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Abstract 16 

 17 

Social genetic effects (SGE, also called indirect genetic effects) are associations 18 

between genotypes of one individual and phenotype of another. SGE can arise when 19 

two individuals interact and heritable traits of one individual influence the phenotype 20 

of the other. To better understand the architecture of SGE, we re-analysed an existing 21 

dataset comprising 170 behavioural, physiological and morphological phenotypes 22 

measured in outbred laboratory mice. For all phenotypes and in order to compare SGE 23 

with better-known direct genetic effects (DGE, associations between an individual’s 24 

genotypes and their own phenotype), we analysed polygenic models with random 25 

terms for SGE and DGE and performed the genome-wide association study of both 26 

SGE (sgeGWAS) and DGE (dgeGWAS). Our analyses yielded two main insights: first, 27 

SGE and DGE acting on the same phenotype generally arise from partially different 28 

loci and/or loci with different effect sizes; secondly, individual SGE associations 29 

typically explain less phenotypic variance than DGE associations. Our results shed 30 

light on the architecture of SGE and have important implications for the design of future 31 

studies. Importantly, we detail and validate methods that can be used for sgeGWAS 32 
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in outbred populations with any levels of relatedness and group sizes, and provide 33 

software to perform these analyses.  34 

 35 

 36 

Main text 37 

 38 

Introduction 39 

 40 

Social interactions between two individuals can result in the phenotype of one 41 

individual being affected by genotypes of their social partner. Such effects arise when 42 

heritable traits of the social partner influence the phenotype of interest (Figure 1a), 43 

and are called indirect genetic effects or social genetic effects1-4 (SGE).  44 

 SGE have been shown to contribute significantly and substantially to 45 

phenotypic variation in livestock, wild animals, plants and laboratory model organisms 46 

(see review by Bijma5 and subsequent references). In laboratory mice, SGE have 47 

been found to affect a broad range of phenotypes including behavioural, physiological, 48 

and morphological traits6-9, and in humans effects of non-transmitted parental alleles 49 

have been detected on offspring’s educational attainment10-12. Thus, SGE are an 50 

important component of the genotype to phenotype path, and understanding their 51 

architecture is important. 52 

 SGE can be used as a tool to identify traits of social partners affecting a 53 

phenotype of interest. For example, a candidate gene study of SGE on plumage 54 

condition in laying hens13 found an indirect association with the serotonin receptor 2C 55 

gene. As the serotoninergic system is known to control behaviour, this SGE 56 

association is consistent with observations of cage mates influencing the plumage of 57 

a focal hen through feather pecking. When traits of social partners affecting the 58 

phenotype of interest are unknown, the genome-wide association study of SGE 59 

(sgeGWAS) may be a promising avenue. Indeed, similarly to how GWAS of 60 

“traditional” direct genetic effects (DGE, effects of an individual’s genotypes on its own 61 

phenotype) has provided valuable insights into the “within-body” pathways affecting 62 

disease and quantitative phenotypes14, sgeGWAS could help dissect the “between-63 

bodies” pathways of social effects and provide clues on the traits of social partners 64 
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that mediate social effects. Deploying sgeGWAS reliably and efficiently will however 65 

require a good understanding of the architecture of SGE.  66 

 Information on the architecture of SGE is relatively sparse, as few studies have 67 

identified genomic loci that influence phenotypes of social partners. Quasi-Mendelian 68 

SGE exist15,16 but candidate gene studies and GWAS of SGE have revealed oligo- or 69 

polygenic architectures for a larger number of phenotypes7,8,13,17,18.  Two key features 70 

of such complex architectures are the degree of overlap between SGE and DGE loci, 71 

and the proportion of variance explained by SGE loci. The degree of overlap between 72 

SGE and DGE has most often been studied in terms of the genome-wide correlation 73 

between SGE and DGE effect sizes, and it has been shown to be an important 74 

determinant of the response of a phenotype to selection19-24. In addition, whether the 75 

strongest SGE and DGE for any given phenotype arise from the same loci is of 76 

practical interest: it determines how redundant sgeGWAS may be with dgeGWAS of 77 

the same phenotype and whether loci identified in dgeGWAS may also have effects 78 

on the same phenotype of partners.  79 

 Similarly, the variance explained by individual SGE loci is both of fundamental 80 

and practical interest, as it provides insights into the evolutionary process and 81 

determines the power of sgeGWAS. Estimates of the variance explained by individual 82 

SGE loci are most informative when similar estimates for DGE loci acting on the same 83 

phenotype and in the same population are available for comparison. Of the few studies 84 

that have mapped SGE7,8,13,17,18,25, only two have reported SGE and DGE loci acting 85 

on the same phenotype. One of these reported that DGE loci explain a much greater 86 

proportion of phenotypic variance than SGE loci17 while the other found similar effect 87 

sizes for individual SGE and DGE loci8. Given the sparsity of information, expectations 88 

on the effect sizes of SGE are difficult to build. 89 

 In order to improve our understanding of the architecture of SGE, we leveraged 90 

an existing dataset of 170 behavioural, physiological and morphological phenotypes 91 

measured in outbred “CFW” laboratory mice26,27 (Figure 1c). We studied both SGE 92 

and DGE acting on each of these 170 phenotypes (Figure 1b) using polygenic models 93 

and GWAS. Specifically, we investigated whether SGE and DGE arise from similar 94 

loci, and compared the effect sizes of SGE loci to those of DGE loci. 95 

 96 
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 97 
Figure 1 Illustration of social genetic effects (SGE), definition of specific terms used 98 

throughout the manuscript, and experimental design. (a) SGE arise when two 99 

individuals interact and heritable traits of one influence the phenotype of the other. In 100 

other words, genotypes of the “social partner” influence - through “mediating traits” - 101 

the “phenotype of interest”, measured in the “focal individual”. Importantly, these 102 

mediating traits are not measured. (b) 1,812 “CFW” outbred mice were housed in 103 

groups of 3 mice per cage. SGE and DGE contributed by each mouse were modelled, 104 

such that each mouse served as both focal individual and cage mate in our analyses. 105 

(c) Housing conditions and phenotyping. 106 

 107 

 108 
Results 109 

 110 

Genome-wide genotypes and 200 behavioural, physiological and morphological 111 

phenotypes for 2,073 commercially-available, outbred CFW mice were available from 112 

Nicod et al.26 and Davies et al.27. Males were always housed with males and females 113 

with females, and mice were left undisturbed in their cages for at least nine weeks 114 

before phenotyping started (Figure 1c). We only kept mice that had the same two cage 115 

mates over the course of the experiment (1,869 total). Furthermore, we excluded 57 116 

mice that formed genetic substructures (see Methods) so that the remaining 1,812 117 

mice were as equally related as possible while retaining as large a sample size as 118 
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possible. We analysed a subset of 170 phenotypes that could be satisfactorily 119 

normalised (see Methods). The exact number of mice used for each phenotype, is 120 

shown in Supplementary Table 1.  121 

 122 

Aggregate contribution of SGE 123 

We first estimated the aggregate contribution of SGE to each phenotype (i.e. the sum 124 

of SGE across the genome). To do so, we used the variance decomposition method 125 

detailed in Baud et al.9, which features random effects for DGE, SGE, direct and social 126 

environmental effects, and “cage effects” (see Methods). SGE, in aggregate, 127 

explained up to 22% (+/- 6%) of variation in serum LDL levels and an average of 11% 128 

across 9 phenotypes with significant aggregate SGE (FDR < 10%, Supplementary 129 

Table 1). Those 9 phenotypes included behavioural (helplessness, a murine model for 130 

depression), physiological (serum LDL cholesterol, wound healing, blood eosinophils, 131 

serum alpha-amylase concentration, blood platelets, acute hypoxic response), and 132 

morphological (weight of adrenal glands) traits. For many of these phenotypes, the 133 

pathways underlying social effects, i.e. the traits of cage mates that mediate social 134 

effects, are unknown.  135 

 136 

Overlap between SGE and DGE loci acting on the same phenotype 137 

The polygenic model used for variance decomposition fits a correlation coefficient r 138 

that measures the correlation between the SGE and DGE random effects of the model 139 

(see Methods). Thus, r quantifies the extent to which SGE and DGE acting on the 140 

same phenotype arise from similar loci, with similar effect sizes. We stress that, in this 141 

section and throughout the manuscript, we compare SGE and DGE acting on the 142 

same phenotype (but do this for all 170 phenotypes). Simulations showed that the 143 

precision with which r can be estimated depends on the aggregate contribution of both 144 

SGE and DGE (Supplementary Figure 1), so we limited the analysis of r to 28 145 

phenotypes for which both aggregate SGE and aggregate DGE explained more than 146 

5% of phenotypic variation. The value of r varied between -0.28 (+/-0.35) and 1(+/- 147 

0.09) across these traits, with an average of 0.42 (Figure 2 and Supplementary Table 148 

1). For 10 out of the 28 phenotypes where r could be more precisely estimated, r was 149 

significantly different from zero (nominal P < 0.05), suggesting that loci affecting a 150 

phenotype directly also sometimes influence the same phenotype of cage mates. The 151 
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strongest evidence for shared SGE and DGE loci (r ¹ 0 at Bonferroni-corrected P < 152 

0.05) was for healing from an ear punch, weight of the adrenal glands, serum LDL 153 

cholesterol levels, and mean platelet volume.   154 

 We also evaluated evidence that |r| was different from one (i.e. r different from 155 

one and minus one) in order to empirically evaluate the widely-influential model of 156 

“phenotypic contagion”. Phenotypic contagion or “spread” is a model for social effects 157 

whereby the phenotype of interest of a focal individual is affected by the same 158 

phenotype of their social partners. In humans, cognitive susceptibility to depression, 159 

alcohol consumption, stress, obesity and educational attainment, for example, have 160 

been shown to be “contagious” or “spread” across college roommates, spouses, 161 

friends, or parent/offspring10-12,28-32. As a result, phenotypic contagion has shaped the 162 

way we think about social effects: for example, phenotypes unlikely to spread have 163 

been used to cast doubt on social network effects33. Here we leveraged the parameter 164 

r to test whether phenotypic contagion was sufficient to account for SGE: under a 165 

model of pure phenotypic contagion, |r| is expected to be equal to one; on the contrary, 166 

if traits of social partners other than the phenotype of interest mediate social effects, 167 

|r| is expected to be different from one. We found that |r| was significantly different 168 

from one (nominal P < 0.05) for 10 out of 28 phenotypes. The most significant P value 169 

(0.00066, significant after Bonferroni correction) was found for immobility in the first 170 

two minutes of the Porsolt swim test, a measure of helplessness that is relevant to 171 

depression. This latter result suggests that phenotypes that spread may additionally 172 

be affected by other traits of social partners. These results motivate the use of 173 

sgeGWAS as a tool to more broadly understand social effects. 174 
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 175 
Figure 2 Correlation r between SGE and DGE random effects (see Methods). The 28 176 

phenotypes included in this table are those for which the correlation r could be more 177 

precisely estimated, i.e. phenotypes with aggregate SGE and aggregate DGE > 5%. 178 

The bars show the standard errors. The stars represent the P value for rejecting H0: r 179 

= 0 (bottom) and  H0: |r| = 1 (i.e. pure phenotypic contagion, top). * denotes nominal 180 

P value < 0.05, * denotes Bonferroni-corrected P value < 0.05. 181 

 182 

sgeGWAS and dgeGWAS of 170 phenotypes 183 

To map SGE and following Biscarini et al.13 and Brinker et al.25, we calculated the 184 

“social genotype” of a mouse at a variant as the sum of the reference allele dosages 185 

of its cage mates at the variant, and tested for association between social genotype 186 

and phenotype. In order to avoid spurious associations, we accounted for background 187 

SGE, DGE and non-genetic effects using an extension of the variance components 188 

model used for variance decomposition. In the sgeGWAS we also accounted for DGE 189 

of the variant tested for SGE, by including direct genotypes at the locus as a covariate 190 

(See Methods). Similarly, in the dgeGWAS we included social genotypes at the locus 191 

as a covariate. We hereafter refer to this strategy as “conditioning”. We found that 192 

conditioning was necessary to avoid spurious associations in the sgeGWAS due to 193 

co-localised DGE. As we show in the Supplementary Note, this problem originates 194 

from the use of each mouse as both focal individual and cage mate in the analysis, a 195 
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strategy that has been used before to maximise sample size when all individuals are 196 

phenotyped and genotyped13,25. Importantly, spurious associations may arise even if 197 

all individuals are strictly unrelated (Supplementary Note). Using each mouse as both 198 

focal individual and cage mate in the analysis results in direct and social genotypes at 199 

a locus being correlated (Supplementary Figures 2a and 2b), which leads to 200 

sgeGWAS P values being inflated under the null in the presence of a simulated, co-201 

localised large-effect DGE (Supplementary Figure 2c). This issue has not previously 202 

been reported and may have resulted in spurious SGE associations when conditioning 203 

was not used13.  204 

 We show that conditioning on direct genotypes at the locus yielded calibrated 205 

sgeGWAS P values for null phenotypes (Supplementary Figure 2d), indicating that 206 

genome-wide significance thresholds may be derived for sgeGWAS by permuting 207 

social genotypes (see Methods), as long as conditioning is used in the analysis. A 208 

power analysis suggested that conditioning may slightly decrease power to detect 209 

SGE in the absence of co-localised DGE, particularly when direct and social 210 

genotypes are highly correlated (Supplementary Figure 3a and 3c) but would increase 211 

power if the locus also gave rise to DGE (Supplementary Figures 3b and 3d).  212 

 In order to compare, for each phenotype, the results of sgeGWAS and 213 

dgeGWAS, we defined loci based on the average size of the 95% confidence interval 214 

in this population, namely 1.5Mb26, and, following Nicod et al.26, used a per-phenotype 215 

FDR approach (see Methods). At a 10% FDR threshold, sgeGWAS identified 24 216 

genome-wide significant loci for 17 of the 170 phenotypes (Figure 3 and 217 

Supplementary Table 2). In comparison, dgeGWAS identified 121 genome-wide 218 

significant loci for 63 phenotypes at the same threshold (Figure 3 and Supplementary 219 

Table 3).  220 

 There was no overlap between genome-wide significant SGE and DGE loci 221 

acting on the same phenotype. However, variants at genome-wide significant SGE 222 

loci were enriched in small P values in the corresponding dgeGWAS (Supplementary 223 

Figure 4). Together these results suggest a partially distinct basis for SGE and DGE 224 

acting on the same phenotype (i.e. partially different loci and/or effect sizes), which is 225 

consistent with the results from the analysis of the correlation parameter r. 226 
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 227 
Figure 3 Superimposed manhattan plots corresponding to 170 sgeGWAS (top panel) 228 

and 170 dgeGWAS (bottom panel) of the same phenotypes. DGE associations with a 229 

–logP greater than 10 were plotted at –logP 10 (as indicated by 10+). Data points with 230 

negative log P < 2 are not shown. Lead variants for all genome-wide significant SGE 231 

and DGE loci are represented with a larger dot. In the SGE panel, each color 232 

corresponds to a class of phenotypes: behavioural (red, includes 7 behavioural 233 

phenotypes with a detected SGE locus), adult neurogenesis (black, 2 phenotypes), 234 

immune (orange, 1 phenotype), haematological (yellow, 1 phenotype), blood 235 

biochemistry (blue, 2 phenotypes), bone phenotypes (green, 2 phenotypes), heart 236 

function (brown, 1 phenotype), and lung function (purple, 1 phenotype). In the DGE 237 

panel, a genome-wide significant locus is colored grey when the corresponding 238 

phenotype does not have a genome-wide significant SGE association; when the 239 

corresponding phenotype does have an SGE association, the same color is used as 240 

in the SGE panel.  241 

 242 

 Compared to many other mouse populations used for mapping, linkage 243 

disequilibrium decays rapidly in the CFW population26,34. At each genome-wide 244 

10+ 
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significant SGE locus we identified candidate genes, prioritising well-annotated genes 245 

(see Methods). At five genome-wide significant SGE loci we identified a single 246 

candidate gene (Supplementary Table 2, locus zoom plots in Supplementary Figure 247 

5): Abca12, a gene known for its involvement in lipid transport and homeostasis in the 248 

skin35, at an SGE locus for adult neurogenesis in the hippocampus;  Epha4, a 249 

signalling genes involved in neural system function, at an SGE locus for helplessness; 250 

H60c, a poorly characterised gene potentially involved in skin immunity36, at an SGE 251 

locus for locomotor activity; Pgk1-rs7, a pseudogene of phosphoglycerate kinase-1, at 252 

and SGE locus for sleep; and Ighv5-9-1, a variable region of the T cell receptor, at an 253 

SGE locus for response to hypoxia. None of these genes have known direct effects 254 

that can easily explain the observed SGE, nor did they seem to have DGE on the 255 

phenotype in this dataset (Supplementary Figure 5), so the results of our sgeGWAS 256 

point to yet unknown traits of cage mates that influence the five phenotypes above.  257 

 Of these candidate genes, one, Epha4, has previously been associated with 258 

the phenotype of interest. Epha4 expression in the hippocampus was found to be 259 

affected by chronic mild stress in mice and responsive to antidepressant treatment37. 260 

We also found suggestive DGE of Epha4 on helplessness (Supplementary Figure 5), 261 

confirming that some level of phenotypic contagion was likely for that phenotype. The 262 

other candidate genes did not immediately permit to generate hypotheses on the traits 263 

of cage mates mediating the social effects. To gain such insights from the results of 264 

sgeGWAS, it is likely that other data types (e.g. gene expression) will need to be 265 

integrated. Alternatively, larger sample sizes would permit identification of additional 266 

SGE loci, some of which might immediately provide insights into the traits of partners 267 

that mediate social effects. SgeGWAS, in that respect, is similar to dgeGWAS14,38,39. 268 

 269 

Architecture of SGE and comparison with that of DGE 270 

Despite being carried out on the same individuals and phenotypes, and in a perfectly 271 

analogous manner, sgeGWAS identified fewer genome-wide significant associations 272 

than dgeGWAS (24 associations for 17 phenotypes and 121 associations for 63 273 

phenotypes respectively). As the determinants of power for SGE have not been 274 

investigated, it is not clear whether we had more or less power to detect SGE 275 

associations compared to DGE associations. In order to get a better understanding of 276 

this issue, we simulated local SGE or DGE arising from a single causal variant and 277 

calculated power to detect these associations. Briefly (see Methods), we considered 278 
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random groups of two or three mice per cage, and simulated phenotypes arising from 279 

the sum of local genetic effects (DGE or SGE), polygenic effects (DGE and SGE), and 280 

non-genetic effects. We simulated local SGE according to two alternative generative 281 

models, both consistent with the analysis model used for sgeGWAS: an “additive” 282 

model according to which social effects add up across cage mates, and a 283 

“proportional” model corresponding to a scenario where the focal mouse interacts with 284 

only one cage mate at a time, spending equal time with each cage mate. Note that the 285 

additive and proportional models are equivalent when there is a single cage mate (i.e. 286 

two mice per cage). For all three types of local effects (DGE, additive SGE and 287 

proportional SGE) we simulated the same allelic effect. Finally, we considered variants 288 

with low, medium or high minor (direct) minor allele frequencies (MAF, see Methods).  289 

 Our simulations showed that power always increased with MAF (Figure 3a). At 290 

a given MAF, simulating SGE from a single cage mate led to the same power for SGE 291 

and DGE. Simulating SGE arising from two cage mates additively led to greater power 292 

to detect SGE associations compared to DGE associations. In contrast, simulating 293 

SGE arising from two cage mates under the proportional model led to lower power for 294 

SGE compared to DGE. These results are consistent with the fact that, for a given 295 

sample size, power to detect a local effect (DGE or SGE) is determined by the sample 296 

variance of the simulated effect. Noting MAF as p, number of cage mates as N, and 297 

allelic effect as b, that variance is expected to be 2p(1-p)b2 for DGE, 2Np(1-p) b2 for 298 

SGE simulated under the additive model, and 2Np(1-p)/N2 b2 for SGE simulated under 299 

the proportional model (see Methods). In conclusion, our simulations showed that 300 

power to detect individual SGE associations is determined not only by allelic effect 301 

and MAF of the causal variants, but also by the way SGE arise across cage mates 302 

(additively or not) and the number of cage mates. In the real data, the way SGE arose 303 

across cage mates is not known, so it is not possible to determine the primary cause 304 

for the smaller number of genome-wide significant SGE associations compared to 305 

DGE associations.     306 

 Comparing genome-wide significant SGE and DGE associations in terms of 307 

proportion of phenotypic variance explained yielded two main results: firstly, individual 308 

genome-wide significant SGE associations explained a maximum of 2.5% of 309 

phenotypic variance, while eleven genome-wide significant DGE associations 310 

explained more than 5% of phenotypic variance and up to 40% (Figure 3b, 311 

Supplementary Table 2 and Supplementary Table 3). Average values were 1.8% for 312 
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SGE and 2.7% for DGE associations. As these results are born from the analysis of 313 

170 phenotypes, it suggests that SGE associations will generally be more difficult to 314 

detect than DGE associations. Secondly, for each phenotype we compared the 315 

variance explained jointly by all genome-wide SGE (respectively DGE) associations 316 

to the variance explained by SGE (respectively DGE) in aggregate. We found that 317 

genome-wide significant associations explained a large proportion of the 318 

corresponding genetic variance for both SGE and DGE (Figure 3c). More precisely, 319 

across 5 phenotypes with aggregate contribution of SGE greater than 5% and at least 320 

one genome-wide significant SGE association, we found that an average of 32.5% of 321 

the aggregate variance was explained by genome-wide significant associations. For 322 

DGE, that figure was calculated across 55 phenotypes and was equal to 32.1%. The 323 

proportion of aggregate variance explained by genome-wide significant associations 324 

may seem large given the relatively small number of genome-wide significant 325 

associations per phenotype (e.g. compared to humans40), but is consistent with 326 

studies of DGE in other outbred laboratory rodent populations41,42 and are  the result 327 

of a relatively small number of variants segregating in the CFW population with 328 

relatively high MAFs26. In conclusion, our results are consistent with oligo- or polygenic 329 

architectures for SGE. A more precise estimation of the number of loci involved will 330 

only be possible when more SGE associations are discovered in other datasets.   331 

 332 

 333 
Figure 3 Power to detect local SGE and DGE, and characterisation of the architecture 334 

of SGE and DGE. (a) Power to local genetic effects in simulations. Three types of local 335 

genetic effects were simulated: DGE (or, equivalently, SGE arising from a single cage 336 

mate), SGE arising from two cage mates under an additive model, and SGE arising 337 

from two cage mates under a proportional model (see Main Text). For each type of 338 

effect, results are shown (left to right) for variants with low MAF (MAF < 0.05), medium 339 

MAF (0.225<MAF<0.275) and high MAF (MAF>0.45) (MAF: minor allele frequency, 340 
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defined based on direct genotypes). (b) Histogram of the proportion of phenotypic 341 

variance explained by individual genome-wide significant SGE (red) and DGE (black) 342 

associations. (c) Comparison, for each phenotype, of the variance explained by social 343 

(red) and direct (black) genetic effects in aggregate (x axis) and the total variance 344 

explained jointly by all genome-wide significant SGE or DGE associations for a 345 

phenotype (y axis). Each dot corresponds to a phenotype with at least one genome-346 

wide significant association. 347 

 348 

Discussion 349 

 350 

In this study we performed the comparative analysis of both SGE and DGE acting on 351 

each one of 170 behavioural, physiological and morphological phenotypes measured 352 

in outbred laboratory mice, using polygenic models and GWAS. Our results provided 353 

two key insights into the architecture of these complex traits: first, SGE and DGE 354 

acting on the same phenotype typically arise from partially different loci and/or loci with 355 

different effect sizes; secondly, SGE associations tend to explain less phenotypic 356 

variation than DGE associations. As we analysed a broad range of phenotypes, the 357 

insights we gained are likely to generalize to other populations and phenotypes.  358 

 For 10 phenotypes we uncovered evidence that SGE and DGE were 359 

significantly correlated. For example, r was significantly different from zero for the two 360 

measures of helplessness included in this dataset. This result is consistent with prior 361 

evidence that mood spreads across social partners28,43. It is also consistent with the 362 

observation that, in this study, two out of the three genome-wide significant SGE loci 363 

for helplessness have suggestive direct effects on helplessness - direct effect that are 364 

further supported by prior reports that Epha4, the candidate gene at one of the loci, is 365 

associated with depression and responds to antidepressant treatment37. The 366 

pathways that mediate non-zero correlations between SGE and DGE for other 367 

phenotypes were not always obvious (e.g. healing from an ear punch, serum LDL 368 

cholesterol levels) but warrant further investigation of SGE and DGE.  369 

 A key result from our study is empirical evidence that phenotypic contagion is 370 

often not sufficient to account for social effects, even when it does play a role. Indeed, 371 

for 10 out of 28 tested phenotypes we found that |r| was significantly different from 372 

one, including the two aforementioned measures of helplessness. This result supports 373 
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efforts to discover other traits of social partners that mediate social effects, and points 374 

to sgeGWAS as a way to do so. It is important to bear in mind, however, that SGE 375 

only capture the genetic component of the traits of partners that mediate social effects. 376 

Hence, traits that are mostly non-genetically determined will be missed by SGE 377 

studies. 378 

 Our results on the variance explained by individual SGE loci are an important 379 

contribution towards understanding the architecture of SGE and will help design future 380 

experiments such as sgeGWAS. In particular, the fact that SGE loci never explained 381 

a large fraction of phenotypic variance (max 2.5%), while in comparison 11 DGE loci 382 

explained more than 5% of phenotypic variation, shows that sgeGWAS will require 383 

larger sample sizes than dgeGWAS to be equally powered.  384 

 Finally, our study made several important methodological contributions that will 385 

help design, perform and interpret sgeGWAS, particularly in outbred populations 386 

where both DGE and SGE contribute to phenotypic variation. Specifically, our study 387 

improved our understanding of the determinants of power for SGE and we showed 388 

that correlations between direct and social genotypes at a locus need to be accounted 389 

for to avoid spurious associations. These correlations arise when the same individuals 390 

serve as both focal individuals and social partners in the analysis, even if all individuals 391 

are unrelated. Importantly, similar correlations between direct and social genotypes, 392 

but potentially much stronger, may arise for different reasons in other datasets, notably 393 

when focal individuals and social partners are related, or as a result of direct 394 

assortments (e.g. assortative mating44,45, homophily between friends10). The methods 395 

we presented here will help avoid spurious associations in such situations. 396 

Importantly, we contribute software and code to reproduce our analyses or analyse 397 

other datasets.   398 

 399 

 400 

Methods 401 

 402 

Phenotypes and experimental variables 403 

 404 

Phenotypes and experimental variables (covariates) for 1,934 Crl:CFW(SW)-US_P08 405 

(CFW) mice were retrieved from http://wp.cs.ucl.ac.uk/outbredmice/. We normalized 406 
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each phenotype using the boxcox function (MASS package46) in R, and excluded 407 

phenotypes that could not be normalised satisfactorily (lambda outside of -2 to 2 408 

interval). The subset of covariates used for each phenotype is indicated in 409 

Supplementary Table 1. Because data for some phenotypes were missing for some 410 

mice, the sample size varied. The sample size for each phenotype after all filtering 411 

(see below) is indicated in Supplementary Table 1. 412 

 413 

Caging information 414 

 415 

Mice were four to seven weeks old when they arrived at the phenotyping facility. They 416 

were grouped with their cage mates and then spent nine to twelve weeks undisturbed 417 

in quarantine. They spent a further four weeks together during phenotyping. Males 418 

were always housed with males and females with females.  419 

 Cage assignments were not included in the publicly available dataset but were 420 

provided by the authors upon request and are now provided in Supplementary Table 421 

4. Cage assignments were recorded at eleven time points throughout the study and 422 

showed that a few mice were taken out of their original cages and singly housed, 423 

presumably because they were too aggressive to their cage mates. When this 424 

happened, we excluded all the mice in that cage from the analysis. We also excluded 425 

cages where some of the mice were “genetically close” (as defined below) to many 426 

other mice. Finally, we only retained cages with exactly three mice per cage. Although 427 

from the sleep test on all mice were singly housed, we still investigated “persistent” 428 

SGE on sleep and tissue phenotypes (persistence over one day for sleep phenotypes 429 

and over a few days for tissue measures).  430 

 431 

Genome-wide genotypes 432 

 433 

From http://wp.cs.ucl.ac.uk/outbredmice/ we retrieved both allele dosages for 7 million 434 

variants and allele dosages for a subset of 353,697 high quality, LD-pruned variants 435 

(as described in Nicod et al.26). We used high quality, LD-pruned variants for all 436 

analyses but the identification of candidate genes at SGE loci (see below), for which 437 

we used the full set of variants. 438 

 439 

Genetic relatedness matrix (GRM) and exclusion of “genetically close” mice 440 
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 441 

The genetic relatedness matrix was calculated as the cross-product of the dosage 442 

matrix after standardizing the dosages for each variant to mean 0 and variance 1. 443 

 We excluded whole cages of mice based on GRM values as follows: we defined 444 

a “close pair” of mice as having a GRM value greater than 0.3 (based on the histogram 445 

of all GRM values). 199 mice in 145 cages were involved in such close pairs. Excluding 446 

all 145 cages would have resulted in excluding 435 mice out of a total of 1,812, which 447 

would have led to substantially reduced power for sgeGWAS and dgeGWAS. Thus, 448 

we made a compromise and only excluded the 19 cages that were involved in 4 or 449 

more close pairs (57 mice excluded). 450 

 451 

Variance decomposition 452 

 453 

The same method as described in details in Baud et al.9 was used. Briefly, the model 454 

used was: 455 

𝑦" = 	𝑋"𝑏 + 𝑎)," +	𝑒)," +	𝑍"𝑎- 	+	𝑍"𝑒- +	𝑊"𝑐	   (0) 456 

𝑦" is the phenotypic value of the focal mouse 𝑓, 𝑋" is a row of the matrix 𝑋 of covariate 457 

values and 𝑏 a column vector of corresponding estimated coefficients. 𝑎)," is the 458 

additive direct genetic effects (DGE) of 𝑓. 𝑍" is a row of the matrix 𝑍 that indicates 459 

cage mates (importantly 𝑍1,1 = 0) and 𝑎- the column vector of additive social genetic 460 

effects (SGE). 𝑒) refers to direct environmental effects and 𝑒- to social environmental 461 

effects. 𝑊" is a row of the matrix 𝑊 that indicates cage assignment and 𝑐 the column 462 

vector of cage effects. 463 

The joint distribution of all random effects is defined as: 464 

 465 

𝑎)
𝑎-
𝑒)
𝑒-
𝑐

	~	MVN	(	0	,

𝜎9:
; A	 𝜎9:=A 0 0 0

𝜎9:=A
> 𝜎9=

; A 0 0 0
0	 0 𝜎?:

; I 𝜎?:=I 0
0 0 𝜎?:=I

> 𝜎?=
; I 0

0	 0 0 0 𝜎A;I

 466 

 467 

where A is the GRM and I the identity matrix.  468 

The phenotypic covariance is: 469 
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𝐶1,C = 	𝑐𝑜𝑣	(𝑦1	, 𝑦C) 	470 

=	𝜎9:
; 	𝐴1,C + 	𝜎9:= 	+		𝜎9=

; (𝑍𝐴𝑍>)1,C 	+ 	𝜎?:
; 	𝐼1,C + 	𝜎?:=	{	(𝐼𝑍

>)1,C 	471 

+	(𝑍𝐼>)1,C	} 	+ 		𝜎?=
; (𝑍𝐼𝑍>)1,C 	+ 	𝜎A;	(𝑊𝐼𝑊>)1,C 	472 

The variances explained by DGE and SGE were calculated respectively as 473 

 𝑠𝑎𝑚𝑝𝑙𝑒𝑉𝑎𝑟 𝜎9:
; 	𝐴  / 𝑠𝑎𝑚𝑝𝑙𝑒𝑉𝑎𝑟 𝐶  and 𝑠𝑎𝑚𝑝𝑙𝑒𝑉𝑎𝑟 𝜎9=

; (𝑍𝐴𝑍>) 	/	𝑠𝑎𝑚𝑝𝑙𝑒𝑉𝑎𝑟 𝐶  474 

where 𝑠𝑎𝑚𝑝𝑙𝑒𝑉𝑎𝑟 is the sample variance of the corresponding covariance matrix: 475 

suppose that we have a vector 𝑥 of random variables with covariance matrix 𝑀, the 476 

sample variance of 𝑀 is calculated as 477 

𝑠𝑎𝑚𝑝𝑙𝑒𝑉𝑎𝑟 𝑀 =	 >T(UVU)
WXY

  478 

𝑇𝑟 denotes the trace, 𝑛 is the sample size, and 𝑃 = 𝐼 − YY^

W
 47,48.  479 

 480 

For those phenotypes where body weight was included as a covariate, we checked 481 

that this did not lead to systematically increased (or decreased) estimates of the 482 

aggregate contribution of SGE (collider bias). 483 

 484 

Significance of variance components was assessed using a two-degree of freedom 485 

log likelihood ratio (LLR) test (i.e., the test statistics was assumed to follow a two-486 

degree of freedom chi2 distribution under the null). Note that this testing procedure is 487 

conservative.  488 

The Q value for the aggregate contribution of SGE was calculated for each phenotype 489 

using the R package qvalue49. Significant contributions at FDR < 10% were those with 490 

Q value < 0.1. 491 

 492 

Correlation between DGE and SGE 493 

 494 

The correlation 𝜌 between 𝑎) and 𝑎- was calculated as: 495 

𝜌 = 	
𝜎9:=

𝜎9:	×	𝜎9=
 496 

 497 

r reflects the correlation between SGE and DGE acting on the same phenotype, 498 

similarly to how “traditional” genetic correlations measure the correlation between 499 

DGE on two traits; r can actually be interpreted as the correlation between DGE on 500 
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the traits of cage mates mediating social effects and DGE on the phenotype of interest 501 

itself. 502 

We tested whether r was significantly different from 0 and whether  |r| was 503 

significantly different from 1 using a one-degree of freedom LLR test.  504 

 505 

Simulations 1: for Supplementary_Figure1. 506 

 507 

Phenotypes were simulated based on the genotypes and cage relationships of the full 508 

set of 1,812 mice. Phenotypes were drawn from model (0) with the following variances: 509 

𝜎9:
; =	15, 𝜎9=

;  = 8, 𝜌9:== 0.47, 𝜎?:
; = 22, 𝜎?=

; = 16, 𝜌?:= = -0.97, 𝜎A; = 26. These variances 510 

correspond to the median value of estimates across traits with aggregate SGE and 511 

DGE > 5%. After building the phenotypic covariance matrix, the sample variance of 512 

the simulations was calculated and used to calculate “realised” simulation parameters 513 

from the “target” parameters above. The realised parameters were used for 514 

comparison with the parameters estimated from the simulations. 515 

 516 

Definition of “social genotype” for sgeGWAS 517 

 518 

In the sgeGWAS, we assumed additive effects across cage mates and calculated the 519 

“social genotype” of a mouse as the sum of the reference allele dosages of its cage 520 

mates. The same assumptions were made by Biscarini et al.13 and Brinker et al.25. 521 

 522 

Correlation between direct and social genotypes at a variant 523 

 524 

Spearman's rank correlation coefficient was used. We tested whether the correlation 525 

was different from 0 using the function cor.test in the R package stats50. 526 

 527 

Models used for sgeGWAS and dgeGWAS 528 

 529 

To test SGE of a particular variant, we compared the following two models: 530 

 531 

𝑦" = 	𝑋"𝑏 + 𝑎)," +	𝑒)," +	𝑍"𝑎- 	+	𝑍"𝑒- +	𝑊"𝑐 +	𝐺"𝑏)   (1, null) 532 

 533 
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𝑦" = 	𝑋"𝑏 + 𝑎)," +	𝑒)," +	𝑍"𝑎- 	+	𝑍"𝑒- +	𝑊"𝑐 		+ 	𝐺"𝑏) 	+	𝑍"𝐺𝑏- (2, alternative) 534 

 535 

Here, 𝐺 is the vector of direct genotypes at the tested variant, 𝑏) the estimated 536 

coefficient for local DGE and 𝑏- the estimated coefficient for local SGE. 537 

The models were fitted using LIMIX51,52 with the covariance of the model estimated 538 

only once per phenotype, in the model with no local genetic effect (model 0). 539 

The significance of local SGE was calculated by comparing models (1) and (2) with a 540 

1-degree of freedom LLR test. 541 

We refer to the inclusion of 𝐺"𝑏) in model (1, null) as “conditioning”. 542 

 543 

dgeGWAS was carried out similarly, by comparing the null model (3) below and model 544 

(2) above: 545 

𝑦" = 	𝑋"𝑏 + 𝑎)," +	𝑒)," +	𝑍"𝑎- 	+	𝑍"𝑒- +	𝑊"𝑐 		+ 	𝑍"𝐺𝑏-  (3, null) 546 

We refer to the inclusion of 𝑍"𝐺𝑏- in model (3, null) as “conditioning”. 547 

 548 

Identification of genome-wide significant associations 549 

Because we wanted to compare the architecture of DGE and SGE for each phenotype 550 

independently, we adopted the per-phenotype FDR approach used by Nicod et al.26. 551 

Had we used a study-wide FDR approach instead, the comparison of SGE and DGE 552 

loci for a given phenotype would have depended on the SGE and DGE loci identified 553 

for the other phenotypes in the dataset.  554 

 The procedure we used to control the FDR accounts for the fact that we report 555 

loci rather than individual variants53, where a locus is defined as the 1.5 Mb-wide 556 

window around a SNP (this window size is the average 95% confidence interval for 557 

DGE QTLs in 26). More precisely, for each phenotype and for each type of genetic 558 

effect (social and direct), we ran 100 “permuted GWAS” by permuting the rows of the 559 

matrix of social (respectively direct) genotypes, and testing each variant at a time using 560 

the permuted genotypes together with the un-permuted phenotypes, covariates, GRM 561 

and matrix of direct (respectively social) genotypes (for conditioning). See 52,54 for 562 

references on this permutation approach. For each permutation we then compiled a 563 

list of loci that would be significant at a nominal P value of 0.01. Using the un-permuted 564 

data, we similarly compiled a list of loci that would be significantly associated at a 565 

nominal P value of 0.01. Ordering the latter in order of decreasing significance and 566 
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going down the list, we calculated for each locus an associated FDR until the FDR 567 

was above 10%. For a given P value x, the FDR was calculated as: 568 

𝐹𝐷𝑅(𝑥) = 	
#	𝑙𝑜𝑐𝑖	𝑤𝑖𝑡ℎ	𝑃 < 𝑥	𝑖𝑛	𝑝𝑒𝑟𝑚𝑢𝑡𝑒𝑑	𝑑𝑎𝑡𝑎	

100	×	#	𝑙𝑜𝑐𝑖	𝑤𝑖𝑡ℎ	𝑃 < 𝑥	𝑖𝑛	𝑢𝑛𝑝𝑒𝑟𝑚𝑢𝑡𝑒𝑑	𝑑𝑎𝑡𝑎
 569 

 570 

We report only those loci whose P value corresponds to an FDR < 10%. 571 

 572 

Definition of candidate genes at associated loci (Table 2) 573 

 574 

At each significantly associated locus we defined a 1.5Mb window centred on the lead 575 

variant, identified all the variants that segregate in this window based on the full set of 576 

7M variants, and reran the sgeGWAS locally with all the variants at the locus. We 577 

highlighted those genes that are located within the most significantly associated 578 

segments and whose MGI symbol does not start by ‘Gm’, ‘Rik’, ‘Mir’, ‘Fam’, or ’Tmem’ 579 

in order to enrich the reported sets in genes with known function. 580 

 581 

Variance explained by a genome-wide significant association 582 

 583 

The variance explained by a genome-wide significant SGE association was estimated 584 

in an extension of model (0) with additional fixed effects for both direct and social 585 

effects of lead SNPs at all genome-wide significant SGE loci (the lead SNP being the 586 

SNP with the most significant P value at the locus in the sgeGWAS). After fitting the 587 

model, the variance was calculated as: 588 

 589 

𝑣𝑎𝑟(𝑍𝐺𝑏-)
𝑣𝑎𝑟 𝑋n𝑏n +	 𝑣𝑎𝑟 𝐺𝑏) +	 𝑣𝑎𝑟(𝑍𝐺𝑏-) + 𝑠𝑎𝑚𝑝𝑙𝑒𝑉𝑎𝑟 𝐶

	591 

 590 

where 𝑠𝑎𝑚𝑝𝑙𝑒𝑉𝑎𝑟 𝐶  is the sample variance of the covariance matrix in this model. 592 

 593 

The variance explained by a genome-wide significant DGE association was estimated 594 

in a similar model but considering all genome-wide significant DGE associations and 595 

calculated as: 596 

𝑣𝑎𝑟(𝐺𝑏))
𝑣𝑎𝑟 𝑋n𝑏n +	 𝑣𝑎𝑟 𝐺𝑏) +	 𝑣𝑎𝑟(𝑍𝐺𝑏-) + 𝑠𝑎𝑚𝑝𝑙𝑒𝑉𝑎𝑟 𝐶

	597 
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  598 

Variance explained jointly by all genome-wide significant SGE or DGE associations 599 

for a phenotype 600 

 601 

The variance explained jointly by all significant SGE associations was estimated using 602 

the same model as above with all genome-wide significant SGE associations and 603 

calculated as: 604 

𝑣𝑎𝑟(𝑍𝐺𝑏-)
𝑣𝑎𝑟 𝑋n𝑏n +	 𝑣𝑎𝑟 𝐺𝑏) +	 𝑣𝑎𝑟(𝑍𝐺𝑏-) + 𝑠𝑎𝑚𝑝𝑙𝑒𝑉𝑎𝑟 𝐶

	606 

 605 

The variance explained jointly by all significant DGE associations was estimated using 607 

the same model as above with all genome-wide significant DGE associations and 608 

calculated as: 609 

 610 

𝑣𝑎𝑟(𝐺𝑏))
𝑣𝑎𝑟 𝑋n𝑏n +	 𝑣𝑎𝑟 𝐺𝑏) +	 𝑣𝑎𝑟(𝑍𝐺𝑏-) + 𝑠𝑎𝑚𝑝𝑙𝑒𝑉𝑎𝑟 𝐶

	612 

 611 

Simulations 2: for Supplementary Figure 2d. 613 

 614 

Phenotypes were simulated based on the genotypes and cage relationships of the full 615 

set of 1,812 mice. Phenotypes were simulated as the sum of random effects and local 616 

DGE (from model (1)), with the following parameters: 𝜎9:
; =	5 or 20, 𝜎9=

;  = 5 or 20, 617 

𝜌9:== 0.5, 𝜎?:
; = 30, 𝜎?=

; = 30, 𝜌?:= = -0.97, 𝜎A; = 25. The values for 𝜌9:=, 𝜎?:
; , 𝜎?=

; , 𝜌?:=, 618 

and 𝜎A; were close to the median of the corresponding estimates from the real data. 619 

𝜎9:
; = 		5 and 𝜎9=

; = 		5 correspond to low polygenic effects in the real data, and 𝜎9:
; =620 

		20 and 𝜎9=
; = 		20 correspond to high polygenic effects in the real data. We simulated 621 

local DGE at random variants in the genome, and simulated variances of 0, 5, 20 or 622 

50.  623 

 The results we show in Supplementary Figure 2d are based on a subset of 624 

simulations: 𝜎9:
; = 		20 and 𝜎9=

; = 		20 and local DGE variance of 20. 625 

 626 

Simulations 3: for Supplementary Figure 3a-d, and Figure 3a. 627 

 628 
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Phenotypes were simulated based on the real genotypes but random cages for a 629 

random subset of 1,800 mice (in order to be able to draw full cages of 2 or 3 mice). 630 

Phenotypes were simulated as the sum of random effects, local DGE and local SGE 631 

(model (2) except for 𝑍) with the following parameters: 𝜎9:
; =	17, 𝜎9=

;  = 17, 𝜌9:== 0.65, 632 

𝜎?:
; = 19, 𝜎?=

; = 15, 𝜌?:= = -0.8, 𝜎A; = 25. Those values correspond to the median 633 

estimates for phenotypes with aggregate SGE and DGE > 0.1.  634 

 We simulated local SGE and DGE at variants where direct and social 635 

genotypes were either lowly correlated (Spearman correlation negative log P value < 636 

0.05) or more highly correlated (Spearman correlation negative log P value > 0.2), and 637 

had with low MAF (MAF < 0.05), medium MAF (0.225<MAF<0.275) or high MAF 638 

(MAF>0.45). We simulated local DGE with an allelic effect of 0 or 1 (1 corresponds to 639 

a large effect in the real data). We simulated local SGE under two alternative 640 

generative models: an “additive” model by using 𝑍 as in model (2) (i.e. filled with 0s 641 

and 1s) or a “proportional” model by using 𝑍q = 	𝑍 𝑁. In all cases we simulated an 642 

allelic effect of 0.2 (similar to the average allelic effect estimated in the SGE GWAS). 643 

The sample variance of the simulated local DGE term is 𝑣𝑎𝑟 𝐺𝑏) = 	2𝑝(1 − 𝑝)	𝑏); ; it 644 

is 𝑣𝑎𝑟 𝑍𝐺𝑏- = 	2N𝑝 1 − 𝑝 	𝑏-; for the local SGE term simulated under the additive 645 

model, and 𝑣𝑎𝑟 s
t
𝐺𝑏- = 	2N𝑝(1 − 𝑝) 𝑁; 𝑏-; for the local SGE component simulated 646 

under the proportional model. 647 

 648 

 The results we show in Supplementary Figure 3a-d are based on a subset of 649 

simulations with group size 3 and are averaged across low, medium and high MAF. 650 

Power was calculated at a genome-wide significance threshold of negative log P 5, 651 

which is similar to the significance of associations detected at FDR < 10%. 652 

 The results we show in Figure 3a are based on a subset of simulations with 653 

group size 2 and 3, no local DGE, and averaged across high and low genotypic 654 

correlations. Power was also calculated at a genome-wide significance threshold of 655 

negative log P 5. 656 

 657 

Scripts used in this study 658 

 659 

All the scripts used in this study are available from http://github.com/limix/SGE.  660 

LIMIX can be downloaded from http://github.com/limix/limix. 661 
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