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Abstract

We here present two new methods for inferring population structure and admixture
proportions in low depth next-generation sequencing (NGS) data. Inference of pop-
ulation structure is essential in both population genetics and association studies and
is often performed using principal component analysis (PCA) or clustering-based ap-
proaches. NGS methods provide large amounts of genetic data but are associated with
statistical uncertainty for especially low depth sequencing data. Probabilistic meth-
ods have therefore been employed to account for this uncertainty by working directly
on genotype likelihoods of the unobserved genotypes. We propose a new method for
inferring population structure through principal component analysis based on an iter-
ative approach of estimating individual allele frequencies, and demonstrate a greatly
improved accuracy in samples with low and variable sequencing depth for both simu-
lated and real datasets. At last, we use the estimated individual allele frequencies in
a new fast non-negative matrix factorization method to estimate admixture propor-
tions. Both methods have been implemented in the PCAngsd framework available at
http://www.popgen.dk/software/.

1 Introduction

Population genetic studies often consist of individuals of diverse ancestries, and inference
of population structure therefore plays an important role in population genetics and as-
sociation studies. Population stratification can act as a confounding factor in association
studies as it can lead to spurious associations [1]. Principal component analysis (PCA)
was first introduced to genetic data in Menozzi et al. (1978) [2] to produce synthetic maps
in an exploratory analysis of genetic variation. PCA is now a common tool in population
genetic studies, where its dimension reduction properties can be used to visualize genetic
data by summarizing the genetic variation through principal components [3] as well as
to be used to infer population structure to correct for population stratification in asso-
ciation studies, investigating demographic history [4–6] and performing genome selection
scans [7–9]. PCA is an appealing approach to infer population structure as the aim is not
to classify the individuals into discrete populations, however instead describe continuous
axes of genetic variation such that heterogeneous populations and admixed individuals can
be better represented [4]. Another successful approach in modeling complex population
structure has been to estimate admixture proportions based on clustering-based meth-
ods [10–13], such as the popular software ADMIXTURE, which have also been used for
correction of population stratification in association studies [14].
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Next-generation sequencing (NGS) methods [15] produce a large amount of reliable
DNA sequencing data at low cost and are commonly used in population genetic stud-
ies [16]. Many NGS studies are based on medium (<15X) and low (<5X) depth data
due the demand for large sample sizes as seen in large-scale sequencing studies, e.g. 1000
Genomes Project Consortium [17, 18]. However, the use of medium and especially low
depth sequencing data introduces challenges rooted in the statistical uncertainty induced
when calling SNPs and genotypes in these scenarios. The high error rates associated with
NGS methods are usually caused by several factors such as sampling, alignment and se-
quencing errors [16]. The statistical uncertainty increases for low depth samples due to
the increased difficulty of distinguishing between a variable site and a sequencing error
with the information provided. Chromosomes are also sampled with replacement in the
sequencing process and both alleles may therefore not have been sampled for a hetero-
zygous individual in low depth scenarios. Homozygous genotypes may also be wrongly
inferred as heterozygous due to sequencing errors. Thus, genotype calling will associate
individuals with a statistical uncertainty which should be taken into account [16, 19].

To overcome these problems related to NGS data and genotype calling, probabilistic
methods have been developed to take use of genotype likelihoods in combination with ex-
ternal information for various population genetic parameters [5, 13, 16, 20–23], such that
posterior genotype probabilities can be used to model the related uncertainty. Genotype
likelihoods can be estimated to incorporate errors of the sequencing process such as the
base quality scores as well as the allele sampling [24]. These posterior genotype probabil-
ities have also been used to call genotypes with a higher accuracy than previous methods
for low depth NGS data [16, 19].

We present two new methods for low depth NGS data using genotype likelihoods to
model complex population structure that connect the results of PCA with the admixture
proportions of the clustering-based methods. A method has been developed to perform
PCA in an iterative approach of estimating individual allele frequencies to compute a
covariance matrix, while another method uses the estimated individual allele frequencies in
an accelerated non-negative matrix factorization (NMF) approach to estimate admixture
proportions. The performances of the two methods are assessed on both simulated and real
datasets in regards to existing methods for both low depth NGS and genotype data. The
methods have been implemented in a framework called PCAngsd (Principal Component
Analysis of Next-Generation Sequencing Data).

2 Methods

We will analyze NGS data of m diploid individuals across n variable sites. These sites will
either be known or called single-nucleotide polymorphisms (SNPs), which are assumed to
be diallelic such that the major and minor allele of each SNP have been inferred. This can
either be done from the sequencing reads [20] or from the genotype likelihoods [21] and
only three different genotypes will be possible. Thus, we assume that a genotype G can be
seen as a Binomial random variable with realizations 0, 1 and 2 that represent the number
of copies of the minor allele in a site for a given individual in the absence of population
structure. The expectation and variance of G can therefore be defined as E[G] = 2p and
Var[G] = 2p(1− p) with p representing the allele frequency of a population, which we also
refer to as population allele frequency.

However, genotypes are not observed in NGS data and we will instead work on gen-
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otype likelihoods that also include information of the sequencing process. The genotype
likelihoods are the probability of the observed sequencing data X given the three different
possible genotypes, P (X |G = g), for g = 0, 1, 2. One method to compute the genotype
likelihoods from sequencing reads is described in the supplementary material based on the
model in McKenna et al. (2010) [24].

External information can be incorporated to define posterior genotype probabilities
using Bayes’ theorem in combination with the genotype likelihoods [19]. The population
allele frequency is often used as information in the prior genotype probability P (Gis | ps),
for an individual i in site s [5, 16, 20, 22]. Assuming the population is in Hardy-Weinberg
Equilibrium (HWE) for a site s, the population allele frequency is used to define the prior
genotype probability such that P (Gis = 0 | ps) = (1 − ps)2, P (Gis = 1 | ps) = 2ps(1 − ps)
and P (Gis = 2 | ps) = p2s for the three different possible genotypes. Using the estimated
population allele frequency p̂s for computing the posterior genotype probability, P (Gis =
g |Xis, p̂s), such as defined in Kim et al. (2011) [20], is given as follows for individual i in
site s:

P (Gis = g |Xis, p̂s) =
P (Xis |Gis = g)P (Gis = g | p̂s)∑2

g′=0 P (Xis |Gis = g′)P (Gis = g′ | p̂s)
. (1)

2.1 PCA

The standard way of performing PCA in population genetics and using it to infer pop-
ulation structure is based on the method defined in Patterson et al. (2006) [4]. For a
genotype matrix G of m individuals and n variable sites, the m ×m covariance matrix
C, also known as the genetic relationship matrix (GRM), is computed as follows for two
individuals i and j:

cij =
1

n

n∑
s=1

(gis − 2p̂s)(gjs − 2p̂s)

2p̂s(1− p̂s)
. (2)

Here gis is the observed genotype for individual i in site s to distinguish it from G
defined above for unobserved genotypes, and p̂ is the estimated population allele frequency.
The principal components are then computed by performing an eigendecomposition of the
covariance matrix, where C = VΣVT with V being the matrix of eigenvectors and Σ
the diagonal matrix of eigenvalues. Principal components and eigenvectors will be used
interchangeably throughout this study. The top principal components capture most of the
population structure as they represent axes of genetic variation in the dataset [4].

This method has been extended to NGS data in Fumagalli et al. (2013) [5, 25] using
the probabilistic framework described above, by summing over the joint posterior genotype
probabilities for the two individuals under the assumption of HWE in the whole sample.
The method has been implemented in the ngsTools framework [26]. The covariance matrix
is estimated as follows for NGS data using only known variable sites for two individuals i
and j:

cij =
1

n

n∑
s=1

∑2
gi=0

∑2
gj=0(gi − 2p̂s)(gj − 2p̂s)P (Gis = gi, Gjs = gj |Xis, Xjs, p̂s)

2p̂s(1− p̂s)
. (3)
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Fumagalli et al. (2013) splits up the joint posterior probability P (Gis = gi, Gjs =
gj |Xis, Xjs, p̂s) into P (Gis = gi |Xis, p̂s)P (Gjs = gj |Xjs, p̂s) for i 6= j by assuming condi-
tional independence between individuals given the estimated population allele frequencies.
The non-diagonal entries in the covariance matrix are now directly estimated from the
posterior expectations of the genotype instead of the observed genotypes as described in
Patterson et al. (2006). The original method by Fumagalli et al. (2013) weighs each site
by its probability of being a variable site such that SNP calling is not needed prior to
the covariance matrix estimation. This is not taking into account in this study as we are
using called variable sites to infer population structure. The population allele frequen-
cies are estimated from the genotype likelihoods using an expectation maximization (EM)
algorithm [20] as described in the supplementary material.

The problem with this approach is that the assumption of conditional independence
between individuals given the population allele frequency is only valid when there is no
population structure. Here we propose a novel approach of estimating the covariance
matrix using iteratively estimated individual allele frequencies to update the prior inform-
ation of the posterior genotype probability. Thereby conditioning on the individual allele
frequencies as in the clustering-based approaches.

2.1.1 Individual allele frequencies

A model for estimating individual allele frequencies based on population structure was in-
troduced by Pritchard (2000) [10] as later described in equation 14. Hao et al. (2015) [8]
proposed a different model for estimating individual allele frequencies Π using the in-
formation in the principal components instead of having an assumption of K ancestral
populations. The model is defined as follows,

Π = SA, (4)

where S represents the population structure such that A represents the mapping of the
population structure S in the allele frequencies. Hao et al. estimate the individual allele
frequencies through a singular value decomposition (SVD) method, where the genotypes
are reconstructed using only the topD principal components such that they are modeled by
population structure. A similar approach has been proposed in Conomos et al. (2016) [27]
where the inferred principal components are used to estimate individual allele frequencies
through a simple linear regression model. However, due to working on NGS data and not
knowing the genotypes, we are extending their method to NGS data by using the posterior
expectations of the genotypes, referred to as genotype dosages, instead of genotypes. Thus
we will be using,

E[Gis |Xis, p̂s] =

2∑
g=0

g P (Gis = g |Xis, p̂s), (5)

for individual i in site s.
The individual allele frequencies are estimated by performing SVD on the centered

genotype dosages and reconstructing them using only the top D principal components.
In this way the centered genotype dosages are modeled by population structure, which is
represented through the top principal components explaining most of the genetic variance
in the dataset. 2p̂ is then added to the reconstruction and scaled by 1

2 based on our
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Binomial distribution assumption of Gis, for i = 1, . . . ,m and s = 1, . . . , n, to produce
the individual allele frequencies. Since a SVD is a real valued method, we will have to
truncate the estimated individual allele frequencies in order to constrain them in the range
[0, 1]. However, Hao et al. showed that the resulting estimates were still very accurate
considering this limitation. For ease of notation, let E be the m × n matrix of genotype
dosages, eis = E[Gis |Xis, p̂s], for i = 1, . . . ,m and s = 1, . . . , n. The following steps for
estimating the individual allele frequencies are adopted from the SVD based algorithm of
Hao et al. (2015) [8]:

Algorithm 1: SVD based method for estimating individual allele frequencies.

1. The centered genotype dosages are constructed as E(C) = E− 2p̂.

2. Perform SVD on the centered genotype dosages, E(C) = W∆UT , where W will
represent population structure similarly to V.

3. Define E
(C)
D to be the prediction of the centered genotype dosages using only the top

D principal components, E
(C)
D = W1:D∆1:DUT

1:D.

4. Estimate Π̂ by adding 2p̂ to E
(C)
D row-wise and scaling with 1

2 , based on π̂is ≈
1
2E[Gis].

For matrix notations define Ŝ = [1,W1, . . . ,WD] and ÂT = 1
2 [2p̂,U1δ1, . . . ,UDδD],

all representing column vectors, such that equation 4 can be approximated as Π̂ = ŜÂ.
Finally, Π̂ is truncated in order for for allele frequency estimates to be in range [0, 1] based
on a small value γ such that,

π̂is =


γ if π̂is ≤ γ
π̂is if γ ≤ π̂is ≤ 1− γ
1− γ if π̂is ≥ 1− γ.

(6)

We now incorporate the individual allele frequencies into the estimation of the posterior
genotype probabilities. The estimated individual allele frequencies are used as updated
prior information instead of the population allele frequencies in the estimation of the
prior genotype probabilities. The individual allele frequencies, including information of
population structure, will then able to provide a better estimate of the underlying Binomial
distribution that genotypes of each individual have been assumed sampled from. Thus,
the posterior genotype probabilities are estimated as follows for individual i in site s:

P (Gis = g |Xis, π̂is) =
P (Xis |Gis = g)P (Gis = g | π̂is)∑2

g′=0 P (Xis |Gis = g′)P (Gis = g′ | π̂is)
. (7)

Each individual are now seen as a single population using the individual allele fre-
quencies as prior information. The prior genotype probability are estimated by assum-
ing HWE such that, P (G = 0 |πis) = (1 − πis)

2, P (G = 1 | π̂is) = 2(1 − π̂is)π̂is and
P (G = 2 | π̂is) = π̂2is. An updated definition of the posterior expectations of the genotypes
are then given as:
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E[G |Xis, π̂is] =

2∑
g=0

g P (G = g |Xis, π̂is). (8)

This procedure of updating the prior information can be iterated to estimate new
individual allele frequencies on the basis of an updated population structure. Therefore,
we propose the following algorithm for an iterative procedure of estimating the individual
allele frequencies.

Algorithm 2: Iterative estimation of individual allele frequencies.

1. Estimate population allele frequencies p̂ from genotype likelihoods (See supplement-
ary materials).

2. Estimate posterior genotype probabilities and genotype dosages E based on genotype
likelihoods and p̂.

3. Estimate Π̂ using SVD based method on E as described in Algorithm 1.

4. Estimate posterior genotype probabilities and genotype dosages E using updated
prior information, Π̂.

5. Repeat step 3 and 4 until individual allele frequencies have converged.

Convergence of our iterative method is defined as when the root-mean-square deviation
(RMSD) of the estimated individual allele frequencies of two successive iterations are
smaller than a value δ (5.0× 10−5). The RMSD of iteration t+ 1 is defined as,

RMSD =

√√√√ 1

mn

m∑
i=1

n∑
s=1

(
π̂
(t+1)
is − π̂(t)is

)2
. (9)

2.1.2 Covariance matrix

We now use the final set of individual allele frequencies to estimate an updated covariance
matrix in a similar model proposed by Fumagalli et al. (2013), but with the individual
allele frequencies incorporated into the joint posterior probability of equation 3. The
entries of the covariance matrix C are therefore defined as follow for individuals i and j:

cij =
1

n

n∑
s=1

∑2
gi=0

∑2
gj=0(gi − 2p̂s)(gj − 2p̂s)P (Gi = gi, Gj = gj |Xis, Xjs, π̂is, π̂js)

2p̂s(1− p̂s)
. (10)

For i 6= j, the joint posterior probability can be computed as P (Gi = gi, |Xis, π̂is)P (Gj =
gj , |Xjs, π̂js), since the two terms are conditionally independent given the individual allele
frequencies in contrary to the assumption made in the model of Fumagalli et al. (2013)
using population allele frequencies. The above equation can be expressed in terms of the
genotype dosages for ease of notation and computation:
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Cij =
1

n

n∑
s=1

∑2
gi=0

∑2
gj=0(gi − 2p̂s)(gj − 2p̂s)P (Gi = gi |Xis, π̂is)P (Gj = gj |Xjs, π̂js)

2p̂s(1− p̂s)

=
1

n

n∑
s=1

(E[Gi |Xis, π̂is]− 2p̂s)(E[Gj |Xjs, π̂js]− 2p̂s)

2p̂s(1− p̂s)
.

(11)

However for i = j (diagonal of the covariance matrix), the joint posterior probability
is simplified to P (Gi |Xis, π̂is) such that the estimation of the diagonal covariance entries
is given as:

Cii =
1

n

n∑
s=1

∑2
gi=0(gi − 2p̂s)

2P (Gi = gi |Xis, π̂is)

2p̂s(1− p̂s)
. (12)

An eigendecomposition of the updated estimated covariance matrix is then performed
to obtain the principal components as described earlier, C = VΣVT . Note that V and W
are not the same even though both represent population structure through axes of genetic
variation in the dataset.

2.1.3 Number of principal components

It can be hard to determine the optimal number of significant principal components that
represent population structure. In our method, we are using Velicier’s minimum average
partial (MAP) test as proposed by Shriner (2011) [28] to automatically detect the number
of top principal componentsD used for estimating the individual allele frequencies. Shriner
showed that the test based on a Tracy-Widom distribution, described in Patterson et. al
(2006)[4], systematically overestimates the number of significant principal components and
even performs worse for datasets including admixed individuals. However, in order to be
able to perform the MAP test and detect the optimal D, an initial covariance matrix is
estimated based on the model in equation 3.

The MAP test is performed on the estimated initial covariance matrix C for NGS
data as an approximation of a Pearsson correlation matrix used by Shriner. Using the
notation of Shriner, C∗d is defined as the matrix of partial correlations after having partialed
out the first d principal components. Velicer (1976) [29] proposed the summary statistic

fd =
∑m

i=1,i6=j
∑m

j=1

(C∗d,ij)
2

m(m−1) , where C∗d,ij represents the entry in C∗d for individuals i and j.
Thus, the test statistic fd represents the average squared correlation after partialing out
the top d principal components. The number of top principal components that represent
population structure is then chosen as argmind fd, for d = 0, . . . ,m−1. We have used the
same implementation of the MAP test as Shriner (2011) [28].

The MAP test and the preceding estimation of the initial covariance matrix can be
avoided by having prior knowledge of an optimal D for the dataset being analyzed such
that D is manually selected.

2.1.4 Genotype calling

As previously shown in [5, 16], genotypes can be called from posterior genotype probabil-
ities to achieve higher accuracy in low depth NGS scenarios. We can adapt this concept
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to our posterior genotype probabilities based on individual allele frequencies, such that
genotypes can be called at a higher accuracy in structured populations from low depth
NGS data. The genotype for individual i in site s is called as follows:

ĝis = argmax
g

P (Gis = g |Xis, πis), for g = 0, 1, 2. (13)

2.2 Admixture proportions

Based on the likelihood model defined by Pritchard et al. (2000) [10], individual allele
frequencies Π can be estimated using admixture proportions Q and population-specific
allele frequencies F [12], such that:

πis =
K∑
k=1

qikfsk, (14)

for an individual i in a variable site s. This is based on an assumption of K ancestral
populations where

∑K
k=1 qik = 1 and 0 ≤ q, f ≤ 1 ∀ q, f ∈ (Q,F). However, Q and

F must be inferred in order to estimate the individual allele frequencies, where as K
is assumed to be known. One probabilistic approach for inferring population structure
through admixture proportions in low depth NGS data has been implemented in the
NGSadmix software by Skotte et al. (2013) [13]. Here both parameters are estimated
jointly in an EM algorithm using the genotype likelihoods.

In our case, we have already estimated the individual allele frequencies based on our
iterative procedure using PCA described above. K can be chosen as D+ 1, since it would
explain the number of distinct ancestral population from which the individual allele fre-
quencies have been estimated from. There is however no direct interpretation between
principal components and admixture proportions [12]. Therefore, we propose an approach
based on non-negative matrix factorization (NMF) to infer Q and F using only our estim-
ated individual allele frequencies as information for low depth NGS data. NMF has previ-
ously been applied directly on genotype data to infer population structure and admixture
proportions by Frichot et al. (2014) [30], where their method showed comparable accuracy
and faster run-time in comparison to ADMIXTURE by Alexander et al. (2009) [12]. NMF
has also been well applied in gene expression studies [31].

NMF is a dimension reduction and factor analysis method for finding a low-rank ap-
proximation of a matrix, which is similar to PCA, but NMF is constrained to find non-
negative low-rank matrices. For an non-negative matrix Π ∈ RM×N+ , the goal of NMF is

to find an approximation of Π based on two non-negative factor matrices Q ∈ Rm×K+ and

F ∈ Rn×K+ , such that:

Π ≈ QFT . (15)

Q will consist of columns of non-negative basis vectors such that linear combinations of
these approximates Π through F. Thus based on the non-negative nature of our paramet-
ers, we can apply the ideas of NMF to infer admixture proportions and population-specific
allele frequencies from the the individual allele frequencies. We use a combination of re-
cent research in NMF to minimize the following least squares with an added sparseness
constraint on Q:
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min
Q,F

∥∥∥Π̂−QFT
∥∥∥2
F

+ α

m∑
i=1

K∑
k=1

|qik|, (16)

for Q ≥ 0, F ≥ 0 and α ≥ 0. Here ‖X‖F =
√∑m

i=1

∑n
j=1 |xij |2 is the Frobenius norm

of a matrix X and α is the regularization parameter controlling the sparseness enforced.
Lee and Seung (1999, 2001) [32, 33] proposed an multiplicative update (MU) algorithm

to solve the standard NMF problem without the sparseness constraint included above.
Their update rules can be seen as conservative steps for the two factor matrices in a gradi-
ent descent optimization problem, which ensure that the non-negative constraint holds for
each update. MU and its relation to gradient descent is described in the supplementary
material. Hoyer (2002) [34] extended the MU to incorporate a sparseness constraint as
described in equation 16 for Q. For α > 0, the regularization parameter is used to reduce
noise, especially induced by the uncertainty of low depth NGS data, in the estimated
admixture proportions by enforcing sparseness in the solution.

The Euclidean cost (16) is guaranteed not to increase for each update of a factor matrix
and MU converges towards a stationary using a small modification by Gillis and Glineur
(2008, 2011) [35, 36]. Here the entries of a factor matrix are forced to be greater than
a small value γ (1.0 × 10−4) after each update. The update rules for F and Q, with α
included, are therefore defined as follows in iteration t:

F̂(t+1) = max

(
γ, F̂(t) ⊗ Π̂T Q̂(t)

F̂(t)Q̂(t)T Q̂(t)

)
. (17)

Q̂(t+1) = max

(
γ, Q̂(t) ⊗ Π̂F̂(t+1)

Q̂(t)F̂(t+1)T F̂(t+1) + α

)
, (18)

Here ⊗ represents element-wise multiplication while the division operator and max
function are element-wise as well. However, MU has been shown to have a slow conver-
gence rate, especially for dense matrices, and our approach is therefore to accelerate this
procedure by combining two different techniques.

Gillis and Glineur (2011) [36] proposed an acceleration scheme where a factor matrix
can be updated a fixed number of times at a lower computational cost while keeping the
other factor matrix fixed without losing convergence properties. In this way, they showed
an improvement in the convergence rate of MU.

Another approach for improving the convergence rate of MU in NMF has been pro-
posed by Serizel et al. (2016) [37] using an algorithm based on asymmetric stochastic
gradient descent, called ASG-MU. ASG-MU works by shuffling the columns of Π and
splitting the column indices into B equally sized batches. The shuffling of the columns
in Π̂ is performed to approximate equal variability across all the batches. The following
batch update procedure is then iterated in the ASG-MU algorithm. The order of the
batches is randomly permuted Brand and each batch b ∈ Brand is used to update F̂b and
Q̂ sequentially. Here F̂b is the subset of columns for batch b ∈ F̂. Thus, a full update
of F̂ has only occurred after looping through all B batches, while Q̂ will be updated for
every single batch. The update rules for F̂ and Q̂ are then defined as follows for batch b
in iteration t:
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F̂
(t+1)
b = max

(
γ, F̂

(t)
b ⊗

Π̂T
b Q̂(t,b′)

F̂
(t)
b Q̂(t,b′)T Q̂(t,b′)

)
, (19)

Q̂(t,b) = max

(
γ, Q̂(t,b′) ⊗

Π̂bF̂
(t)
b

Q̂(t,b′)F̂
(t)T
b F̂

(t)
b + α

)
, (20)

where b′ represents the previous batch used to update Q̂. Note that t will only increase
for Q̂ when all B batches has been looped through.

We can then extend the ASG-MU update procedure to integrate the accelerated update
scheme from Gillis and Glineur (2011) [36] in each factor matrix update. The idea of
introducing an acceleration scheme for MU in a stochastic gradient descent approach has
also been described in Kasai (2017) [38]. However, further modifications are needed for
our procedure as we need to satisfy

∑K
k=1 qik = 1, for i = 1, . . . ,m, as well as having all

entries of the factor matrices in range [γ, 1− γ]. The rows of Q̂ are therefore normalized
after each update and the entries of both Q̂ and F̂ truncated. The normalization of the
Q̂ will also ensure that the NMF algorithm finds a unique solution.

We propose the following algorithm for combining the two acceleration approaches to
estimate admixture proportions and population-specific allele frequencies from low depth
NGS data, using only the estimated individual allele frequencies:

Algorithm 3: Estimation of admixture model parameters based on NMF.

1. Initiate Q̂ and F̂ randomly with entries in range [γ, 1− γ].

2. Normalize rows of Q̂ to sum to one.

3. Let Π̂∗ be Π̂ after column shuffling and let B be the set of batches.

4. Randomly permute batches in B, and for each b ∈ B:

(a) Update F̂b using Q̂ and Π̂∗b in equation 19 with acceleration scheme.

(b) Truncate entries of F̂b in range [γ, 1− γ].

(c) Update Q̂ using F̂b and Π∗b in equation 20 with acceleration scheme.

(d) Truncate entries of Q̂ in range [γ, 1− γ].

(e) Normalize rows of Q̂ to sum to one.

5. Repeat from step 3 until admixture proportions have converged.

6. Reshuffle columns of F̂ for column indices to match the originals of Π̂.

Convergence in the estimation of admixture proportions is defined as when the RMSD
of estimated admixture proportions of two successive iterations are smaller than a value
φ (5.0× 10−5). The RMSD of iteration t+ 1 is defined as,

RMSD =

√√√√ 1

mK

m∑
i=1

K∑
k=1

(q̂
(t+1)
ik − q̂(t)ik )2. (21)

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 17, 2018. ; https://doi.org/10.1101/302463doi: bioRxiv preprint 

https://doi.org/10.1101/302463
http://creativecommons.org/licenses/by-nc-nd/4.0/


The α parameter enforcing sparseness in the estimated solution of Q is arbitrarily
specified, however the use of the likelihood measure in the NGSdamix [13] model can be
used to determine a proper α parameter fitting the dataset. The likelihood measure is
defined as:

L(Q̂, F̂) =
m∏
i=1

n∏
s=1

2∑
g=0

P (Xis |Gis = g)P (Gis = g | π̂is) (22)

where π̂is =
∑K

k=1 q̂ikf̂sk. Based on the fast estimation of admixture proportions using
our NMF algorithm, a set of α values can be tested and measured sequentially using
the likelihood measure. This can be performed without sacrificing significant run-time
compared to NGSadmix due to already having estimated the individual allele frequencies
for a particular K.

2.3 Implementation

Both presented methods have been implemented in a Python framework named PCAngsd
(Principal Component Analysis of Next Generation Sequencing Data). The framework is
freely available at http://www.popgen.dk/software/.

The memory requirements for using PCAngsd is O(mn) as the genotype likelihoods
need to be stored in memory, and the most computational expensive step is the estimation
of individual allele frequencies and covariance matrix (O(m2n)). However, a fast SVD
method for only computing the top D eigenvectors, implemented in the Scipy library [39]
using ARPACK [40] as an eigensolver, has been used to speed up the estimations for
the individual allele frequencies. PCAngsd is multithreaded as well to take advantage of
several cores and the backbone of the framework is based on Numpy [41] data structures
using the Numba [42] library to speed up bottlenecks with just-in-time (JIT) compilation.

3 Data

3.1 Simple simulation of genotypes and sequencing data

Low depth NGS data has been simulated as genotype likelihoods to test the capabilities
of our two presented methods. Allele frequencies of the reference panel of the Human
Genome Diversity Project (HGDP) [43] have been used to generate a total of 380 indi-
viduals from three distinct populations (French, Han Chinese, Yoruba) including admixed
individuals in approximately 0.4 million SNPs across all autosomes. As the allele fre-
quencies are known for each population, the genotypes of each individual can be sampled
from a Binomial distribution for each diallelic SNP, using the population-specific allele
frequency or an admixed allele frequency as parameter. No LD has been simulated. The
genotypes are therefore known and are used in the evaluation of our methods in our low
depth scenarios. The number of reads in each SNP are sampled from a Poisson distribu-
tion with a mean parameter resembling the average sequencing depth of the individual,
and the genotype is used to sample the number of derived alleles from a Binomial distri-
bution using the sampled depth as parameter. The sequencing depth of each individual is
sampled uniformly random from a range of [0.5, 5]. Sequencing errors are incorporated by
sampling each read with a probability ε = 0.01 of being wrong. The genotype likelihoods
are then finally generated from the probability mass function of a Binomial distribution
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using the sampled parameters and ε. This approach of genotype likelihood simulation has
previously been used in [13, 20, 22].

A complex admixture scenario has been constructed to test the capabilities of our
methods. 100 individuals have been sampled directly from each of the population specific
allele frequencies (non-admixed), while 50 individuals have been sampled to have equal
ancestry from each of the three distinct populations (three-way admixture). At last, 30
individuals have been sampled from a gradient of ancestry between all pairs of the ancestral
populations (two-way admixture).

3.2 1000 Genomes

We also analyze human low coverage NGS data of 193 individuals from the 1000 Genomes
Project Consortium [17, 18]. The individuals are from four different populations consisting
of 41 from CEU (Utah residents with Northern and Western European ancestry), 40 from
CHB (Han Chinese in Beijing), 48 from YRI (Yoruba in Ibadan) and 64 individuals from
MXL (Mexican ancestry in Los Angeles) representing an admixed scenario of European
and Native American ancestry. The individuals from the low coverage datasets used here
have a varying sequencing depth from 3− 14X after filtering. An advantage of using the
1000 Genomes Project data is that reliable genotypes of the individuals in the low coverage
sequencing dataset are available, such that we can use them for validation purposes.

SNP calling and estimation of genotype likelihoods of the 1000 Genomes dataset has
been performed in ANGSD [21] using simple read quality filters. A significance threshold
of 1.0× 10−6 has been used for SNP calling alongside a MAF filter of 0.05 removing rare
variants. The number of SNPs is also thinned by removing every eighth SNP in order
to reduce the dataset and reduce the effect of LD patterns. A total number of 1 million
variable sites across all autosomes have been used in the analyses. The full ANGSD
command used to generate the genotype likelihoods is provided in the supplementary
material.

3.3 Waterbuck

Lastly, an animal dataset (non-model organism) has also been included in our study. A
reduced low depth NGS dataset of the waterbuck (Kobus ellipsiprymnus) originating from
Pedersen et al. (2018, unpublished) [44] has been analyzed. The dataset consists of 73
samples that have been sampled at 5 different sites in Africa with a varying sequencing
depth from 2.2− 4.7X. The dataset has been reduced to only include sampling sites with
more than 10 samples such that the inferred axes of genetic variation will reflect true
population structure. As performed for the 1000 Genomes dataset, genotype likelihoods
has been estimated in ANGSD with the same SNP and MAF filters. A total number of
10 million SNPs across the autosomes of the waterbuck is analyzed in this study.

4 Results

For the simulated and 1000 Genomes datasets, results estimated in PCAngsd on low
depth NGS data are evaluated against the results estimated from reliable genotype data.
The model in Patterson et al. (2006) [4] (equation 2) is used to perform PCA, while
ADMIXTURE [12] is used to estimate admixture proportions on the genotype datasets.
The performance of PCAngsd is also compared to existing NGS methods in performing
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PCA, the ngsTools [26] model (equation 3), and estimating admixture proportions, NG-
Sadmix [13], that are both based on probabilistic frameworks using genotype likelihoods
as well. In all the following cases of admixture plots estimated by PCAngsd, α has been
selected by choosing the one maximizing the likelihood measure described above (equation
22).

RMSD is used to evaluate the performances of both NGS methods for estimating
admixture proportions in terms of accuracy:

RMSD =

√√√√ 1

mK

m∑
i=1

K∑
k=1

(q̂ik − qik)2, (23)

where qik and q̂ik represents the estimated admixture proportion for individual i in
ancestral population k from known genotypes and NGS data, respectively. The accuracy of
the estimated PCA plots of both NGS methods are evaluated with a Procrustes analysis [5,
45] producing a residual sum-of-squares (RSS) value using the estimated PCA plot of the
known genotypes for the simulated and 1000 Genomes datasets.

As well as measuring the accuracy of the presented methods, we also evaluate the
number of ancestral populations K chosen using residual matrices based on genotype
dosages and individual allele frequencies. The residual matrix R will be defined as follows
for individual i in site s:

ris = 2π̂is − E[Gis |Xis, π̂is] (24)

The correlation matrix is then computed from R. Therefore, if the number of assumed
ancestral populations K is not representative of the dataset, then we would see a positive
correlation in the residuals between the individuals within a population, as K is not
sufficient to model the individual allele frequencies. A plot of the correlation matrix
can therefore serve as a verification of the chosen K as well as the inferred number of
eigenvectors in the MAP test (D = K − 1).

All tests in this study have been performed server-side using 32 threads (IntelR© XeonR©

CPU E5-2690) for both PCAngsd and NGSadmix.

4.1 Simulation

The results of performing PCA on the simulated dataset are displayed in Figure 1. The
MAP test reported 2 significant principal components which was also expected for in-
dividuals simulated from three distinct populations. The inferred principal components
clearly shows the importance of taking the estimated individual allele frequencies into
account in the probabilistic framework. Here PCAngsd is able to infer the population
structure of individuals from distinct populations and admixed individuals nicely as also
seen by the Procrustes analysis with a RSS value of 5.14 × 10−5. There is clear bias in
the results of the ngsTools model where the patterns are representing sequencing depth
instead of population structure as made apparent in Figure 9. The individuals are acting
as a gradient towards the origin due to their varying sequencing depth. The biased per-
formance of ngsTools is also reflected in the Procrustes analysis with an estimated RSS
value of 0.112.

The estimated admixture proportions for the simulated dataset are displayed in Figure
2. PCAngsd estimates the admixture proportions well with a RMSD of 0.00476 compared
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Method Sum-of-squares (RSS)

PCAngsd 5.1377× 10−5

ngsTools 0.11204

Procrustes analyses

Figure 1: PCA using different methods of the top 2 principal components in the simulated
dataset consisting of 380 individuals and 0.4 million variable sites. The top left plot shows the
PCA performed on the sampled genotypes using the model described by Patterson et al. (2006)
(equation 2). The top right plot shows the PCA performed by PCAngsd, and the bottom plot
left displays the PCA performed by the ngsTools model (equation 3). The accuracy of the PCA
plots of the NGS methods are summarized in the table in the bottom right based on Procrustes
analysis.

to the ADMIXTURE estimates of the known genotypes, but is however outperformed by
NGSadmix with a RMSD of 0.00184. For the 380 individuals and 0.4 million SNPs using
K = 3, PCAngsd had an average run-time of only 3.5 minutes while NGSadmix had an
average run-time of 7.9 minutes.

4.2 1000 Genomes

The methods of PCAngsd have also been applied to the 1000 Genomes dataset. The MAP
test indicated evidence of 3 significant principal components meaning that the Native
American ancestry explains enough genetic variance in the dataset to get an axis of its
own. The results of the PCA are displayed in Figure 3. As was also seen for the simulated
dataset, PCAngsd is able to cluster all individuals almost perfectly, while the ngsTools
model is only able to capture some of the same population structure patterns. Its results
are still biased by the variable sequencing depth as seen as well in Figure 10. The RSS
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Figure 2: Admixture plots for K = 3 of the simulated dataset. The first plot is the admixture
proportions estimated in ADMIXTURE [12] using the known genotypes, which represents the
ground-truth in our simulation studies. The second plot shows admixture proportions estimated
using PCAngsd with parameters α = 0 and B = 5 and the bottom plot using NGSadmix [13].
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values of the Procrustes analyses verify the observations, where PCAngsd has a RSS value
of 0.000575 compared to ngsTools with a RSS value of 0.00814.

The admixture plots are displayed in Figure 4. PCAngsd is not able to outperform
NGSadmix in terms of accuracy, however it is still able to estimate a very similar result.
PCAngsd has some issues with noise in its estimation but is however able to reduce it with
the use of the sparseness parameter α. The likelihood measure in equation 22 has been
used to easily find an optimal α as seen in Figure 12. PCAngsd estimates the admixture
proportions with a RMSD of 0.0121 compared to NGSadmix with a RMSD of 0.0108. The
average run-time for 193 individuals and 1 million SNPs using K = 4 was 3.6 minutes for
PCAngsd and 14.9 minutes for NGSadmix, making PCAngsd more than 4.1x faster than
NGSadmix.

We have computed correlation matrices based on the residuals (equation 24) for the
1000 Genomes dataset in Figure 5 using K = 3, 4. Here we show the difference between
the assumption of 3 or 4 ancestral populations when estimating admixture proportions. It
is clearly seen that the assumption of only 3 ancestral populations is not enough to fully
explain the population structure in the sample as the residuals are positively correlated
for the individuals with Mexican ancestry. For K = 4, these individuals can be modeled
more accurately as seen in the bottom right corner of both plots. These results show that
the individuals with Mexican ancestry can not only be modeled by European and Asian
ancestry but would need the presence of assumed Native American ancestry as well.

4.3 Waterbuck

Lastly, we have analyzed the waterbuck dataset. The MAP test reported 4 significant
principal components for explaining the genetic variation in the dataset which also fits
with having 5 distinct waterbuck sampling sites. The PCA plots are visualized in Figure
6, where the top 4 principal components have been plotted for each method. Once again,
PCAngsd is able to cluster the populations much better than the ngsTools model, however
the effect is not as apparent as for the other datasets. This is very likely due to the low
number of individuals in each population which means that the principal components and
individual allele frequencies can not be as well described.

The bias, which affects the estimation of the individual allele frequencies, will of course
also affect the admixture plots seen in Figure 7, where additional noise is hard to remove
without also affecting the true ancestry signals. Still, PCAngsd is capturing the same
ancestry signals as NGSadmix with the use of the sparseness parameter and the RMSD
between the estimates of the two methods is merely 0.00927. It is worth noting that
an admixed individual of Ugalla and QENP is captured in both PCA and admixture
estimation of PCAngsd as also verified by the NGSadmix method. The difference in run-
times for the waterbuck dataset of 73 samples and 10 million SNPs using K = 5, where
PCAngsd had an average run-time of 19 minutes while NGSadmix had an average run-time
of 3.2 hours, thus making PCAngsd more than 10x faster.

As for the 1000 Genomes dataset, we have computed correlation matrices of the re-
siduals for K = 4, 5 in the waterbuck dataset. The results can be seen in Figure 8. The
plots enforces the evidence of 5 distinct populations (K = 5), as inferred by the MAP test,
due to the positive correlation of residuals seen in the bottom right corner for K = 4. A
negative correlation can be seen between the individuals within the same population, as
deviations from the population-specific mean will become much more apparent for a low
number of individuals using low depth NGS data.
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Method Sum-of-squares

PCAngsd 0.00057460
ngsTools 0.0081434

Procrustes analyses

Figure 3: PCA plots of the top 2 principal components for the 1000 Genomes dataset with 193
individuals and 1 million variable sites. The top left PCA plot is based on the known genotypes of
the variable sites used in the low depth NGS data, top right PCA is performed by PCAngsd and
the bottom left PCA is performed by the ngsTools model. The accuracy of the PCA plots of the
NGS methods are summarized in the table in the bottom right based on Procrustes analysis.

Dataset m n PCAngsd NGSadmix Depth

Simulated 380 0.4 million 3.5 min 7.9 min 0.5− 5X
1000 Genomes 193 1 million 3.6 min 14.9 min 3− 14X
Waterbuck 73 10 million 19 min 192 min (3.2 hours) 2.2− 4.7X

Table 1: Average run-times of 10 initializations for both PCAngsd and NGSadmix. The run-times
reported for PCAngsd include both estimation of covariance matrix, individual allele frequencies
and admixture proportions. All tests have been performed server-side using 32 threads.
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Figure 4: Admixture plots for K = 4 of the 1000 Genomes dataset. The first plot is the admixture
proportions estimated in ADMIXTURE [12] using the known genotypes, the second plot shows
admixture proportions estimated in PCAngsd with parameters α = 250 and B = 5 and the last
plot is the admixture proportions estimated in NGSadmix [13].

Figure 5: Correlation matrices of the residuals based on equation 24 assuming K = 3, 4. A
positive correlation between the residuals of two individuals indicate that the number of assumed
ancestral population is not sufficient to describe the population structure of the dataset.
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Figure 6: PCA plots of the top 4 principal components for the waterbuck dataset with 73
individuals and 10 million variable sites. The first row displays the plotting of the first and second
principal components for PCAngsd and the ngsTools model, respectively, while the second row
displays the plotting of the third and fourth principal components.
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Figure 7: Admixture plots for K = 5 of the waterbuck dataset. The first plot is the admixture
proportions estimated in PCAngsd with parameters α = 5000 and B = 5 and the second plot
shows the admixture proportions estimated in NGSadmix [13].

Figure 8: Correlation matrices of the residuals for the waterbuck dataset assuming K = 4, 5. A
positive correlation between the residuals of two individuals indicate that the number of assumed
ancestral population is not sufficient to describe the population structure of the dataset.
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5 Discussion

We have presented two new methods for inferring population structure and admixture pro-
portions in low depth NGS data and both methods have been implemented in a framework
named PCAngsd. We have developed a probabilistic framework using genotype likelihoods
to iteratively estimate individual allele frequencies in which we have connected principal
components to admixture proportions such that we are able to infer and estimate both in
a very fast approach.

Based on the results when inferring population structure using PCA, it is clear that
the increased uncertainty of low depth sequencing data biases the clustering of popula-
tions using the ngsTools model. Contrary to PCAngsd, population structure is not taking
into account when using the posterior genotype probabilities to estimate the covariance
matrix. The ngsTools model uses population allele frequencies as prior information for all
individuals such that individuals are assumed to be sampled from a homogeneous popula-
tion. This assumption is of course violated when individuals are sampled from structured
populations with diverge ancestries. Missing data is therefore modeled by population al-
lele frequencies that resemble an average across the entire sample. As an effect of this, the
low depth individuals are modeled by sequencing depth instead of population structure.
These results may lead to misinterpretations of population structure or admixture only
due to low and variable sequencing depth. However, PCAngsd is able to overcome the
observed bias of low and variable sequencing depth by using individual allele frequencies
as prior information, which leads to more accurate results in all datasets of the study, as
missing data is modeled by inferred population structure. The assumption of conditional
independence between individuals in the estimation of the covariance matrix (equation 11)
also holds for structured populations by using the estimated individual allele frequencies.

The number of significant eigenvectors used in the estimation of individual allele fre-
quencies is determined by the MAP test. The MAP test is performed on the covariance
matrix estimated from the ngsTools model, which we have shown to be biased by low and
variable sequencing depth. Thus in cases of complex population structure and low and
variable sequencing depth, it is possible that the MAP test will not find a suitable number
of significant eigenvectors to represent the genetic variation of the dataset. It could there-
fore be more relevant to use prior information regarding the number of eigenvectors needed
for the dataset instead. However for each of the cases presented in this study, the MAP
test inferred the expected number of significant eigenvectors to describe the population
structure.

PCAngsd is able to approximate the results of NGSadmix to a high degree when
estimating admixture proportions using solely the estimated individual allele frequencies.
However, PCAngsd is not able to outperform NGSadmix in terms of accuracy, but it is
however able to capture the exact same ancestry patterns as the clustering-based methods
in a much faster approach, as shown by the run-times of each method. Another advantage
of PCAngsd is that the estimated individual allele frequencies are only needed to be
computed once for a specific K, thus multiple different α’s and random seeds can be
tested in the same run for an even greater speed advantage over NGSadmix, since the
iterative estimation of individual allele frequencies is the most computational expensive
step in PCAngsd. PCAngsd is therefore an appealing alternative for estimating admixture
proportions for low depth NGS data as convergence and run-time can be a problem for
a large number of parameters in NGSadmix [13]. PCAngsd was only seen to converge to
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a single solution for all our practical tests. We recommend to have at least 100000 SNPs
in each batch to reduce the probability of having an unfortunate split and shuffling of the
variable sites, and thus ensuring approximately equal variability across the batches.

Both methods of the PCAngsd framework rely on an representative estimation of indi-
vidual allele frequencies which are modeled using the inferred principal components of the
SVD on the genotype dosages. The number of individuals representing each population or
subpopulation is essential for inferring principal components that describe true population
structure as each individual will contribute to the construction of these axes of genetic
variation. This particular effect can be seen in the PCA results of the waterbuck dataset
where the populations are only described by a low number of individuals such that some
of the clusters are not so well defined as for the other datasets. The admixture proportions
estimated from the waterbuck dataset are therefore affected as well which can be seen by
the additional noise in the admixture plots.

The PCAngsd framework might be able to push the lower boundaries of sequencing
depth required to perform population genetic analyses using NGS data of large-scale ge-
netic studies. PCAngsd demonstrates an efficient approach to be able to deal with merged
datasets with various sequencing depths as well. The estimated individual allele frequen-
cies contain a lot of information regarding population structure and can open up for the
development and extension of population genetic models based on a similar probabilistic
framework to naturally correct for population structure in order to obtain more accurate
estimates in heterogeneous populations.
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6 Supplementary Material

6.1 Genotype likelihoods

Genotype likelihoods are the probability of the observed sequencing data given the unob-
served genotypes. They can be computed from next-generation sequencing (NGS) data
using the uncertainty of each base from the raw quality scores of sequencing machines.
The quality scores Q are usually in Phred scale such that the probability of an error in

the observed base call is given by ε = 10
−Q
10 . The probability of observing a base b of

read r in a site s can be seen as the likelihood of the given allele. For having L reads
covering s and assuming independence between the reads (and the error probabilities),
the genotype likelihood can be computed by the product of the allelic likelihoods for the
site [16, 19]. The genotype likelihood for individual i in site s can be defined as follows
for a multi-allelic case derived from the approach in [24]:

P (Xis |G = A1A2) ∝
L∏
r=1

(
P (b

(i)
r |A1)

2
+
P (b

(i)
r |A2)

2

)
. (25)

Here Xis is the sequencing data, P (b |A) = 1 − ε, for b = A, and P (b |A) = ε
3 , for

b 6= A, with ε being the probability of error in the observed base call. This is for an
arbitrary genotype A1A2.

6.2 Population allele frequencies

The population allele frequencies p can be estimated from NGS data using an Expectation
Maximization (EM) algorithm to compute the maximum likelihood estimator for each site.
The likelihood function of p in a site s is defined in Kim et al. (2011) [20] as follows by
assuming independence between all m individuals:

L(ps) ∝ P (Xs | ps) =
m∏
i=1

P (Xis | ps) . (26)

Here Xs is the observed sequencing data in site s. Since the genotype is not observed
for NGS data, a latent variable G is introduced by taking the sum over the realizations of
the genotype. Thus for individual i in site s, P (Xis | ps) can now be defined as:

P (Xis | ps) =

2∑
g=0

P (Xis |G = g)P (G = g | ps) , (27)

where P (Xis |Gis = g) is the genotype likelihood and P (Gis = g | ps) is the prior
genotype probability. By assuming Hardy-Weinberg equilibrium (HWE) in the whole
sample, the prior genotype probabilities are estimated as P (Gis = 0 | ps) = (1 − ps)

2,
P (Gis = 1 | ps) = 2ps(1−ps) and P (Gis = 2 | ps) = p2s. The maximum likelihood estimator
of ps is then defined as follows:

p̂(ML)
s = argmax

ps

m∏
i=1

P (Xis | ps) . (28)
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The maximum likelihood solution is found by estimating the mean posterior expect-
ations of the latent variable G iteratively for all individuals. The posterior genotype
probability for individual i in site s is given as:

P (Gis = g |Xis, ps) =
P (Xis |Gis = g)P (Gis = g | ps)∑2

g′=0 P (Xis |Gis = g′)P (Gis = g′ | ps)
. (29)

And the posterior expectation of the genotype is then given as:

E[Gis |Xis, ps] =
2∑
g=0

gP (Gis = g |Xis, ps) . (30)

Now the update step for iteration t + 1 in the EM algorithm can be defined as the
mean of the posterior expectations of the genotype. The population allele frequency for
each site is then obtained by scaling with 2 based on an assumption of G being Binomial
distributed (E[G] = 2p):

p̂(t+1)
s =

∑m
i=1 E[G |Xis, p̂

(t)
s ]

2m
. (31)

6.3 Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) is a dimension reduction and factor analysis
method. Given a matrix Π ∈ Rm×n+ , NMF finds two factor matrices Q ∈ Rm×K+ and

F ∈ Rn×K+ , such that Π ≈ QFT . The Euclidean cost J is usually used as an objective
function in NMF and can be minimized as an optimization problem with respect to Q and
F:

J(Q,F) =
1

2

∥∥Π−QFT
∥∥2
F

=
1

2

m∑
i=1

n∑
s=1

∣∣πis − (QFT )is
∣∣2 . (32)

Here ‖X‖F is the Frobenius norm of a given matrix X. The gradient matrices of J
with respect to Q and F, respectively, can be defined as:

∇QJ(Q,F) = ΠF−QFTF, (33)

∇FJ(Q,F) = ΠTF− FQTQ, (34)

which we are using in equation in equation 36 and 37. Lee and Seung (1999, 2001) [32,
33] presented multiplicative update rules to minimize the cost J with respect to Q and F,
which have been defined element-wise for Q and F as follows:

qik = qik
(ΠF)ik

(QFTF)ik
, fsk = fsk

(ΠTQ)sk
(FQTQ)sk

, (35)

for i = 1, . . . ,m, s = 1, . . . , n and k = 1, . . . ,K. The multiplicative update rules can
be contrasted to gradient descent by displaying an additive update to minimize J using
the gradients described above:

qik = qik + η
(q)
ik (∇QJ(Q,F))ik (36)

fsk = fsk + η
(f)
sk (∇FJ(Q,F))sk (37)
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Then by setting the steplengths (η) to small positive numbers, the additive updates
would be equivalent to a standard gradient descent approach that decreases the Euclidean

cost J . However by setting η
(q)
ik = qik

(QFTF)ik
and η

(f)
ik = fsk

(FQTQ)sk
is equal to the multi-

plicative update rules (equation 35), where the steps are conservative enough to ensure
non-negative entries for each update [33, 46].
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6.4 PCA - Sequencing depth

6.4.1 Simulation

Figure 9: PCA plots of the simulated dataset with individuals colored by their individual sampled
sequencing depth. The upper PCA plot is of PCAngsd and the bottom is of the ngsTools model.
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6.4.2 1000 Genomes

Figure 10: PCA plots of the 1000 Genomes dataset with individuals colored by their individual
sequencing depth. The upper PCA plot is of PCAngsd and the bottom is of the ngsTools model.
The sequencing depths are estimated in ANGSD [21].

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 17, 2018. ; https://doi.org/10.1101/302463doi: bioRxiv preprint 

https://doi.org/10.1101/302463
http://creativecommons.org/licenses/by-nc-nd/4.0/


6.4.3 Waterbuck

Figure 11: PCA plots of the waterbuck dataset with individuals colored by their individual
sequencing depth. The PCA plots of the left column are of PCAngsd and the plots of the right
column are of the ngsTools model. The sequencing depths are estimated in ANGSD [21].
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6.5 NMF α parameter

Figure 12: Combined plots of the Frobenius error and likelihood measure obtained using different
α values in the estimation of admixture proportions for the real datasets. The left figure shows the
plot for the 1000 Genomes dataset with an optimal α = 250 in terms of maximizing the likelihood
measure. The right figure shows the same for the waterbuck dataset with an optimal α = 5000.
B = 5 was used in both cases.

6.6 ANGSD

Genotype likelihoods and SNP calling
./angsd -bam ngslist -GL 1 -out ngsGL -doGlf 2 -doMajorMinor 1 -doMaf 2 -minMaf 0.05 -SNP pval
1e-6 -minInd 170 -rf chrFile -doDepth 1 -doCounts 1 -P 20
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