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yses assume all acquired RNAs are endoge-

nous to cells. However, any cell free RNAs
contained within the input solution are also cap-
tured by these assays. This sequencing of cell free
RNA constitutes a background contamination that
has the potential to confound the correct biologi-
cal interpretation of single cell transcriptomic data.
Here, we demonstrate that contamination from
this “soup” of cell free RNAs is ubiquitous, exper-
iment specific in its composition and magnitude,
and can lead to erroneous biological conclusions.
We present a method, SoupX, for quantifying the
extent of the contamination and estimating “back-
ground corrected”, cell expression profiles that can
be integrated with existing downstream analysis
tools. We apply this method to two data-sets and
show that the application of this method reduces
batch effects, strengthens cell-specific quality con-
trol and improves biological interpretation.

D roplet based single cell RNA sequence anal-

1 Main

Droplet based single cell RNA sequencing has enabled
quantification of the transcriptomes of hundreds of
thousands of cells in single experiments (Zilionis et
al., 2016; Zheng et al., 2017). This technology un-
derpins recent advances in understanding normal and

pathological cell behaviour (Hashimoto et al., 2017;
Bach et al., 2017; Daniszewski et al., 2018; Stephen-
son et al., 2018; Chen et al., 2017; Alberti-Servera
et al., 2017). Large scale efforts to create a “Human
Cell Atlas” also critically depend on the accuracy and
cell specificity of the transcriptional readout produced
by droplet based single cell RNA sequencing (Regev
et al., 2017; Rozenblatt-Rosen et al., 2017).

A core assumption of all droplet based scRNA-seq is
that each droplet, within which tagging and reverse
transcription takes place, contains mRNA from a sin-
gle cell. If this assumption is violated it may distort
biological interpretation of mRNA sequencing data.
Doublets, where a droplet contains multiple cells, and
empty droplets are the most obvious example of this.
Attempts to detect and to remove doublets are an active
area of research (Gayoso, Shor, and Brand, 2017; Ilicic
et al., 2016).

Another way in which non-endogenous mRNAs can
contaminate a droplet is via the sequencing of cell free
RNA admixed with cells in the input solution. It has
been recognised that such non-endogenous RNAs are
present in even the most ideal data sets (Zheng et al.,
2017). No systematic effort has been made to quantify,
and compensate for, their contribution. That is, the
strategy for correcting for cell free RNA has been to
assume that their contribution is negligible.

Here, we show that this “soup” of cell free mRNAs
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is ubiquitous, experiment specific and can lead to mis-
leading and inaccurate, and thus misleading biologi-
cal interpretation. We present a SoupX, a method for
quantifying the extent of soup contamination whilst
deconvoluting the true, cell specific, signal from the
observed mixture of cellular and exogenous mRNAs.

To understand the nature of cell free mRNAs in
scRNA-seq and validate our method we have used two
data sets. The first we refer to as the “discovery” data
set consists of Chromium 10X sequencing of an input
solution containing one mouse and one human cell
line, mixed in roughly equal proportions (Zheng et al.,
2017). This allows us to directly and unambiguously
identify which mRNAs are specific to the cell within
a droplet and which are cell free contamination. The
second, real-life data set, which we refer to as “valida-
tion”, consists of 9 independent tumour biopsies from 7
patients with the most common types of kidney cancer:
Wilms’ tumour, clear cell renal cell carcinoma (ccRCC)
and papillary renal cell carcinoma (pRCC) (see Table
S1).

Counts of observed unique molecular identifiers
(UMIs) per gene in each cell are the basic output pro-
duced by droplet based single cell RNA-seq. These raw
counts are then used to infer the fraction of expression
derived each gene in each cell, either by library size
normalisation (Satija et al., 2015; Butler and Satija,
2017; Wolf, Angerer, and Theis, 2018) or the inclu-
sion of an offset term in a generalised linear model
(monocle). We refer to these normalised expression
values as a cell’s “expression profile”. If background
contamination is present, the measured expression pro-
file represents a mixture of the true expression profile
of the cell, mixed with the expression profile of the
background contamination (see Figure 1a and Equa-
tion 2).

Our method aims to infer each cell’s true expression
profile by removing the contribution from the cell free
mRNA “soup” expression profile. This is done in three
steps:

1. Estimate the soup expression profile from empty
droplets.

2. Measure the contamination fraction, the fraction
of UMIs originating from background, in each cell.

3. Calculate the cell specific expression profile from
the observed mixture of cellular and soup expres-
sion.

We include code to input the resulting cell specific
expression profiles into popular downstream analysis
packages (Seurat Satija et al., 2015; Butler and Satija,
2017 and SCANPY Wolf, Angerer, and Theis, 2018).
Figure 1b shows the relative abundance of human
and mouse mRNAs in each droplet in the discovery
data set. The groups of droplets on the right of this
plot, which represent droplets containing human (top)
and mouse (bottom) cells, show that roughly 1% of
observed transcripts in droplets containing mouse cells

come from human genes (and visa versa). This demon-
strates that cell free mRNA contamination is present
even in highly controlled experiments.

To investigate the composition of the cell free mRNAs
we compared the expression profile derived by aggre-
gating all droplets containing cells to all droplets con-
taining fewer than 10 UMIs (assumed to contain only
background mRNAs). We found these two profiles to
be highly correlated in both the discovery (correlation
coefficient 0.99; Figure 1c) and validation (correlation
coefficient 0.74 to 0.98; median 0.93; Figure S1) data
sets . This correlation implies that cell free contamina-
tion is derived from the input solution, channel specific
and must be corrected independently for each channel.
By estimating the background expression profile from
different groups of cells in the discover data set (where
we know a priori which genes are contamination in
each droplet) we found that the expression profile of
the cell free contamination is invariant for cells derived
from the same channel (Figure S3).

Next we estimated the contamination fraction, the
fraction of expression derived from cell free mRNA
background in each cell, using genes which we could
assume to be unexpressed in most cells. Without spike-
ins (which are never expressed by a cell) an appro-
priate set of genes known to be unexpressed in spe-
cific cell types must be determined. Such genes will
have a characteristic bimodal expression pattern (Fig-
ure S7) with each cell either expressing the gene in
abundance or only containing cell free RNA derived
copies. To prevent over estimating the contamination
fraction, we algorithmically identify likely candidates
from which the most appropriate genes are selected
using prior biological knowledge (see Methods). For
the discovery data set, we use all mouse transcripts to
estimate the contamination fraction from human cells
and visa versa. For the validation data set, we use the
haemoglobin genes and exclude any red bloods cells
from the estimation.

The distribution of the contamination fraction re-
vealed that the greatest contamination occurs in
droplets with the lowest number of UMIs (Figure 1d).
This trend for increasing contamination with decreas-
ing number of UMIs per droplet was found across data
sets (Figure S4) and is consistent with an approxi-
mately constant number of cell free mRNAs in each
droplet, with the contamination fraction being deter-
mined by the number of cell endogenous molecules
present. Furthermore, we found a large range in sam-
ple averaged contamination fraction (1% to 50%, me-
dian 8%) with the highest contamination found in the
most necrotic samples (as determined by clinical patho-
logical evaluation).

To demonstrate the biological utility of our method,
we analysed both data sets with and without correction
for cell free RNA. Our analysis consisted of normalisa-
tion, feature selection, dimension reduction, clustering
and marker gene detection using the Seurat package
(Satija et al., 2015; Butler and Satija, 2017).
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Figure 1: The properties of the cell free mRNA soup and an overview of the SoupX method. Panel a shows a schematic overview
of our method for removing background contamination. The three bars represent the relative mRNA composition of
the observed data (left), the background (middle) and the cell alone (right) and their relationship to one another (see
Equation 2). The box on the right shows a toy example demonstrating how the background contamination fraction is
estimated. Panel b shows the log,, ratio of the number of UMIs mapping to human and mouse mRNAs for each droplet
in the discovery data set. Droplets that are determined to contain cells are marked in blue. Panel ¢ shows the correlation
of the log,, fraction of expression from all human (or mouse) cells comapred to log,, fraction in soup for all human
(red) or mouse (blue) transcripts. Panel d shows the estimated contamination fraction as a function of number of UMIs
in each droplet in individual cells in the discovery data set. Red (Blue) dots denote droplets containing human (mouse)

cells.

As the background expression profile is experiment
specific, we expected that one of the effects of back-
ground contamination would be to increase batch ef-
fects. That is, two identical cells captured in different
experiments will appear different due to differences
in their cell free RNA composition. Consistent with
this interpretation, we found that background correc-
tion decreased batch effects in our validation data set
(Figure 2a and Figure S5).

It is common practice to filter scRNA-seq data to
exclude droplets where the fraction of mitochondrial

gene expression exceeds some value, typically in the
range 5%-20% (Daniszewski et al., 2018; Chen et al.,
2017; Bach et al., 2017). We found that the fraction
of mitochondrial gene expression in the cell free back-
ground varied considerably (2% to 15%, median 7%).
Figure 2b shows the consequences of this: the uncor-
rected mitochondrial expression fraction can over or
under estimate the endogenous expression by as much
as 5%, leading some cells to erroneously pass/fail this
quality control filter.

Furthermore, we found that the estimated contami-
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Figure 2: The effect of removing cell free RNA on QC, downstream analyses and biological interpretation. Panel a shows tSNE
plots of the validation data set with and without background correction. Panel b shows how the MT fraction changes
with background correction for each droplet in the validation data. Panels c and d show the change in expression
fraction for the top 10 cluster specific marker genes after background correction for the discovery and validation data
sets, respectively. In Panel d only those clusters where at least one marker gene decreases in expression are shown. Those

genes that decrease in expression are labelled in red.

nation fraction can itself be used as an additional qual-
ity control (QC) filter. In the discovery data, where
the contamination fraction can be reliably estimated
in individual droplets, we designated droplets with sig-
nificantly less than 10% background expression as con-
taining cells (p-value < 0.01; binomial test against null
of p < 0.1). We found a significant overlap between
droplets identified in this way and those identified us-
ing state-of-the-art cell detection method EmptyDrops
(Lun T. L. et al., 2017) (1072 in both, 8 found only
using contamination fraction filtering, 64 found only
by EmptyDrops; p < 0.001; hypergeometric test).

Unless spike-ins have been used, this approach is
unlikely to be useful for cell specific QC in other data
sets. However, channel level estimates of the contam-
ination fraction can still provide useful information
about the quality of an experiment. For example, the
Wilm’s tumour channels were derived from tissue that
has already undergone chemotherapy and are highly
necrotic, and perform poorly in terms of cell yield per

channel. We found these channels to have amongst the
highest contamination fraction in our validation data
set.

To test the effect that background correction has on
the biological interpretation of clusters of cells, we cal-
culated the change in expression fraction for the top 10
cluster specific genes for each cluster in the discovery
and validation data sets. Figure 2c shows the results
for the discovery data set and reveals that the effect
of background correction is to increase the ranking of
human transcripts in human cells (by a small amount)
and decrease the ranking of mouse transcripts (by a
large amount) and vice versa. After background cor-
rection only 0.1% percent of expression was assigned
to human/mouse transcripts in mouse/human cells,
respectively.

In the validation data set, correcting for background
contamination also increased the expression of cluster
specific markers in most circumstances (see Figure S6).
However, there were 6/32 clusters (shown in Figure
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2d) for which the expression of cluster markers was
decreased for at least one gene. These clusters high-
light instances where failure to correct for background
correction confounds the biological interpretation.

For example, SAA1 expression is elevated in inflam-
mation and is known to be secreted by macrophages
(Meek, Eriksen, and Benditt, 1992). Its expression has
also been reported in tumour cells of the RCCs with
poor prognosis (Paret et al., 2010). As such, it is plau-
sible that it is being secreted by the macrophages and
cytotoxic T-cells in these tumours, as the uncorrected
expression in Figure 2d suggests. However, correct-
ing for background contamination shows that SAA1
is predominately expressed by RCC cells (Cluster 14,
Figure S6) and only appears expressed in these T-cells
and macrophages due to contamination. That is, it’s
expression is significantly decreased in these clusters
by background correction. As another example, the
cluster of natural killer cells marked NK2 in Figure 2d
expresses the collagen genes COL1A1, COL1A2 and
COL3A1 before background correction. This could be
interpreted as evidence for their tissue residency. How-
ever, background correction completely removes all
expression of these genes in this cluster. The other
clusters for which expression of marker genes decrease
are unlikely to be misinterpreted biologically, but still
highlight that the failure to correct for background con-
tamination can falsely identify genes as being marker
genes for a cluster of cells.

We have shown that cell free RNA is ubiquitously
present in droplet based single cell RNA-seq data and
proposed a method to identify, quantify and remove
its contaminating effect. We find that estimating con-
tamination can itself be used as a QC measure and
that correcting for contamination reduces batch ef-
fects, makes existing QC measures more accurate and
improves biological interpretation.

The size of the correction will depend on the na-
ture of the experiment, with solid tissues, particularly
highly necrotic samples or those requiring extensive
processing, likely to result in the highest contamina-
tion fractions. Estimating the contamination fraction
relies on the presence of genes that can be unambigu-
ously identified as contaminated expression. In solid
tissues, haemoglobin genes perform this function per-
fectly, making our method particularly suited to appli-
cation to experiments on solid tissues.

In plate based protocols, exogenous spike-in RNAs
are often included to aid with data normalisation (Pi-
celli et al., 2014; Bacher and Kendziorski, 2016). In
contrast, they have not been widely used in droplet
based scRNA-seq due to the additional costs and the
difficulties controlling input concentration. Although
these costs will remain prohibitive in many settings, the
utility of being able to accurately identify background
contamination rates, both to improve biological inter-
pretation and as a QC measure, provides an additional
argument in favour of their inclusion. Furthermore,
the concentration of any spike-ins could be estimated

directly from the data, a situation which contrasts with
the use of spike-ins for plate based experiments, where
the utility of spike-ins depends on accurately control-
ling the spike-in abundance (Lun et al., 2017; Robinson
and Oshlack, 2010).

The background correction method we propose can
be easily applied to standard data with negligible com-
putational cost relative to downstream analyses. The
corrected expression values it produces can be easily
incorporated with essentially no modification into any
analyses based on library size normalised data (such
as Seurat Satija et al., 2015; Butler and Satija, 2017 or
SCANPY Wolf, Angerer, and Theis, 2018). Integration
with count based analyses (such as the “simple single
cell workflow” Lun, McCarthy, and Marioni, 2016) will
require larger changes as explicit calculation of the
expression profile for a cell destroys the mean-variance
relationship of the data. We provide an R package,
SoupX, which can be used to estimate the background
composition and contamination rate, remove this con-
tamination from droplets containing cells and input
the corrected expression values into downstream anal-
ysis tools. We envision background correction forming
a standard part of droplet based single cell RNA-seq
analyses pipelines.
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4 Data availability

The data set referred to as the “discover data set”
was the mixture of the human cell line 293T and
mouse cell line 3T3 described in Zheng et al., 2017.
We used the data mapped and quantified using Cell
Ranger 1.1.0 from https://support.10xgenomics.
com/single-cell-gene-expression/datasets/1.
1.0/293t_3t3.

Raw sequencing data for the validation data set have
been deposited in the European Genome-phenome
Archive (EGA) under study ID EGAS00001002325.
Sample specific identifiers can be found in Table S1.
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5 Code availability

An implementation of the method described here,
which we call SoupX, as well as tools to integrate the re-
sults with downstream analysis tools, can be found here
https://github.com/constantAmateur/SoupX.

6 Supplementary Materials

6.1 Processing of data sets

For both data sets, we used the Empty-
Drops (https://github.com/TimothyTickle/
hca- jamboree-cellidentification/tree/master/
src/poisson_model) method to identify droplets
likely to contain cells using a FDR cut-off of 0.05.
For the discovery data set we removed any droplet
that contained 1000 or more UMIs from both human
and mouse genes as being likely doublets. For the
validation data set we further excluded any droplet
that contained UMIs from fewer than 50 distinct
genes.

Raw counts of UMIs per gene in each cell were
then normalised using the Seurat (http://satijalab.
org/seurat/) “NormalizeData” function. This func-
tion transforms the data to,

Zge = log(1 + 10,000F,,) (D

where x4 is the normalised value. To use the de-
contaminated expression profiles in the downstream
analysis, it is sufficient to replace F,. with f,. in Equa-
tion 1.

Variable genes were identified using the FindVari-
ableGenes function with default parameters. We then
calculate the first 30 principle components using the
normalised data values for the variable genes scaled
to have mean 0 and standard deviation 1. tSNE em-
bedding was calculated using a perplexity of 30 and
clusters tere identified using the community identifi-
cation algorithm implemented in the “FindClusters”
function with a resolution parameter of 1.

To identify genes specific to each cluster, we ranked
genes using an adaptation of the “tf-idf” metric widely
used in natural language processing (Rajaraman and
Ullman, 2011). Specifically, we ranked genes in each
cluster by \;.log(3,) where A, is the fraction of cells
in cluster c expressing gene g and f, is the fraction of
all cells expressing g. We then took the top 10 genes
in this list for each cluster, or all genes for which the
genes was present in a cluster more than expected if
expressed genes were randomly distributed at a p-value
cut-off of 0.01 using a hypergeometric test.

These markers were then manually inspected and
each cluster was assigned a cell type based on the com-
parison of these markers to the literature (particularly
Chabardés-Garonne et al., 2003; Habuka et al., 2014;
Lee, Chou, and Knepper, 2015).

6.2 Detailed description of the SoupX
method

The number of observed unique molecular identifiers
(UMIs) for gene g in cell ¢ depends on the abundance of
gene g relative to all other genes. That is, by sequencing
transcripts we aim to infer the fraction of expression
for each gene f,., where 3 p fge = 1. The relationship
between the observed abundance for a gene ¢ in a
single cell ¢ and the true distribution of that cell are
given by:

Fgc = Pcfgs + (]- - pc)fgc (2)
where F. is the observed proportion of UMIs in droplet
¢, gene g, fqc is the true proportion for the cell con-
tained within this droplet and f,, is the fraction of
UMIs from gene g in the cell free background. p. is the
fraction of UMIs in droplet ¢ that originate from the
soup (i.e, the contamination fraction).

The method for quantifying the composition and
abundance of cell free mRNAs and correcting cell spe-
cific mRNA expression profiles for their presence is a
three part procedure. This consists of:

* Calculating an expression profile for the cell free
background.

» Estimating the contamination fraction for each
cell.

* Removing contamination from each cell using the
above information.

6.2.1 Background expression profiles

To calculate the expression profile of cell free mRNAs,
we assume that those droplets with a very low number
of UMIs contain only cell free mRNAs and no cell. As
the number of droplets with low numbers of UMIs is
very large compared to numbers of cells (~ 1,000, 000
droplets versus ~ 10, 000 cells) there is typically abun-
dant power to accurately calculate the expression pro-
file of the soup. We estimate the background expression
for gene g as,

_ _Mgs

Jos 5 g (3)

where n,; is the number of UMIs mapping to gene

g in those droplets with total UMIs in the range a <

UMIs < b. We set a = 1 to exclude errors in the

droplet barcodes contaminating our estimate of the

background (although we find no evidence this is a

problem for chromium 10X data). We set b = 10 based

on comparisons of the background profile estimated

from droplets with different numbers of UMIs to the

true background profile measured directly from droplet

containing cells in the discovery data set (see Figure
S2).

6.2.2 Estimating the contamination fraction

To estimate the contamination fraction, we observe
that when f,. = 0 equation 2 reduces to,
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Foe = pefgs 4)

The maximum likelihood estimator (assuming a Pois-
son distribution) for p. from a single cell is then just,

pe = Zg FQC
CT Y, T

where the sum is taken over all genes for which it can
be assumed that f,. = 0.

Unfortunately, there is often insufficient power to
accurately estimate p from an individual cell. To over-
come this limitation, we assume that cells with ap-
proximately equal total numbers of UMIs have approx-
imately equal contamination fractions (an assumption
justified by the discovery data Figure S3). Different
cells will have different genes for which it can be
assumed that f,. = 0. For example we can safely
assume haemoglobin genes have zero expression in
macrophages, but not in red blood cells. As such, the
maximum likelihood estimator for p from a group of
cells (again assuming a Poisson distribution) is

_ Do Zg Nge
PN, foe)

where N, = 3" g Nge is the total number of UMISs in cell
c. The inner sum over genes is taken over a different
set of genes for each cell depending on which genes
can be assumed to be soup specific for that cell.

For our validation data set we identified excluded
from the estimation of p any cell for which we could
reject the null hypothesis that p. < 1 using a Poisson
test with p-value cut-off 0.05. That is, we identified
and removed those cells for which the haemoglobin
gene expression exceeded what we would expect if a
droplet contained nothing but cell free mRNAs.

()

6

6.2.3 Selecting genes for estimating p

To identify which genes to use when estimating the
contamination fraction in each channel, we calculated
the distribution of each gene’s expression across all
cells in channel, relative to the expression in the soup.
That is, we calculate

Fye
fas

for all cells in a channel. To identify those genes with
a bimodal pattern of expression across all cells, where
one mode represents all cells truly expressing the gene
and the other mode all cells where the only expression
for the gene comes from the background. Such genes
are ideal for estimating p as it is clear which cells “seed”
the mRNAs in the soup to begin with and which merely
incorporate it indirectly. To obtain candidates genes,
we exclude any gene that has fewer than 10% of cells
with F, < f,s and then sort genes by their mean
squared value of log(Fy./ fgs).

(7

An example of this approach is shown in Figure S7
for one channel of data from a pRCC biopsy. This
shows that HBB, HBA2 and TPSB2 are the most useful
in estimating p. The selection of genes likely to be
unexpressed genes is also aided by knowledge of the
biology of the cells in each sample. In this example,
HBB and HBA2 are haemoglobin genes which should
either be expressed in abundance in red blood cells or
completely absent in other cell types. Likewise, this
biopsy contains a large number of MAST cells and
TPSB2 is a highly specific marker of MAST cells, which
can be assumed to be expressed only in MAST cells.

6.2.4 Correcting cell expression profiles

Having calculated the expression profile for the back-
ground f,, and the contamination fraction for each
cell p., we estimate the cell endogenous expression by,

Foe = Fye = pefos (8)
1—pc
After this correction, values of f,. < 0 are set to 0
and the resulting expression profile is renormalised
to sum to 1. It is sometimes useful to assume that a
group of cells share the same expression profile and
estimate this profile using all the cells simultaneously.
A typical example of this is estimating an expression
profile for a cluster of cells assumed to represent the
same cell type. In these cases cells within a cluster may
have different values of p. or f,s; (When the cluster con-
tains cells from multiple experiments) and we estimate
the joint expression profile by numerically maximising
the Poisson log-likelihood (we provide R code for this
purpose).
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Donor (study ID)
Child1
Child2
Child3
Adultl
Adult2
Adult3
Adult4

Experiment
Wilms1
Wilms2
Wilms3
PapRCC
RCC1

RCC2
VHL_RCC

Age

4 years 2 months
8 months

2 years 6 months
70

67

63

49

Replicates

3
3
3
2
4
4
2

Tumour type

Wilms’

Wilms’

Wilms’

Papillary cell carcinoma
Clear cell carcinoma
Clear cell carcinoma
Clear cell carcinoma

Table S1: Sample information for the validation data set. All replicates are technical replicates (same input solution run down
different 10X channels), with the exception of RCC1 and RCC2 where replicates 1 and 2 are from one biopsy and 3 and
4 are from a separate biopsy of the same tumours.

PRCC_1 (0.88)

RCC1_4 (0.93)

VHL_1 (0.98)

log10(Soup)
&

Wilms2_1 (0.93)
-1

-2
-3
-4

-5

PRCC_2 (0.86)

RCC2_1(0.93)

VHL_2 (0.96)

Wilms2_2 (0.98)

RCC1_1(0.92)

RCC2_2 (0.86)

Wilms1_1 (0.93)

Wilms2_3 (0.98)

RCC1_2(0.92) RCC1_3(0.92)

RCC2_3 (0.85) RCC2_4 (0.74)

Wilms1_2 (0.97) Wilms1_3 (0.96)

Wilms3_1 (0.96) Wilms3_2 (0.96)

log10(Cells)

Figure S1: Correlation of expression profile derived from empty droplets (the soup) with an aggregate expression profile from
all cells in a channel. The correlation coefficient is shown in parenthesis in the facet label. The line shows perfect

correlation.
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Figure S2: The correlation between “true background”, which is defined by aggregating across mouse transcripts in human cells
and visa versa, with the background expression profile derived using only droplets with the total number of UMIs given
on the x-axis. This is done independently by comparing the mouse transcripts in the empty droplets with the mouse
transcripts in human cells and human transcripts in the empty droplets with human transcripts in mouse cells.
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Figure S3: The correlation between the empty droplet defined background and the background estimated from a small number of
cells (binned such that we have ~ 1,000 counts with which to estimate the background in each bin). The x-axis gives
the number of counts coming from the species that is background (i.e., human for mouse cells and visa versa) for each
group of cells. The y-axis gives the correlation between the background for that species and the expression profile using
background transcripts from each bin of cells.
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Figure S4: The contamination fraction, p, estimated by binning cells by similar number of UMIs as a function of UMIs in each
bin, shown for all samples. The facet label identifies the channel and the vertical bars give binomial 95% confidence
intervals for p for each bin of cells.
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Figure S5: Comparison of cell membership by cluster before (left) and after (right) background decontamination. For each source
channel (rows), we calculate the number of cells that share a cluster with at least one cell from each of the target
channels (columns). For example, the first row represents the 280 cells from channel Wilms3_1. For each of these
280 cells we identify which cluster they belong to before and after background decontamination and for each of these
clusters, which of the target channels also has at least one cell in this cluster. We then calculate the fraction of cells in
this channel that share a cluster with each of the other channels. In this example, cells from the channel Wilms1_1
share a cluster with cells from channel Wilms1_3 98% of the time before background decontamination and 99% of

the time after background decontamination. Rows and columns are split to emphasise biologically related groups of
samples.
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Figure S6: Overview of how the top 10 cluster specific marker genes change in expression after batch correction. The colour scheme
indicates the fractional change in expression following batch correction; genes with zero expression before correction

are shown in grey. Rows are split into groups of 10, with each group giving the top 10 cluster specific genes before
batch correction.

Page 14 of 15


https://doi.org/10.1101/303727
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/303727; this version posted April 20, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
. available under aCC-BY-NC-ND 4.0 International license. .
SoupX removes ambient RNA contamination from droplet based single cell RNA sequencing data

log10(cellExpressionFraction/soupExpressionFraction)

-2

HBB HBA2 TPSB2 CLU SPP1 CD74 APOE CD24 APOCIHLA-DRACRYAB HPGDSSNHGZ2HLA-DRBIC1QC SLPIHLA-DPHLA-DRB5C1QB CD52
Gene

Figure S7: Distribution of expression relative to background for genes in one of the pRCC channels. These genes are selected as
they are most likely to be informative in estimating the contamination fraction p (see Methods).
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