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Summary

The ability of cells to regulate their function through feedback control is a fundamental underpinning of
life. The capability to engineer de novo feedback control with biological molecules is ushering in an era of
robust functionality for many applications in biotechnology and medicine. To fulfill their potential, feedback
control strategies implemented with biological molecules need to be generalizable, modular and operationally
predictable. Proportional-Integral-Derivative (PID) control fulfills this role for technological systems and
is a commonly used strategy in engineering. Integral feedback control allows a system to return to an
invariant steady-state value after step disturbances, hence enabling its robust operation. Proportional and
derivative feedback control used with integral control help sculpt the dynamics of the return to steady-state
following perturbation. Recently, a biomolecular implementation of integral control was proposed based on
an antithetic motif in which two molecules interact stoichiometrically to annihilate each other’s function.
In this work, we report how proportional and derivative implementations can be layered on top of this
integral architecture to achieve a biochemical PID control design. We illustrate through computational and
analytical treatments that the addition of proportional and derivative control improves performance, and
discuss practical biomolecular implementations of these control strategies.

1 Introduction

We are entering the era of live cell therapeutics in which the immense capabilities of cells can be harnessed
and augmented with rationally designed and engineered functionalities to tackle disease wherever it happens
in the human body. For example, CAR T-cells are cells engineered to produce chimeric antigen receptors
(or CARs) that recognize and attach to antigens on tumor cells, and have been used to cure subsets of blood
cancers. The successful clinical use of these cells was a pivotal moment, but one that was also shadowed
by safety concerns. In some recipients of this therapy, these powerful engineered immune cells triggered
overwhelming and sometimes life threatening immune responses [1,2]. Moreover, once these cells are released
into the patient, no recourse is available to influence them further. Other than inhibitory drug treatment
to suppress the therapy at a critical time [3], no efficient modulation of the therapy has been implemented.
For this reason, engineering feedback control in therapeutic cells represents a crucial next frontier, allowing
these cells to continuously monitor their environment and modulate their function accordingly, and hence
enable their robust and safe operation.

Synthetic feedback control has also emerged in metabolic engineering as a promising strategy to circum-
vent important bottlenecks. For instance, feedback control can be used to limit the production of toxic
intermediates in a heterologous pathway, or to balance flux between growth and production of metabo-
lites [4–7]. Specialized strategies resembling proportional feedback control have already been implemented
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to enhance the production of various molecules in genetically modified cells [8–11]. However, widely ap-
plicable feedback control strategies, with quantitatively vetted properties and limitations, are still scarce.
Biological feedback control designs that are modular, tunable, and with predictable outcomes are crucial to
generalize the use of this strategy in metabolic engineering and other biological fields.

In engineered systems, the formulation for feedback control follows a standardized form in which the
output w(t) of a process Φ to be controlled is measured, and then compared against a desired set-point r(t),
generating an error signal e(t) = r(t) − w(t). This error signal is then processed by the control system,
which produces an appropriate corrective input u(t) to the process Φ (Figure 1A). The control system
can be designed to achieve different desired characteristics for the corrective action, for example driving
the error signal e(t) as close to zero as possible. Many decades of research in the field of control and
dynamical systems provided general control strategies for a wide variety of technological applications [12].
One in particular, integral control, has found ubiquitous use because of its ability to achieve a fundamental
control action: to drive e(t) exactly to 0 after a step disturbance to Φ. Integral control therefore allows
the steady-state output of a system to be insensitive to step perturbations. The mathematical formulation
of integral control is simple and relies on generating a control signal u(t) that is a weighted integral of the
error signal, or u(t) = kI

∫
e(t)dτ . However, integral control is also notorious for its problems with poor

damping and instability, which can result in long delays and oscillations before returning to steady-state.
This has prompted the widespread use of integral control in combination with other control strategies, such
as proportional and derivative control. Proportional control uses the instantaneous error to generate a control
signal, that is u(t) = kP e(t), and by doing so can increase the speed of response. Derivative control uses a

weighted time derivative of the error signal, u(t) = kD
de(t)
dt , and can increase both the dynamic stability of

the controlled system by reducing overshoot and the convergence rate to steady-state. PID-control, a widely
used strategy in engineering, capitalizes the benefits of each of these schemes by combining them to generate

the control signal, u(t) = kP e(t) + kI
∫
e(t)dτ + kD

de(t)
dt (Figure 1A) [13].

Remarkably, many examples of integral feedback have been documented in cellular regulation. Integral
feedback was demonstrated to be at work in the E. coli chemotaxis circuit, where the percentage of active
CheY proteins that are responsible for regulating the bacteria’s tumbling frequency adapts perfectly to
step-changes in chemoattractant concentration, maintaining the system’s sensitivity to new concentration
changes [14–17]. This was termed Biochemical Perfect Adaptation. Other examples of such behavior include
the perfect adaptation of the nuclear enrichment of the S. cerevisiae MAPK Hog1 after step changes in
osmolarity [18], and the control of blood calcium concentration in mammals [19]. In both cases, integral
control has been shown to be the structural underpinning of this adaptation.

Because of its widespread successful use in engineering, and its natural occurrence in biology, modular and
robust implementations of integral control have been actively pursued in synthetic biology. A breakthrough
design of an integral control scheme based on a simple “antithetic motif” was recently reported [20, 21].
In this design, two molecular species bind to each other and annihilate each other’s function through this
binding (Figure 1B). If one of the “antithetic” molecular species controls the input of a process Φ while
the other is dependent on the output of Φ, then it can be mathematically demonstrated that the steady-
state value of the output of Φ perfectly adapts regardless of any step perturbation that Φ is subjected to.
The antithetic motif used in this configuration therefore implements integral feedback action. An initial
experimental proof of concept based on the antithetic feedback motif was recently tested in E. coli using σ
and anti-σ factors to implement the antithetic reaction, and the results suggest that this feedback method is
indeed able to implement integral control in vivo [22]. The next frontier is therefore to design and implement
a more general biomolecular PID-control scheme in cells.

In this paper, we present the design of such a biomolecular PID-control system, based on the antithetic
integral (I) control motif. Our design of proportional (P) control proceeds through the development of a
nonlinear comparator function, while the derivative (D) control design borrows from the biology of the E.
coli chemotaxis regulatory network [15]. We propose practical biomolecular implementations of these control
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terms, and illustrate how their addition to integral control improves transient adaptation dynamics. We
further show through analytical treatments and numerical simulations how our designs relate to a traditional
engineering PID controller, and illustrate how such analogy facilitates the choice of parameters for the P, I,
and D control functions as well as their effective weights (kI , kP , kD). Finally, we discuss how the modularity
of the proposed PID-control allows easy substitution of different integral controllers, demonstrating that
the P and D control terms are robust to the type of integral controller used. Our design paves the way
for a modular, general, and robust implementation of PID-control that can greatly benefit applications in
metabolic engineering and live cell therapies.

2 Results

In a landmark paper by Briat et al. [20], a simple integral scheme was proposed to control a general biological
process Φ. If the output of the process is XC and its input (that is actuated by the control signal) is X1

(Figure 1B), then this scheme is given by:

dZ1

dt
= µY − ηZ1Z2 (1)

dZ2

dt
= θXC − ηZ1Z2 (2)

dX1

dt
= βIZ1 − γ1X1 (3)

Eqs.(1-2) are produced by an antithetic motif in which two molecules Z1 and Z2 bind and annihilate each
other’s activity with mass-action kinetics. Z1 is produced at some rate µY , and influences the production
of the process-actuated molecule X1 in Eq.(3). Z2 is produced at a rate θXC , proportional to the output
of the process Φ, hence closing the loop (Figure 1B, anthithetic module in blue). The equation describing
Z = Z1 − Z2 is given by:

dZ

dt
=

dZ1

dt
− dZ2

dt
= µY − θXC (4)

At steady-state, dZ
dt = 0 ⇐⇒ µY = θXC . Therefore, the output steady-state is given by XCss = µY/θ,

which is obviously independent of the process Φ, and hence is achieved irrespective of Φ and despite any
perturbation to its parameters. This is referred to as set-point tracking, since the output at steady-state
tracks the input Y . Eq.(4) also implies that if the system is at steady-state and a step change in the
parameter values of Φ occurs, then XC will return to its pre-perturbed value after an initial transient. This
is the essence of the integral control action. One notes here that Z is only a mathematical regulation error
quantity and not a physical quantity, as the production of X1 involves Z1 and not Z1 − Z2. Furthermore,
the integral effect is contingent on two general requirements. First, the output XC must be controllable in
a positive manner by the actuated variable X1 through the process Φ in order to preserve the corrective
nature of the feedback through the antithetic motif. For example, saturation should not occur in the observed
range of X1, otherwise XC cannot be effectively controlled. Second, the disappearance of Z1 and Z2 (either
through degradation or inactivation) should only be achieved through their mutual annihilation, but not
through any other process that affects one but not the other (such as individual degradation of Z1 and Z2).

While integral control achieves step disturbance rejection, it is seldom used alone in engineering applica-
tions. This is because integral control responds relatively slowly to disturbance, allowing for a large deviation
from desired steady-state. This can lead to system instability and oscillations. To illustrate this point, we
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explore the same simple controlled process Φ described in Briat et al. [20] in which X1 is related to XC

through a gain βC :

dXC

dt
= βCX1 − γCXC , (5)

In this system, while perfect disturbance rejection is achieved for some parameter regimes, oscillations also
easily emerged with Eqs.(1-3) (which we refer to as I-control) for the controlled process in Eq.(5). This
is shown in the left panel of Figure 2A that demonstrates how perfect tracking of the set-point with I-
control is only achieved after a long period of damped oscillations. The right panel of Figure 2A shows
the I-control system undergoing sustained oscillations following a perturbation in βC , a parameter of the
controlled process. Because of this behavior, a commonly used modality in engineering combines integral
control with proportional and derivative control, generating Proportional-Integral-Derivative (PID) control.
We therefore aim to propose and analyze biochemical implementations of proportional and derivative control
that augment and refine the integral control capabilities of the antithetic motif [20]. To achieve this, we
propose the following set of equations (Figure 1B):

dZ1

dt
= µY − ηZ1Z2 (6)

dZ2

dt
= θXC − ηZ1Z2 (7)

dX1

dt
= βIZ1 + fP (XC , Y ) +Dt(XC , Y )− γ1X1 (8)

The design upgrades actuation of X1 with two additional terms, fP (XC , Y ) for proportional control and
Dt(XC , Y ) for derivative control. In the same way that the proportional, integral and derivative control terms
are summed up in the engineering PID diagram (Figure 1A), they are summed up in the equation for X1.
We next present designs and analyses that define these terms and their implementation with biomolecules.

2.1 Design of a proportional control term

A traditional implementation of proportional control in the engineering sense would require an explicit
computation of the tracking error, given by e(t) = µY − θXC(t) in the context of Figure 1B. Since the
outcome of any operation implemented with biological molecules is another molecule, computation of an
error signal with biomolecules of this type can only generate a positive quantity. Following the example of
the I-control scheme, we will therefore design a proportional control function that acts implicitly on this
error, without explicitly computing it.

The first consideration in the design is that for negative feedback (XC is a negative regulator in the track-
ing error), the proportional control term fP (XC , Y ) must be an inhibitory function of XC . One option is to
use a traditional Michaelis-Menten negative feedback function, βP

µKC

µKC+θXC
, which captures transcriptional

repression of X1 by XC . Here, βP represents the maximum synthesis rate in the absence of the inhibitor
XC , and µKC is a constant related to the affinity or strength of the inhibitor (smaller KC results in stronger
inhibition for the same concentration of XC). We include µ and θ in the representation of this function in
order to keep consistency of notation as it relates to the antithetic feedback description (Figure 1B). This
type of transcriptional inhibition function has been explored in natural occurrences of cellular feedback, and
previously used in synthetic biology applications [23, 24]. However, this function does not explicitly depend
on Y unlike the tracking error e(t). This disengagement between the set-point and proportional term limits
the dynamic range in a Proportional-Integral control system (Dt(XC , Y ) = 0 in Eqs.(6-8)). Specifically, at
low reference set-point Y values (including Y = 0), both perfect tracking behavior and perfect adaptation
following a change in βC are lost (Figure 2B). This is because in this regime, the proportional term introduces
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basal synthesis of X1, creating a basal level of XC and hence of Z2. At the same time, µY is too low so that
insufficient Z1 is produced to successfully overcome basal Z2 level. In fact, Z2 grows at a positive constant
rate since Z1 is too low to contribute to its annihilation (see Figure S2A). The outcome is that the system
is effectively operating in open loop, and the integral control is not satisfactorily active as evidenced by the
loss of perfect tracking at low Y in Figure 2B. On the other hand, at high Y values, excess XC is produced
and the function βP

µKC

µKC+θXC
has a small effective value. In this regime, proportional feedback is lost, and

the system acts like an I-control scheme (Figure 2B, right panel). As a result, while this function is effective
in a range of operation centered around µKC , this dynamic range is limited.

A simple upgrade to include dependence both on Y and XC uses the function fP (XC , Y ) = βP
µY

µY+θXC
.

This function has the advantage that it scales with the reference set-point Y , allowing for a larger dynamic
range before saturation. The result is better tracking at low Y and improved damping following perturbations
in the parameters of the controlled process such as βC (Figure 2C). This implementation, however, still incurs
a steady-state error from the desired XCss

= µY/θ at low Y because of the basal production of XC and Z2

in this regime, similar to the prior proportional function. Here again, the I-control is not active until Y is
high enough to engage it. At high values of Y , stable oscillations still emerge due to loss of P-control.

We propose the following proportional control strategy that accommodates both low and high Y regimes:

fP (XC , Y ) = βPY
µY

µY + θXC
(9)

At low Y values, fP (XC , Y ) is proportionally low, reducing the basal synthesis of XC and Z2 accordingly
and ensuring that I-control is still active. This restores tracking at low Y values (Figure 2D, left panel). At
high Y values, fP (XC , Y ) also scales accordingly, maintaining the relative contribution of the proportional
term to the control system and resulting in improved damping (Figure 2D, right panel). These results were
not specific to the deterministic representation that we analyzed, but also held for a stochastic treatment of
the system (Figure S1A-B; see Supplemental Information, Section S1, for more details).

The function fP (XC , Y ) from Eq.(9) can be rearranged to give

fP (XC , Y ) =
βP

2µ

(
µY +

µY

µY + θXC

[
µY − θXC

])
(10)

This rearrangement reveals a dependence on the error e(t) = µY − θXC(t), which is multiplied by the ratio
µY

µY+θXC
and shifted by Y in order to maintain a positive quantity. The superior performance of this func-

tional form of proportional control hinges on this dependence. This is further vetted by analytical arguments
presented below in Section 2.3. A possible experimental realization of this function relies on competitive
binding to a regulated promoter between XC and a transcription factor whose activity is proportional to Y .
This design is discussed in Supplemental Information, Section S2 and Figure Figure S3A.

Finally, we note that although we presented our argument using a function of the form fP (XC , Y ) =
βPY

µY
µY+θXC

that is positioned at βPY/2 when the system is at steady-state, our analyses still hold for other

less tuned functions. For example, Eq.(9) is derived from a more general biochemical function fP (XC , Y ) =
βPY

αPY
αPY+XC+ϵC

(Supplemental Information, Section S2). When αP = µ/θ and ϵC = 0, the two functions
are the same. If ϵC > 0, fP (XC , Y ) is a weaker proportional feedback function, but this can be compensated
by increasing the value of βP accordingly (Figure S3B). Likewise, if αP ≫ µ/θ, fP (XC , Y ) is close to βPY
at steady state, and the system saturates for negative swings in XC . For αP ≪ µ/θ, fP (XC , Y ) is a small
quantity with very little sensitivity. Here again, these deviations can be compensated for by adjusting the
proportional control weight βP (Figure S3C). However, this benefit of increasing βP is not unlimited. For a
given βI , increasing βP excessively beyond a certain value may drive Z1 to be too low to be able to control Z2,
therefore undermining the controller (Figure S2C,F). As with any control design, it is therefore important
to design control weights βI and βP that avoid this regime given a process and its parameters.
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2.2 Design of a derivative control term

To design a derivative control term, we drew inspiration from bacterial chemotaxis in which a bacterium’s
sensing and adaptation circuit is capable of measuring time derivatives of chemoattractant concentrations
as the bacterium swims up or down a gradient [15]. To generate a simple implementation, we adopted a
simplified 2-node circuit of the process from Ma et al. [25]. Adapting this circuit to our purposes, we propose
the following interactions that can perform an approximate time derivative measurement of XC , through
the following equations:

dA

dt
= βAM − γAXC

A

KA +A
− γA0

A (11)

dM

dt
= βMY − γMA

M

KM +M
(12)

The derivative control term proposed for Eq.(8) is then given by Dt(XC , Y ) = βDA, where A is the output of
the derivative motif in Eqs.(11)-(12). This circuit consists of two molecules, A and M , where A is produced
at a rate proportional to M and actively degraded by XC . M is produced at a rate proportional to the
reference signal Y (the signal to be tracked by the controlled process) and actively degraded by A. One
requirement for the derivative computation through this circuit is that the active degradation terms operate
at or near saturation with KA ≪ A and KM ≪ M , over the range of set-point values desired of the process.
This results in the following approximate equations:

dA

dt
= βAM − γAXC − γA0

A (13)

dM

dt
= βMY − γMA (14)

To see how the time-derivative measurement of XC is achieved, we start by taking the time-derivative of
Eq.(13), solving for dM

dt and substituting the resulting expression into Eq.(14), which yields

d2A

dt2
+ γA0

dA

dt
+ βAγMA ≈ −γA

dXC

dt
+ βAβMY (15)

If d2A
dt2 + γA0

dA
dt ≪ βAγMA, then it follows that

A ≈ βMY

γM
− γA

βAγM

dXC

dt
(16)

In Eq.(16), A is proportional to the negative time derivative of the input XC plus a steady state value that
scales with the reference Y . Evidently, the assumptions that lead to Eq.(16) place constraints on the values
of γA0

, βA, and γM given the frequency content of XC , but these are design choices that can be made and
tracked (see Supplemental Information, Section S3, and Figure S4 for a procedure and demonstration to
fulfill this design and its assumptions). When these design constraints are satisfied, the time dynamics of A
during its response to either change in reference Y or perturbations in βC generate an accurate measurement
of dXC

dt (Figure 3A).
As with proportional control, the addition of a derivative term to the I-control improves its transient

response to step Y inputs and perturbations in βC (compare Figure 3C and Figure 2D). Also, like proportional
control, the fact that A in Eq.(16) scales with Y is crucial for the motif to measure the time derivative of XC

over a large dynamic range. To illustrate this point, we compare an Integral-Derivative (ID-, fP (XC , Y ) = 0)
controller in which the production rate of M in the derivative calculation motif does not scale with Y to
the design in which it does (Eq.(12)). The derivative controller that lacks explicit dependence on Y also
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causes loss of perfect tracking (Figure 3B, left panel) and adaptation (Figure 3B, right panel, and Figure
Figure S2B) at low Y levels. Here again, the I-control is not active until Y is high enough to engage it. At
high levels of Y , oscillations also appear for perturbations in βC . By contrast, basal production at low Y
and oscillations at high Y do not manifest if the synthesis rate of M in the derivative control design scales
with Y (Figure 3C). These results were also robust to biochemical noise ( Figure S1C).

Having explored I-, PI- and ID-control, we can now combine all three terms to obtain PID control.
Figure 3D shows how the inclusion of both P and I also improves performance in a manner that is similar
to that of the PI and ID cases (Figure 2D and Figure 3C, respectively). However, here again, care should
be taken in picking the values of the proportional weight βP and derivative weight βD. If they are too
large compared for a given βI , these control terms might undermine the integral control (Figure S2C,D).
In Section 2.4, we further explore how the integral and derivative terms affect the performance of the PID
controller using a more complicated process to be controlled.

2.3 Perturbation analysis of nonlinear PID-control design provides analytical
support for the design

To provide an analytical interpretation for the proposed PID controller, we apply linear perturbation theory
to Eqs.(6-9,11-12). Even though the simulations above were for the particular controlled process in Eq.(5),
the linear analysis is presented for any general controllable process, allowing us to compare our design with
a traditional textbook example of a linear PID system extensively used in engineering [26]. In this case, we
suppose that the purpose is to control a process whose output is xC(t) to a set-point r(t) (Figure 1A). That
is, we want to drive the error e(t) = r(t)− θxC(t) to zero using a traditional linear PID controller. We will
assume that r(t) = µy(t) to make this example directly comparable with the biochemical PID controller.

A traditional PID controller uses an input u(t) into the controlled process that consists of weighted sums
of the error (P-control, kP e(t)), the integral of error (I-control, kI

∫
e(t)dτ), and the time-derivative of error

(D-control, kD
de(t)
dt ) to correct deviations from desired set-point (Figure 1A):

u(t) = kP e(t) + kI

∫
e(t)dτ + kD

de(t)

dt
(17)

A convenient standard framework for analyzing a linear PID-control system is through frequency domain
analysis [26]. A Laplace transform translates time domain signals, e.g. xC(t), to frequency domain signals
xC(s), where s is the frequency domain variable. Assuming zero disturbance (d(s) = 0), xC(s) is given by
xC(s) = u(s)Φ(s), where Φ(s) is the process transfer function between the process input u(s) (the action
delivered by the PID controller) and xC(s) (Figure 1A). Simple calculations then show that the frequency
domain relationship between r(s) = µy(s) and xC(s) for a traditional PID controller is

xC(s) =
[kI + skP + s2kD]Φ(s)

s+ θ[kI + skP + s2kD]Φ(s)
µy(s) (18)

In the frequency domain, steady-state is evaluated at s = 0. Assuming that Φ(s = 0) ̸= 0, the output at
steady-state xC(s = 0) is equal to µy(s = 0)/θ, as required for perfect set-point tracking. This is of course
only the case when kI is non-zero, and therefore integral control is necessary.

Evidently, the biochemical controller we are studying is nonlinear. But we can determine its local
small-signal properties and relate them to the textbook framework above (Figure 1A and Eq.(18)) using
linearization of Eqs.(6-9,11-12) around a steady-state {X1ss , Z1ss , Z2ss , Ass

,M
ss
, XCss

, Y
ss
} achieved for a

desired set-point. This traditional treatment (presented in detail in Supplemental Information, Section S4)
generates equations that hold locally for the behavior of the deviation {x1(t), z1(t), z2(t), a(t),m(t), xC(t)}
from the steady-state values as a result of small perturbations to the system. The total solution is the
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steady state solution plus the perturbed solution; for example, the time-dependent solution for XC(t) would
be XC(t) = XCss + xC(t). Likewise the input Y (t) would be Y (t) = Yss + y(t). Simulations of the
linearized controller compared favorably to the nonlinear PID system for small to moderate perturbations
(Figure 4 for set-point tracking, and Figure S5A-B for parameter perturbations). Evidently, bigger differences
between linearized and nonlinear systems were present for larger perturbations. However these differences
were muzzled by adding the quadratic term ηz1(t)z2(t) of the antithetic reaction to the linearized system,
suggesting that this is the most impactful nonlinearity in the design for parameter regime used.

Using the linearized equations for the biomolecular controller, we can investigate how the transfer function
between y(s) and xC(s) compares with the traditional PID. The frequency domain transfer function of the
linearized biochemical PID controller (see Supplemental Information, Section S4, for derivation) is given by:

xC(s) =

[
βI

s+ηZ1ss

s+ηZ1ss+ηZ2ss
+ 3skP + θβAβM

γAµ skD

]
Φ(s)

s+ θ
[
βI

ηZ1ss

s+ηZ1ss+ηZ2ss
+ skP + s2kD

]
Φ(s)

µy(s) (19)

For the process used in this paper (see Eq.(5)), the transfer function between the process input u(s) and
xC(s) is Φ(s) =

βC

(s+γ1)(s+γC) . Evidently, at steady state, xC(s = 0) = µy(s = 0)/θ, consistent with the full

nonlinear system. In this function, kP is the proportional control gain and kD is the derivative control gain,

which are given by kP = βP

4µ (with kP = βP

αP θ
(αP )2

(αP+µ/θ)2 , for αP ̸= µ/θ in a general proportional term), and

kD = βD

θ
γA

βAγM
, respectively.

While kD and kP only depend on parameters and are therefore constant, the integral gain terms in the
numerator and denominator of Eq.(19) are a function of the frequency variable s. As a result, the linearized
antithetic integral control does not exactly map onto a mathematical representation of a traditional linear
integral controller. However, these two representations converge under clear constraints on the timescale
of the integral controller. Specifically, if smax–the frequency below which resides most of the frequency
content of xC(s) in the closed loop system–is such that smax ≪ ηZ1ss , then the function βI

s+ηZ1ss

s+ηZ1ss+ηZ2ss

is almost constant over all frequencies below smax. Specifically, when this requirement is met then kI ≈
βIZ1ss

(Z1ss+Z2ss )
. Mechanistically, this could be achieved if binding of the two antithetic molecules that constitute

the integral control is much faster than the dynamics of the transcriptional process to be controlled, and this
approximation also improves with increasing Y , which corresponds to increasing Z1ss (See supplementary
section S4 and Figure S5B). Substituting kI into the transfer function in Eq.(19) becomes

xC(s) ≈
[kI + 3skP + θβAβM

γAµ skD]Φ(s)

s+ θ[kI + skP + s2kD]Φ(s)
µy(s) (20)

In this approximate transfer function, kI , kP , and kD are now all constants, and the similarities between
this equation and that of the traditional PID controller in Eq.(18) become clear. Eq.(20) has the same
denominator (poles of the transfer function) as the traditional PID controller in Eq.(18). But, the two
expressions have different numerators (zeros for the transfer function). First, there is a difference in the
numerator term that multiplies the proportional gain (skP versus 3skP ). The proportional control term in a
traditional PID controller acts on the standard tracking error (i.e. kP (µy−θxC) in this case). The structure
of Eq.(9) generates a linearized proportional control function that acts on a different quantity, manifesting
as 3kPµy − kP θxC , which is at the root of the difference in the proportional term. This multiplicity of the
term kP y is in fact the result of Y appearing in multiple places in Eq.(9), which leads also to multiplicity in
the linearization (see Supplementary Information, Section S4).

Second, the term that multiplies the derivative gain in the biochemical design is given by θβAβM

γAµ skD,

while its counterpart in a traditional design would be s2kD. This difference can be explained by the fact that
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the derivative control term in a traditional PID controller acts on the tracking error, i.e. kD(µdy
dt − θ dxC

dt ),
while as we discussed above, the biomolecular implementation of derivative control computes a scaled form
of dXC

dt that is also dependent on the reference Y , but not its derivative. Even with these differences, and for
the designed parameter values we use, the linearized biochemical PID controller showed similar properties
as the classical PID controller for set-point tracking (Figure 4) and parameter perturbations (Figure S5A),
also see Supplemental Information, Section S4 for simulation implementation details and discussion of an
example where some discordance arises.

Eq.(20) and the expressions derived for the effective kI , kP , and kD provide an analytical framework to
discuss the differences in behavior seen for different implementations of the proportional feedback mechanism
of Section 2.1. As mentioned above, kP is constant across set-points for our proposed design of proportional
feedback, at least in the linearized regimen. For other proportional functions that were tested and generated

narrow dynamic range, that is for βP
KP

KC+XC
and βP

(µY/θ)
(µY/θ)+XC

, the linearized proportional gains are given

by kP = βP
KC

θ(KC+µYss/θ)
2 and kP = βP

4µYss
, respectively. For both cases, kP decreases to zero as Y increases,

indicating that kP becomes insignificant at higher Y , leaving only an I-control like behavior (Figure 2A, right
panel). For low Y , where these proportional functions caused basal levels of XC and Z2, the integral control
is not active and Z2 grows at a positive constant rate since Z1 is too low to contribute to its annihilation (see
Figure S2A). While the other variables in the system reach a steady-state, a transfer function is no longer
applicable, nor is kI defined since it depends on the steady-state value of Z2. These analytical considerations
therefore further support the conclusions reached by numerical analyses of the control system in its nonlinear
operation (Figure 2D and Figure 3C).

2.4 PID benefits depend on the process to be controlled and PID gains need
to be tuned

To move our analysis beyond a simple process that only contains a simple transcriptional step, we consider
a more general process connecting X1 to XC with delay and negative feedback defined by the following
equations

dXD1

dt
=

N

τD
X1 −

N

τD
XD1

− γFXC
XD1

XD1
+KF

(21)

dXDi

dt
=

N

τD
XDi−1

− N

τD
XDi

(22)

dXC

dt
= βCXDN

− γCXC (23)

with X1 still given by Eq.(8). For 2 ≤ i ≤ N and γF = 0, the process is a pure delay of τD broken into
N steps. We now consider two specific process examples. First, when γF = 0min−1, τD = 20min, N = 2,
we obtain a process in which the open loop response for a step change in Z1 monotonically increases to
its new steady state and does not contain oscillations (Figure 5A). Second, for τD = 40 min, N = 4, and
γF = 0.2min−1, we generate a process in which a negative feedback loop from XC onto XD1

exists. In this
case, the open loop process response exhibits damped oscillations (Figure 5B). We explore the benefits of
introducing feedback control for the two processes. For the first process, a tuned PI controller can achieve
a dynamic response with almost no overshoot (Figure 5A, bottom plot, blue curve). Increasing kI in this
PI controller is detrimental as it adds some overshoot (Figure 5A, bottom plot, red curve) which cannot
be corrected by adding a derivative control term (Figure 5A, bottom plot, orange curve). By contrast, for
the second process, even a tuned PI controller still generates a closed loop response with a slow oscillating
convergence to the set-point (Figure 5B, bottom plot, blue curve). Here, however, addition of a derivative
control term improves this transient performance (Figure 5B, bottom plot, orange curve). These results
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indicate that the benefits of a full PID controller manifest differently for different biological processes and
furthermore, that the contributions of the different feedback modalities also need to be tuned and refined
based on the specific properties and timescales of the biological process to be controlled. This is similar to
considerations that are routinely taken into account for the design and implementation of control strategies
in technological systems.

2.5 Constructing a PID controller with a different integral controller architec-
ture

We have so far exclusively designed and analyzed proportional and derivative control architectures that are
used with the particular antithetic integral control strategy of Briat et al. [20]. However, given the additivity
of the control terms in Eq.(8), any input from a control design that can implement integral action can be
readily used instead. For example, since the proportional control function fP (XC , Y ) in Eq.(10) has the
tracking error encoded within, any biomolecular device that can integrate this function has the potential of
implementing integral action, and can therefore be used along with the P and D terms we proposed. To see
this, let’s assume that one can construct a variable Z that has a rate of change dictated by the following
equation:

dZ

dt
= βZY

µY

µY + θXC
− γZY

Z

Z +KZ
(24)

In addition to the function βZY
µY

µY+θXC
governing the production of Z, it is also degraded as a function of

Y . If this degradation also occurs at saturation (KZ ≪ Z), we have the approximate equation

dZ

dt
≈ βZY

µY

µY + θXC
− γZY (25)

At steady-state,

XC ≈
[
βZ

γZ
− 1

]
µ

θ
Y (26)

where one sees that XC is proportional to Y , hence implementing perfect tracking. To ensure that both Y
and XC are positive, we are evidently constrained by the inequality βZ

γZ
> 1.

To implement a PID controller, Z can then be input into the control of X1 in the same fashion as the
output of the antithetic motif,

dX1

dt
= β∗

IZ + βPY
µY

µY + θXC
+ βDA− γ1X1 (27)

We investigated the use of this new integral controller design as a stand alone, or in PI and ID configurations
(replacing Eqs.(6-8) with Eqs.(24,27)). To compare this new design with the antithetic design, we enforced
γZ

βZ
= 1

2 , which preserved XCss
= µY/θ. In the linearized regimen, and unlike the antithetic controller,

the new design generated a constant integral weight kI =
β∗
I βZ

4µ (for derivation of kI for this new PID see

Supplemental Information, Section S4.1), which we set to be equal to the highest generated control weight of
the antithetic design. The values for the proportional and derivative controller were kept unchanged and thus
both designs share the same kP and kD. For all perturbations tested, the new integral controller exhibited
the same properties as the antithetic implementation (Figure 6A), and its performance was improved by
addition of the proportional and derivative control terms (Figure 6B-C, respectively). Taken together, these
results indicate that the PID design we propose is modular, and that swapping implementations can be
readily done as more designs emerge and are adopted.
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3 Discussion

Progress in synthetic biology is ushering a future in which predictable interventions in cellular functions and
behaviors are becoming possible. Achieving precise control over the intensity, timing, and context of these
interventions will generate quantum leaps in many fields, including therapeutic and biotechnological appli-
cations. An important cornerstone of such progress is the establishment of capabilities that allow engineered
cells, designed for example to deliver a therapeutic function, to regulate this function, deploying it with
precision and up-regulating or down-regulating its activity based on the operating environment or internal
cellular states. Deploying feedback control of this type will require theoretical and computational studies
that deliver plausible design strategies, study their properties and chart their limitations. Importantly, these
studies need to take into account the specific properties of the biological substrate, as well as its physical
and chemical biological constraints. In doing so, they can transplant crucial notions from the mature field
of feedback control field of technological systems into the design and engineering of biology, also updating
them as necessary.

Inspired by this notion, we present in this work a design schema for a biology-specific proportional-
integral-derivative (PID) controller. PID control has been one of the main workhorses of modern engineering,
delivering facile, modular, and tunable control for many applications that we encounter in our every day life,
for example our house thermostat. A biochemical PID control strategy endowed with the same properties
might also prove to be a general enabling technology for many synthetic biology applications. Our launching
design was that for an integral (I) control strategy based on a simple antithetic relationship between two
molecules developed by Briat et al. [20], which we updated with newly designed biochemical proportional
(P) and derivative (D) controllers. Much like their technological counterparts, these additional control terms
alleviate the stability constraints of the use of integral controller alone, and provide a malleable and tunable
platform to modulate transient dynamics of a controlled system, for example damping down or shortening
oscillations. Importantly, through analytical methods, we could relate these designs directly to a traditional
formulation of a PID controller, an analogy that facilitates the design and analysis of the biochemical
controller based on established theories and practices in other fields. An important feature of the design we
propose is its modularity, which we illustrate by exploring PI and ID designs as stand-alone possibilities, and
also by swapping the antithetic integral controller with a new implementation inspired by the proportional
design strategy (Section 2.5). These properties might prove to be essential for applications in metabolic
engineering and cellular therapeutics where different considerations and tradeoffs might be at play, and
hence different combinatorial variations of the three terms (P, I, or D) might be needed and appropriate.

While the work we report here presents a design for a general biochemical PID controller, as well as
plausible suggestions in terms of molecular building blocks, much work remains to be done to accelerate their
implementation and testing. For example, design and implementation of a PID controller for technological
systems usually proceeds by experimenting on the system to be controlled in order to determine its properties
and hence the controller parameters that might be the most suitable. In our case, success of the controller
design relies on identifying the slower timescale of the process and positioning clearly defined parameters of
the proportional and derivative controller accordingly. Often time, controller parameters are also fine-tuned
in real time during system operation. Carrying out the same process for a biological controller is a formidable
challenge, given the long timescales required to build and test in a cell a large number of control strategies
or parameter variants. We are hopeful that progress in cellular engineering, as well as more studies that
tackle efficient system identification in biological systems will make this cycle more productive, proceeding
on timescales that are compatible with rapid deployment of these technologies to various applications.
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Supplemental Information

S1 Full chemical equations for PID circuit

The full set of chemical equations for the circuit in Figure 1B, which depict a full PID controller, are

∅ fI(Z1)+fP (XC ,Y )+Dt(XC ,Y )−→ X1
γ1X1−→ ∅ (s1a)

∅ µY−→ Z1 (s1b)

∅ θXC−→ Z2 (s1c)

Z1 + Z2
ηZ1Z2−→ ∅ (s1d)

∅ βAM−→ A
fA(XC ,A)+γA0

A
−→ ∅ (s1e)

∅ βMY−→ M
fM (A,M)−→ ∅ (s1f)

∅ βCX1−→ XC
γCXC−→ ∅ (s1g)

where fI(Z1) = βIZ1, fP (XC , Y ) = βPY
µY

µY+θXC
, Dt(XC , Y ) = βDA, fA(XC , A) = γAXC

A
KA+A , and

fM (A,M) = γMA M
KM+M .

S2 Experimental realization of proportional control function

Here, we describe a design for realizing the proportional function fP (XC , Y ) from Eq.(9) in main text. Many
designs can achieve this function, but we focus on one that relies on technologies available in our lab.

The main building block in this design is an inducible transcription factor TY , which is constitutively
expressed at high levels. In the absence of an activating ligand, this transcription factor resides outside the
nucleus and it is therefore inactive. TY is, for example, a synthetic chimeric transcription factor that has
an activating ligand binding domain (LBD) [27]. In the presence of the cognate ligand, TY is activated and
translocates to the nucleus where it activates a target promoter pTP

. We can modulate the level of active
TY by adjusting the ligand concentration Y , predictably achieving a level of activated transcription factor
TY ∗ equal to TY ∗ = GPY [27].

We assume that TY ∗ and the output of the process, XC , can compete for a binding site at the promoter
pTP

(see Figure S3A). At the promoter, either TY ∗ is bound, XC is bound, or neither is bound. Therefore,
there are three possible promoter states, and transcription can occur only in the active TY -bound state
(TY ∗). Assuming these binding events occur faster than transcription itself, the transcription rate of gene
TP can be computed to be:

H(XC , TY ) = β0
RPTY ∗

RPTY ∗ +XC + ϵP

≈ β0
RPGPY

RPGPY +XC + ϵP
(s2)

RP is the ratio of the dissociation constants of TY and XC , and ϵP is the dissociation constant of XC . Here
we assume that TY and XC have the same binding kinetics to pTP

. This assumption and the competition
at the binding site can be achieved when TY and XC are exactly the same transcription factor protein, but
XC has a crippled transcription activation domain. This can be readily achieved with modular synthetic
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transcription factors [27]. In this case, RP ≈ 1. Either way, we set RPGP = αP to get

H(XC , TY ) ≈ β0
αPY

αPY +XC + ϵP
(s3)

If we choose the minimum set-point to be αPY ≫ ϵP , then such a design would generate the first proportional
function analyzed in the main text that scales with the input Y .

To realize the final proportional function, we further assume that the output of the motif above, TP , is
a transcription factor whose dynamics are governed by the equation:

dTP

dt
= H(XC , TY )− γTP

TP (s4)

If γTP
has a fast decay rate, then TP ≈ H(XC , TY )/γTP

. Like TY , TP is a cytosolic (inactive) transcription
factor that needs to be activated by a ligand to go into the nucleus. Here again, we can modulate externally
the active TP to be proportional to Y through changing ligand concentration, setting the activated tran-
scription factor level to T ∗

P = FPY TP = FPY H(XC , TY )/γTP
. If X1 is now generated at a rate βnT

∗
P by

binding of T ∗
P to a cognate promoter, then this generates the proportional control equation:

fP (XC , Y ) =
βnFP

γTP

Y
αPY

αPY +XC + ϵC

= βPY
αPY

αPY +XC + ϵC
(s5)

S3 Realizing the derivative term for the PID-control circuit

Here, we present details of Eq.(16), the approximate time derivative representation of XC from Section 2.2
in the main text. Transforming Eq.(15) to the frequency domain with frequency variable s yields

s2A(s) + γA0
sA(s) + βAγMA ≈ −γAsXC(s) + βAβMY (s) (28)

Recall the approximation above (as in Eq.(15)) is from the assumption that the active degradation in the
system is occurring at or near saturation, i.e. KA ≪ A and KM ≪ M . Solving for A(s) yields

A(s) ≈ − γAsXC(s)

s2 + γA0s+ βAγM
+

βAβMY (s)

s2 + γA0s+ βAγM
(s6)

To realize derivative control, we need to design parameter regimes for this motif where A(s) is approximately
proportional to sXC(s), the frequency domain representation of the time derivative of XC .

To do so, we need to design the parameters of the derivative motif so that the poles of the bandpass

transfer function − γAsXC(s)
s2+γA0

s+βAγM
become influential only at high frequencies, that is frequencies that are

not relevant to XC(s). To insure that, let’s define F to be F =
∫ sf
0

|XC(s)|ds/
∫∞
0

|XC(s)|ds. One can
evaluate F for different values of sf . Let smax be defined as the frequency at which F reaches an acceptable
design values, for example F = .95. This is the frequency below which resides most of the frequency content
of XC(s). A conservative design choice is to suppose that the parameter values of the derivative motif are
chosen such that βAγM ≫ |s2max + γA0

smax|, then we obtain

A(s) ≈ −γAsXC(s)

βAγM
+

βMY (s)

γM
(s7)
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The expression sXC(s) in the frequency domain corresponds to dXC

dt in the time domain. Transforming
back to the time-domain yields Eq.(16) in the main text. This result implies that the condition d2A/dt2 +
γA0

dA/dt ≪ βAγMA also holds since d2A/dt2 and γA0
dA/dt are not present in Eq.(16). It is worth noting

here that the design of these parameters should be an iterative process, in which approximate values are
picked, the closed-loop assessed, then the parameter values iteratively adjusted in order to correctly position
the frequency response of the derivative motif. An illustration of this concept is shown in (Figure S4).

S4 The control circuit equations linearized about a set-point

Our goal here is to linearize the biochemical PID controller and process to relate it to the textbook linear
PID case discussed in Section 2.3. We will derive the frequency-domain transfer function between µy and
θxc for our linearized PID biochemical controller.

As a means of evaluating perturbations about a set-point, we linearized Eqs.(6-8) and the simplified
derivative equation Eq.(16) around some steady state Y

ss
, XCss

, X1ss , Z1ss , Z2ss , Ass
. The steady-state values

are computed as:

0 = µY
ss
− ηZ1ssZ2ss (s8a)

0 = θXCss
− ηZ1ssZ2ss (s8b)

0 = βIZ1ss + βPYss

αPYss

αPYss
+XCss

+ βDA
ss
− γ1X1ss (s8c)

0 = βMY
ss
− γMA

ss
(s8d)

The linearized time-dependent perturbed system is

dz1
dt

= µy − Z2ssηz1 − ηZ1ssz2 (s9a)

dz2
dt

= θxC − ηZ2ssz1 − ηZ1ssz2 (s9b)

dx1

dt
= βIz1 + βP

[
2αPYss

αPYss +XCss

−
(

αPYss

αPYss +XCss

)2]
y − βPYss

αPYss

(αPYss +XCss)
2
xC + βDa

−γ1x1 (s9c)

a =
γA

βAγM

dxC

dt
+ βMy/γM (s9d)

The equations were derived by computing the Jacobian matrix of the nonlinear system and evaluating at
steady-state [28]. The approximate solution is locally equal to the steady state solution plus the perturbed
solution, for example, the time-dependent solution for X1 would be X1(t) = X1ss + x1(t). Likewise, the
input Y would be Y (t) = Yss + y(t). Transforming this set of linear equations into the frequency domain,
we obtain:

sz1(s) = µy(s)− ηz1(s)Z2ss − ηZ1ssz2(s) (s10a)

sz2(s) = θxC(s)− ηz1(s)Z2ss − ηZ1ssz2(s) (s10b)

sx1(s) = βIz1(s) + βP

[
2αPYss

αPYss
+XCss

−
(

αPYss

αPYss +XCss

)2]
y(s)− βPYss

αPYss

(αPYss +XCss
)2
xC(s) + βDa(s)

−γ1x1 (s10c)

a(s) =
γA

βAγM
sxC(s) + βMy/γM (s10d)
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To facilitate notation, we designate kP θ = βPY
θ

αPYss

(αPYss+XCss )
2 θ = βP

αP θ
(αP )2

(αP+µ/θ)2 θ. When αP ≈ µ/θ to

position the proportional controller in its optimal dynamic range, kP θ = βP

4µ θ. For the rest of the derivation

we assume αP ≈ µ/θ. We also designate kDθ = βD
γA

βAγM
(see Section 2.2). Substituting these constants and

the relationship for a(s) in Eq.(s10d) into Eq.(s10c) the equation becomes

sx1(s) = βIz1(s) + [3kP +
θβAβM

γAµ
kD]µy(s)− [kP + skD]θxC(s)− γ1x1(s) (s11)

Let f(s) be the transfer function of the linearized process to be controlled by x1(s). Thus, xC(s) = f(s)x1(s).
Using this relationship into Eq.(s11), we obtain after rearrangement

s+ γ1
f(s)

xC(s) = βIz1(s) + [3kP +
θβAβM

γAµ
kD]µy(s)− [kP + skD]θxC(s) (s12)

We then use Eqs.(s10a-b) to derive an expression of z1(s) in terms of xC(s) and y(s), and use this expression
in equation above to generate:

s+ γ1
f(s)

xC(s) =
βI(s+ ηZ1ss)µy(s)− βIηZ1ssθxC(s)

s2 + (ηZ1ss + ηZ2ss)s
+ [3kP +

θβAβM

γAµ
kD]µy(s)− [kP + skD]θxC(s)

(s13)

Letting Φ(s) = f(s)
s+γ1

, we can rearrange Eq.(s13) to obtain the frequency domain relationship between xC(s)

and y(s) of Eq.(19) given by:

xC(s) =

[
βI

s+ηZ1ss

s+ηZ1ss+ηZ2ss
+ 3skP + θβAβM

γAµ skD

]
Φ(s)

s+ θ
[
βI

ηZ1ss

s+ηZ1ss+ηZ2ss
+ skP + s2kD

]
Φ(s)

µy(s) (s14)

At steady state, i.e. s = 0, it is easy to see that µy(s = 0) = θxC(s = 0), consistent with the full nonlinear
system. While kD and kP are constants that are dependent on parameters, the integral gain terms in the
numerator and denominator of Eq.(s14) are a function of the frequency variable s. However, if the upper-
bound of the frequency content of xC(s), i.e. smax is known, then the parameter η of the derivative controller
can be designed such that smax ≪ ηZ1ss . Let’s again define F to be F =

∫ sf
0

|xC(s)|ds/
∫∞
0

|xC(s)|ds where
F is the proportion of the area of the integral of the magnitude of xC(s) below sf . Let smax be defined as the
frequency at which F reaches an acceptable design value, for example F = .95. This is the frequency below
which resides most of the frequency content of xC(s). In the case where smax ≪ ηZ1ss , the integral terms in

the numerator and denominator can be approximated as kI =
βIZ1ss

Z1ss+Z2ss
. This approximation conforms the

numerator and denominator terms that are associated with integral control to the traditional PID expression.
Making this approximation in Eq.(19) and letting the integral control weight kI =

βIZ1ss

Z1ss+Z2ss
yields Eq.(20)

in the main text. For the processes we use in this paper, the highest calculated smax was approximately
0.25 radmin−1. For our lowest input values Y = 60nM, ηZ1ss ≈ 2.5 radmin−1, about an order of magnitude
larger than smax. Thus, even for this worst case, smax ≪ ηZ1ss . For Y = 300 nM, ηZ1ss ≈ 12 radmin−1. In
general for larger Y , ηZ1ss scales approximately with Y .

While the analyses above derive linearization and proportional gains for the final form of the proportional
control, similar treatment can be extended to the other proportional control functions that are analyzed and
compared. For the proportional control function βP

KC

KC+XC
, we get kP θ = βP

KC

(KC+XCss )
2 = βP

KC

(KC+µYss/θ)2
.

And for the proportional control function βP
αPY

αPY+XC
, we get kP θ = βP

αPYss

(αPYss+XCss )
2 = βP

αP θYss

(αP )2

(αP+µ/θ)2 θ

which becomes kP θ = βP

4αP θYss
θ for αP ≈ µ/θ.
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Finally, to assess the accuracy of the linearization for the parameter values used, we simulated the
linearized system and compared it to the full nonlinear system (Figures 4 and Figure S5). In addition, we
also simulated a traditional PID controller where we coupled the process equation (Eq.(5) with an X1 that
uses the traditional error terms

dx1

dt
= kI

∫ t

0

[µy(t′)− θxC(t
′)]dt′ + kP [µy − θxC ]− kDθ

dxC

dt
− γ1x1 (s15)

This can be used to compare the linearized biochemical controller to the traditional one, especially scruti-
nizing the approximation made for kI . Specifically, the transfer function for the traditional PID controller
s15 for a step change ∆βC in βC is:

xC(s) =

s∆βCX1ss

s+γ1

s+ θ
[
βI

ηZ1ss

ηZ1ss+ηZ2ss
+ skP + s2kD

]
Φ(s)

(s16)

That of the biochemical controller is:

xC(s) =

s∆βCX1ss

s+γ1

s+ θ
[
βI

ηZ1ss

s+ηZ1ss+ηZ2ss
+ skP + s2kD

]
Φ(s)

(s17)

Comparing both, once can see that the integral control gains become more similar to each other as ηZ1ss

increases, which occurs when Y increases. For our examples in this paper, Yss = 300 nM is a large enough
value (Figure S5C) such that the linearized biochemical PID and the traditional linear PID have a very
similar response and hence the linearized biochemical PID is exhibiting a constant kI in this regime.

For the system simulated to generate Figures 4A and Figure S5A, the traditional linear PID agree well
with the linearized biochemical PID. For the case of the process with delay only (Section 2.4), we simulated
the linearized version and the traditional linear controller for case 1 from Figure 5A. The full system and
the linearized version agree well while the traditional linear controller has a much slower convergence rate
(Figure S5D). Given that there is no derivative term in this case, the only source for the differences is the
3kP y (linearized version) versus kP y (traditional). We simulated the linearized biochemical controller but
dividing the 3kP y by 3, which resulted in identical results for the traditional and biochemical controller
(Figure S5D, linearized (kP y)). Interestingly the 3kP y term in the biochemical controller helps accelerate
convergence relative to the traditional case.

S4.1 Linearized analysis for PID controller with the new integral implementa-
tion

We can carry the same linearization analyses as above to Eq.(25)

dz

dt
≈ βZ

[
2αPYss

αPYss +XCss

−
(

αPYss

αPYss +XCss

)2]
y − βZYss

αPYss

(αPYss +XCss
)2
xC − γZy (29)

whose frequency domain equation when αP = µ/θ and γZ = βZ/2 and θXCss
= µYss is

sz(s) ≈ 3
βZ

4µ
µy − βZ

4µ
θxC − βZ

2µ
µy

≈ βZ

4µ
[µy − θxC ] (30)
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We can then take Eq.(s12) which relates the xC(s) to y(s) for the antithetic PID and replace the antithetic
integral control term βIz1(s) with the new integral control term β∗

I z(s) to get

s+ γ1
f(s)

xC(s) = β∗
I z(s) + [3kP +

θβAβM

γAµ
kD]µy(s)− [kP + skD]θxC(s)

= [β∗
I

βZ

s4µ
+ 3kP +

θβAβM

γAµ
kD]µy(s)− [β∗

I

βZ

s4µ
+ kP + skD]θxC(s) (s18)

where we set kI = β∗
I
βZ

4µ to get the transfer function

xC(s) =

[
kI + 3skP + θβAβM

γAµ skD

]
Φ(s)

s+ θ
[
kI + skP + s2kD

]
Φ(s)

µy(s) (s19)

which has exactly the same form as the transfer function for the antithetic system, Eq.(20). The only

difference being kI = β∗
I
βZ

4µ for the new PID while kI =
βIZ1ss

(Z1ss+Z2ss )
for the antithetic PID, a function

of the steady state Z1 and Z2 values. When simulating the new PID in Section 2.5, we enforce that
kI = 0.058 = β∗

I
βZ

4µ , where we set β∗
I = 0.058 4µ

βZ
to obtain the same kI value for both strategies for fair

comparison.
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Table 1. Simulation parameter values

βI βP βD µ η θ γ1 βC γC KC βP∗
Fig. min−1 min−1 min−1 min−1 nM−1 min−1 min−1 min−1 nM nM nM

min−1 min−1

2A 0.06 0 0 1 0.01 0.3 0.1 0.1‡ 0.1 – –
2B 0.06 – 0 1 0.01 0.3 0.1 0.1‡ 0.1 300 90
2C 0.06 – 0 1 0.01 0.3 0.1 0.1‡ 0.1 – 90
2D 0.06 0.3 0 1 0.01 0.3 0.1 0.1‡ 0.1 – –
3A 0.06 0 0.56 1 0.01 0.3 0.1 0.1‡ 0.1 – –
3B 0.06 0 0.56 1 0.01 0.3 0.1 0.1‡ 0.1 – –
3C 0.06 0 0.56 1 0.01 0.3 0.1 0.1‡ 0.1 – –
3D 0.06 0.15 0.28 1 0.01 0.3 0.1 0.1‡ 0.1 – –
4 0.06 0.15 0.28 1 0.01 0.3 0.1 0.1 0.1 – –
6A 0.0576∗ 0 0 1 0.01 0.3 0.1 0.1‡ 0.1 – –
6B 0.0576∗ 0.3 0 1 0.01 0.3 0.1 0.1‡ 0.1 – –
6C 0.0576∗ 0 0.6 1 – 0.3 0.1 0.1‡ 0.1 – –

γA0
βA γA γM KA KM βM∗ βM βZ γZ KZ

Fig. min−1 min−1 min−1 min−1 nM nM nM min−1 min−1 min−1 nM
min−1

2A – – – – – – – – – – –
2B – – – – – – – – – – –
2C – – – – – – – – – – –
2D – – – – – – – – – – –
3A 0.1 1.5 1.5 1.5 1 1 – 0.4167 – – –
3B 0.1 1.5 1.5 1.5 1 1 125 0.4167 – – –
3C 0.1 1.5 1.5 1.5 1 1 – 0.4167 – – –
3D 0.1 1.5 1.5 1.5 1 1 – 0.4167 – – –
4 0.1 1.5 1.5 1.5 1 1 – 0.4167 – – –
6A 0.1 1.5 1.5 1.5 1 1 – 0.4167 4 2 1
6B 0.1 1.5 1.5 1.5 1 1 – 0.4167 4 2 1
6C 0.1 1.5 1.5 1.5 1 1 – 0.4167 4 2 1

‡ Unless directly perturbed (e.g. βC = [0.1, 0.15, 0.2]min−1).
∗ Corresponds to βI∗ parameter in the alternative PID system (see Section 2.5).
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Fig 1. Schematics of an engineering and biomolecular Proportional-Integral-Derivative
(PID) controller. (A) Traditional textbook schematic of PID control: Time-dependent regulation error,
e(t) = r(t)− w(t) = µy(t)− θXC(t), is continuously computed and processed by the proportional, integral,
and derivative control terms. The control terms are summed up to generate u(t), the control action that is
then fed into the process Φ(t). The objective is to eliminate the regulation error signal e(t), driving it to
zero after a disturbance to the process. (B) Schematic of biomolecular PID control. This design builds on
the antithetic motif (blue box) circuit from Briat et al. [20]. We add proportional (purple box) and
derivative (green box) modules. Like in the traditional PID design, the integral control term (βIZ1), the
proportional control term (fP (XC , Y )) and derivative control term (Dt(XC , Y )) are additive in the
actuation of X1, which is the first molecular species of the controlled process.
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Fig 2. Addition of appropriate proportional control function to integral control improves
transient dynamics. (A) Time dynamics of output XC(t) following a change in the set-point Y (left
panel) or in process parameter βC (right panel). The outcome of βC perturbation is also shown for different
values of Y = [60, 180, 300, 540] nM. Simulations are shown for process in Eq.(5) and controller in Eqs.(6-8)
of main text. For I-control, fP (XC , Y ) = 0 and Dt(XC , Y ) = 0 in these equations. (B-D) Time dynamics
of output XC(t) for different proportional control fP functions (PI-control, Dt(XC , Y ) = 0). We position
XC at the same value for all control regimes tested for a chosen set-point value of Y = 300 nM, hence
allowing for a controlled subsequent comparison. See Table 1 for parameter values used in each simulation.
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Fig 3. Addition of appropriate derivative control function to integral control improves
transient dynamics. (A) Time dynamics of A and a numerical approximation of dXC/dt for the
derivative motif in Eqs.(11-12). Plots shown are for Y = 300 nM and perturbations to βC (see inset). (B)
Time dynamics of output XC(t) following a change in the set-point Y (left panel) or in process parameter
βC (right panel). The outcome of βC perturbation is also shown for different values of
Y = [60, 180, 300, 540] nM. Simulations are shown for process in Eq.(5) and controller in Eqs.(6-8) of main
text with fP (XC , Y ) = 0. Derivative function Dt(XC , Y ) is given by Dt(XC , Y ) = βDA, where A is the
output of the derivative motif in Eqs.(11-12), except that in this case, the equation for M does not depend
on set-point Y . (C) Time dynamics of output XC(t) for full derivative control design in Eqs.(11-12) with
dependence of M on set-point Y . (D) Simulations for full PID controller under the same conditions as in
panels (A-C). See Table 1 for parameter values used in each simulation.
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Fig 4. Comparison of nonlinear PID control to its linearized equations in response to
perturbations in set-point Y . The time dynamics of XC , Z1 and Z2 are plotted for the full model
(dashed blue, Eqs.(5-8,11-12)), the linearized model (yellow, Eq.(s9)), and the linearized model plus
quadratic correction term, ηz1(t)z2(t) (red). Models were simulated with βI = 0.06min−1, βP = 0.15min−1

and βD = 0.28min−1. All other parameters are listed in Table 1. Y values are shown in the top panel.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/303545doi: bioRxiv preprint 

https://doi.org/10.1101/303545
http://creativecommons.org/licenses/by-nc-nd/4.0/


25

3000 3500 4000 4500 5000 5500 6000 6500 7000

Minutes

700

800

900

1000

1100

1200

X
C

 [
n

M
]

PI (case 1)

PI (case 2)

PI (case 2) + D 

Set-point: µ Y / θ

-100 0 100 200 300 400

Minutes

0

50

100

150

X
C

 [
n

M
]

-100 0 100 200 300 400

Minutes

0

50

100

150

X
C

 [
n

M
]

PI

PI+D

Set-point: µ Y / θ

3000 3500 4000 4500 5000 5500 6000 6500 7000

Minutes

600

700

800

900

1000

1100

1200

X
C

 [
n

M
]

1

A B
Process with delay only Process with delay and negative feedback

X
1

X
C

X
D1

X
D2 X

D3
X

D4
X

1
X

C
X

D1
X

D2

Open loop responseOpen loop response

Set-point tracking 

    (closed loop)

Set-point tracking 

    (closed loop)

Fig 5. PID benefits depend on the process to be controlled and PID gains need to be tuned
accordingly. Panels A-B: Top illustration shows a molecular diagram of the process to be controlled,
middle plot shows the open loop response of process to a step change in Z1, and the bottom plot shows
set-point tracking dynamics for different examples of parameters for the feedback controller. (A) Process
with just delay (N = 2, τD = 20min, and γF = 0min−1). Open loop response does not show pronounced
oscillations. Tuned PI-controller (case 1: with kI = 0.00375, kP = 0.09, and kD = 0) generates set-point
tracking with satisfactory dynamics. Change in kI (case 2: kI = 0.0046, kP = 0.09, and kD = 0) generates
a suboptimal transient response, and addition of derivative control term (case 2 + D: kI = 0.0046,
kP = 0.09, and kD = 0.5) does not lead to any improvement. (B) Process with both delay and negative
feedback (N = 4, τD = 40min, and γF = .2min−1). Open loop response shows damped oscillations. Tuned
PI controller (kI = 0.02, kP = 0.03, and kD = 0) generates set-point tracking with oscillations. Addition of
a derivative control term (PI+D: with kI = 0.02, kP = 0.03, and kD = 4) improves the transient response.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/303545doi: bioRxiv preprint 

https://doi.org/10.1101/303545
http://creativecommons.org/licenses/by-nc-nd/4.0/


26

0   2000 4000

Minutes

0

500

1000

1500

2000

2500

X
C
 [

n
M

]

0

500

1000

1500

2000

2500

X
C
 [

n
M

]

0

500

1000

1500

2000

2500

X
C
 [

n
M

]

C

.

.Y
 [

n
M

]

A

B

C

Y [nM]

0   2000 4000

Minutes

Y [nM]

Fig 6. Proportional and derivative control terms improve adaptation dynamics using a new
integral controller design. (A) Time dynamics of output XC(t) following a change in the set-point Y
(left panel) or in process parameter βC (right panel). The outcome of βC perturbation is also shown for
different values of Y = [60, 180, 300, 540] nM. Simulations are shown for process in Eq.(5) and new integral
controller design in Eqs.(24,27) (I-control; fP (XC , Y ) = 0 and Dt(XC , Y ) = 0). (B) Time dynamics of
output XC(t) with proportional control (PI-control; Dt(XC , Y ) = 0) using new integral controller design.
(C) Time dynamics of output XC(t) with derivative control (ID-control; fP (XC , Y ) = 0) using new
integral controller design. Parameters used in each panel are listed in Table 1.
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Table S1. Simulation parameter values in Supplementary Figures

βI βP βD µ η θ γ1 βC γC ϵC αP

Fig. min−1 min−1 min−1 min−1 nM−1 min−1 min−1 min−1 nM nM
min−1 min−1

S1A 0.06 0 0 1 0.01 0.3 0.1 0.1‡ 0.1 – –
S1B 0.06 0.3 0 1 0.01 0.3 0.1 0.1‡ 0.1 – –
S1C 0.06 0 0.56 1 0.01 0.3 0.1 0.1‡ 0.1 – –
S2A 0.06 – 0 1 0.01 0.3 0.1 0.1 0.1 – –
S2B 0.06 0 0.56 1 0.01 0.3 0.1 0.1 0.1 – –
S2C 0.06 1 0 1 0.01 0.3 0.1 0.1 0.1 – –
S2D 0.06 0 1.5 1 0.01 0.3 0.1 0.1 0.1 – –
S2E 0.06 0.5 0.75 1 0.01 0.3 0.1 0.1 0.1 – –
S2F 0.06 0.3 0 1 0.01 0.3 0.1 0.2 0.1 – 5
S3B 0.06 0.3∗ 0 1 0.01 0.3 0.1 0.1‡ 0.1 500 –
S3C 0.06 0.3∗ 0 1 0.01 0.3 0.1 0.1‡ 0.1 – [...]†

S5 0.06 0.3 0.28 1 0.01 0.3 0.1 0.1‡ 0.1 – –

γA0
βA γA γM KA KM βM∗ βM KC βP∗

Fig. min−1 min−1 min−1 min−1 nM nM nM min−1 nM nM
min−1 min−1

S1A – – – – – – – – – –
S1B – – – – – – – – – –
S1C 0.1 1.5 1.5 1.5 1 1 – 0.4167 – –
S2A – – – – – – – – 300 90
S2B 0.1 1.5 1.5 1.5 1 1 125 – – –
S2C – – – – – – – – – –
S2D 0.1 1.5 1.5 1.5 1 1 – 0.4167 – –
S2E 0.1 1.5 1.5 1.5 1 1 – 0.4167 – –
S2F – – – – – – – – – –
S3B – – – – – – – – – –
S3C – – – – – – – – – –
S5 0.1 1.5 1.5 1.5 1 1 – 0.4167 – –

‡ Unless directly perturbed (e.g. βC = [0.1, 0.15, 0.2]min−1).
∗ Except when stated otherwise.
† Multiple values: αP = [0.5, 0.75, 1, 1.25, 1.5] µ

θ .
†† Multiple values: KA = [1, 10, 100] nM.
††† Multiple values: KM = [1, 100, 1000] nM.
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Supplementary Figures

Figure S1
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Proportional and derivative control terms improve adaptation dynamics even in the presence
of biochemical noise. The model in Eqs.(5-8,11-12) of main text was simulated using the stochastic
simulation algorithm. (A) Time dynamics of output XC(t) in a single cell following a change in the set-point
Y (left panel) or in process parameter βC (right panel) for Y = 300 nM when using an integral controller only
(I-control; fP (XC , Y ) = 0 and Dt(XC , Y ) = 0). (B) Same plots as in (A) but after addition of proportional
control to integral control (PI-control; Dt(XC , Y ) = 0). (C) Same plots as in (A) but after addition of
derivative control to integral control (ID-control; fP (XC , Y ) = 0). See Table S1 for parameter values used
in each simulation.
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Figure S2
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Suboptimal performance occurs when the Proportional or Derivative controllers are too strong.
Z2 levels increase linearly over time when the (A,C) proportional, (B,D) derivative, or (E) a combination
of these are too strong and the production of Z1 is too small to compensate for the production of Z2.
This occurs, for example, for low Y set-point values. In all plots the state variables reach a steady-state
except for Z2. (A,B) Plots of all state variables for controllers in which the proportional (A) or derivative
(B) terms do not scale with the setpoint Y . In these cases, Y = 60nM is too small for the strength of
the proportional and derivative functions, respectively (see Fig. 2A and Fig. 3B). (C-E) Plots of all state
variables for controllers PI and ID designed in this work, in which controller scales with setpoint Y . When
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βP and βD, or a combination of these, are too high, loss of integral function is also observed. (F) When
αP ̸= µ/θ is too high (see Figure S3C), loss of integral control also occurs. See Table S1 for parameter values
used in each simulation.
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Figure S3

*

Proportional function realization and non-ideal cases. (A) Proposed experimental realization of the
proportional control function fP (XC , Y ) = βPY

αPY
αPY+XC+ϵC

(Eq. s5). (B) [Left panel] Time dynamics of
output XC(t) following a change in process parameter βC for Y = 300 nM in a model with a PI controller
when αP = µ/θ = 3.33 and ϵC = 500 nM. The example with ϵC = 0 is shown on the same plot as a
dotted line for comparison. [Right panel] Same plot with ϵC = 500 nM, but for an increased value of βP
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from βP = 0.3min−1 to βP = 0.4min−1. In general, increasing ϵC weakens the proportional feedback,
but this effect can be compensated for by increasing the value of the proportional weight βP . (C) Time
dynamics of output XC(t) following a change in process parameter βC for Y = 300 nM in a model with a
PI controller when αP ̸= µ/θ and ϵC = 0nM. In all cases, the example with αP = µ/θ = 3.33 is shown
as a dotted line for comparison. Last column showing different values of βP illustrates that decreasing αP

weakens the proportional feedback and that this effect can be compensated for by increasing the value of βP .
However, for large enough αP (e.g. αP = 5), the integral controller is compromised (see Figure S2F for Z1

and Z2 dynamics). But, this again can be compensated for by decreasing βP . This illustrates the iterative
design process that should be undertaken in these systems. See Table S1 for parameter values used in each
simulation.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/303545doi: bioRxiv preprint 

https://doi.org/10.1101/303545
http://creativecommons.org/licenses/by-nc-nd/4.0/


33

Figure S4
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Illustration of design choices and parameter constraints of derivative motif. (A) Simulation of
Eqs.(13-14) with parameter values γA = 31.4min−1, βA = γA0

= γM = 1.57min−1, βMY = 1.57 nMmin−1.
XC is an input to the derivative motif, and is simulated to be a Gaussian of width τ and amplitude 1,
(XC = exp (− 1

2 (
t−t0
τ )2), where τ = [80, 40, 2]min. Along with XC(t) we plot −dXC(t)/dt/max |dXC(t)/dt|

and (A(t) − Ass)/max |A(t)−Ass| where Ass = βMY
γM

, normalized in this fashion for comparison between

−dXC(t)/dt and A(t). For τ = 40 and 80 minutes (i.e. lower frequency content) A is accurately representing
−dXC/dt, but once τ is too small (τ = 2min), A starts to deviate from −dXC/dt. (B) Frequency domain
representation of XC(s) and transfer function H(s) where s = jω of the derivative motif. For smaller τ = 2,
XC(s) has higher the frequency content that substantially overlap withH(jω) for the choice of parameters for
the derivative motif. This violates the condition that βAγM ≫ |s2max+γA0

smax| (here smax ≈ 1.57 rad/min,
i.e. the value of ω where |H(jω)| peaks). By contrast, for τ = 80 and τ = 40, this condition is satisfied.
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Figure S5
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Linearized biochemical PID-control mimics the adaptation dynamics of the nonlinear controller
for small to moderate step-changes in the parameter βC and compares favorably to traditional
PID controller under defined parameter regimes. (A) The time dynamics of XC , Z1 and Z2 are
plotted for the full model (dashed blue, Eqs.(5-8,11-12)), the linearized model (yellow, Eq.(s9)), and the
linearized model plus quadratic correction term, ηz1(t)z2(t) (red). See Table S1 for parameter values used
in each simulation. The βC perturbations are shown in the top panels. For XC dynamics, the traditional
PID case (purple) was simulated with just the process (Eq.(5)) and the X1 equation with exact error terms
(Eq.(s15)). (B) Linearized model (yellow) for the integral (I) only case, captures convergent oscillations
(first change in βC) and the onset of limit cycle (second change in βC). Adding the quadratic term (red)
agrees well with the full solution (dashed blue). (C) XC dynamics for the linearized biochemical controller
and traditional linear controller following step changes in βC for Y = 60 (upper panel) and Y = 600 (lower
panel). As Y increases, the two controllers converge as a result of the convergence of the kI of the biochemical
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controller to that of the traditional controller. (D) XC dynamics for the process with delay (no feedback)
from Section 2.4 (Figure 5A). In this case, there is a difference between the traditional PI controller output
is not the same as that of the full nonlinear biochemical PI controller and its linearized model. However,
changing the proportional terms from 3kPY to kPY makes all the controllers indistinguishable, illustrating
a difference between a traditional proportional controller and the biochemical one we design in this work.
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