguish direct from indirect
203  contacts; similar to how mean-field approaches can help discriminate direct from indirect
204  evolutionary couplings in multiple sequence alignments 24", We derived partial correlations
205 Dby inversion of the correlation matrices, merged values from positive and negative epistatic
206 patterns by their estimated uncertainty, and ranked these merged values by their z-scores,

207  which we refer to as association scores (Figure 3B and Methods).

208 In contrast to the correlation of epistasis patterns, partial correlation of epistasis patterns for
209 both positive and negative epistasis display no clustering but are well distributed across the
210 whole protein domain, consistent with partial correlations removing dependencies between
211 correlated pairs (Figure 3C). Moreover, the merged association scores are less well correlated
212 with pair-distance (Pearson correlation coefficient R = -0.26, p < 10°, n = 1225) and show a
213  more binary all-or-none response, with most distant position pairs having an association score
214  around 0 and only proximal pairs systematically deviating to higher values (Figure 3D).
215  Moreover, the top pairs involve many different individual positions and are well distributed
216  across the protein domain (Figure 3C and E). Thus, association scores are able to prioritize

217  direct over indirect structural contacts across the whole protein domain.

218

1N
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219 Combining epistasis and association scores better discriminates
220  structural contacts

221 We derived a combined score by summing the standardized epistasis and association scores,
222  to explore whether combining information from individual epistatic interactions and epistasis
223 interaction patterns can improve proximity estimates; thereby prioritizing position pairs that are

224  both enriched for direct epistatic interactions and have correlated epistasis patterns.

225  We evaluated the precision of the three interaction scores in predicting direct contacts in the
226  protein domain. For all pairs separated by more than 5 amino acids in the linear sequence, the
227  epistasis score has a roughly constant precision of around 60% across the first 2*L predicted
228 contacts (L being the mutated length of the protein i.e. 55 amino acids). The association score
229  has higher precision than the epistasis score up to the first L predicted contacts, with a precision
230 of 79% at L/2 top contacts. Finally, the combined score has similar precision to the association
231 score for the first L/2 contacts, but then remains at higher precision, with an improvement of
232  about 10-15% over the individual scores at more predicted contacts (73% at L contacts);
233  showing that combining information from epistatic interactions and interaction patterns further

234  improves the discrimination of direct structural contacts.

235  Together, the derivation of the interaction scores demonstrates that it is possible to discriminate
236  direct three-dimensional structural contacts from a mainly non-proximal set of epistatic

237  interactions within a protein domain.

11
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239  Figure 3: Tertiary structure neighborhood leads to correlated epistatic
240 patterns

241 A. Mutations in directly contacting residues should interact similarly with all other mutations
242 in the protein. Thus, the similarity of epistasis patterns of two positions with all other
243 positions in the protein should inform about their structural proximity.

244 B. Workflow for quantification of correlated epistasis patterns. Pairs of columns from
245 epistatic enrichment matrices (here columns 7 and 33) are compared and their Pearson
246 correlation coefficients are calculated, which constitute entries in the correlation matrix
247 (here entries 7:33 and 33:7, due to matrix symmetry). Correlation matrices are inverted
248 to yield the partial correlation matrices. Finally, entries of the positive and negative
249 partial correlation matrices are merged (weighted average by uncertainty) and z-
250 normalized to yield association scores (see Methods).

251 C. Top 28 position pairs (> 5 amino acids in linear sequence) marked on reference
252 structure. Left: Top pairs from positive (red) or negative (yellow) epistasis pattern
253 correlations. Middle: Top pairs after partial correlation transformation. Right: Top
254 association score pairs (merge positive and negative partial correlations).

255 D. Distance of position pairs as a function of merged correlation (left) or association scores.
256 Boxplots are spaced in intervals of 8A. Dashed horizontal line indicates 8A. Pearson
257 correlation coefficient is indicated.

258 E. Interaction score map for top 55 position pairs with highest merge correlation (positive
259 and negative correlations merged, lower left triangle, orange) and association scores
260 (upper right triangle, green). Dot size indicates relative correlations or scores; dot fill
261 indicates distance below 8A. Underlying in grey is the contact map of the reference
262 structure (PDB entry 1pga, distance < 8A) and shown on top its secondary structure
263 elements (wave — alpha helix, arrow — beta strand).

264 F. Precision of interaction scores to predict direct contacts (distance < 8A in crystal
265 structure 1pga) as a function of top scoring position pairs. Only position pairs with linear
266 chain distance greater than 5 amino acids are considered (n = 1225 pairs, n = 131 direct
267 contacts in reference structure). Horizontal dashed line indicates random expectation.

13


https://doi.org/10.1101/303875
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/303875; this version posted August 18, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

268 Periodic epistatic patterns reveal secondary structure
269 arrangements

270  We investigated whether the periodic geometrical arrangement of amino acid residues in
271  secondary structures results in periodic epistasis patterns 2. Within an alpha helix with 3.6
272  residues per helical turn, a helical position would be predicted to interact epistatically with the
273  third or fourth-over position along the linear amino acid chain (Figure 4A). Equivalently, within a

274  beta strand, positions should interact epistatically with the next-but-one position.

275 We used a two-dimensional kernel smoothing approach to estimate the positions of alpha
276  helices and beta strands from the deep mutational scanning data (Figure 4B). Here, the
277  propensity of a position to belong to an alpha helix or a beta strand depends on whether it
278  shows the expected periodicity in its interaction with neighboring positions, as well as whether
279  neighboring positions display similar propensities for the same secondary structure element,
280 and how strong these interactions are compared to those found in randomized data sets (see
281  Methods).

282  We found that, while secondary structure element predictions derived from direct interaction-
283 based epistasis scores are somewhat inaccurate and underpowered, predictions derived from
284  correlation-based association scores (as well as combined scores) coincide very well with
285  secondary structure elements in the reference structure (Figure 4C and Extended Data Figure
286  4C), with precision and recall values of about 90% (Extended Data Figure 4D). This suggests
287  that the correlated profiles of epistatic interactions are informative about side chain orientations

288 and also that eliminating transitive interactions is important for (secondary) structure prediction.

289  We further used two-dimensional kernel smoothing to detect parallel and anti-parallel beta sheet
290 interactions, by applying beta strand kernels to off-diagonal entries on the interaction score
291  matrices (Extended Data Figure 4A, see Methods). Several stretches of position pairs show the
292  expected alternating interaction profiles for either parallel or anti-parallel beta sheets (Extended
293 Data Figure 4B), with the top predictions corresponding to the known beta-sheet interactions in
294  the reference structure (Figure 4D). Furthermore, updating beta strand predictions according to
295 inferred beta sheet pairings can further improved beta strand prediction itself, notably
296 introducing a correct split of beta strand 1 and 2 and adjusting the length of beta strands 3 and 4
297  (Figure 4C,D).
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298 Together this shows that epistatic interaction data contains information on the periodic
299  secondary structure of a protein domain and, vice versa, that secondary structure strongly
300 influences genetic interactions.
Figure 4
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302 Figure 4: Secondary and tertiary structure prediction from deep mutational

303 scanning data

304 A. Local interactions reveal signatures of secondary structure elements. Middle line is
305 diagonal of interaction score map (rotated by 45 degree) and shows secondary structure
306 elements of reference structure (PDB entry 1pga). Data above diagonal shows
307 combined score data close to the diagonal, i.e. local interactions. Below the diagonal,
308 the same data are smoothed with a Gaussian kernel along the direction of the diagonal
309 (i.e. horizontally, length of Gaussian kernel as for kernels in panel b) to reveal
310 periodicities in local interactions.

311 B. Two-dimensional kernels for alpha helix and beta strand detection. Kernel has a
312 sinusoidal or alternating profile in the off-diagonal direction to detect alpha helices and
313 beta strands propensities, respectively and a Gaussian profile along the diagonal, to
314 average over propensities of adjacent positions.

315 C. Secondary structure propensity derived from kernel smoothing (orange — beta strand,
316 green — alpha helix). P-values were derived by comparison to randomized datasets (see
317 Methods). Dashed line indicates p = 0.05.

318 D. All structural predictions derived from combined score data. Lower left: Top 55 non-local
319 (>5 aa in linear sequence) position pairs, i.e. tertiary contacts (circles); fill indicates
320 correct prediction at 8A, size of circles indicates relative score. Upper right: Predicted
321 secondary structure elements (triangle — alpha helix, square — beta strand, diamond —
322 beta sheet interaction). Fill indicates correct prediction. Note that beta strand predictions
323 are derived by intersection of beta strand propensity (as shown in panel C) and results
324 from beta sheet prediction (Extended Data Figure 4B, see Methods). Underlying in grey
325 is the contact map of the reference structure (PDB entry 1pga, distance < 8A) and
326 shown on top are its secondary structure elements (wave — alpha helix, arrow — beta
327 strand).

328 E. Accuracy (Ca root-mean-square deviation) of top 5% structural models generated from
329 deep mutational scanning data derived restraints compared to GB1 reference structure.
330 Structural models were generated in XPLOR-NIH by simulated annealing with restraints
331 derived from top 55 top scoring position pairs, secondary structure element prediction
332 and beta sheet pairing predictions from the indicated interaction scores. No contacts —
333 negative control with restraints only for secondary structure (predicted by PSIPRED)*.
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334 True contacts — positive control with 55 contacts (random subset), secondary structure
335 elements and beta sheet interactions restraints derived from reference structure.

336 F. Overlay of top structural model generated with restraints from combined score (blue) and
337 crystal structure (gold, PDB entry 1pga). Shown is backbone ribbon and secondary
338 structure cartoon generated in PyMOL *.

339

340 Protein structure determination by deep mutagenesis

341 Together, these findings show that deep mutagenesis data contain substantial information about
342  a protein’s secondary and tertiary structure. We therefore tested whether the data would suffice
343  to determine ab initio the structure of protein G domain B1. We performed structural simulations

4 with structural restraints

344 by simulated annealing using the XPLOR-NIH modeling suite
345 derived from the deep mutational scanning data (see Methods). In particular, we defined
346  distance restraints (distance < 8A between CPB atoms) for the top scoring position pairs; we
347  found that using the top L (L = 55) contacts gave best results (Extended Data Figure 4F).
348  Furthermore, we defined dihedral angle restraints for predicted secondary structure elements.
349  Finally, we defined restrictive distance restraints (distance smaller than 2.1A for N-H : C=0 atom

350  pairs) for beta sheet positions that form hydrogen bonds with each other.

351  We evaluated the top 5% of structural models (25/500, evaluation based on XPLOR internal
352  energy terms) generated against the known crystal structure of protein G domain B1 (PDB entry
353  1pga) (Figures 4E and Extended Data Figure 4F). Models predicted from combined score data
354  performed best, with an average Ca-root mean squared deviation of the top models ((Ca —
355 RMSD)) of 1.9A and an average template modeling score of 0.71, which is very close to the
356  optimum achievable with our simulation protocol (using contacts, secondary structure elements
357 and beta sheet interactions from the reference structure, (Ca — RMSD) = 1.4A and TM score =
358 0.8); and the top evaluated combined score structural model has a Ca — RMSD of only 1.5A
359  (Figure 4F). Consistent with somewhat lower precision of contact and secondary structure
360 predictions, models generated with restrains from epistasis or association scores have on
361 average a lower accuracy ((Ca — RMSD) = 3.4A and (Ca — RMSD) = 2.6A, respectively), with

362  association score models performing consistently better (Figures 4E and Extended Data 4F).

363  Together, this shows that deep mutation scanning alone is sufficient to accurately determine the

364  structure of a protein domain.
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365 Contact prediction in additional protein domains

366  To test the generality of our approach, we analyzed two additional, incomplete deep mutational
367  scanning datasets. First, a mutational scan of the 75 amino acid Pab1 RRM2 domain (Figure
368 5A), for which fitness was assessed in a complementation assay '°. Second, a mutational scan
369  of the hYAP65 WW domain (Figure 5C), in which 33 out of 50 amino acids were mutated and
370 fitness was assayed by binding to a polyproline peptide ligand in a phage display assay 6. Both
371 datasets were created by ‘doped’ oligonucleotide synthesis and thus consist primarily of amino
372  acid changes elicited by just one nucleotide change, which results in only 10% of possible
373 double mutants being present. Additionally, their selection assays have smaller measurement
374  ranges than that of the GB1 domain, which results in higher relative errors of fitness estimates
375 as well as in negative epistasis being quantifiable for a smaller fraction of double mutants, as
376 low as 0.8% in the case of the WW domain (Extended Data Figure 5A, see Table 1 for

377  comparison of dataset properties).

378  For the RRM domain, three 25 amino acid segments were mutated separately and we restricted
379  our analysis to the central one, as it is the only segment that exhibits a reasonable nhumber of
380 intra-segment contacts in the reference structure (Figure 5A). We find that predicted tertiary
381 contacts fall on or very close to known contacts in the region of the anti-parallel beta sheet and
382 the intervening loop region (Figure 5B), with a precision of 57% for the top L/2 and 50% for the
383  top L position pairs of the combined score (3-fold and 2.7-fold over expectation, respectively).
384  Predicted beta strand propensities peak at the correct positions, albeit with low statistical
385  significance; additionally, an alpha helical propensity is detected in the intervening loop region.
386  Nonetheless, the correct anti-parallel beta sheet conformation at the correct position pairs is
387  predicted.

388 For the WW domain, we find that top predicted tertiary contacts fall on or very close to known
389 interactions between the beta strands and the N-terminal and C-terminal loop regions (Figure
390 5D), with a precision of 59% for the top L/2 and 38% for the top L position pairs of the combined
391  score (3.9-fold and 2.5-fold over expectation, respectively). Secondary structure elements are
392 not well predicted, but beta sheet interactions are predicted in the right anti-parallel
393  conformation of f1 — 2 — B3, though the exact pairing between positions is off by one to two
394  positions. We determined the three dimensional structure of the secondary structure-rich central
395  part of the domain (positions 6 to 29, 24 amino acids), using restraints derived from top

396 combined score pairs and PSIPRED-predicted secondary structure elements (see Methods).
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397 The top 5% of structural models have an average accuracy of 3.3A (Ca — RMSD) compared to
398 the reference structure, which is on par with simulations using a set of ‘true’ contacts ((Ca —
399 RMSD) = 3.6A) (Extended Data Figure 5C). Moreover, the structural model with the best
400 XPLOR-NIH energy has an accuracy of 2.4A Ca — RMSD (or 2.0A over 22 of the 24 residues)
401 (Figure 5C). Despite similar precision of predicted contacts, association and combined score-
402  derived WW domain structural models are more accurate than epistasis score-derived models
403 (Extended Data Figure 5C).

404  Together these results strongly support the generality of our approach for extracting structural

405 information from deep mutagenesis data, including from sparser and lower quality data.
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407 Figure 5 — Predicting structural contacts in two additional proteins and a

408 protein-protein interaction

409 A. Pab1 RRM2 domain structure (PDB entry 1cvj) with 25/75 positions analyzed here
410 highlighted in blue. Top 12 combined score position pairs are connected with red lines,
411 solid if distance < 8A, dashed otherwise.

412 B. Structural predictions derived from combined scores in RRM domain. Upper plot shows
413 secondary structure propensities from kernel smoothing (p = 0.05 indicated as dashed
414 line). Just below are shown the secondary structure elements in the reference structure.
415 Map shows top 12 combined score position pairs in lower left and secondary structure
416 predictions in upper right triangle. Shape indicates type of prediction, fill indicates correct
417 prediction. Underlying is the contact map of the reference structure (grey if < 8A).

418 C. Overlay of top structural model of hYAP65 WW domain (positions 6-29) generated with
419 restraints from combined score (blue) and solution NMR structure (gold, PDB entry
420 1k9q).

421 D. Structural predictions derived from combined scores in WW domain. Upper plot shows
422 secondary structure propensities from kernel smoothing (p = 0.05 indicated as dashed
423 line). Just below are shown the secondary structure elements in the reference structure.
424 Map shows top 17 combined score position pairs in lower left and secondary structure
425 predictions in upper right triangle. Shape indicates type of prediction, fill indicates correct
426 prediction. Underlying is the contact map of the reference structure. Black diamonds
427 indicate positions of beta sheet pairing in reference structure. Crystal structure of the
428 leucine zipper domains of FOS and JUN with a DNA strand (PDB entry 1fos). The
429 mutated regions (32 amino acids each) are highlighted in light blue (FOS) and dark blue
430 (JUN). Top 10 epistasis score pairs are shown with red dashes.

431 E. Distance of position pairs as a function of interaction scores. Boxplots are spaced in
432 distance intervals of 8A. Dashed horizontal line indicates 8A. Pearson correlation
433 coefficient is indicated.

434 F. FOS-JUN trans interaction score map for top 32 position pairs with highest epistasis
435 scores. Note that protein-protein interaction maps are not symmetric. Dot size indicates
436 relative score; dot fill indicates distance below 8A; underlying in grey is the contact map
437 of the reference structure (PDB entry 1fos, distance < 8A). Shown on top and to the right
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438 of the contact map are the known alpha helices and secondary structure propensities
439 derived from association scores of FOS and JUN, respectively (black — known alpha
440 helix; green — predicted alpha helix propensity, orange - predicted beta strand
441 propensity; see Extended Data Figures 5F,G).

442 Contact prediction in a protein-protein interaction

443  Genetic interactions do not only occur between mutations within individual proteins but also
444  between molecules that physically interact 2 We investigated a deep mutational scanning
445  dataset of the coiled-coil interaction between the proteins encoded by the proto-oncogenes FOS
446  and JUN (Figure 5E) °. In this experiment, all possible single amino acid changes were made in
447  each of 32 positions of each protein and the physical interaction of all single and (trans-)double
448 mutants was quantified using a deep sequencing-based protein complementation assay. After
449 filtering, the dataset contains 43% of all possible double mutants and has a median relative

450  error of fitness measurements of 3.6% (Table 1).

451 When assessing the enrichment of epistatic interactions between positions in the two interaction
452  partners we find a striking all-or-none relationship between epistasis scores and pair-distances
453  (Figure 5F), with all distant pairs contained in a low epistasis score peak and only proximal
454  interactions enriched for high epistasis scores (Pearson correlation coefficient R = 0.01, n =
455 1024). Indeed, the top 11 epistasis score pairs are all proximal interactions, and the precision of
456  contact prediction is 75% for the top L/2 contacts and 66% for the top L contacts (12-fold and
457  10.5-fold over expectation). Moreover, top epistasis score pairs are evenly distributed across

458 the interaction surface (Figures 5E and 5G).

459  When correlating epistatic patterns between columns of the epistatic enrichment matrices, one
460 is comparing the epistatic interactions that two positions in FOS have with all positions in JUN.
461  Therefore, the similarity of column-wise epistatic patterns reveals the cis relationships between
462  positions in FOS (Extended Data Figure 5F). Similarly, correlating epistasis patterns across
463 combinations of rows of the epistatic enrichment matrices reveals cis relationships between
464  positions in JUN. We find that cis-interaction maps from association scores for both FOS and
465 JUN are highly enriched for strong local interactions with an alpha helical periodicity; and
466  applying our secondary structure prediction algorithms to the cis-interaction maps reveals strong
467  alpha helix propensities across the full lengths of both FOS and JUN (Figures 5G and Extended
468  Data Figure 5G).
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469 This shows that deep mutagenesis of protein interaction partners can accurately predict direct
470  contact across the interaction surface as well as the underlying structures of the interaction

471 partners themselves.

472

473 Deep learning improves contact prediction

474  Evolutionary coupling-based structural predictions have been successfully improved by machine
475 learning approaches that transform the two-dimensional interaction score maps after learning
476  the stereotypical patterns between evolutionary coupling-predicted contact maps and the actual

477  contact maps of the known structures *"%.

478 We tested whether such an approach can also improve deep mutagenesis-derived contact
479  predictions. We applied a convolutional neural network approach called DeepContact,
480 developed by Liu, et al. *’. The basic DeepContact architecture takes as a sole input a two-
481 dimensional interaction score map that it then transforms based on the structural patterns it has
482  previously learned on evolutionary coupling-derived contact predictions for representative
483 families of the SCOPe database “° (Figure 6A and Methods). When transforming evolutionary
484  coupling-derived contact predictions of proteins not contained in the training set, this basic
485 DeepContact architecture has been shown to improve contact prediction precision by about 10-
486 20% *.

487  We first transformed the GB1 domain combined score interaction map with the DeepContact
488 network (Figure 6B). These transformations take as sole input our deep mutational scanning-
489 derived predictions and include no evolutionary coupling or otherwise-derived structural
490 predictors for GB1. The scores on the transformed map are much less noisy, with high scores
491 exclusively focused in areas of known contacts, especially those of secondary structure element
492 interactions, and areas devoid of contacts showing homogenously low scores. Moreover, the
493 transformed scores are highly correlated with pair-distances in the reference structure (Pearson
494  correlation coefficient R = -0.68, p < 10, n = 1225, Extended Data Figure 6A). The precision of
495  top predicted contacts improves from 82% to 96% for L/2 and from 73% to 87% for L predicted
496 contacts (Figure 6F). Epistasis score-derived predictions improve by about 5%, while
497  association score-derived predictions improve by 29% at L predicted contacts. In contrast,
498 randomized interaction score maps show no changes in prediction performance over random

499  expectation after transformation with DeepContact.
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Interaction score maps for the other datasets show similar improvements to GB1 both in terms
of cleaner interaction score maps that resemble the reference contact maps as well as

increases in contact prediction precision of up to 30% (Figure 6 C-F).

This shows that machine learning can substantially improve contact map prediction from deep

mutational scanning data, allowing the use of sparser and lower quality data for accurate

prediction.
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508 Figure 6: Deep learning improves contact prediction from deep
509 mutagenesis data

510 A. DeepContact convolutional neural network transforms DMS-derived interaction score
511 maps based on learned structural patterns *’. The particular DeepContact architecture
512 used here takes as only input the DMS-derived interaction score map and transforms it
513 based on structural patterns previously learned on an orthogonal and independent
514 training set (in which it compared evolutionary coupling-derived contact predictions with
515 contacts in known structures of representative protein families in the SCOPe database).
516 B. GB1 domain combined score interaction map before (left panel) and after (right panel)
517 transformation with DeepContact convolutional neural network. Heat maps show scores
518 (normalized to have similar range). Grey open circles show contacts (side-chain heavy
519 atom distance < 8A) in reference structure.

520 C. WW domain combined score interaction map before (left) and after (right) DeepContact
521 transformation. Note that the maps shown here lack the 5 c-terminal positions (see
522 Extended Data Figure 6B for full map).

523 D. RRM domain combined score interaction map before (left) and after (right) DeepContact
524 transformation.

525 E. FOS-JUN trans-interaction epistasis score interaction map before (left) and after (right)
526 DeepContact transformation.

527 F. Precision of top L predicted contacts of different interaction scores before and after
528 DeepContact transformation for the four datasets. Color indicates dataset, shape
529 indicates interaction score. Permutated control score is average over three random
530 permutations of combined score matrices (in case of FOS-JUN epistasis score
531 matrices). Dashed diagonal line indicates no changes in precision, dotted diagonal line
532 shows precision improvement of 20% after DeepContact learning.

533

534
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535 Minimal data quality requirements for successful protein structure
536 prediction

537  We further investigated how robust our prediction strategy is to changes in data quality by
538 artificially down-sampling the GB1 domain dataset, thus assessing the minimal requirements for

539  deep mutational scanning datasets to be useful for structure prediction.

540  First, we considered the sequencing read coverage. The GB1 domain dataset consists of about

541 600 million sequencing reads "

. We find that artificially down-sampling the sequencing read
542  coverage of the dataset to 25% or 10% hardly affects the precision of predicted tertiary contacts
543  (Figures 7A). Only when using just 2.5% of sequencing reads (15 million) does the precision of

544  top L contacts drop below 50%.

545 Next, we simulated a ‘doped’ dataset, by only considering amino acid mutations that can be
546  reached by one mutation in the nucleotide sequence - thus reducing the coverage of double
547  mutants to ~10% (similar to RRM and WW domain datasets). The doped dataset with full
548 sequencing read coverage exhibits a drop in precision of predicted tertiary contacts of about
549  20%. Moreover, the doped dataset shows an increased sensitivity to lower sequencing read

550 coverage.

551  We also tested the effect of reducing the signal-to-noise ratio (i.e. the measurement range of
552  selection assay relative to the median error of fitness estimates), which results in non-
553 quantifiably of negative epistasis (Extended Data Figures 2D-F and 5A). We thus tested how
554  our prediction strategy performs on the GB1 domain dataset when only positive epistasis
555 information is available; and find that it results in a drop of precision of about 20%, comparable
556  to that observed for a doped dataset. In contrast, only using negative epistasis information
557 resulted in a drop to ~35% precision, as low as a doped dataset with 10% sequencing

558 coverage.

559  We evaluated secondary structure prediction performance of the various down-sampled GB1
560 domain datasets. Beta strand and alpha helix predictions are hardly affected by lowered data
561 quality or partial epistasis information (Extended Data Figure 7A). In contrast, precision and
562 recall of beta sheet positional pairing is strongly affected by dataset quality, although often the

563  correct overall conformation of beta sheets is still recovered (Extended Data Figure 7B).

564 We next tested whether DeepContact could also improve prediction performance on these

565 down-sampled datasets. Similar to interaction scores derived from full datasets, DeepContact
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transformation of combined scores derived from down-sampled GB1 datasets improves the
precision of predicted contacts by about 10-25% even for quite low quality datasets, i.e. the
complete datasets with at least 10% read coverage, doped datasets with at least 25% read

coverage or the dataset with only positive epistasis information (Figure 7A).

Finally, we evaluated how differences in prediction performance of tertiary contacts affect
structural modeling. We find that changes in accuracy of the top structural models roughly scale
with changes in contact prediction performance (Figure 7B). Down-sampling of sequencing
reads in the complete dataset from 100% to 2.5% leads to a drop in accuracy from 2.5A to 4A
(Ca — RMSD), which is roughly also the accuracy of top structural models from the doped
dataset and the dataset using only positive epistasis information. Accuracies for lower quality
datasets range from 5A to 9A (Ca — RMSD). DeepContact increases the accuracy of the top
structural models by up to 2.6A. For the complete datasets with only 25% or 10% of sequencing
reads, the top structural models have better accuracy than those from the complete dataset with
full sequencing read coverage but untransformed scores. Also, structural models based on
DeepContact transformed scores from the doped dataset with full or 25% sequencing coverage
and those from the dataset using only positive epistasis information reach average accuracies
of 3.2A (Ca — RMSD). Only for the two datasets with 2.5% sequencing read coverage do

structural simulations based on DeepContact transformed scores not improve model accuracy.

Together these findings show that contact and structure prediction from deep mutational
scanning data can also work for lower quality datasets and that the use of deep learning allows

the use of much sparser and lower quality datasets.

Figure 7

GB1 domain downsampling
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589 Figure 7: Deep learning allows contact and structure prediction from
500 sparser and lower quality datasets

591 A. Precision of top L combined score position pairs for different down-sampled versions of
592 GB1 dataset. Color indicates type of dataset (blue — full dataset, purple — ‘doped’
593 dataset, red — only positive epistasis information, yellow — only negative epistasis
594 information), fill indicates number of sequencing reads used in analysis, shape indicates
595 whether DeepContact has been used to transform the interaction score matrix.

596 B. Accuracy (Ca — RMSD) of top 5% structural models derived with tertiary contact
597 restraints from down-sampled GB1 datasets compared to reference structure. Note that
598 for better comparability, for these structural simulations only distance restraints were
599 derived from combined scores but the same secondary structure restraints predicted
600 from PSIPRED and no beta sheet pairing restraints were used for all simulations. Colors
601 and fills as in panel A.
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602 DIScussion

603  We have shown here that simply quantifying the activity of a large number of single and double
604  mutant variants of a macromolecule can provide enough information to determine its high-

605 resolution 3D structure.

606 We found that although most epistasis within a protein occurs between positions that are not
607  direct structural contacts, aggregation on position pairs, merging of positive and negative
608 epistasis information and partial correlation analysis of epistasis patterns can successfully
609 discriminate direct from indirect structural contacts. Thus, mostly indirect epistatic couplings can
610 be transformed to predict accurate structural contacts and elements. We have shown that this
611 approach works robustly across multiple protein domains and a protein interaction. Moreover,
612  we have demonstrated that the application of a convolutional neural network previously trained
613  on patterns of co-evolution in proteins of known structure both improves structure prediction and

614  allows the use of much lower quality deep mutation datasets.

615  Determining structures by mutagenesis requires an in vitro or in vivo selection assay. For many
616  important molecules and drug targets, specific selection assays based on known functions or
617  interaction partners already exist '"'*"°4¢50%°  Additionally, many generic selection assays have
618 recently been developed that should allow the stability or functional activity of many proteins to
619 be assayed in vivo without the need for much prior knowledge about the protein under
620 investigation %538 Moreover, many molecules have known interaction partners — proteins, DNA,
621 RNA, or small ligands — for which cis- and frans-epistasis can thus be assessed by binding
622 assays >*°. We have shown here how trans-epistasis, for which library design is relatively easy,
623 can lead to information about direct contacts in interaction surfaces as well as in the individual

624 molecules.

625  Although structural information exists in the epistasis maps, our analyses and previous work >'°
626 has shown that many epistatic interactions occur between positions that are not in direct
627  structural contact. Indeed, in the GB1 domain the interactions are strikingly modular, with two
628 mutually exclusive clusters of positive and negative epistatic interactions. This is consistent with
629  many interactions being due to functional or energetic couplings between positions. The cluster
630 of mostly positive epistatic interactions corresponds to a dynamic region involved in IgG binding
631 "' In contrast, the cluster of negative epistatic interactions identifies positions important for the

56

632 thermodynamic stability of the domain °°, and the periodicity of local negative epistatic
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633 interactions provide evidence for a shift towards an alternative three-helical conformation that
634 has been previously reported for this sequence family (Extended Data Figure 4E) °’. This
635 modular organization of epistasis is thus reminiscent of the concept of energetically-coupled

636  protein sectors identified from patterns of sequence co-evolution 2%,

637  For macromolecules with very large numbers of homologs available in sequence databases,
638 correlated changes in sequence can provide sufficient information for structure determination 25
639 **. However, for many proteins and RNAs insufficient numbers of homologs are available, and
640 for fast evolving, recently-evolved or de novo designed molecules this is a fundamental
641 limitation 2°*2*"%_ Moreover, co-evolutionary analysis provides information on the average
642  structure across a large set of homologs, whereas it is easy to envisage how deep mutagenesis
643  could be used to directly determine alternative conformations of macromolecules when they are
644  performing particular selectable functions. The success of evolutionary coupling analysis for
645  predicting the structures of diverse folds and macromolecules does, however, strongly support
646  the generality of the approach outlined here. The demonstration that a deep learning approach
647  previously trained on evolutionary couplings dramatically improves the prediction of contacts

648 from deep mutagenesis data further supports this.

649 As a proof-of-principle we have shown that information from deep mutational scanning
650 experiments alone is sufficient for accurate structure prediction. In practice, however, integration
651  with other structural information is likely to further boost performance. As a first step, we used a
652 deep learning approach, DeepContact, that was trained on evolutionary couplings to learn

*_ DeepContact improved DMS-derived

653  stereotypical structural patterns in contact maps
654  contact prediction precision by up to 30% for individual proteins (GB1, WW and RRM domains).
655 Moreover, even though it had only been trained on data from individual proteins, it also

656 improved DMS-derived contact predictions for the FOS-JUN protein-protein interaction.

47,59,60 61,62 i

657 Integration with other structural predictors and homology-driven structure modeling S
658 likely to further improve accuracy and lower the data quality requirements for structure

659 determination by deep mutagenesis.

660 An analysis of incomplete and down-sampled variants of the GB1 dataset suggests that a high
661  signal-to-noise ratio (measurement range relative to experimental error of fithess estimates),
662  which allows both positive and negative epistasis to be quantified, is an important factor for
663  generating datasets with a quality sufficient for protein structure prediction. For datasets with

664 complete epistasis information, however, sequencing coverage hardly affected prediction
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665 performance. In contrast, prediction performance on the incomplete, ‘doped’ dataset was
666  sensitive to sequencing coverage. Down to 25% sequencing coverage, however, performance
667 could be recovered by deep learning. Together, these analyses suggest that our approach
668 should be easily applicable to longer molecules. For example, with the experimental effort
669 undertaken to create and sequence the 55 amino acid GB1 library, a protein of length ~350
670 amino acids should be assayable at similar prediction performance (using a doped library with
671 25% sequencing coverage, i.e. 2.5% of the data: 55aa/v0.025 ~ 350aa). Such libraries for

52

672 longer proteins could be created via fragment-based ligation approaches or via random

673  mutagenesis and barcode-variant linking *.

674  Taken together, the results presented here establish deep mutagenesis as a new experimental
675  strategy for structure determination. The approach that we have outlined is not the only one
676 that can be envisaged to predict direct structural contacts from deep mutagenesis data, and
677  other related approaches are also likely to work ®. The determination of macromolecular
678  structures by physical techniques requires access to very expensive scientific infrastructure. In
679 contrast, deep mutagenesis only requires techniques familiar to many molecular biologists and
680 access to sequencing that is increasingly low cost and available to all. Most importantly,
681  however, deep mutagenesis allows the structures of macromolecules to be studied whilst they
682 are performing particular functions in vitro as well as in vivo in the cell. As such, deep
683  mutagenesis opens up the possibility of low cost and high throughput determination of in vivo
684  macromolecular structures by many molecular biology and genomics labs. A large-scale project
685 to systematically determine the structures of proteins and protein domains should therefore be

686  possible using the existing infrastructure of genomics institutes.

687
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688 Table 1: Dataset properties
Dataset Mutated % double | % doubles # input reads | measurement | relative
positions mutants® quantifiable# per double range error
positive negative mutant (log fitness (median)&
epistasis | epistasis | (median) units)”
Protein G | 55 97 80 55 248 5.8 2.8%
B1
domain
hYAP 33 10 8.3 0.8 73 0.8 8.6%
Ww
domain
Pab1 25 11 8.3 3.9 209 3.1 3.7%
RRM2
domain
FOS-JUN | 2x 32 43 37 31 124 8.6 3.6%
689 ® median percentage of all possible double mutants (361 per position pair) that passed read quality thresholds per
690  position pair
691 * median percentage of all possible double mutants (361 per position pair) that passed read quality thresholds and
692  are deemed suitable for epistasis quantification per position pair
693 " summed number of reads across all input replicates for double mutants that passed read quality thresholds
694 ¥ measurement range of selection assay: log fitness range between peak of lethal mutants and the wild-type variant
695 & median error of fitness estimates of double mutant variants relative to measurement range of selection assay
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90 Methods:

910 Datasets and preprocessing

911  Protein G B1 domain

912 Protein G B1 domain (GB1) deep mutational scanning data was obtained from the
913  supplementary information of Olson, et al. ''. The data consists of summed read counts of three

914  replicate experiments assaying the binding affinity of GB1 variants to immunoglobulin G (IgG).

915 Read frequencies of each single or double mutant variant in input library and output library (after
916  binding affinity assay) were calculated as variant read counts relative to wild-type variant read
917  counts. A variant’s fithess was calculated as the natural logarithm of the ratio of output to input

Qut out
918 read frequency, i.e. f; = log(m), with n as read counts, superscripts denoting input or

in, in
n; /nwt

919  output sequencing library and subscripts denoting variant i or wild-type variant.

920 The standard error of fithess estimates was calculated from read counts under Poissonian

921  assumptions, i.e. o; = \/n%" + ﬁ + nolut % We note that this is a lower bound estimate of
i i

i wt wt

922  the actual error, due to the lack of replicate information.

923 Each measurement assay has a lower measurement limit due to unspecific background effects
924  (Extended Data Figure 2A). In the case of the IgG-binding assay for GB1, this is presumably

1"

925 mainly due to unspecific carry-over on beads ''. The fithess values derived from the

926 measurement are therefore a convolution of the actual binding affinities to IgG and nonspecific
927  carryover, i.e. exp(fineasuredy = exp(fibi”ding)+exp(fca”y°”"). Fitness values of variants
928 close to the lower measurement limit of the assay are therefore dominated by unspecific
929  carryover effects. The lower measurement limit of the assay was estimated by two approaches
930 that yielded identical estimates. One, from a kernel density estimate of the single mutant fitness
931 distribution (R function density with parameter bw set to 0.15), where the position of the lower
932 mode of the data corresponded to f¢#7Yover = —_585 (~0.3% on linear scale). Two, from
933 examining the fitness distribution of double mutants with expected fitness lower than -8 log-
934  units, i.e. double mutants resulting from two lethal or nearly lethal single mutant variants, whose
935 fitness values are thus expected to be dominated by background effects. The median of this

936  background fitness distribution yielded an estimate of f<*"7Yov¢" = —585.
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937 7% of double mutant variants were discarded due to too low sequencing coverage in input or
938  output libraries (Extended Data Figure 2B). That is, variants that had less than 200 input reads
939 and no output reads were discarded, because it is not possible to determine their fitness. Above
940 200 input reads, variants without output reads are certain to be dominated by nonspecific
941 carryover effects. These variants were retained and their fitness was calculated by setting their

942  output read count to 0.5.

943  GB1 down-sampling

944  Down-sampling of the full GB1 dataset was performed in three different ways.

945  For the ‘doped’ datasets, we only allowed amino acid changes created by one nucleotide
946  mutation from the wild-type sequence (ENA entry M12825). To down-sample the sequencing
947 read coverage, for each variant we picked as a down-sampled read count the draw of
948  successes from a binomial distribution with the number of sequencing reads in the full datasets
949  as trials and the target down-sampling rate (25%, 10% or 2.5%) as chance of success. For the
950 read down-sampled and doped datasets (and combinations of both), the analysis workflow for

951 the full dataset was repeated.

952  For the down-sampled datasets taking only positive or negative epistatic information into
953  account, we calculated epistasis and association scores from epistatic enrichment matrices and
954  partial correlation matrices of only positive or negative epistasis information. Instead of merging
955  positive and negative matrices and then calculating z-scores, we only calculated z-scores with
956  the individual errors from positive or negative epistasis information. The combined scores (for
957  which results are reported) for each set was then calculated as for the full dataset by summing

958 standardized epistasis and association scores.

959 hYAP WW domain
960 hYAP WW domain data was obtained from Sequence Read Archive (SRA) entry SRP015751 “°.

961 Paired-end reads were merged with USearch ® and merged reads with any base having a
962 Phred base quality score below 20 were discarded. Read counts from the two technical
963 sequencing replicates were merged and read counts for the same amino acid variants with at
964  most one synonymous mutation in another codon were summed up. The dataset consists of an
965 input library and three output libraries after consecutive rounds of selection in a phage display
966  assay. Fitness was estimated as the slope of log frequency (variant counts divided by wild-type

967  counts) changes over the rounds of selection experiment “. For each variant at each selection
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968 step a Poissonian error of og;, = /nix"' n% was calculated, with x denoting the selection step.
i wt

969  Slopes were calculated as weighted straight line least square fits ®. Comparison of library-wide
970 changes in variant frequencies between selection rounds suggested differential selection
971 pressures across the rounds. We thus applied a non-equidistant spacing of 0.6, 1.17 and 1.22
972  between selection rounds when calculating slopes. Only variants that have more than 10 reads
973 inthe input library and at least one read after the first selection were retained for further analysis
974  (45% of constructed double mutants). The lower fitness limit was calculated as the weighted

975 mean fitness of all variants containing STOP codons (-0.78 in log-fitness units).

976 Pab1 RRM2 domain
977 Pab1 RRM2 domain data was obtained from the Supplementary Table 5 of Melamed, et a

.10,
978 Reported enrichment scores were log-transformed to obtain fitness values. Output reads per
979  variant were deduced from the number of input reads times the enrichment score and used to
980 calculate a Poissonian error of the fitness estimate. Single mutant count data is not provided
981 and we thus estimated the error of single mutant fitness estimates to be 0.01. Lower bound of
982 fitness assay was estimated as weighted mean fitness of all double mutant variants containing

983  STOP codons (-3.1 log-fithess units).

984 FOS-JUN interaction

985 Raw count tables were provided by Guillaume Diss °. The dataset consists of input and output
986  sequencing libraries after selection for physical interaction between the two proteins in a protein
987 complementation assay in three biological replicates. Per sequencing library, read counts from
988  all synonymous variants were summed up. Only variants that had more than 10 reads in each of
989 the three input libraries were used for further analysis (43% of double mutants). Per input/output
990 replicate, fitness of each variant was calculated as the log change in frequency compared to the
991  wild-type variant (as for GB1). A Poissonian error for each variant’s fithess estimate was
992  derived.

993 The dataset has a large dynamic range, thus many low-fithess variants with low input read
994  coverage have very low or no output read counts (per replicate ~1/3 of variants have below 3
995  output counts, ~15% of variants have zero output counts), effectively reducing the dynamic
996 range of the assay for low input variants and distorting the estimate of the overall fitness
997  distribution (see Extended Data Figure 5E). To overcome this, we implemented a Bayesian

998 estimator of fithess. For each double mutant variant, we first identified the 1000 nearest
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999 neighbors in single mutant fitness space (i.e. those double mutants whose respective single
1000 mutant fitness values are similar to the single mutant fitness values of the variant under
1001  consideration) with sufficient input coverage (more than 100 reads in the input library). From this
1002 set of 1000 nearest neighbors we calculated the expected distribution of double mutant fitness
1003  values, which served as a prior distribution. For the variant under consideration we calculated
1004 the likelihood distribution of fithess values given its input and output read counts under
1005 Poissonian assumptions. Fitness was then estimated as the mean of the distribution resulting
1006 from the multiplication of prior and likelihood distributions. Error of fitness estimate was
1007 estimated as the standard deviation of the resulting distribution. Estimated fitness from the three

1008 replicate experiments were merged by weighted averaging.

1009

1010 Epistasis classification

1011 Epistasis was calculated from a non-parametric null model (Figure 1B) in order to account for
1012 nonlinearities close to the lower limit of the fitness assay measurement range, non-specific
1013  epistatic behavior resulting from e.g. thermodynamic stability thresholds as well as differential
1014  uncertainty of fithess measurements across the fithess landscape, due to lower read counts in

1015 the output for low fitness variants.

1016  First, double mutant fitness values were corrected by subtracting the average local fitness
1017  computed using a two-dimensional local polynomial regression (using R function /oess with
1018 span = 0.2). This was necessary to avoid boundary effects of quantile-based fits in boundary
1019  regions with non-zero slopes. 5th and 95th percentile surfaces were then fit to these corrected
1020 double mutant fitness values, by computing for each double mutant variant the 5th and 95th
1021  percentile of the fitness distribution made up of the 1% closest neighbors in single mutant
1022 fitness space. Double mutant variants with fithess values below the 5th or above the 95th

1023  percentile were categorized as negative or positive epistatic, respectively (Figure 1B).

1024  The evaluation of positive or negative epistasis was, however, restricted to specific subsets of
1025 the data where measurement errors do not impede epistasis classification (Extended Data
1026  Figure 2C). The data subset deemed suitable for positive epistasis classification is limited to

1027  regions where

1028 e the 95th percentile fithess surface is below wild-type fitness
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1029 e at least one single mutant fitness value is significantly smaller than wild-type fitness at
1030 two standard errors

1031 e the expected fitness (sum of both single mutant fithess values) is not significantly higher
1032 than wild-type at two standard errors

1033  The rationale for these criteria is to avoid double mutants from two neutral single mutants,
1034  because these are dominated by measurement noise of overabundant wild-type like variants.
1035 No restrictions were instead applied to the lower limits of the measurement range, because
1036  otherwise nol/little epistasis quantification would have been available for several positions with
1037  very strong detrimental effects as well as because strong positive epistatic effects are observed

1038 in these regions, despite the dominance of background measurement effects.

1039 The data subset in which variants were potentially classified as negative epistatic is limited to

1040 data regions where

1041 e the 5th percentile fitness surface is above the 95th percentile of the background effect
1042 distribution; this value is derived from the 95th percentile of double mutant fithess values
1043 with expected fithess below -8 (analogous to lower fitness limit estimation, see above).
1044 e both single mutant fitness values are significantly higher than the lower limit of the
1045 fithess assay measurement range at two standard errors

1046 e the expected fitness (sum of both single mutant fithess values) is not significantly higher
1047 than wild-type at two standard errors

1048 The rationale for criteria 1 and 2 is to avoid background measurement effects that make

1049 negative epistasis quantification unreliable.

1050 As a result of these restrictions as well as differences in initial coverage, the number of double
1051 mutant variants that can be used to assess positive and negative epistasis varies substantially

1052  across position pairs and datasets (see Table 1, Extended Data Figures 2D-F and 5A&D).

1053

1054 Epistatic interactions (epistasis scores)

1055  We derived several interaction scores to estimate which position pairs are in close contact in the
1056 tertiary structure (see Figures 2A and 3A,B and Extended Data Figure 1). These scores are

1057 based on summarizing epistasis information on the position pair-level and accounting for the
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1058 uncertainty inherent in the summarized estimates due to differential error of fithess estimates
1059 across the measurement range as well as varying numbers of double mutants amenable to
1060 epistasis classification (see Table 1, Extended Data Figures 2D-F and 5A&D).

1061 To summarize epistasis information on the position pair-level, we calculated the fraction of
1062  positive or negative epistatic variants per position pair. The fraction of positive epistatic variants
1063  per position pair is the number of positive epistatic variants divided by the number of all variants
1064 that lie in the double mutant space amenable to positive epistasis classification (Extended Data
1065 Figure 1, step 5b, equivalent calculation for negative epistasis fraction). Because enrichments
1066  with positive and negative epistatic variants per position are anti-correlated (Extended Data
1067  Figure 3A), we treated both separately and only aggregated them to derive the final interaction

1068 scores.

1069 To estimate the uncertainty in epistatic fractions per position pair for downstream analyses we
1070 implemented a re-sampling approach (Extended Data Figure 1, step 5, described here for
1071 positive epistatic variants, but equivalent for negative epistatic variants). In each of 10.000 re-

1072  sampling runs:

1073 e each variant’s fithess was drawn from a normal distribution with the measured fitness as
1074 mean and the uncertainty due to sequencing coverage as standard deviation fij“m’”ed =
1075 N(fi,-,\/aizj +sf o} +sfxa?), with s, as the local slope of the median fitness
1076 landscape in direction of the respective single mutant (step 5a)

1077 e positive epistasis of variants was re-classified given the drawn fitness values (also step
1078 5a)

1079 e each position pair’s fraction of positive epistatic variants was drawn from the posterior
1080 probability distribution of how likely an underlying true fraction of epistatic variants E,, is
1081 to generate the observed fraction of epistatic variants given the finite number of overall
1082 variants, i.e. ey, ~p(E¥, | # ey, # variants,,) (step 5b). The posterior probability
1083 distribution is the product of a prior probability distribution — the kernel density estimate
1084 of the expected epistatic fractions across all position pairs (calculated using R function
1085 density with parameter bw set to 0.05) — and the likelihood function for the underlying
1086 true fraction of epistatic variants given the observed fraction of epistatic variants and the
1087 overall number of variants under binomial sampling assumptions

1088 To derive an interaction score from the epistatic fractions per position pair, mean positive and

1089 negative epistatic fractions across resampling runs were combined by weighted averaging, with
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1090 weights as the inverse variances of epistatic fractions across resampling runs, i.e. (ey,) =

+ -2, _ -2
(exy) * Uejc-y +exy) * Oexy

1091

2., _ -2
o +0
ety exy

1092 To arrive at the final epistasis score, the mean epistatic fractions were further normalized by

-1/2
1093  their combined uncertainty, E,, = (exy)/axy, with g, = (Ue;y_z + Ue;y_z) (step 6).

1094

10905 Epistasis pattern correlations (association scores)

1096 In addition to the epistasis score we derived an interaction score from the partial correlation of
1097  epistasis patterns between position pairs, termed association score. The rationale behind this
1098 score is that proximal positions in the protein should have similar distances and geometrical
1099 arrangements towards all other positions in the protein and should therefore also have similar

1100 patterns of epistatic interactions with all other positions.

1101 In each re-sampling run we constructed a symmetric matrix of the drawn positive epistatic
1102  fractions ey, with number of rows and columns as the number of mutated positions (Extended
1103 Data Figure 1, step 5c, equivalent for negative epistatic fractions). Missing values (positions
1104  pairs without observed variants) were imputed by drawing a random value from the overall
1105  distribution of epistatic fractions. A pseudo count equal to the first quartile of the epistatic
1106 fraction distribution was added to each epistatic fraction. Diagonal elements (epistatic fractions
1107  of a position with itself) were set to 1. The matrix values were transformed by the natural
1108 logarithm (to make distributions more symmetric, thus correlations are not dominated by few
1109  position pairs with large epistatic fractions) and for each pair of columns the Pearson correlation

1110  coefficient was calculated to arrive at the correlation matrix (step 5d).

1111 A shrinkage approach was used to improve the estimate of the correlation matrix ®7 In brief, the
1112  empirical correlation matrix is shrunk towards the identity matrix in order to minimize the mean-
1113  squared error between estimated and true correlation matrix. Additionally, this yields a positive
1114  definite and well-conditioned correlation matrix, suitable for inversion. All computations on
1115  correlation matrices, shrinkage and matrix inversion were performed with the R package

1116 corpcor, functions cor.shrink and pcor.shrink °’.

1117  Partial correlations of epistatic patterns between each position pair were calculated by inverting

1118  the shrunk correlation matrix and normalizing each off-diagonal entry of the inverted matrix by
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1120  (x,y)-entry of the inverted correlation matrix (Extended Data Figure 1, step 5d). Equivalent to the

1119  the geometric mean of the two respective diagonal entries, i.e. aj;y = , with rx‘yl as the

1121 epistasis score, positive and negative partial correlation estimates were merged by calculating
1122  weighted averages of their mean estimates across re-sampling runs, with weights as the inverse

+ -2, = _ -2
(axy)* o-a;c-y +(axy)*aaxy

1123  variances across resampling runs, i.e. (a,) = , and the final association

—2 _ 2
o +0
aty axy

1124  score normalized by the combined uncertainty, Axy=(a"y)/o—xy, with ny=(0a;y_2+

-1/2
125  g,72)  (step6).

1126

1127 Aggregating epistasis and association scores (combined scores)

1128  We further derived a combined score by summing the standardized epistasis and association

Exy_(E) + Axy_(A)

OE g4

1129  scores, i.e. Cyy = . We note that this is a naive approach to combining the

1130 information from these two complementary sources, and surely more sophisticated approaches

1131 that further improve proximity estimates can be developed.

1132

1133 Secondary structure prediction

1134  We used a two-dimensional kernel smoothing approach to predict secondary structure elements
1135  from interaction score matrices (Figure 4A-C). For a given position along the linear chain (on the
1136  diagonal of the interaction score matrix), interaction scores (off the diagonal) are integrated with
1137  distance-specific weighting according to the kernel, which reflects the known geometry of

1138  secondary structures.

1139 The alpha kernel takes on a sinusoidal profile perpendicular to the diagonal to weight
1140 interactions according to whether the position pair considered should have congruent side-chain

1141  orientations (see diagonal and perpendicular profiles in Figure 4B). The kernel was defined as

dZ
1142 ko(d,p) = (cos(p*2Z) +1/5) xe™e, with d = |2x—i—j| as the diagonal distance of the

1143 interaction jj (off the diagonal) to the reference position x (on the diagonal) and p = |i — j| as the

1144  perpendicular distance of the interaction off the diagonal. The kernel weight for positions with p
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1145 > 5 was set to 0, thus only including interactions across little more than the first helical turn.
1146  Finally, ¢ = 4 is the integration scale for the Gaussian kernel along the diagonal. While smaller
1147  integration scales do yield nosier results and longer integration scales can lead to non-detection
1148  of shorter secondary structure stretches, we found that in practice our whole approach
1149  (including the actual detection algorithm described below) is robust to alterations of the

1150 integration length.

1151  The kernel smoothed alpha value for a given position x on the diagonal is then calculated as the

1152 sum over all interaction scores times their kernel weights K, , = ;¥ ; k,(d, p) * S;;, where S;; is

1153  one of the interaction scores (epistasis, association or combined score) at position pair ij.

1154  The beta kernel takes an alternating profile perpendicular to the diagonal to weight interactions
1155  according to alternating side-chain orientations in a beta strand and was defined as kz(d,p) =

d2
1156 ((p + 1) mod 2 — 1/3) x e ¢z, with ¢ = 4. Only interactions with perpendicular distances equal

1157  or smaller than two (i.e. kz(d,p > 3) = 0) were included.

1158 To calculate whether kernel-weighted interaction scores of a specific position are larger than
1159  expected, they were compared to kernel-weighted scores obtained from 10* randomized control
1160  datasets. Randomization was performed by shuffling all interaction scores, while preserving
1161 matrix symmetry, and kernel-weighted interaction scores from randomized control datasets
1162  were calculated for each position independently to control for possible boundary effects in
1163  positions close to the borders of the protein chain. A p-value for each position was calculated as

1164 the fraction of random controls with kernel smoothed values above that of the real data.

1165  Secondary structure elements were identified by searching for continuous stretches of positions
1166  with high propensities to belong to either alpha helices or beta strands. The following workflow

1167  was implemented:

1168 1. calculate a combined p-value for seeds of length 3 by combining position-wise p-values
1169 using Fisher’'s method for both alpha and beta kernel smoothed interaction scores

1170 2. separate positions according to whether combined p-values of seeds from alpha or beta

1171 kernels are more significant, i.e.

1172 2.1. for alpha helical propensity calculations only consider stretches of at least 5 consecutive
1173 positions for which the combined p-value of seeds for alpha kernel smoothing is smaller
1174 than that from beta kernel smoothing (thus setting the lower size limit of alpha helical
1175 elements to five)
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1176 2.2. for beta strand propensity calculations only consider stretches of at least 3 consecutive
1177 positions for which the combined p-value of seeds for beta kernel smoothing is smaller
1178 than that from alpha kernel smoothing (thus setting the lower size limit of beta strands
1179 to three)

1180 For alpha helices and beta strands separately and while combined p-values of seeds < 0.05

1181 3. select the most significant seed

1182 4. test whether extension to any side yields lower combined p-value

1183 4.1. if yes: extend seed in this direction and repeat step 4

1184 4.2. else: repeat step 4 once to see whether further extension in same direction yields lower
1185 combined p-value

1186 4.2.1. if yes: extend and repeat step 4

1187 4.2.2. else: proceed to step 5

1188 5. fix as secondary structure element and delete all ‘used’ p-values (and combined seed p-
1189 values), such that other elements cannot incorporate them

1190 6. check whether other already fixed elements are adjacent or at most one position away

1191 6.1. if yes: merge both elements

1192 7. repeat steps 3-6 until no more seeds with combined p-value < 0.05 are left

1193 This yields a list of predicted locations of secondary structure elements. We note that the
1194  secondary structure elements predicted from deep mutational scanning data could be compared
1195 to and combined with predictions derived from other tools, such as PSIPRED (Jones, 1999), to
1196  further improve reliability.

1197  To detect beta sheet interactions a modified beta strand kernel was used. In contrast to beta
1198  strand detection, the beta sheet interaction kernel is centered on each off-diagonal position. For
1199 beta sheet kernels diagonal and perpendicular distances are therefore modified as d =
1200 |x+y—i—j| and p=|x—i— (y—j)l|. The kernels to detect parallel and anti-parallel beta
1201  sheets differ in which is their ‘diagonal’ direction, i.e. the direction at which consecutive position
1202  pairs interact in the beta sheet (Extended Data Figure 4A). Therefore, parameters d and p were
1203 swapped for the anti-parallel beta sheet kernel. Also, because these positions can be deemed
1204  the most crucial for deciding whether a position participates in a beta sheet interaction or not,
1205  we up-weighted these positions (those with p = 0) in the kernel by a factor of two, i.e. Kz(d,0) =

d2

1206  4/3 xe .
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1207 Beta sheet interactions were identified by searching for the most significant stretches of parallel
1208 and anti-parallel interactions (similar to workflow for alpha helices and beta strands), then
1209 identifying the set of most significant interactions that is consistent with previously predicted

1210  secondary structure elements.

1211 In particular, step 1 & 3-7 from the above-described workflow were performed for the parallel
1212  beta sheet kernel on each sub-diagonal (parallel to the main diagonal) of the interaction score
1213  matrix separately; and for the anti-parallel beta sheet kernel on each perpendicular diagonal of

1214  the interaction score matrix separately.

1215  The steps were modified as follows:

1216 e for anti-parallel beta sheet interactions, only positions with a distance greater than 1 from
1217 the main diagonal were used to calculate seed p-values (assuming anti-parallel beta
1218 sheet interactions need a turn of at least length two to be connected)

1219 e for parallel beta sheet interactions, only sub-diagonals with a distance greater than 4
1220 from the main diagonal were considered (assuming parallel beta sheet interactions of
1221 two adjacent beta strands need a linker region)

1222  We extended the workflow with the following steps to predict beta sheet interactions within the

1223  protein domain:

1224 8. compute association of seeds with known beta strands (e.g. seed positions overlap strand 1
1225 on one side and coincide with strand 3 on the other side)

1226 9. while there are seeds with p < 0.05: pick most significant seed from either the parallel or
1227 anti-parallel sheet subset

1228  10. check consistency with secondary structure elements

1229 10.1. discard the seed and jump back to step 9 if

1230 10.1.1.it is overlapping or too close to an alpha helix or the linker region between two
1231 beta strands that interact (minimal distance smaller one)

1232 10.1.2. at least one of the two strands it is associated with already has two other beta
1233 sheet interactions or the total number of beta sheet interactions exceeds 2*(#beta
1234 strands — 1)

1235 10.2. modify secondary structure elements and start anew from step 3 if

1236 10.2.1. one side of the seed is not associated to a known beta strand: create this beta
1237 strand

1238 10.2.2. if both sides of the seed are associated with the same known strand: split the
1239 strand and create a linker region in-between the strands

48
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1240 10.3. else fix the beta sheet interaction and delete all other interactions that are
1241 associated with the same strands and haven’t been fixed yet, jump back to step 9

1242  11.if no more seeds with p<0.001, finish

1243  12. update beta strands: keep only those positions that are part of a beta sheet interaction

1244

1245  For beta sheet pairing detection in the GB1 domain (as reported in Figure 4D and Extended
1246  Data Figures 4A-C and 7B) we used as input the secondary structure element predictions
1247  derived from the deep mutational scanning data (as shown in Figure 4A-C and Extended Data
1248  Figure 4D). For the RRM and WW domains, we used as input PSIPRED predicted secondary
1249  structure elements, due to the insufficient signal from secondary structure element predictions

1250 from deep mutational scanning data.

1251

1252  Protein distance metrics

1253  The minimal side chain heavy atom distance, i.e. the minimal distance between any two side-
1254  chain heavy atoms of a position pair (in case of glycine, Ca), was used as the general distance
1255 measure. A direct contact was defined as minimal side-chain heavy atom distance < 8A. For all
1256  evaluations of predicted contact precision we only considered position pairs with non-trivial

1257  tertiary contacts (those with a linear sequence separation of greater than 5 positions).

1258 We do find that, while using all heavy atoms to calculate distances increase the true positive
1259 rates of predicted contacts by about 10%, side-chain heavy atom distances display much higher
1260 true positive rates over random expectation, thus suggesting that side-chain interactions are

1261 more informative for epistatic interactions (Extended Data Figure 7C).

1262  The Floyd-Warshall algorithm (implemented as custom script in R) was used to calculate the

1263  minimal number of edges <8A that connect any two positions in the protein.

1264  Reference structures used as comparison were

1265 e GB1 domain: PDB entry 1pga, X-ray diffraction structure

1266 e WW domain: PDB entry 1k9q, solution NMR structure

1267 e RRM domain: PDB entry 1cvj (chain A), X-ray diffraction structure of human Pab1 °;
1268 note that the central section of the yeast RRM domain analysed is one nucleotide longer
1269 than the corresponding homologous region in the human RRM domain. We thus

49
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1270 arbitrarily removed position 14 (in the loop region) when comparing the DMS-derived
1271 predictions to the human Pab1 structure.
1272 e FOS-JUN interaction: PDB entry 1fos (chains E and F), X-ray diffraction structure "’

1273  We found that precision or accuracy calculated against other reference structures differed only

1274  marginally, thus we have limited reporting to the aforementioned PDB entries.

1275

1276  Protein folding

1277  To ab initio determine protein structures, we performed simulated annealing using the XPLOR-
1278  NIH modeling suite ** with structural restraints derived from the deep mutational scanning data.
1279  Simulations were performed in three stages, in each of which 500 structural models were
1280 generated. Stages 1 and 2 served to identify inconsistencies among defined structural
1281  restraints. Additionally, in stage 2 an average structure of the best 10% of models was

1282  calculated. Stage 3 served to refine this average structure to obtain a final set of best models.

1283  Restraints from top predicted contacts (position pairs with highest interaction scores and linear
1284  chain separation greater than 5 positions) were implemented by setting CB-C3 atom distances
1285 (Ca in case of Glycine) between positions to range between 0 and 8A and weighting the
1286 restraints according to their relative interaction score (interaction score divided by mean

1287 interaction score of all predicted contacts used).

1288  Restrains from secondary structures elements were implemented as dihedral angle restraints.
1289 Dihedral angles of both beta strands and alpha helices were set to range between values
1290  commonly observed in crystal structures "2 for alpha helices ®, = —63.5° +4.5° and ¥, =
1291 —41.5° £ 5° and for beta strands ®; = —118° + 10.7° and ¥z = 134° + 8.6°.

1292 Restraints for beta sheet interactions were implemented by setting H-N:O=C hydrogen bond
1293  distances between interacting positions to range between 1.8 and 2.1A " with weight one.
1294  Predictions of beta sheet interactions derived from deep mutational scanning data yield a string
1295  of interacting positions, but hydrogen bonding in beta sheets occurs in specific non-continuous
1296 patterns between position pairs (between alternating positions off the interaction diagonal in
1297  parallel beta sheets and between every second set of position pairs in anti-parallel beta sheets).
1298  Specifically, for each set of interacting positions there are two alternative patterns of hydrogen
1299 bonding possible. These alternative possibilities of pairing were implemented as mutually

1300 exclusive selection pairs with the “assign ... or” syntax in Xplor-NIH.

AN


https://doi.org/10.1101/303875
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/303875; this version posted August 18, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

1301  Distance restraints were implemented in XPLOR-NIH as NOE (nuclear Overhausser effect)
1302 potential, with potential type set to “soft” for stages 1 and 2 and “hard” for the final simulation

1303  stage. Dihedral angle restraints were implemented via the CDIH potential.

1304  After simulation stages 1 and 2 restraints were checked for their consistency with predicted
1305  structural models. First, structural models were clustered according to their violations of
1306 distance and dihedral angle restraints (k-means clustering, k = 4). Clusters were ranked by the
1307 mean total energy (from all energy potentials used) of their 50 models with lowest total energy
1308  (or all of their structures if clusters are smaller 50 models). From the 50 models with the lowest
1309 total energy from the top-ranked cluster (or however many top-ranked clusters were necessary
1310 to arrive at 50 models) the fraction of models that violate specific restraints was recorded. For
1311 the subsequent simulation stage, distance restraints were down-weighted according to the
1312 fraction of models that violated them, w,; = w,;_; * (1 — f,)?, and distance restraints with a
1313  weight below 0.1 were discarded. There is no option to weight dihedral angle restraints, thus
1314  instead dihedral angle restraints with a ‘weight’ below 1/3 were discarded for the subsequent

1315  simulation stages.

1316  The top 5% structural models from simulation stage 3 were evaluated against the reference
1317  structure. The TM-score program (update 2016/03/23) was used to calculate the Ca root mean

1318  squared deviation and the template modeling score ”.

1319  Several types of control simulations were performed to judge the predictive power of restraints
1320 derived from deep mutational scanning data. As a negative control we performed simulations
1321 without restraints from predicted contacts and beta sheet interactions, but with restraints from
1322  secondary structure elements predicted by PSIPRED (version 3.3, **). As a positive control we
1323  performed simulations with restraints derived from the reference structure. Here, L true contacts
1324  of position pairs with linear chain distance greater than 5 amino acids were randomly sampled
1325 and beta sheet interactions were determined by PyMOL *. These simulations serve as a

1326  positive control and give the maximally achievable accuracy of our Xplor-NIH workflow.

1327  For the WW domain, simulations on the full mutated 33aa section gave mediocre results, both
1328 when using combined scores with PSIPRED predicted secondary structure (5.8A Calpha-
1329 RMSD), as well as when using perfect information from the reference structure (4.1A Calpha-
1330 RMSD). Upon inspection, this seemed to be an issue of the unstructured tail regions. We thus
1331  conducted structural simulations for a truncated version of the WW domain using only mutated

1332  positions 6-29 (the core region including the three beta strands).
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1333  For structural simulations of down-sampled GB1 datasets (and DeepContact transformed
1334  versions thereof) we used distance restraints derived from top predicted contacts and
1335  secondary structure restraints derived from PSIPRED predictions, but no restraints for beta
1336  sheet pairing. This was done to avoid skewed results due to false beta sheet pairing predictions
1337 in low quality datasets (Extended Data Figure 7B). For structural simulations from DeepContact-
1338 transformed predictions, we find that using more tertiary contacts results in better models. We
1339  conclude that this is because the deep learning algorithm focuses many strong predictions in
1340 few structural features (such as interactions of secondary structure elements), which are
1341  therefore the top contacts. Restraints in other regions of the protein are therefore only included
1342 if more predicted contacts are used for restraint calculations, therefore improving structural
1343  predictions. Because of this, when comparing structural simulations from scores derived before
1344  and after deep learning, we compare the top 5% of structural models derived with the top L
1345  predicted contacts from original scores with those derived with the top 1.5*L predicted contacts

1346  from DeepContact transformed scores.

1347

1348 DeepContact learning

1349  DeepContact software was obtained from GitHub (https://github.com/largelymfs/deepcontact) *’.

1350 We are grateful to Yang Liu and Jian Peng for also making - without any hesitation - their basic
1351  DeepContact network architecture available on their GitHub repository and helping us with the
1352 implementation. The DeepContact architecture used here only takes one 2D input of predicted
1353  contact scores and returns a 2D map of transformed scores (denoted as “DeepContact
1354  CCMPred only” in *" and described in the first paragraph of the result section therein). The
1355 DeepContact architecture employed came with a pre-trained network model that had been
1356 trained on solved structures of the 40% homology filtered ASTRAL SCOPe 2.06 database (see
1357  GitHub repository and Liu, et al. *’), which were filtered to avoid structure and sequence
1358  redundancy of the training data. Because CCMpred scores " are distributed in the range of 0 to
1359 1, we pre-normalized our deep mutational scanning derived interaction scores to this range
1360  (such that the minimum score on the interaction score matrix was 0 and the maximum score
1361  was 1) before providing them as an input to DeepContact. As negative control, we created for
1362 each dataset three random permutations of combined score matrices (while preserving matrix
1363 symmetry; in case of FOS-JUN dataset non-symmetric epistasis score matrices were
1364  permutated), which were transformed by the DeepContact algorithm. These control datasets

1365  show no increased precision of random expectation (Figure 6F).
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1366

1367 Code availability

1368 Data was analyzed with custom scripts written and executed in R programming language,
1369  version 3.4.3. Structural simulations were performed with Xplor-NIH modeling suite version

1370  2.46. Analysis scripts are available at https://github.com/lehner-lab/DMS2structure.

1371

1372 Data availability

1373  No primary data was generated in this study. Processed interaction scores for all datasets are
1374 included in Supplementary Table 1. All intermediate steps of data processing can be

1375  recapitulated with the scripts at https://github.com/lehner-lab/DMS2structure.
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1376 Extended Data Figures
Extended Data Figure 1
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1378  Extended Data Figure 1: Deep mutational sequencing data to contact
1379  prediction workflow

1380 Overview of workflow to predict interacting position pairs from deep mutational scanning
1381 datasets (see Methods and Results).
1382
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Extended Data Figure 2
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1384 Extended Data Figure 2: GB1 deep mutational scanning data processing

1385 A. Distribution of fitness values for single and double mutant variants. Lower peak in

1386 distributions indicates lower limit of fithess assay measurement range (see Methods).
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1387 B. Two-dimensional variant density showing dependency of fitness values on sequencing
1388 read counts in input library. For variants with very low coverage in the input library low
1389 fitness values cannot be accurately estimated. Red line shows sequence read cutoff
1390 used for variant inclusion (93% of variants included for downstream analysis). Horizontal
1391 dashed line indicates lower limit of fitness assay measurement range.

1392 C. Reliable quantification of positive and negative epistasis is limited to subsets of the data.
1393 Upper plot shows two-dimensional double mutant variant density in single mutant fitness
1394 space. Red outline shows single mutant fithess space that enables positive epistasis
1395 quantification. Yellow outline shows single mutant fitness space that enables negative
1396 epistasis quantification. Lower plot shows an example slice through fithess landscape at
1397 single mutant fitness = -1.5. Red, grey and yellow curves show slices through quantile
1398 fitness surfaces of 95" percentile, median and 5" percentile, respectively (see Figure
1399 1B). Diagonal dashed line shows double mutant fitness =
1400 single mutant 2 fitness - 1.5 (expected fitness = observed fithess). Horizontal dashed
1401 lines give lower limit of fitness assay measurement range and the 95" percentile of
1402 fitness values of variants dominated by background fitness effects. Red and yellow
1403 boxes indicate the range that includes 99% of variants within the slice that are suitable
1404 for positive or negative epistasis quantification, respectively.

1405 D. Distribution of number of double mutant variants across all position pair. Legend gives
1406 median number of double mutants per position pair for different data subsets.

1407 E. Relationship between median single mutant fithess at a position and the median number
1408 of double mutants observed in position pairs the position is involved in. Curves are loess
1409 smoothed. Across all variants, positions with stronger fitness effects show lower
1410 coverage of double mutants. Restrictions for quantification of positive epistasis
1411 additionally reduce coverage for positions with mostly neutral or positive effects. Finally,
1412 restrictions for quantification of negative epistasis strongly reduce coverage for positions
1413 with strong fitness effects, due to the lower measurement limit of the fitness assay.

1414 F. Number of double mutants for which positive (lower left triangle) or negative (upper right
1415 triangle) epistasis can be quantified per position pair plotted on the interaction matrix.
1416
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Extended Data Figure 3
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1418 Extended Data Figure 3: Positive and negative epistasis enrichments
1419  across position pairs

1420 A. Position pair-wise fractions of positive and negative epistatic variants. Black
1421 circles mark position pairs with highly significant fractions (either positive or
1422 negative, or both); red dots: positive epistatic fraction significantly larger than
1423 negative epistatic fraction; yellow dots: negative epistatic fraction significantly
1424 larger than positive epistatic fraction; blue dots: no significant differences.

1425 B. Hierarchical cluster analysis of epistatic fraction patterns. Positions are clustered
1426 according to the Euclidean distance of their mean epistatic fractions (weighted
1427 average of positive and negative epistatic fractions, weights are inverse
1428 variances of fractions in resampling runs) to all other positions. Note that
1429 directionality of interactions (positive or negative fractions more significant) was
1430 not used for clustering but only marked post-analysis. Clustering shows two
1431 highly interconnected clusters of positions that interact mostly positively or
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1432 negatively within each cluster but hardly any strong interactions are observed
1433 between the two clusters (with exception of positions 7 and 54).
1434
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Extended Data Figure 4
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1436  Extended Data Figure 4: Secondary and tertiary structure prediction for
1437 GB1 domain

1438 A. Detecting beta sheet pairing with two-dimensional kernel smoothing. Left plot shows raw
1439 combined score interaction matrix, with secondary structure element predictions (see
1440 Figure 4A,B) marked as squares along the diagonal (red — beta strand, green — alpha
1441 helix). Off-diagonal orange rectangles show potential regions of beta sheet pairing. Right
1442 plot: calculation of beta sheet pairing propensity with beta sheet kernels. Upper right
1443 triangle shows anti-parallel beta sheet propensity. Lower left shows parallel beta sheet
1444 propensity.

1445 B. Matrix of aggregated propensities of beta sheet pairing stretches (upper right — anti-
1446 parallel, lower left — parallel, p < 10°) and the predictions for beta sheet pairing and
1447 secondary structure elements derived from them. In brief, predictions are performed by
1448 picking the highest propensity stretch that is consistent with predicted beta strands, if
1449 necessary modifying beta strand predictions (e.g. introducing an initially not predicted
1450 split between beta strands 1 and 2), then disregarding all stretches that conflict with the
1451 picked top-stretch. This procedure is repeated until no more beta sheet stretches with
1452 propensity P < 10 are left. Finally, beta strand predictions are updated such that only
1453 positions involved in a beta sheet interaction are retained. Reference elements from
1454 crystal structure are shown as comparison (lower triangle — parallel beta sheets, upper
1455 triangle — anti-parallel beta sheet, diagonal —secondary structure elements).

1456 C. Secondary structure propensity derived from kernel smoothing (red — beta strand, green
1457 — alpha helix) for epistasis (upper) and association scores (lower). P-values were
1458 derived by comparison to randomized datasets (see Methods). Dashed line indicates p =
1459 0.05.

1460 D. Precision and recall for beta strand, alpha helix and beta sheet predictions from
1461 epistasis, association and combined scores (in comparison to crystal structure). Dashed
1462 lines for beta strand and alpha helical positions give random expectation. Random
1463 expectation for beta sheet pairing precision is below 1%.

1464 E. Secondary structure propensities derived from local positive or negative epistatic
1465 enrichments. The upper panel shows secondary structure propensity derived from
1466 positive epistatic interactions, which are in line with secondary structure elements in the
1467 GB1 crystal structure (PDB entry 1pga). The lower panel shows secondary structure
1468 propensity derived from negative epistatic interactions, which are devoid of beta strand
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signals and instead show a three-helical pattern, which is reminiscent of the three-helical

structure of the protein G A domain that binds albumin *'.

F. Template modeling score of top 5% structural models compared to crystal structure
1pga and the dependency on number of predicted contacts used. “No contacts” — only
restraints for secondary structure predicted by PSIPRED. “True contacts” — restraints
derived from 0.5-2*L contacts (linear sequence separation greater than 5 positions,
random subset), secondary structure elements and beta sheet interactions from crystal
structure. All other: restraints derived from top 0.5-2*L contacts, secondary structure
element and beta sheet interaction predictions from the three interaction scores, as

indicated by color.
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Extended Data Figure 5
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1481 Extended Data Figure 5: WW and RRM domain and FOS-JUN

1482 interaction dataset properties

1483 A. Number of double mutants for which positive (lower left triangle) or negative (upper right
1484 triangle) epistasis can be quantified per position pair plotted on the interaction matrix for
1485 WW (left) and RRM (right) domains.

1486 B. Precision of interaction scores to predict direct contacts (distance < 8A in reference
1487 structure) as a function of top scoring position pairs for WW and RRM domain interaction
1488 scores. Color denotes interaction scores, solid lines for WW domain, dashed lines for
1489 RRM domain. Grey horizontal lines give random expectation. Only position pairs with
1490 linear sequence separation greater than 5 amino acids are considered.

1491 C. Accuracy (Ca root-mean-square deviation) of top 5% structural models of the WW
1492 domain (core positions 6-29) generated from deep mutational scanning data derived
1493 restraints compared to reference structure (PDB entry 1k9q). Structural models were
1494 generated in XPLOR-NIH by simulated annealing with restraints derived from top 17
1495 tertiary contacts and secondary structure elements predicted by PSIPRED. No beta
1496 sheet pairing information was used.

1497 D. Number of double mutants for which positive (left) or negative (right) epistasis can be
1498 quantified per position pair plotted on the trans-interaction matrix of the FOS-JUN
1499 interaction.

1500 E. Bayesian estimation of fitness values in FOS-JUN interaction data. Mutants with low
1501 input sequencing coverage display limited measurement range and many dropouts
1502 (~15% of variants without reads in output). Left panel shows original fitness distribution
1503 as function of input coverage in replicate 1, right panel shows Bayesian estimates of
1504 fitness as function of input coverage in replicate 1.

1505 F. Learning about intra-molecular contacts in FOS or JUN from epistatic pattern
1506 correlations. Column-wise correlation of epistatic patterns of the trans interaction score
1507 map serve to calculate intra-FOS association scores and thus reveal relationships
1508 between positions in FOS. Likewise, row-wise correlation of epistatic patterns reveal
1509 relationships between positions in JUN.
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1510 G. Local interactions in intra-molecular association scores reveal secondary structures of
1511 protein interaction partners. Upper panels: Data above diagonal shows association score
1512 data close to the diagonal, i.e. local interactions. Data below the diagonal is smoothed
1513 with a Gaussian kernel to reveal interaction periodicity. Lower panels: Secondary
1514 structure propensities derived from kernel smoothing (see Figure 4A-C). Green indicates
1515 alpha helical propensity, orange indicates beta sheet propensity, p = 0.05 is indicated by
1516 dashed line.
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Extended Data Figure 6
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Extended Data Figure 6: Deep learning improves contact
prediction from deep mutagenesis data

A. Distance of position pairs as a function of interactions scores before (left panel, scores
normalized to interval [0,1]) and after (right panel) transformation with DeepContact for
the four datasets. Boxplots are spaced in distance intervals [0,8), [8,16), [16,24), [24,32),
[32,40) and [40,48) A. Dashed horizontal line indicates 8A.

B. Left: Full WW domain combined score interaction map before (lower left) and after

(upper right) DeepContact transformation. DeepContact amplifies a signal from local
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1527 contacts in the C-terminal region of the domain, thus concentrating the strongest
1528 transformed signal in this region. Removing positions 30-34 removes this artefact (right
1529 plot). Heat maps show interaction scores that have been normalized to have similar
1530 range. Grey dots show contacts (distance < 8A) in reference structure.

1531
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Extended Data Figure 7
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1533 Extended Data Figure 7: Distance metric comparison and
1534  secondary structure prediction for lower data-quality GB1
1535 datasets

1536 A. Precision and recall for beta strand, alpha helix and beta sheet predictions derived from
1537 combined scores of down-sampled GB1 datasets (in comparison to reference structure).
1538 Dashed lines for beta strand and alpha helical positions give random expectation.
1539 Random expectation for beta sheet pairing precision is below 1%. Note that some
1540 coinciding data points were slightly moved for better identifiability.

1541 B. Beta sheet pairing predictions for the doped GB1 dataset with 100% sequencing read
1542 coverage (cf. Extended Data Figure 4B). Beta sheet pairing between beta strands 1 and
1543 2 is predicted in correct anti-parallel direction, but exact pairing of positions are off by 2;
1544 thus precision and recall of beta sheet pairing for doped GB1 dataset drops to ~60%
1545 (see panel B).

1546 C. Differences in precision and enrichment over random expectation for all heavy atom or
1547 side-chain heavy atom distance metrics. As expected, using all heavy atoms (including
1548 backbone heavy atoms) increases precision of predicted contacts by about 10%.
1549 Restricting distance measurements to side-chain heavy atoms, however, increases
1550 precision over random expectation, often by more than 2-fold (note the log10-scale),
1551 indicating that side-chain distances are more informative for epistatic interactions. For
1552 these calculations, only position pairs with linear sequence separation greater than 5
1553 amino acids were considered.
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