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Abstract (Word limit: 150) 

Oncogenes promote the development of and serve as therapeutic targets against subsets of 

cancers. Here, a new statistical approach that captures transcriptional heterogeneity in tumor and 

adjacent normal (i.e. tumor-free) mRNA expression profiles was developed to identify oncogene 

candidates that were overexpressed in a subset of breast tumors. Intronic DNA methylation was 

strongly associated with the overexpression of chromobox 2 (CBX2), an oncogene candidate that 

was identified using our method but not through prior analytical approaches. CBX2 

overexpression in breast tumors was associated with the upregulation of genes involved in cell 

cycle progression and is associated with poorer 5-year survival. The predicted function of CBX2 

was confirmed in vitro providing the first experimental evidence that CBX2 promotes breast 

cancer cell growth. Modeling mRNA expression heterogeneity in tumors is a novel powerful 

approach with the potential to uncover therapeutic targets that benefit subsets of cancer patients. 
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Introduction 

 

Oncogenesis is driven by a complex and intricately controlled program of gene expression 

where oncogenes are the expressed genes that promote tumor development. The first set of 

oncogenes were discovered in retroviruses that incorporated human growth factors, such as src, 

into their viral genome1–3. The identification of amplified or mutated oncogenes in the tumors 

of certain cancer patients has led to the development of effective molecular therapeutic 

strategies that extend the life of these patients. For example, trastuzumab, an anti-Her2 

antibody, extends overall lifespan for the approximately 20% of breast cancer patients whose 

often-aggressive tumors overexpress ERBB2, the gene that encodes the Her2 protein4. However, 

Her2-targeted therapies often result in treatment resistance, and thus additional therapeutic 

targets are required to adequately treat Her2+ breast cancer, among other subtypes. 

 

Variability in the response of patients to current therapeutic strategies represents a major 

bottleneck to reducing cancer mortality rates globally. Understanding how tumor 

heterogeneity impacts the transcriptional regulatory programs that control oncogenesis is the 

key to addressing this issue and is currently what drives most programs in personalized 

medicine. The availability of genome-wide gene expression data from matched tumor and 

adjacent normal tissue of large patient populations provides a valuable resource for 

developing new approaches for identifying oncogenes that are likely to play pivotal roles in 

important clinical outcomes such as chemoresistance. Previous studies have identified survival-

related biomarkers in ovarian cancer based on bimodal gene expression profiles detected in large 

datasets of tumors5. These studies recognize the limitations of the unimodal assumption made by 

many statistical tests and have taken advantage of the inherent heterogeneity in gene expression 

profiles to discover new subtypes.  

 

Examples of methods that exploit heterogeneity between tumor and adjacent normal tissue 

include Cancer Outlier Profile Analysis (COPA)6 and mCOPA7, which are both used to detect 

gene fusions and tumor outliers. However, these kinds of approaches have two major limitations. 

First, most applications of mixture modeling for gene expression, with one exception8, have been 

developed using data derived from microarrays, which have a limited range of expression values, 

particularly for highly expressed genes, and unlike RNA-sequencing (RNA-seq), are limited for 

quantifying transcript levels at high resolution9. Second, tools developed for outlier detection 

from paired tumor-normal mRNA samples, such as cancer outlier profile analysis (COPA)6,10 

and Profile Analysis using Clustering and Kurtosis (PACK)11, are sensitive to the proportion 

of samples that are distinguished as ‘outliers’8 and, in the case of COPA, require setting a 

tuning parameter. In addition, existing methods for outlier detection are designed to screen out 

individual tumor samples, rather than identify genes that reflect new patient subgroupings. 

 

In this study, we developed a statistical approach termed oncomix to identify oncogene 

candidates in RNA-sequencing data. This approach detects oncogene candidates based on the 

presence of low expression in normal tissue and over-expression in a subset of patient tumors. 

Our approach capitalizes on the heterogeneity present in matched tumor and normal gene 

expression data to identify oncogene candidates and then segregate patients into interpretable 

subgroups based on their expression of the oncogene candidate. Oncomix is an unsupervised 

method where the size of the patient subgrouping is learned entirely from the data.  
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To demonstrate the utility of oncomix, we applied this approach to RNA-sequencing data from 

the breast cancer cohort of The Cancer Genome Atlas (TCGA) and identified a set of five high-

confidence oncogene candidates (CBX2, NELL2, EPYC, SLC24A2, and ZBED2). To understand 

why these oncogene candidates were overexpressed in certain tumors, we developed predictive 

models using multiple molecular, genetic, and clinical variables from TCGA that highlighted 

potential regulators of oncogene candidate overexpression. Novel computational and 

experimental evidence suggest that chromobox 2 (CBX2), one of the oncogene candidates that 

we identified, is associated with poorer clinical outcomes and functions as a regulator of breast 

tumor cell growth. In this study, we demonstrate the value of modeling transcriptional 

heterogeneity using matched tumor and normal tissue to identify new oncogene candidates. Our 

results indicate that CBX2 may serve as a driver of breast cancer and represent a novel 

therapeutic target.  

 

Results 

 

Deriving a new transcription-driven approach to discover oncogene candidates that are 

specific for subgroups of breast cancer patients.  

An oncogene candidate can be defined operationally as a gene that is highly expressed in a 

subset of tumor samples and has uniformly low expression in adjacent normal tissue. Our 

primary objective was to test whether such genes could be found in a cancer patient dataset. For 

this purpose, RNA-seq data from 110 breast cancer patients was selected from The Cancer 

Genome Atlas (TCGA). This population is predominantly represented by Caucasian females 

with infiltrating ductal carcinoma, that had both tumor and adjacent normal samples sequenced 

(Figure 1A). To ensure that the mixture models could be stably fit to the data, lowly-expressed 

genes were filtered (see Methods, Figure 1B). Two-component mixture models were fit to each 

transcript for both tumor and adjacent normal samples independently ( 

Figure 1B-C). For each transcript, tumor and normal samples were separately classified at 

expressing either low or high levels of gene expression based on the mixture component with the 

largest probability density. This series of filtering steps yielded a set of 3,721 genes that were 

further filtered, as described below, to identify a set of high-confidence oncogene candidates. 

Oncomix identified five genes with an oncogene-like pattern of expression 

Our statistical approach, oncomix, detects a distinct bimodal pattern of gene expression across 

tumors. To identify oncogene candidates (OCs) that matched these specific patterns from the 

total pool of genes, two metrics were derived from the mixture model parameters. First, a 

selectivity index (SI) (Figure 2A) distinguishes those genes that are overexpressed in a clearly 

defined group of patient tumors. A threshold of SI > 0.99 was set based on the observed 

distribution of the SI values. Examination of the gene expression data from known oncogenes 

(discussed below, see Supplementary Figure 1) with an SI > 0.99 highlighted well-known 

oncogenes, such as ERBB2, in breast cancer.  The SI was used in combination with other mixture 

model parameters to calculate the oncomix score, which ranks genes based on their similarity to a 

theoretically ideal oncogene (Figure 2B). The distribution of expression levels for the five genes 

with the highest oncomix score each demonstrate a clear and distinct subgroup of tumors that 

overexpress each gene (Figure 2C).  
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A literature search of the 5 OCs discovered by oncomix revealed that oncogene-like features 

have previously been linked to two of these genes (Table 1, genes in bold).  Chromobox 2 

(CBX2) and neural EGFL like 2 (NELL2) have been shown to promote invasion, metastasis, or 

cell division in a variety of in vivo and in vitro models of cancer. For example, the gene CBX2 

was recently shown to be highly-expressed in both androgen-independent, late stage prostate 

cancers (PrCa) and distant PrCa metastases12. CBX2 is a member of the polycomb repressive 

complex (PRC), and expression of this gene and its protein product is negatively associated with 

breast cancer survival13,14. In addition, NELL2 is a neural cell growth factor whose expression is 

positively regulated by estrogen and that promotes invasion of breast cancer cells15,16. The 

sympathetic nervous system has also been shown to promote breast cancer metastasis from 

primary tumors17. These results lend support to the premise for our method, which models 

population-level patterns of gene expression in subgroups of patients to identify oncogene 

candidates. 

 

Oncomix recovered a subset of existing oncogenes that are overexpressed in a subset of 

tumors 

While oncomix was primarily intended to discover novel oncogenes, it was also imperative to 

evaluate whether our method could recover any well-established oncogenes. To do this, all Tier 1 

oncogenes were used from the Cancer Gene Census (CGC) database (196 genes)18,19, a collection 

of genes with mutations that are causally associated with cancer derived from all tumor types. Of 

the 196 Tier 1 oncogenes from the CGC, nine genes (4.5%) had an SI > 0.99 and an oncomix 

score > 0 (Supplementary Figure 1). The gene expression distributions of these nine genes in 

the matched tumor-normal samples from the TCGA breast cancer patients showed that most of 

these distributions contained a subset of tumors that overexpressed the given gene relative to 

normal tissue (Supplementary Figure 1). Of these nine genes, five (HOXA13, TAL2, SOX2, 

HOXD13, and SALL4) are transcription factors that help govern embryonic mammalian 

development and are transcriptionally silent in most adult tissues20–23 (Supplementary Figure 

2). We conclude that our approach successfully identified a small subset of known oncogenes 

whose function may be mediated through gene overexpression. 

 

The oncogene candidates identified by oncomix represent a unique set of genes that are not 

reliably detectable by existing approaches. 

For an oncogene candidate to be detected by oncomix, a gene must exhibit a specific expression 

profile that demonstrates overexpression in a subgroup of cancer patients (Figure 1C). To test 

whether genes identified by oncomix could be identified by existing approaches, we compared 

our results with those obtained by two other methods to find potential tumor regulators. Limma 

is a widely-used method to identify differentially-expressed (DE) genes through a regularized 

Student’s two sample t-test and assumes the presence of a single mode of expression24. None of 

the genes identified by oncomix fell within the top 2% of genes ranked by limma (Table 1 and 

Methods). In addition, benchmarking was performed against mCOPA, a method that ranks a 

subset of genes based on meeting a fold change threshold between pre-specified percentiles from 

expression profiles in tumor and normal samples7. mCOPA ranked only one out of our five 

identified OCs, even after pre-specifying three different percentiles (see Methods). We conclude 

that our method detects unique genes with established roles in oncogenesis and metastasis for a 
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subset of patients, and that these genes are not detectable using existing DE methods that 

compare tumor and adjacent normal samples.   

 

Tumors that overexpress CBX2 manifest transcriptome-wide changes in the expression of 

cancer-relevant pathways. 

Oncogenes are often members of molecular signaling pathways and can drive changes in cellular 

processes, such as cell proliferation, that promote carcinogenesis. Therefore, we sought to 

determine whether tumors that overexpressed an OC harbored carcinogenesis-related 

transcriptional changes relative to tumors that did not overexpress a given OC. For each OC, 

patients were classified into two groups based on whether their tumor overexpressed the OC or 

not. Differentially-expressed genes between these two groups were identified using limma to 

determine which genes were up or down-regulated relative to tumors that overexpressed each 

OC (q < 0.0001 and log2(fold change) > 1), see Supplementary Table 1). The overexpression of 

two of the OCs, EPYC and NELL2, were associated with minor changes in the cancer 

transcriptome (≤ 5 differentially expressed transcripts). Among the remaining 3 OCs, there were 

> 95 differentially expressed transcripts. Notably, CBX2 was the only OC that had more than one 

differentially-expressed gene that was downregulated, which is consistent with its role as a 

member of the PRC. 

 

To characterize the genes that were differentially-expressed in tumors that overexpressed each 

OC, a pathway overrepresentation analysis (POA) was performed using a stringent threshold (see 

Methods). For all 5 OCs, no gene sets were enriched when examining only the genes 

downregulated in tumors that overexpress the OC. Significantly enriched gene sets were present 

for upregulated genes among the OCs CBX2, SLC24A2, and ZBED2. Genes upregulated in 

tumors that overexpressed SLC24A2, a gene that encodes a solute carrier protein, were 

overrepresented in the epithelial-mesenchymal transition pathway, a process critical to the 

metastasis of epithelial cancers25. Though SLC24A2 has not been directly implicated in cancer 

before, solute carrier proteins have been purported to contribute to cancer through altered energy 

metabolism26. Genes upregulated in tumors that overexpressed ZBED2 were enriched in 

immune-related processes, which could be related to immune cell proportion differences between 

tumors.  

 

Genes upregulated in tumors that overexpressed CBX2 were enriched in transcripts that map to 

genes involved in cell cycle-related and proliferation pathways (Figure 3 and Table 2). These 

results are consistent with previous results that showed differential expression of cell cycle-

related pathways following siRNA-mediated CBX2 silencing in prostate cancer cells12. CBX2 

overexpression was associated with the upregulation of genes mapped to genes such as KIF2C 

(log2(fold change) = 1.45; q = 1.32x10-6), a member of the kinesin family of proteins that are 

important for mediating microtubule dynamics during mitosis27 (Supplementary Table 2). The 

KIF2C gene has been demonstrated to be regulated by EZH2, the catalytic subunit of the 

polycomb repressive complex (PRC) 2, in the context of melanoma, which supports our findings 

of a link between the CBX2, a member of the PRC1 complex, and KIF2C expression28. These 

analyses demonstrate that 3 out of the 5 genes identified to be overexpressed in a subset of 

patient tumors may alter the breast cancer transcriptome in a biologically plausible manner.  
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Prediction of OC overexpression reveals that molecular features are more influential 

than clinicopathologic features. 

We next sought to identify the biological and clinical features that could contribute to the 

overexpression of the 5 identified OCs in a subset of breast tumors. The predictor variables used 

in the regularized multiple logistic regression model represented four broad categories: DNA 

methylation, expression and copy number, clinicopathologic, and technical variables (see 

Supplementary Figure 4 for datasets and processing information and Supplementary Figure 5 

for a model-fitting schematic). For two out of the five OCs, including CBX2, intronic 

methylation was the most predictive covariate. In addition, the molecular subtype, as inferred 

using Absolute Intrinsic Molecular Subtyping (AIMS) method29, was strongly associated with 

OC overexpression, though not to the same extent as intronic DNA CpG methylation (two-way 

ANOVA, F(1, 107), AIMS: P-value = 8.9x10-4, intronic CpG methyl: P-value = 1.4x10-9) 

(Supplementary Figure 6). Relative to the molecular variables, clinicopathologic 

characteristics, such as cell subtype composition, patient age, and the presence of metastases, 

were weakly associated with OC overexpression, indicated by the lighter colors and absent 

within-cell numbers in Figure 4A.  

 

To validate the utility of the logistic regression models, each model was used to predict the 

probability of each patient overexpressing the OC in the dataset given her individual features. An 

area under the curve (AUC) value was generated for each of the five models that predicted 

overexpression of each OC (Figure 4A, top panel). AUC values greater than 0.8 suggest an 

excellent fit, while values between 0.7-0.8 suggest a good fit30. Models for two out of the five 

OCs, including the model for CBX2, had an AUC greater than 0.8. Furthermore, the distribution 

of CpG beta values for the single most influential covariate, a CpG located within the 2nd intron 

of CBX2, showed a clear reduction in DNA methylation (P-value < 1x10-8, Wilcoxon rank-sum 

test) in breast tumors that overexpress CBX2 (Figure 4B). These analyses demonstrate that OC 

overexpression is strongly associated with molecular covariates, particularly DNA CpG 

methylation. 

  

Low levels of DNA CpG methylation in breast cancer cell enhancers is associated with 

overexpression of CBX2. 

Prior evidence implicates CBX2 in promoting prostate cancer metastasis12 and therefore, 

clarifying the molecular mechanisms that drive CBX2 overexpression in the context of this breast 

cancer cohort has clinical significance for identifying therapeutic targets. Based on the 

integrative logistic regression model, it was intriguing that against all other potential variables, a 

single CpG locus within the second intron of CBX2 was the most predictive factor for 

overexpression of CBX2. This predictor had the largest magnitude across all beta coefficients 

across all five OCs, indicating that it was more influential than any of the other clinical or 

genetic factors (Figure 4A-B).  

 

To investigate the relationship between DNA CpG methylation and the functional regulatory 

elements at the CBX2 locus in greater depth, a subset of histone and transcription factor ChIP-seq 

peaks from MCF-7 breast carcinoma cells in ENCODE were overlapped with CpG sites within 

the CBX2 locus (see Methods for details). Though ChIP-seq data were not available from the 

primary tumors themselves, MCF-7 cells represent a valuable model to interpret our results 

because these cells were derived from a Luminal A breast tumor from an elderly Caucasian 
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woman, a characteristic that demographically matches the profile of many of the patients in the 

TCGA study. The most significantly differentially methylated CpG locus is found within the 

second intron of the CBX2 gene (Figure 5). This CpG site overlaps with two different enhancer 

marks (H3K4me1 and H3K27ac), promoter marks (H3K4me2 and H3K4me3), transcriptional 

activation (H3K9ac) and transcriptional elongation (H4K20me1) marks, as well as with a 

transcription factor, JunD, that promotes cancer cell proliferation31. In addition, H4K20me1 is 

absent in the first exon and promoter region, suggesting that transcription of this gene may begin 

or be regulated through interactions within the 2nd intron. The overlap between this differentially 

methylated CpG locus and a JunD binding site raises the possibility that DNA methylation in an 

active regulatory region regulates JunD binding, possibly through a binary mechanism that 

regulates gene expression in either a baseline or overexpressed state. 

 

CBX2 is overexpressed in aggressive breast carcinomas and is associated with poor 

survival. 

Post hoc statistical testing from the logistic regression model from Figure 4 revealed a 

significant positive relationship between the aggressively of the Absolute Intrinsic Molecular 

Subtyping (AIMS) breast tumor subtype and the proportion of patients who expressed CBX2 

within each subtype (multinomial exact test, two-sided P-value = 1.149 x 10-7) (Supplementary 

Figure 6)29. Expression of CBX2 is not part of the mRNA expression-based AIMS classification 

scheme, which highlights the potential utility of CBX2 in the identification and molecular 

subtyping of aggressive breast tumors. This is the first report using RNA sequencing data to 

show that CBX2 is enriched in basal and Her2+ tumors, and our result is supported by a previous 

study that also found increased CBX2 expression in basal breast tumors in a microarray mRNA 

breast cancer dataset13,32. We propose that CBX2 mRNA expression may therefore serve as a 

marker of aggressive breast cancer subtypes. 

 

CBX2 overexpression is associated with poor survival in the TCGA breast cancer cohort. 

In addition, we searched for differences in survival for patients based on levels of CBX2 

expression (either baseline or overexpressed). A trend toward poorer survival in patients whose 

tumors overexpressed CBX2 was detected, though this difference was not statistically significant 

(q = 0.08, log-rank test). However, survival differences between tumors that overexpressed 

CBX2 versus those that did not were also examined in the entire TCGA breast cancer cohort of 

1088 patients with available survival data (Figure 6). A significant reduction in 5-year survival 

in tumors that overexpressed CBX2 versus those that did not was observed (q = 0.03, log-rank 

test, Figure 6). This result in consistent with a report that found that high levels of CBX2 protein 

expression in breast tumors was associated with an increased risk of mortality14. 

 

CBX2 is expressed at low levels in most adult female tissues. 

To maximize efficacy and minimize side effects, an ideal drug target needs to be highly 

expressed in and specific to cancerous tissue, while also expressed at low levels in most other 

tissues. To examine the expression levels of CBX2 in normal adult tissues, data from the GTEx 

portal (https://www.gtexportal.org/home/) was used to examine the expression levels of CBX2 

across 53 normal adult tissues from 8,555 individual samples obtained from 544 human donors. 

CBX2 was highly expressed specifically in adult testes and expressed at low levels in virtually all 

other tissues in both men and women (Supplementary Figure 8). Targeted inhibition of CBX2 
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may therefore pose a novel therapeutic strategy with minimal side effects on healthy tissue for 

women whose breast tumors overexpress CBX2. 

 

CBX2 siRNA knockdown slows the growth of breast cancer cells. 

Though prior associative computational studies suggest that CBX2 is linked to breast cancer13, no 

study has experimentally demonstrated a role for CBX2 in breast cancer. To investigate the role 

of CBX2 in breast cancer, we performed genetic knockdown of CBX2 in MCF7 cells. We 

observed that adherent MCF7 breast cancer cells grew more slowly following CBX2 siRNA 

knockdown relative to a scrambled siRNA control (Figure 7, three-way ANOVA, P-value = 

7.0x10-7). Furthermore, the number of non-adherent cells was not significantly different between 

the two siRNA treatments (three-way ANOVA, P-value = 0.08), which suggests that cells either 

divide more slowly or undergo senescence following CBX2 siRNA transfection.  These results 

suggest that CBX2 is involved in regulating the growth of breast cancer cells and that inhibition 

of CBX2 function may serve as a therapeutic strategy to slow the rate of breast cancer cell 

growth.   

 

Discussion 

 

Human breast tumors have a broad array of drivers that modulate growth and metastasis. The 

identification of additional oncogenic drivers will expand our repertoire of personalized 

therapeutic targets for breast cancer. Here, we developed a method, termed oncomix, that 

identified oncogene candidate genes (OCs) with known roles in oncogenesis and that unveiled 

subgroups of patients that overexpress the OC. The value of this tool is made clear by 

considering CBX2, the most promising OC identified, and its implications as a potential drug 

target for breast carcinoma.  

 

CBX2 is a gene whose protein product binds to H3K9me3 and H3K27me3 sites with high 

affinity in mice and forms part of the polycomb repressive complex 1 (PRC1), a multi-protein 

complex that modifies histones and preserves stemness by silencing lineage-specifying regulator 

genes in intestinal and embryonic stem cells33–35. Our results, which are the first to demonstrate 

that CBX2 siRNA knockdown slows breast cancer cell growth, build upon previous studies that 

showed that CBX2 siRNA knockdown promotes prostate cancer cell apoptosis12. CBX2 is 

consistently upregulated in castration-resistant prostate cancer metastases, and its expression 

correlates with poor patient outcomes in breast and prostate cancer12–14. Furthermore, we show 

that breast tumors that overexpress CBX2 highly express genes that belong to cell cycle-related 

pathways. This result is consistent with a prior study which showed that over 500 differentially 

expressed genes between CBX2 knockdown and wildtype prostate cancer cells were enriched in 

proliferation-related processes12. Our finding is also consistent with the established role of many 

oncogenes as drivers of transcriptional alterations within pro-growth signaling pathways36,37.  

 

Currently, no successful treatments exist for Her2+ and basal breast carcinomas, which are often 

highly aggressive and disproportionately affect African American and Hispanic women38. A 

therapeutic antibody, trastuzumab, is available as adjunct therapy to treat Her2+ breast 

carcinoma, though a substantial fraction of breast cancer patients develop resistance to 

trastuzumab39. These limitations collectively point to the need to identify new therapeutic 

strategies to treat these aggressive subtypes of breast carcinoma. Multiple lines of evidence lend 
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support to CBX2 as a potential drug target against aggressive subtypes of breast carcinoma. First, 

CBX2 is expressed at low levels in most healthy adult female tissues, and targeted CBX2 

inhibition may result in fewer side effects than existing treatments. For example, ERBB2, the 

gene that encodes HER2/Neu, is expressed by most tissues in the adult body, which may account 

for some of the systemic side effects, such as diarrhea, nausea, and cardiotoxicity, seen with the 

HER2/neu inhibitor trastuzumab. Second, tumors that overexpress CBX2 also tend to be 

classified as Her2+ or basal, an aggressive subtype against which there are no specific 

chemotherapeutic interventions, and are associated with poor overall 5-year survival. Third, 

CBX2 inhibition via genetic knockdown impedes the growth of breast cancer cells, which 

suggests that CBX2 may play an important role regulating breast cancer growth. Fourth, CBX2 

contains a chromodomain that can be pharmacologically targeted, and the crystal structure of 

CBX2 was recently solved in complex with a PRC1-specific chromodomain inhibitor, 

Unc386640. In sum, the results from previous and the current study suggest that CBX2 is a 

potential therapeutic drug target in breast cancer. 

 

The identification of a strong association between DNA methylation – a reversible 

transcriptional regulatory process mediating cellular epigenetic properties – and CBX2 

overexpression suggests that CBX2 expression may be reversibly regulated to drive important 

tumor behavior, such as the switch between cell division and metastasis. Prior work suggests a 

role for CBX2 overexpression in driving prostate cancer metastasis that was reversible upon 

siRNA inhibition of CBX212. Metastatic cancer cells undergo reversible changes during the 

complex processes of extravasation, infiltration, seeding, and proliferation within distant sites, 

and members of the polycomb complex, such as EZH2, have been associated with metastasis and 

invasion41,42. This apparent plasticity is likely to be governed by epigenetic processes, as 

opposed to DNA sequence mutations. This is because molecular and cellular plasticity is 

required to navigate between the dichotomous processes of cell migration, which occurs as tumor 

cells metastasize to distant tissues, and cell division, which resumes as metastatic tumor cells 

seed a new site (as reviewed by Tam and Weinberg43). The previously published observation that 

the CBX2 locus is rarely mutated in human cancers supports the role of CBX2 in such 

processes13. 

 

Previous studies have found relationships between intragenic enhancers and mRNA 

expression. For example, the binding of transcription factors to an enhancer within the first 

intron of FGFR4, an oncogene expressed in 50-70% of all pancreatic carcinomas, increases 

expression of FGFR4 mRNA44. However, intragenic enhancers may also regulate the 

expression of other genes beyond the gene within which it is located45. Furthermore, 

intragenic enhancers have been found to function as alternative promoters that produce nearly 

full-length polyadenylated mRNAs with largely unknown functions but that may increase the 

overall expression of a gene46. Furthermore, DNA CpG methylation can directly alter the 

binding of transcription factors, which supports our hypothesis that CpG methylation may 

regulate binding of JunD to an intragenic enhancer element in CBX247.  

 

In light of the results identified from oncomix, and in combination with existing studies, a 

conceptual model for the regulation of CBX2 expression in breast cancer is presented (Figure 8). 

We propose that CBX2 is a driver of breast tumor oncogenesis, and that an intragenic enhancer 

within the CBX2 locus regulates CBX2 expression, possibly by acting as an alternative 
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promoter46. Within this intragenic enhancer, the binding of a transcription factor that is involved 

in many cancers, JunD, may be regulated dynamically through DNA methylation. This model is 

supported by studies that showed JunD binding near proximal promoters and within distal 

enhancers alters the expression of proto-oncogenes such as Bcl6 and regulators of metastasis 

such as tissue metalloproteinase48,49. In a subset of mostly estrogen receptor-positive breast 

tumors and within normal breast tissue, the gene expression of CBX2 remains low, perhaps 

through active maintenance of DNA methylation. Regulation of CBX2 expression by DNA CpG 

methylation may be important for regulating cell division and metastasis, a process that occurs in 

aggressive breast tumor subtypes (e.g. basal and Her2+) and one that requires dynamic 

reversibility between cell cycling and cell migration during the epithelial to mesenchymal 

transition (EMT)43. However, the true cause-and-effect relationship between expression and 

DNA methylation at the CBX2 locus remains to be fully elucidated. 

 

When comparing the genes identified by oncomix versus the other two methods, mCOPA and 

limma, it was clear that the underlying assumptions made by regarding distributions of the data 

drive the ranking of the genes. The top five candidates identified by mCOPA and limma 

highlight how these methods are built to identify genes with specific distributions that deviate 

from the profile detected by oncomix (Supplementary Figure 3). Specifically, limma highly 

ranks genes where the separation between tumor and normal sample means is maximal. mCOPA 

is designed for the analysis of microarray experiments, is more appropriate for identifying 

individual outliers, and does not select for genes with visible subsets of patients that overexpress 

a gene. mCOPA also detects genes that have relatively low variance at the population level for 

both adjacent normal and tumor tissue. However, oncomix is the only method tested that 

identifies genes for which the tumor samples are grouped into 2 visible clusters (Figure 2C). 

 

Logistic regression modeling proved to be a valuable approach to integrating multiple data types 

to predict individual OC expression in the breast cancer cohort. However, for two of the OCs, 

EPYC and ZBED, it was difficult to train a model that could capture the variance in the observed 

outcome, suggesting that additional molecular or clinical features not represented in this dataset 

here may play a role in the regulation of expression of these two genes. To test whether known 

oncogenic mutations were driving the overexpression of the OCs, a separate analysis was 

performed to identify the statistical associations between known high-impact oncogenic 

mutations and the overexpression of each OC (Supplementary Figure 7). None of the odds 

ratios reached statistical significance, though the strongest positive association was between 

high-impact TP53 mutations and CBX2 overexpression (q = 0.053). 

 

In summary, we have identified an oncogene candidate, CBX2, based on a theoretical model of 

identifying subgroups of tumors that overexpress an mRNA gene relative to normal tissue. 

Computational as well as experimental evidence point to the role of CBX2 as a regulator of 

breast cancer cell growth. Our computational method, oncomix, is a flexible approach for 

modeling population-level gene expression data to identify oncogene candidates. Although 

breast cancer, a well-studied form of cancer, was used as a proof-of-concept example for our 

method, oncomix can be applied to additional types of cancer and to other scenarios where 

disease-normal pairings are available.  
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CBX2 may serve as a potential therapeutic strategy in aggressive breast cancers, due to its low 

expression in healthy female tissues, available pharmacologic inhibitors, and association with 

poor survival. Future experimental studies are required to address how DNA methylation within 

the CBX2 locus is associated with oncogenic processes such as cell division within both bulk 

tumor tissue as well as single tumor cells. Our novel approach to identifying OCs through 

oncomix will be particularly useful for identifying regulators of previously unknown tumor 

subgroups within cancer datasets that include expression levels from hundreds or thousands of 

patient tumors and their adjacent normal tissue. 
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Figure 1. Study design to identify oncogene candidates from breast carcinoma and adjacent 

normal RNA-sequencing samples. (A) Clinical characteristics of the study cohort of 110 

female patients with invasive breast carcinoma. Each of these patients have RNA-sequencing 

data available from both the primary breast tumor (T) and adjacent normal breast tissue (N). The 

number of patient samples is indicated within boxes colored either teal for tumor (T) samples, or 

orange for adjacent normal (N) samples. (B) Workflow of RNA-seq gene filtering based on 

transcripts per million mapped reads (TPM). The numbered statements on the right reflect the 

steps used to transform and filter the data for subsequent analysis. The number of genes at each 

step of the workflow is indicated within the colored boxes (see description in A). (C) An 

illustration of a two-component Gaussian mixture model (GMM), shown in teal, used to 

separately fit each gene’s log2(TPM + 1) values for tumor and adjacent normal controls. GMMs 

yield several distinct parameters; namely, π is the proportion of samples under the Gaussian 

associated with lower expression values, μL and μH are the means of the curves that fit lower and 

higher expression values, respectively, and σ is the common standard deviation of the two 

curves. The additional subscript (T or N) refers to whether the sample parameters are derived 

from tumor or adjacent normal expression data. Note that the threshold between baseline and 

overexpressed is defined by the boundary set from the mixture models in the tumor samples and 

is the point at which the probability of a sample belonging to either the low or high expression 

group is equal to 0.5. 
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Figure 2. Identification of oncogene candidates using RNA-sequencing data from primary 

invasive breast carcinomas and adjacent normal breast tissue. A) The distribution of 

selectivity indices across the 3,721 genes filtered from Figure 1 is shown. The equation for the 

selectivity index for a gene with adjacent normal and tumor expression values is displayed and is 

defined in detail in the methods section. B)  The distribution of the oncomix scores separated by 

genes with an SI above and below 0.99. Larger oncomix scores correspond to genes that more 

closely resemble the profile of a theoretical oncogene candidate. C) Superimposed histograms of 

expression values from tumor (teal) and adjacent normal (red) samples for the 5 genes with the 

highest oncomix score and a selectivity index greater than 0.99. The best fitting mixture model is 

shown for each selected gene. The HUGO gene symbol for each gene is displayed for each 

histogram. A theoretical model for an ideal oncogene candidate is shown in the upper left and 

includes some of the summary statistics that were used to compute the oncomix score. The y-axis 

represents density and the x-axis represents log2(TPM + 1) reads. Abbreviations: T = primary 

breast tumor, N = adjacent normal breast tissue, TPM = Transcripts Per Million reads. 
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Figure 3. Enrichment of cell cycle processes in upregulated genes within primary breast 

tumors that overexpress CBX2 mRNA. A) Volcano plots show 16,157 genes that were tested 

for differential expression (q < 1x10-4 and log2(Mean Fold Change) > 1) between breast tumors 

that do versus do not overexpress CBX2. The mean expression value of a gene in tumors that 

overexpress CBX2 is denoted as “CBX2Overexpressed”, while the mean expression value of a gene 

in tumors that do not overexpress CBX2 is denoted as “CBX2Baseline.” Significantly upregulated 

genes (demarcated by the grey dotted lines) within the Hallmark G2/M checkpoint pathway 

(MSigDB ID: M5901) are highlighted with green points. HUGO Gene Nomenclature Committee 

(HGNC) symbols are listed for select genes within this pathway. Other genes that are 

significantly upregulated in CBX2Hi tumors are shown in dark grey. q-values were adjusted for 

multiple testing using the Benjamini-Hochberg method.   
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Figure 4. Multi –omic prediction of oncogene candidate mRNA overexpression in breast 

tumors. A) Visualization of model coefficient selection after regularized logistic regression on 

binarized (baseline or overexpressed) oncogene candidate mRNA expression levels in breast 

tumors. Deep blue squares indicate variables that contribute greatly to the prediction of the 

baseline expression state, while deep red squares indicate variables that contribute greatly to the 

prediction of the overexpressed state. The numbers in each cell indicate the rank of the absolute 

value of a coefficient relative to all other coefficients for that model, where 1 is the largest model 

coefficient. Variables not selected as part of the model are indicated with an interpunct (·). Blank 

cells indicate missing data for a given model. Each model was used to predict whether a sample 

overexpressed a given OC or not. These predictions were used to generate receiver operating 

curves, from which the area under the curve (AUC) was derived (top row, purple background). 

B) Association of CBX2 overexpression with DNA methylation beta values for the highest 

ranking logistic regression coefficient (an intronic CpG locus). DNA methylation values are 

grouped by level (either baseline or overexpressed) of CBX2 mRNA expression in tumors. 

Statistical testing was performed using the Wilcoxon rank-sum test (*** = p < 1x10-8). 
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Figure 5. Colocalization of histones and transcription factors with CpG sites that predict 

overexpression of CBX2. (Top) Paired boxplots showing the CpG methylation beta values, 

which range between 0-1, at each of 28 individual CpG loci for tumors that express baseline 

levels of or overexpress CBX2. (Middle) Each row of the black-and-white matrix represents 1 of 

7 different ChIP-seq experiments from MCF7 cells in which a direct overlap (black squares) 

between a CpG site and a ChIP-seq peak was identified. These 7 ChIP-seq experiments were 

manually selected for purposes of interpretability from 14 ChIP-seq experiments that overlapped 

with the CBX2 locus. The chromatin type or transcription factor is listed along the left-hand side 

of the matrix, and major chromatin features, such as enhancers (Enh.), promoters (Pro.), and 

repressive (Repr.) marks, are indicated in large text. Each of the 28 columns represents a 

different CpG locus within the gene body of the CBX2 gene (defined as the beginning of the 

TSS1500 to the end of the 3’ UTR). The model coefficient with the largest absolute value is 

shown adjacent to the rightmost thin black line. (Bottom) The two thin black lines demarcate the 

position of the 4 CpG sites within intron 2 and indicate the physical position of these intronic 

CpG sites within the CBX2 locus. Additional regions within the CBX2 gene (length = 11,352 

bases, including the TSS1500) are annotated in the gene model, which was obtained from the 

UCSC genome browser. Asterisks represent q values from a Wilcoxon rank-sum test between the 

beta values at each of the 28 loci. *** = q < 0.0001, ** = q < 0.001, * = q < 0.01. 
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Figure 6. Overexpression of CBX2 in primary breast tumors is associated with lower rates 

of survival. A Kaplan-Meier survival curve for 5-year survival rates for 1088 patients with 

breast tumors from TCGA is shown. Tumors that overexpress CBX2 are shown in dark blue, and 

tumors that express baseline levels of CBX2 are shown in light blue. The tumors were classified 

using the same boundary that was defined for the original 110 tumor samples. A log-rank test 

was performed to check for differences in survival between the two tumor types (p = 0.01). 
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Figure 7. Genetic knockdown of CBX2 impedes breast cancer cell growth. The cell growth 

rate for MCF7 breast cancer cells was calculated over a 7-day period following transfection of 

anti-CBX2 or scrambled siRNA. Both the adherent (alive, panel A) and floating (mostly dead, 

panel B) fractions of cells were counted. Each point represents one cell count from one of three 

biological replicates, each with two technical replicates. The 3 growth phases are depicted 

underneath each plot. KD eff. = CBX2 knockdown efficiency. 
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Figure 8. Hypothesized mechanism of the regulation of CBX2 expression and downstream 

effects on transcription in breast cancer. The top panel shows a schematic of the molecular 

basis for CBX2 expression in normal tissue and in most Luminal/ER+ tumors. Specifically, 

elevated levels of DNA CpG methylation at an enhancer within intron 2 and at a JunD binding 

site inhibit the expression of CBX2. The bottom panel shows a schematic of CBX2 

overexpression in basal and Her2+ tumors. Low DNA CpG methylation allows for JunD to bind 

to an intronic enhancer and to increase transcription of CBX2, either through interactions with 

the primary transcriptional start site or through an alternative transcriptional start site.  
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Table 1. List of oncogene candidate function and comparison with current differential 

expression approaches. Each oncogene candidate is represented by a row. Columns indicate the 

molecular features or function of each gene. Yellow background: A rank-based comparison 

between the oncomix score, limma’s p-value, and mCOPA’s fold change is shown. Genes with a 

selectivity index > 0.99 were ranked according to the oncomix score. A limma rank of 1 is 

assigned to the gene that was most differentially expressed (ie has the lowest p-value) between 

tumors and adjacent normal samples, and a limma rank of 7,889 is the lowest possible rank and 

indicates the gene that was least differentially upregulated in tumors relative to normal tissue. 

mCOPA identified 2105 genes that contained overexpressed outliers after selecting genes that 

had at least a log2(fold change) > 2 between tumor and normal samples at the 70th, 80th, or 90th 

percentile. Genes were ranked according to log2(fold change). NA indicates that the gene was not 

selected by mCOPA. 
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Table 2. Gene set enrichment from upregulated genes in breast tumors that overexpress a 

given OC. Three OCs had significant enriched pathways following gene set enrichment 

performed using Fisher’s exact test. Pathways are shown as rows. Pathways that have an odds 

ratio with a lower bound 95% CI > 20 and a Benjamini-Hochberg adjusted q-value < 1x10-20 are 

shown and are ranked, from top to bottom, by decreasing odds ratio within each OC. Genes that 

are differentially expressed in tumors that overexpress CBX2 (vs tumors that do not overexpress 

CBX2) and found within the Hallmark G2/M checkpoint pathway are highlighted in the volcano 

plot shown in Figure 3. 
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Methods 

RNA Data sources and sample selection 

FPKM mRNA-sequencing data from invasive breast carcinoma and adjacent normal controls 

was downloaded from the Genomic Data Commons web server in January 2018 using the 

GenomicDataCommons and TCGAbiolinks R packages. RNA from tumors and adjacent normal 

breast tissue were sequenced by core facilities at the University of North Carolina, Chapel Hill 

(UNC) on an Illumina HiSeq 2000. Reads were aligned using STAR 2, and BAM files were 

filtered for quality using samtools and mapped to each gene using HT-seq. Count normalization 

to FPKM values was performed using custom scripts as described in the GDC workflow 

(https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/). The 

FPKM output mapped to 56,963 ensembl gene ids and was converted to transcripts per million 

(TPM) and subsequently log2(TPM+1) transformed to shrink the numeric range of the data. 

Genes that contain > 20% zero values were excluded, as genes with many zero values can result 

in the failure of mixture model algorithms to converge on a set of parameters (unpublished 

observations). TCGA patient barcodes from the RNA-seq gene level data from both tumors and 

adjacent normal tissue were intersected, and a total of 110 female patients with RNA sequencing 

data from both tissue types were selected for further study.  

 

Supplemental Molecular and Clinical Datasets 

All supplemental data discussed in this paragraph was downloaded from GDC servers in January 

2018 using the GenomicDataCommons and TCGAbiolinks R packages. 75% (82/110) of tumor 

samples in this study also had DNA methylation data processed on Illumina 450k arrays that was 

obtained from the same tumor. The FDb.InfiniumMethylation.hg19 R package was used to 

obtain 450k CpG coordinates for hg19, which were mapped to hg38 using the rtracklayer R 

package50,51. DNA CpG methylation loci beta values were obtained from Illumina 450k arrays 

(see Supplementary Figure 4). For the logistic regression analysis, only those CpG methylation 

loci from the TSS1500 to the 3’ UTR within each respective oncogene candidate were used. The 

TxDb.Hsapiens.UCSC.hg38.knownGene R package was used to obtain the genomic coordinates 

for each oncogene candidate52. Log2 mean segment copy number values for CNV obtained from 

an Affymetrix 6.0 SNP array were utilized. Clinical data was numerically codified or scaled to 

within a range of 0-1, and the molecular subtype was inferred from the log2(TPM+1) mRNA 

expression data from each tumor using the AIMS algorithm29. 

 

All 66 transcription factor and histone ChIP-seq data from MCF7 cells with 2 biological or 

technical replicates was downloaded from ENCODE servers using the ‘rutils’ tool in April 2017. 

All downloaded data was aligned to hg38, and peaks were called using standard ENCODE 

processing pipelines53,54. For transcription factors, final peak calls were determined and the 

optimal set of peaks was derived from IDR analysis of biological replicates and pseudoreplicates. 

For histones, peaks were selected using the narrowPeak algorithm from peak calls that were 

observed either in both replicates, or in two pseudoreplicates of the pool. All final histone peaks 

passed an optimal IDR threshold set at 2%. Of the 66 ENCODE data sets, 14 (three transcription 

factors and 11 histones) overlapped with at least one CpG site within the CBX2 locus. From 

these 14 ChIP-seq data sets, seven ChIP-seq experiments were manually selected based on their 
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established association with transcriptional regulation54. Final peak lists for each ChIP-seq 

experiment were overlapped with CpG sites using the GenomicRanges package in R55.   

 

Estimation of mixture model parameters for RNA Seq Data 

To investigate whether certain genes expressed in tumors exhibited distinct, clearly separable 

clusters of gene expression values, a 2-component Gaussian mixture model was fit to each gene 

across the 110 data points. These mixture models were applied separately for gene expression 

values from both tumors and adjacent normal samples. For each gene within each group (either 

tumor or adjacent normal), 4 parameters – namely, the mean of the Gaussian with the lower (µL) 

and higher (µH) mean, the proportion of samples under the Gaussian with the smaller of the two 

means (π), and a common standard deviation (σ) – were estimated using maximum likelihood 

through the well-established method of expectation maximization56 (Figure 1C). The variance of 

the mixture model was set to be equal between the two Gaussians to stabilize the expectation 

maximization procedure. Each parameter includes an additional letter subscript (“T” or “N”) to 

denote whether the parameter refers to the model describing the tumor (T) or adjacent normal 

(N) expression data. 

 

Selection and filtration of genes 

To remove genes with extreme outliers and to allow for sufficient statistical power for 

downstream analysis, genes with a proportion of low-expression modal membership between 0.2 

> πT & πN > 0.8 were selected. Additional filtering of genes was performed as described in 

Figure 1B. To identify and rank genes whose expression values defined a distinct subgroup of 

tumors that overexpressed the gene relative to normal tissue, two statistics was derived from the 

mixture model parameters. The first, termed the selectivity index (SI), was used to screen 

candidate genes with an overexpressed subgroup of tumors and was defined as follows: 

 𝑆𝐼 =
1

𝑛
∑ {

1, 𝑖𝑓 𝑥𝑖 <  
µ𝐿𝑇 + µ𝐻𝑇

2

            0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                       

𝑛
𝑖=1  (Equation 1) 

where 𝑛 is the number of paired samples with gene expression values (here, 𝑛 = 110), 𝑥𝑖 is the 

log2(TPM+1) expression value of the 𝑖𝑡ℎ adjacent normal sample, and 
µLT + µHT

2
 is the boundary, 

or point of equal probability, between the low and high expression modes of the Gaussians that 

describe the tumor data. The SI is applied separately to each gene and ranges between 0 and 1, 

with values closer to 1 indicative of genes that have a subpopulation of samples that are clearly 

distinct and separable based on the expression values from tumors for a given gene. The SI is 

unique in that it selects genes that define distinct clusters of tumor samples based on expression 

values that are separate from and greater than their adjacent normal counterparts as well as from 

other tumor samples. After visually inspecting the distribution of SI values for all genes (Figure 

1A), a conservative SI cutoff of 0.99 was selected.  

The second statistic that was developed was termed the oncomix score. The oncomix score is 

calculated as a function of the SI (see Equation 1) and the ∆𝜇𝐻 , ∆𝜇𝐿 , 𝜎𝑁 , 𝜎𝑇 parameters, as shown 

below: 
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                                      𝑂𝑛𝑐𝑜𝑚𝑖𝑥 𝑆𝑐𝑜𝑟𝑒 = 𝑆𝐼 ∗  {(∆𝜇𝐻  −  ∆𝜇𝐿)  − (𝜎𝑁 + 𝜎𝑇)}  , (Equation 2) 

where ∆µH = µHT - µHN and is the difference between the means of the high expression groups of 

the mRNA values from tumor (µHT) and adjacent normal tissue (µHN). This term, when large, 

indicates greater separation between the high expression modes of the tumor and adjacent normal 

populations and would contribute to a larger and more favorable oncomix score. The difference 

between the low expression groups of the tumor (µLT) and adjacent normal samples (µLN) was 

calculated as ∆µL (µLT - µLN). This term, when small, indicates a minimal difference between the 

low expression modes of the tumor and adjacent normal populations and results in a larger 

oncomix score. The oncomix score is penalized by the variance of each mixture model (𝜎𝑁  & 𝜎𝑇), 

with larger variances resulting in lower scores. This is because mixture models with large 

variances reflect an underlying spread in the distribution and provide evidence against the 

existence of two distinct clusters of tumor expression data, and of a single cluster of normal 

tissue data. 

 

Benchmarking oncomix against limma and mCOPA 

Differential expression between tumor and adjacent normal samples was performed using limma, 

an established method for performing a 2-sample t-test in conjunction with empirical Bayes 

estimation24. 16,158 genes that had >20% non-zero values for both tumor and adjacent normal 

samples were used and ranked using the t-statistic and resulting p value. A ranking of 1 indicates 

the gene with the smallest p value. Permutation q-values were calculated by uniformly sampling 

without replacement 1x105 times from a distribution of possible rankings and comparing how 

frequently the sampled ranking was smaller than the observed rank (see supplemental 

Rmarkdown file). Expression data for 16,158 genes from 220 paired tumor-adjacent normal 

samples was used as input into mCOPA. mCOPA requires the manual specification of 

percentiles and was run three times using the 70th, 80th, and 90th percentile. The 80th percentile 

results were displayed in Supplementary Figure 3, with the rationale that these would be most 

consistent with our requirement that at least 20% of samples appear in either the high or the low 

expression group.  

 

Differential expression and pathway overrepresentation analysis 

Differential expression analyses was performed using limma24. The threshold used for 

differential expression was a Benjamini-Hochberg adjusted q-value of 0.0001 and a log2(fold 

change) > 1 or < -1. Pathway overrepresentation analysis (POA) was performed using 910 gene 

sets from three well-defined, manually-curated pathway databases – Hallmark57, KEGG58, and 

Reactome59. POA was performed separately for significantly upregulated and downregulated 

genes to facilitate interpretability, and a stringent cutoff (q < 1x10-20 & OR95% CI > 20) was used 

to select highly enriched gene sets. 

 

Multiple logistic regression, variable selection, and coefficient shrinkage using the elastic net  

Multiple logistic regression was performed for each OC with binary response variables (normal 

or overexpressed OC mRNA levels in breast tumors) and complementary clinical, molecular, and 

pathological datasets were used as covariates (see Supplementary Figure 4 for datasets and 

processing information). The output from the logistic regression model provides a weight, in the 

form of a beta coefficient, that estimates the influence for each predictor on the response 

variable, which in this case, is the overexpression of the OC. How strong of an influence the 
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predictor has on the response is estimated by the model, as well as the direction of this influence. 

To prevent model overfitting, the size of the model coefficients, whose effect was assumed to be 

additive, were regularized using the elastic net penalty and leave-one-out cross validation60 (see 

Supplementary Figure 5). The elastic net is a regularization term that shrinks and selects model 

coefficients to prevent overfitting of data, particularly in settings when there are many predictor 

variables, and helps account for potential collinearities between covariates60. Here, the elastic net 

was used to shrink and select the model coefficients weights for our logistic regression model, 

where the binary outcome variable is the level of expression (either baseline or overexpressed) 

for a given gene. The implementation of the elastic net in the R package ‘glmnet’ was used with 

an α value fixed at 0.5. The multiple logistic regression model was fit using penalized maximum 

likelihood through solving the following objective function (Equation 3) using coordinate 

descent (as implemented in glmnet61):  

min
(𝛽0 ,𝛽)∈ℝ𝑝+1

− [
1

𝑁
∑ 𝑦𝑖 ∙ (𝛽0 + 𝑥𝑖

𝑇𝛽) −  log (1 + 𝑒(𝛽0+𝑥𝑖
𝑇𝛽))  𝑁

𝑖=1 ] +  𝜆[(1 − 𝛼)‖𝛽‖2 /2 +  𝛼‖𝛽‖1] ,  

 

where 𝛽0 is the model intercept, 𝛽 is a column vector of regression coefficients, 𝑥𝑖
𝑇 is a row 

vector of scaled variables (observations) for the 𝑖𝑡ℎ individual, 𝑦𝑖 is the expression status (either 

baseline or overexpressed) for an oncogene candidate, 𝑁 is the number of individuals in the 

dataset (here, N=110). The right half of the objective function (outside of the large brackets) 

represents the elastic net regularization term. The purpose of this term is to prevent overfitting by 

selecting and shrinking the 𝛽 coefficients and is particularly useful as the number of variables 

approaches the number of observations. The objective function is penalized by the size of the 

beta coefficients. Specifically, ‖𝛽‖1 and ‖𝛽‖2  are L1 and L2 penalty terms on the magnitude 

and square of the magnitude of the beta coefficients. 𝜆 regulates the overall size of the penalty 

term and was selected using leave-one-out cross validation across a grid of 𝜆 values. The 

selected 𝜆 value is associated with the sparsest model that yields a misclassification error (MCE) 

within 1 standard error of the MCE. If 𝜆 = 0, then the solution to this problem is equivalent to the 

estimates obtained by ordinary least squares60. 𝛼 is a manually-set tuning parameter that ranges 

between 0 and 1. When 𝛼 = 1, the regularization term is known as the LASSO (L1 penalty), 

when 𝛼 = 0, the regularization term is known as ridge regression (L2 penalty), and when 0 < 𝛼 < 

1, this regularization term is known as the elastic net. Here, 𝛼 was set to 0.5 for all models. All 

continuous variables were scaled between 0 and 1, and all categorical variables were coded as 

binary indicator variables with a separate column per category. A table of all variables used and 

the method for variable scaling are available in the supplementary RMarkdown file. 

 

Gene set enrichment analysis 

The Hallmark57, Kegg58, and Reactome59 geneset databases were downloaded from MSigDB as 

GMT files in March 201762. To test whether the differentially expressed genes between tumors 

that do vs. do not overexpress a given oncogene candidate were overrepresented in any of the 

910 genesets obtained from these three databases, a Fisher’s exact test was performed. Genesets 

that had an odds ratio with a lower bound 95% confidence interval > 20 and a q < 1x10-20 

corrected using the Benjamini-Hochberg method were selected.  

 

Code availability 

All analysis was performed in the statistical programming language R (version 3.4.3). An HTML 

document created using knitR and RMarkdown contains the code and workflow for all analysis 
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performed in this study (Supplementary File 1). An R package “oncomix” for identifying 

oncogene candidates in large cohorts of RNA-sequencing data from tumor and adjacent normal 

samples is available through Bioconductor63.  

 

Data availability 

All of the data used in this study, with the exception of the siRNA knockdown experiments, was 

publicly available and was downloaded from the genomic data commons, Encode, and Gtex 

databases. Data related to siRNA knockdown experiments are available upon request. 

 

Statistical analysis 

All statistical tests were two-sided unless otherwise noted. All statistical tests were performed in 

R (version 3.4.3), and implementations of specific statistical tests can be found in 

Supplementary File 1. 

 

CBX2 siRNA knockdown experiments and analysis of cellular growth rate 

MCF7 cells were obtained from ATCC (#HTB-22). Cells were grown in DMEM supplemented 

with 5% fetal bovine serum and 0.01 mg/ml human recombinant insulin (Sigma) and incubated 

in 5% CO2/37°C. For silencing of CBX2 the siRNA SMARTpool (L-008357 -Dharmacon, 

Lafayette USA) was used. On-target CBX2 oligonucleotides were used for gene-specific 

downregulation and same MCF7 cells transfected with the Non-Targeting (Scramble) siRNA 

Control Pools were used as a reference control for all experiments. SiRNA pools were 

resuspended using according to the manufacturer’s protocol in RNase-free 1x siRNA Buffer at a 

final concentration of 20 mM. Cells were transfected using DharmaFECT-4 Transfection 

Reagent according to the manufacturer’s instructions. After transfection, cells grew for 48 hours 

before the analysis of specific endpoints. 

 

For the growth curve analysis, MCF7 cells silenced with the siCBX2 SMARTpool and scramble 

controls were plated at ~17,000 cells/cm2 in 24 well plates, incubated at 37°C for 48 hours and 

the cell number counted in duplicate every 24 hours for five days. All experiments were repeated 

three times in independent biological triplicates. MCF7 were routinely analyzed to ensure lack of 

mycoplasma contamination by DAPI staining. A three-way between-subjects ANOVA without 

interaction terms was conducted to test the null hypothesis that siRNA has no effect on cellular 

growth rate. The independent variables, all categorical, were the siRNA, the biological replicate, 

and the day post-transfection. The MCF7 cell line was authenticated using the GenePrint 24 

system (Catalog number B1870, Promega) and analyzed using the GeneMarker 1.75 software 

(SoftGenetics). Cell line genotypes showed 100% identity to MCF7 cell lines (results available 

upon request). 

 

RNA isolation and cDNA synthesis to evaluate CBX2 levels 

MCF7 siCBX2 and siScramble were established as described above and plated in 6 well plates at 

~17,000 cells/cm2 for 48 hrs. Cells were then analyzed at 72-120-168 hrs post transfection. The 

cells were then lysed directly on the plate with Qiazol lysis reagent (Qiagen, Valencia, CA) and 

placed at -80C until all samples were ready for RNA extraction.  Total RNA was isolated using 

the miRNeasy kit (Qiagen, Valencia, CA). cDNA was reverse-transcribed from 5 μg of total 

RNA using random primers and SuperScript II Reverse Transcriptase (Invitrogen). CBX2 and 

GAPDH primers were designed with Primer3 software (sequences listed below).  Real-time 
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qRT-PCR was performed using Applied Biosystems Fast SYBR Green Master Mix and the 

StepOnePlus Real-Time PCR System (Life Technologies Corp., Carlsbad, CA, USA). Data 

normalization and analysis were performed as previously described (Acosta et al.)64. 

 

CBX2fw: 5’-GGCTGGTCCTCCAAACATAA-3’ 

CBX2rev: 5’-GCACCTCCTTCTCATGTTCC-3’ 

GAPDHfw: 5’- CCACATCGCTCAGACACCAT -3’ 

GAPDHrev: 5’- CCAGGCGCCCAATACG -3’ 
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