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Abstract8

Transmission between hosts is a critical part of the viral lifecycle. Recent studies of viral transmission have9

used genome sequence data to evaluate the number of particles transmitted between hosts, and the role10

of selection as it operates during the transmission process. However, the interpretation of sequence data11

describing transmission events is a challenging task. We here present a novel and comprehensive frame-12

work for using short-read sequence data to understand viral transmission events. Our model describes13

transmission as an event involving whole viruses, rather than independent alleles. We demonstrate how14

selection and noisy sequence data may each affect inferences of the population bottleneck, and identify15

circumstances in which selection for increased viral transmission may or may not be identified. Applying16

our model to data from a previous experimental transmission study, we show that our approach grants a17

more quantitative insight into viral transmission, inferring that between 2 to 6 viruses initiated infection,18

and allowing for a more informed interpretation of transmission events. While our model is here applied19

to influenza transmission, the framework we present is highly generalisable to other systems. Our work20

provides new opportunities for studying viral transmission.21

Introduction22

Understanding viral transmission is a key task for viral epidemiology. The extent to which a virus is able23

to transmit between hosts determines whether it is likely to cause sporadic, local outbreaks, or spread24

to cause a global pandemic [1, 2]. In a transmission event, the transmission bottleneck, which specifies25

the number of viral particles founding a new infection, influences the amount of genetic diversity that is26

retained upon transmission, with important consequences for the evolutionary dynamics of the virus [3,4].27

28

Recent studies have used genome sequencing approaches to study transmission bottlenecks in influenza29

populations. In small animal studies, the use of neutral genetic markers has shown that the transmission30

bottleneck is dependent upon the route of transmission, whether by contact or aerosol transmission [5,6].31

In natural human influenza populations, where modification of the virus is not possible, population genetic32

methods have been used to analyse bottleneck sizes. Analyses of transmission have employed different33

approaches, exploiting the observation or non-observation of variant alleles [7] or using changes in allele34

frequencies to characterise the bottleneck under a model of genetic drift [8–11]. A recent publication35

improved this latter model, incorporating the uncertainty imposed upon allele frequencies by the process36

of within-host growth [12]. Two studies of within-household influenza transmission have provided strik-37

ingly different outcomes in the number of viruses involved in transmission, with estimates of 1-2 [13] and38

100-200 [14] respectively.39

40

Another focus of research has been the role of selection during a transmission event; this is important41

in the context of the potential for new influenza strains to become transmissible between mammalian42

hosts [15, 16]. Studies examining transmissibility have assessed the potential for different strains of in-43

fluenza to achieve droplet transmission between ferrets under laboratory conditions [17–20]; ferrets provide44
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a useful, if imperfect, model for transmission between humans [21, 22]. The application of bioinformatic45

techniques to data from these experiments has identified ‘selective bottlenecks’ in the experimental evolu-46

tion of these viruses [23,24], whereby some genetic variants appear to be more transmissible than others.47

In these studies, selection has been considered in terms of the population diversity statistic π; changes48

in πN/πS , the ratio between non-synonymous and synonymous diversity, have been used to evaluate49

patterns of selection across different viral segments.50

51

We here note the need for a greater clarity of thinking in the analysis of viral transmission events. For52

example, analysis of genetic variants in viral populations shows that synonymous and non-synonymous53

mutations both have fitness consequences for viruses [25, 26]; the use of synonymous variants as a neu-54

tral reference set may not hold. More fundamentally, in an event where the effective population size is55

small, the influences of selection and genetic drift may be of similar magnitude [27]. However selection56

is assessed, this implies a need to separate stochastic changes in a population from selection, especially57

where a transmission bottleneck may include only a small number of viruses [5, 13, 28]. The attribution58

of a change in diversity to the action of selection or the attribution of changes in allele frequencies to59

genetic drift could both potentially be flawed. Given the increasing availability of sequence data, more60

sophisticated tools for the analysis of viral transmission are required.61

62

Here we note three challenges in the analysis of data from viral transmission events. Firstly, selection63

can produce changes in a population equivalent to those arising through a neutral population bottle-64

neck [29] (Figure 1A), making it necessary to distinguish between the two scenarios. A broad literature65

has considered the simultaneous inference of the magnitude of selection acting upon a variant along with66

an effective population size [30–35]. However, such approaches rely on the observation of an allele fre-67

quency at more than two time points so as to distinguish a deterministic model of selection (with an68

implied infinite effective population size) from a combined model of selection with genetic drift; such69

approaches cannot be directly applied to the analysis of viral transmission.70

71

Secondly, inferences of transmission events need to account for the haplotype structure of viral pop-72

ulations, whereby whole viruses, rather than sets of independent alleles, are transmitted (Figure 1B).73

The low rate of homologous recombination in segments of the influenza virus [36, 37] implies that viral74

evolution proceeds at the haplotype level [38]; competition occurs between collections of linked alleles, or75

segments, rather than the individual alleles themselves. Under such circumstances, fitter variants do not76

always increase in frequency within a population [39–41]. Calculations of genetic drift, which are often77

derived from the evolution of independent variants [42], need to be adjusted to account for this more78

complex dynamics.79

80

Thirdly, noise in the measurement of a population may influence the inferred size of a transmission81

bottleneck (Figure 1C). A broad range of studies have examined the effect of noise in variant calling82

and genome sequence analysis [43–50]; more recently formulae have been proposed to measure the preci-83

sion with which allele frequencies can be defined given samples from a population [51–53]. Where small84

changes in allele frequencies are used to assess a population bottleneck, it is important to separate the85

effects of noise in the measurement of populations from genuine changes in a population.86

87

We here describe a novel method for the inference of population bottlenecks which resolves the above88

issues. Our approach correctly evaluates changes in a population even where the data describing that89

change is affected by noise. It explicitly accounts for the haplotype structure of a population, utilising the90

data present within short sequence reads. Further, where these factors can be discriminated, our method91

distinguishes between the influences on the population of selection and the transmission bottleneck.92

Studies of viral evolution have highlighted the potential for payoffs between within-host viral growth and93
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transmissibility [54]; given sufficient data we can evaluate how selection operates upon each of these two94

phenotypes. Our model extends previous population genetic work on bottleneck inference to provide a95

generalised model for the analysis of data spanning viral transmission events.96

Results97

Model outline98

In the recent literature, the term ‘bottleneck’ has been applied to describe a reduction in the genetic99

diversity of a population (e.g. [55]), whether arising from selection or a numerical reduction in the size of100

a population. Here, we define a ‘bottleneck’ more strictly as a neutral process whereby a finite number101

of viral particles from one population found a subsequent generation of the population, either within the102

same host, or across a transmission event from host to recipient. Selection then constitutes a modification103

to this process whereby some viruses, because of their genotype, have a higher or lower probability of104

making it through the bottleneck to found the next generation.105

106

We applied a population genetic method to make a joint inference of the bottleneck size and the107

extent of selection acting during a transmission event. We consider a scenario in which a viral population108

is transmitted from one host to another, with samples being collected before and after the transmission109

event (Figure 2A). In our model viruses are categorised as haplotypes, that is, according to the variants110

they contain at a subset of positions in their genome. As such, the viral population is represented as111

a vector of haplotype frequencies; the population before transmission is represented by the vector qB .112

During transmission, a random sample of NT viruses are passed on to the second host to give the founder113

population qF . Selection for transmissibility, whereby genetic variants cause some viruses to be more114

transmissible than others, is described by the function ST . The potentially small size of the founder pop-115

ulation means that the population evolves within the host under the influence of genetic drift to create116

the large post-transmission population qA; this process is approximated in our model by a population117

bottleneck of effective size NG. Selection acting for within-host growth may further alter the genetic118

composition of the population; this effect is described by the function SG. Our method thus allows for a119

discrimination to be made between selection for increased within-host replication and for increased viral120

transmissibility. Observations of the population are collected before and after transmission via a noisy121

sequencing process to give the datasets xA and xB . The extent of noise in the sampling and sequencing is122

characterised by the parameter C; a value of C = 0 would indicate that samples contain no information,123

while a large C corresponds to noiseless sampling, as in a binomial model.124

125

To summarise our approach, we note that both the transmission and within-host growth events can126

be represented as sampling processes, which may each be biased by the effect of selection. As such, given127

an estimate of the noise inherent to the sequencing process, and externally-derived estimates for NG and128

SG, we can calculate an approximate likelihood for the parameters NT and ST given the observations129

xB and xA. Maximising this likelihood gives an estimate for the size of the transmission bottleneck130

and the extent to which specific genetic variants within the pre-transmission population confer increased131

transmissibility upon viruses.132

133

In our model we discriminate between changes in a population arising from selection and those aris-134

ing due to the population bottleneck. This is achieved by considering regions of the genome between135

which recombination or reassortment has removed linkage disequilibrium between alleles (Figure 2B). As136

transmission involves whole viruses, the bottleneck NT is preserved between regions. Meanwhile, in the137

absence of epistasis, selection acting upon one region of the virus does not influence the composition of the138

population in other parts of the genome. As such, a cross-region calculation estimates both NT and the139
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Case 1: Bottleneck 
size = 2

Selection for      ,Observed genotypes:

Population before 
transmission

Population after 
transmission

Observed genotypes:

Case 2: Bottleneck 
size = 104

Expected outcomes are identical

A

B

Allele frequencies unchanged

Population bottleneck

75% 55%

60% 70%

25% 45%

40% 30%

C

Population unchanged

during transmission

Sampling / Sequencing Noise

1. Incomplete sample collection

2. Noise in sequencing

3. Short read data

Sampled populations differ

Figure 1. Challenges arising in the inference of transmission bottlenecks from viral sequence data.
Circles represent idealised viral particles characterised by four distinct alleles. A. Reductions in
population diversity cannot necessarily be attributed unambiguously to either a population bottleneck,
or the action of selection. In the illustrated case, either a tight bottleneck without selection or a large
bottleneck with strong selection could explain the change in the population during transmission. B.
Straightforward statistics describing a population may generate misleading inferences of population
bottleneck size. In the illustrated case, the genetic structure of a population is changed by a population
bottleneck during transmission, but the frequency of each allele within the population does not change;
an inference of bottleneck size derived from single-locus statistics would incorrectly be very large. C.
Noise arising from the process of collecting and sequencing data is likely to produce differences between
the observed populations, even in the event that the composition of the viral population was entirely
unchanged during transmission.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/302331doi: bioRxiv preprint 

https://doi.org/10.1101/302331
http://creativecommons.org/licenses/by-nc-nd/4.0/


5

Recombination Transmission

Observed genotypes: Observed genotypes:

Recombination

Bottleneck NT 

Selection for
          ,

E[qA]E[qB]=xB

xA

E[qB]=xB

E[qA]=xA

E[qA]=E[qB]=xB

xA

B

C Neutral model One-locus selection Two-locus selection

A

qB qFqF qA

Effective size NG

Selection SG
Bottleneck NT

Selection ST

Transmission Within-host growth

FounderBefore After

xB xA

Noise CNoise C

a. b. c.

Figure 2. A. Basic model of transmission. A set of haplotypes exists at frequencies qB from which a
noisy observation xB is made. During a transmission event, a total of NT viruses are transferred under
the influence of selection ST , establishing an infection in the next host described by qF . Growth of the
viral population within the host then occurs to produce the population qA, influenced by genetic drift
(characterised by the effective population size NG) and selection SG. Sampling of the final population
gives the second observation xA. B. Regions of the genome which are separated by recombination or
reassortment are used to distinguish the effects of selection and a population bottleneck. Here, genetic
diversity is reduced in one region but not in another; the preservation of diversity in the second region
attributes this change to the action of selection on the first, rather than a shared population bottleneck.
C. Models of neutrality and selection are compared, as illustrated in this simplified diagram. Black dots
represent observations xB and xA while the red dot indicates the inferred expected position of qA. The
solid line joining these (b,c) indicates the inferred action of selection, with dotted lines showing
components of this vector (c). The blue circle represents the optimised variance in the position of qA;
the length of it’s radius, shown as a dashed line, is inversely related to the bottleneck size. In the neutral
case, the difference between observations is explained by the bottleneck alone. More complex models of
selection fit qA more closely to xA and with reduced variance, giving higher inferred values of NT .
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Figure 3. Influence of sequencing noise upon the ability to infer a population bottleneck size from
genome sequence data. Median inferred bottlenecks are shown, calculated on the basis of 200 replicate
simulations for each point. In the left-hand plot, a value of 1 indicates a correct bottleneck inference; in
the right-hand plot, the absolute inferred bottleneck size is shown. Simulations were conducted under
the assumption of selective neutrality, with no attempt to infer selection from the data.

influence of selection. A model selection process [56] is used to distinguish models of neutral transmission140

from evolution under selection (Figure 2C). A full exposition of the model is given in the Methods section.141

142

Here we used simulated data to evaluate the performance of our model under different circumstances.143

Having established the effect of sequencing noise on the inference of population bottlenecks, we demon-144

strate the ability of our method to correctly infer population bottlenecks from sequence data in the145

presence or absence of selection, and its ability to correctly identify variants conferring a benefit for viral146

transmissibility. We then applied our model to evaluate selection and population bottlenecks in a recently147

published viral transmission experiment [24]; our approach provides more precise inference of population148

bottlenecks in this case and discriminates between the influence of selection for within-host growth and149

viral transmission.150

151

Application to simulated data152

Sequencing noise limits the maximum inferrable bottleneck153

Application of our model to simulated data describing neutral population bottlenecks showed that a lack154

of sequencing noise is critical for the correct inference of large population bottlenecks (Figure 3). Noise in155

our study was considered in terms of the precision with which the frequency of a variant can be specified156

by viral sequence data. Our noise parameter C can be related to an ‘effective depth’ of sequencing [53],157

involving the absolute number of reads of a genome position, which specifies the depth of noise-free reads158

that would produce the same degree of certainty in an allele frequency. This statistic is dominated by the159

smaller of C and the absolute read depth; for large C this statistic is close to the absolute read depth,160

while as the number of reads describing a variant frequency becomes large, the effective depth tends to161

C + 1.162

163

Inferences of bottleneck sizes showed a limit on the inferred bottleneck size governed by noise in se-164

quencing; where there was little noise in the data (i.e. at high values of C), a correct inference of the true165

population bottleneck was generally made. However, as noise increases, the inferred bottleneck reaches166
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a plateau above which increases in the true bottleneck no longer affect the inferred bottleneck size. This167

result can be understood in terms of the extent to which the population bottleneck and noise contribute168

to the change in the viral population; where large numbers of viruses are transmitted, most of this signal169

is likely to result from noise. Here we note failures in the inferred bottleneck size even with very high170

C; these occur due to the finite read depth in our simulations, which averaged around 12,000. In these171

calculations a neutral method, in which selection was assumed to have no effect on the population, was172

used to make inferences from neutral simulations. A consistent value of C was used for simulation and173

inference purposes.174

175

In a real dataset, the extent of noise may be unknown. Further investigation showed bottleneck176

estimation to be relatively robust to an incorrect estimate of the extent of noise in a dataset, except177

where the extent of noise was substantially overestimated (Supplementary Figure S1). In general, an178

underestimate of the extent of noise in a dataset led to an inferred bottleneck size that was marginally179

lower than the correct value, while an overestimate of the extent of noise led to an overestimate of the180

size of the bottleneck. Severe overestimation of noise led to dramatically incorrect inferences; as such,181

while noise limits the intrinsic potential of a method to identify large bottleneck sizes, underestimating182

the extent of noise is generally the more safer approach.183

Variance in inferred transmission bottlenecks184

Results from individual simulations showed that our method could discriminate between bottleneck sizes185

that differ by a factor of four or above (Figure 4). Obtaining precision in an estimated bottleneck or186

effective population size is inherently a difficult task, relying on the estimate of the extent of a stochastic187

effect from limited data [32]. Across 200 simulations, the interquartile range in an inferred bottleneck188

spanned close to 28% of the true bottleneck size, with inferred values spanning a range of approximately189

140% of the correct bottleneck size. A slight underestimate in the bottleneck size for the case NT = 100190

was consistent with the extent of noise in sequencing; here and in all subsequent simulations a value of191

C = 200 was used, representing an extent of noise that is readily achievable from short read sequenc-192

ing [51, 53]. In our inferences, while gross differences in bottleneck size can be identified, a high level of193

precision is difficult to obtain from sequence data alone.194

195

Inference of population bottleneck sizes under selection for transmissibility196

Inferences of bottleneck size showed a systematic underestimate of the bottleneck when selection affected197

a transmission event, but a method neglecting selection was used in the inference procedure (Figure 5).198

Simulations were conducted in which an allele at the third of five polymorphic loci in the HA segment of a199

simulated influenza virus increased the transmissibility of the virus according to a selection coefficient σ;200

this model of selection was applied for all subsequent simulations. In our simulations a value of σ = 1 is201

equivalent to a change in the frequency of a variant from 50% to 73% in a single transmission event. The202

relatively strong magnitudes of selection considered reflect the short period of time (a single generation)203

over which selection for increased transmissibility can act and the relatively small number of viruses likely204

to be involved in a transmission event.205

206

Inferences of population bottleneck were conducted using a neutral inference method, and with a207

model in which selection was not constrained to be zero. In the first case, ignoring selection led to an208

underestimation of the true bottleneck size by an amount which increased according to the magnitude of209

selection for transmissibility. Selection during transmission produces a shift in the expected composition210

of the viral population; if this shift is interpreted as occurring due solely due to a finite bottleneck a211

tighter bottleneck, inducing a larger stochastic change in the population, is inferred. This understanding212
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Figure 4. Inferred bottleneck sizes (NT ) for true bottlenecks NT = {5, 10, 25, 50, 100}. Results were
generated by applying a neutral inference model to neutral simulated data. Inferences are shown for 200
simulations at each bottleneck size.

explains the more pronounced underestimates achieved at larger bottleneck sizes; larger bottlenecks pro-213

duce smaller stochastic changes in the population relative to the change induced by selection. When the214

full version of our model was run, allowing for a consideration of selection effects, the median bottleneck215

inferred from data under selection resembled that inferred from neutral data; the small shortfalls in the216

inference from neutral data are here explained by the influence of noise.217

218

Repeated calculations performed for data describing multiple replicate transmission events gave sim-219

ilar inferred transmission bottlenecks. In each case sets of three replicate transmission events were220

simulated, transmitted populations sharing a common set of polymorphic loci in each segment. Median221

inferred values are shown in Supplementary Figure S2. Full results describing the range of inferred bot-222

tleneck sizes from both one- and three-replicate populations are shown in Supplementary Figures S3 to S6.223

224

Identification of variants under selection225

In contrast to measures of diversity, which attempt to associate selection with a gene or segment of a virus,226

our method was able to correctly identify specific variants conferring increased transmissibility. Success227

was more often achieved in cases for which selection was relatively strong and the transmission bottleneck228

was relatively large (Figure 6). Our process for distinguishing selection from neutrality (Figure 2C) can229

be tuned to identify a greater number of true variants under selection at the cost of making a greater230

number of false positive calls; here a conservative approach to identifying selection was applied. Under this231

approach we retained a false positive rate (inference of selection at an unselected locus) of 5% or less across232

the systems tested. At lower magnitudes of selection (σ ≤ 0.5), correctly identifying sites under selection233

was very difficult, though as selection became stronger (σ ≥ 1) loci under selection could be identified234
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Figure 5. Median inferred bottleneck size from data simulating transmission with a single locus under
selection of magnitude σ ∈ {0, 0.5, 0.75, 1.0, 2.0}. Inferences were made using either a neutral inference
model, in which the effect of selection was assumed to be zero, or a model incorporating selection,
which allowed the presence of selection to be inferred. Median inferences are shown from 200
simulations for each data point.

with greater accuracy. Where selection existed the ease with which it could be identified increased with235

increasing bottleneck size. Our results can again be understood with respect to the dynamics of the236

system. The bottleneck has a stochastic effect on the population of a magnitude inversely related to the237

number of viruses transmitted. Inferring the presence of selection requires the identification of changes238

in the population going beyond what would be expected under neutrality, biasing the population in the239

direction of the selected allele or alleles. However, stochastic effects can by chance distort the population240

in one direction or another by more than the expectation; this leads to false inferences of selection.241

Genuine changes resulting from selection become easier to identify when the changes are themselves242

larger (stronger selection) or where the magnitude of the stochastic effect is reduced (higher NT ). In243

contrast to the inference of bottleneck size, data from replicate simulations led to a more dramatic change244

in the results, with the false positive rate falling to zero for bottlenecks with NT ≥ 15 . The power of245

replicate experiments arises from the lower probability that stochastic effects will impose a consistent246

pattern of change upon multiple populations. While a larger-than-expected stochastic change in the247

frequency of a variant may occur in one system, leading to a false positive inference of selection, it is248

unlikely that the same pattern would recur across multiple replicates. The use of replicate experiments249

is therefore very powerful for identifying variants affecting transmissibility; while, under our conservative250

approach, not all variants under selection were identified, variants identified from replica data as being251

under selection were almost universally true positive calls.252

Estimating the magnitude of a selected variant253

Given the correct identification of selection acting for a specific variant, the inferred magnitude of selec-254

tion was marginally overestimated, with an increased overestimate at smaller values of the transmission255

bottleneck NT (Figure 7). The mixture of deterministic and stochastic changes in the population explains256
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Figure 6. True and false positive rates of selection inference from 200 simulations of transmission
events from single- and three-replicate systems with selective pressures of σ ∈ {0, 0.5, 0.75.1.0}. True
positives were defined as inferences for which selection was inferred for the selected locus in a system;
false positives were defined as inferences for which selection was inferred at any neutral locus or for
multiple neutral loci in the system.
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Figure 7. Probability distributions of inferred selection coefficients from 200 simulations of
transmission events with selective pressures σ ∈ {0.5, 0.75, 1.0, 2.0}. Distributions were constructed for
bottleneck values where the inference of selection resulted in a true positive rate for identifying selected
variants of above 5 %. Smooth kernel distributions were computed using a Gaussian kernel function
defined on (0, 10) and Silverman’s rule of thumb [57, p. 48] for the bandwidth size. Distributions were
scaled such that their integral across the kernel range equalled the true positive rate.

this phenomenon; the population after transmission is equal to its expected value plus some stochastic257

change. In the event that the stochastic change is aligned with the direction of selection, the presence258

of selection is more likely to be inferred, while the additional change in that direction will give an over-259

estimate of selection. Conversely, if the stochastic change is in a direction opposed to the influence of260

selection, the presence of selection is less likely to be inferred. Thus, selection was disproportionately261

inferred to exist when stochastic changes in the population led to an overestimate of its magnitude.262

Inferences conducted on sets of replicate transmission events produced more accurate and more precise263

estimates of selection. For example given a bottleneck of NT = 100 and a true strength of selection of264

0.75, the mean inferred selection from a single replicate was 0.98 with variance 0.048, while the mean265

inferred selection from three replicates was 0.87 with variance 0.013. (Supplementary Figure S7)266

267

Application to an experimental dataset268

We applied our approach to an influenza transmission dataset obtained by Watanabe et al. [58] and sub-269

sequently analysed by Moncla et al. [24]. This dataset provides high-resolution, whole-genome sequence270

data describing both the within-host evolution, and airborne transmission, of a 1918-like influenza virus,271

that became transmissible upon introduction of three key mutations, PB2 E627K, HA E190D and G225D.272

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/302331doi: bioRxiv preprint 

https://doi.org/10.1101/302331
http://creativecommons.org/licenses/by-nc-nd/4.0/


12

This three-mutant strain was denoted ‘HA190D225D’ and successfully transmitted in one of three ferret273

transmission pairs. Isolation and subsequent growth in MDCK cells of viruses from the contact ferret274

of the successful transmission led to the generation of the ‘Mut’ strain, which transmitted in two of275

three instances. A previous analysis of these data using linked variants on the HA segment identified an276

increase in the diversity of the viral population during within-host growth, and respectively ‘loose’ and277

‘stringent’ bottlenecks in the transmission of the two strains. In the transmission of the Mut strain, the278

fixation of sequence variants, potentially due to selection, was observed, while the observation of two out279

of three, rather than one out of three, successful transmissions suggested that the Mut virus may have280

evolved increased fitness for infection. Within and between hosts, segment-wide and localised measures281

of synonymous and non-synonymous sequence diversity π were used to assess the presence or absence of282

selection, leading to the conclusion that selection affected the system during transmission of the ’Mut’283

strain.284

285

In our study, data from serial samples from the within-host populations were used to infer a fit-286

ness landscape for within-host growth for each of the two populations. Using a previously published287

approach [51] we inferred the presence of non-neutral change in the population in seven out of eight288

segments in the combined HA190D225D population, and in four out of eight segments in the combined289

Mut population. The inference of positive selection acting for multiple non-consensus viral haplotypes290

in the HA segment (Figure 8) explains the increase in sequence diversity previously observed. Further291

results are shown in Supplementary Figures S8 and S9 and in Supplementary Table S1.292

293

Applying our inference framework to the data identified narrow transmission bottlenecks in each case294

(Figure 9). In each of our calculations a set of statistical replicate inferences was produced, corresponding295

to different potential reconstructions of the population qB from the sequence data (see Methods). Within296

the HA190D225D population, our estimated bottlenecks ranged from 4 to 6, with a median bottleneck297

size of 5, while for the Mut calculations, our bottlenecks ranged from 2 to 37 and 2 to 8, with medians of298

6 and 2 respectively. As such, no clear evidence was found that the HA190D225D transmission involved299

a greater number of particles than the Mut transmissions. Given the inclusion of the inferred within-host300

selection SG, no evidence was found for the existence of variants making the virus more or less transmis-301

sible, with selection being inferred in only a small number of the replicate calculations (Supplementary302

Figure S10). Increasing the frequency cutoff at which variants were included in the calculation led to303

small decreases in the inferred bottleneck sizes (Supplementary Figure S11).304

305

Discussion306

We have here presented an approach for jointly inferring a population bottleneck size and selection for dif-307

ferential transmissibility from viral sequence data describing a transmission event. While basic sampling308

approaches to bottleneck inference have been improved by an accounting for drift during within-host viral309

growth [7,12–14], our approach additionally accounts for noise in genome sequence data, exploits partial310

haplotype data available from short-read sequencing, and separates the influence of a finite bottleneck311

from that induced by selection for increased transmissibility. In multiple studies, the transmission bot-312

tleneck has been found to be narrow during natural viral spread between hosts [59]. While we do not313

explicitly question these results, we note that both selection and noise in the measurement of sequence314

data can decrease the inferred bottleneck where sequence data is used for inference. Our approach is315

suitable for the analysis of acute infectious diseases such as influenza on the basis of a small number of316

observed transmission events; we note that where more substantial diversity is present in a within-host317

viral population, or where data is available from a large number of hosts in an outbreak, phylogenetic318

methods of evolutionary inference become of increasing value [60–62].319
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11 G1002A
12 T1036C
13 G1263A

Figure 8. Inferred fitness landscape for within-host growth using data from the HA190D225D dataset.
Viral haplotypes for which the inferred frequency rose above 1% in at least one animal are shown. Lines
show haplotypes separated by a single mutation.
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Figure 9. Histograms of bottleneck inferences for HA190D225D and Mut transmission pairs from 100
analysis seeds. A replicate inference method was employed for the Mut transmission pairs such that a
common fitness landscape was imposed. The Mut transmission pairs may take different bottleneck
values and have been plotted as an overlapping histogram.
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320

Applied to the analysis of data from a recent evolutionary experiment, our approach provides a321

greater precision in the inference of evolutionary statistics, leading to an alternative explanation for the322

data observed. Where data have previously been interpreted as implying differential transmission bottle-323

necks between strains, our approach infers bottlenecks of similar sizes. Furthermore, where evidence has324

been interpreted to suggest a differing extent of transmissibility between strains, our approach attributes325

changes in allele frequencies either to stochastic effects or to selection for increased host adaptation. Our326

result does not definitively prove the absence of differential transmissibility among the viruses involved327

in this study, but implies that data which might suggest differential transmissibility can be more parsi-328

moniously explained in other ways.329

330

Our study shows that the identification of variants conferring increased viral transmissibility is diffi-331

cult when the number of transmitted viral particles is small. While improvements to our method may332

be achievable, this difficulty is fundamentally rooted in the nature of a transmission event; where a low333

number of virions transmit, the influence of stochastic processes become large, with variants fixing during334

transmission in a manner that cannot be distinguished from a selective sweep. The potential to infer335

the presence of selection increases at larger population sizes. The size of the transmission bottleneck in336

natural influenza populations is currently a subject of debate [13, 14]; where experiments are conducted337

to assess viral transmissibility, steps taken to increase the number of particles transmitted would increase338

the power to infer differential transmissibility. We note that, unlike more general inferences of selection339

from changes in viral diversity, our approach evaluates selection in terms of specific variants conveying340

an advantage or disadvantage for transmission. Where broad measures of diversity are calculated across341

segments of a genome, the background of genetic diversity across a large number of positions may be342

hard to separate from changes at individual positions under the action of selection.343

344

In the light of our study, we propose that the term used in some analyses of viral transmission, of a345

‘selective bottleneck’ is ambiguous, failing on the one hand to distinguish changes in a population arising346

from selection and those occurring through stochastic change in the population, and on the other to347

distinguish between selection for more rapid within-host selection or for inherent viral transmissibility.348

While selection may act differently for these latter two phenotypes [54], their respective influences are349

intrinsically hard to separate from data. In this case, the completeness of the collected data, covering350

both within-host adaptation and between-host transmission, was necessary to evaluate the cause of evo-351

lutionary change.352

353

Our framework may reduce the need for animals in viral transmission studies. One approach to explor-354

ing transmissibility (in influenza virus) has been the comparison, for different viruses, of the proportion355

of distinct animal pairs between which transmission occurs [63]. The statistical significance achievable356

in these studies is limited by the number of animal pairs that can be examined [64–66]. Furthermore,357

the comparison between one genotype and another may be confounded by viral heterogeneity, whereby358

each population contains a cloud of genetic diversity [23,67]. In our approach, while data from replicate359

transmission events is of value, it is the number of particles transmitted, rather than the number of360

replicates, that primarily informs inferences of transmissibility. Transmission of more viruses between361

fewer animals may provide a more efficient use of animal stocks.362

363

In some situations, neutral markers or molecular barcodes may be added to a viral population in364

order to characterise bottleneck sizes [5, 29]. While our method does not require the presence of such365

markers, its adaptation to include marker data would likely be straightforward, including in a calculation366

a further probabilistic term constraining the bottleneck size. Inference of selection for transmissibility367

could then be conducted under this constraint; the combination of whole-genome sequence data with368

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/302331doi: bioRxiv preprint 

https://doi.org/10.1101/302331
http://creativecommons.org/licenses/by-nc-nd/4.0/


15

such information could prove powerful for the study of viral transmission.369

370

While we have here considered the transmission of influenza virus, very few steps of our approach371

would need to be altered for the method to be applied to another viral population. As detailed in the372

Methods section, it is only in accounting for genetic drift in the within-host growth of the virus that we373

make approximations relying on biological knowledge of the influenza virus; an alternative accounting for374

within-host expansion could be used. A second key assumption in the inference of selection is the existence375

of regions of the virus separated from each other by recombination or reassortment. This assumption376

would be preserved in some other viruses, as noted in observations of within-host HIV evolution [68], if377

not for all influenza populations [69]. Where a viral genome did not exhibit recombination, and only a378

single transmission event was observed, the neutral version of our method could be applied; in so far as379

we utilise partial haplotype data, and account for sequencing noise, our method would still provide an380

advantage over alternative methods.381

382

Viral transmission is a critical component of disease and a key factor in viral evolution. In outlining a383

novel framework for the interpretation of data from viral transmission events we hope to bring a greater384

clarity to the population genetic theory of how these events operate and a greater power in the interpre-385

tation of experimental data, so as to engender a greater understanding of this important topic of research.386

387

Methods388

Notation and qualitative overview389

We describe the viral population as a set of haplotypes, with associated frequencies, that changes in time390

during a transmission event. Given a number of (possibly non-consecutive) loci of interest in the viral391

genome, the set of haplotypes h = {hi} decribes a set of sequences having specific nucleotides at these392

loci. Within a viral population of finite size, the number of viruses with each haplotype hi is described393

by the vector n = {ni}. Frequencies of each haplotype within the population are denoted by the vec-394

tor q = {qi}, while observations of the population collected via sequencing are denoted by the vector395

x = {xi}, where xi is the number of sampled viruses with haplotype hi.396

397

The transmission event is now described according to the framework outlined in Figure 2. A popula-398

tion of viruses qB undergoes transmission with some bottleneck NT , creating a founder population with399

haplotype frequencies qF in the recipient. Selection influencing this transmission process is described by400

the function ST (q), which changes the frequency of haplotypes according to the relative propensity of401

each haplotype to transmit. Within the host, the viral population grows rapidly in number to create the402

population qA. During this growth process, genetic drift affects the population in a manner according to403

the effective population size NG. Observations of the system are made via genome sequencing of samples404

collected before and after transmission, and are denoted xB and xA respectively; the total numbers of405

sequence reads in each are denoted NB and NA. Given the observations xB and xA, we wish to estimate406

the size of the population bottleneck NT and the extent of selection for transmissibility ST .407

408

During the process of growth between qF and qA, the population may be influenced by selection409

for within-host growth; this acts independently of selection for transmissibility [70], and is described by410

the function SG(q), which changes the frequencies of haplotypes according to their relative within-host411

growth rates. Selection for within-host growth is challenging to separate from selection for transmissibil-412

ity; we here estimate this parameter independently from the transmission event itself.413

414

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/302331doi: bioRxiv preprint 

https://doi.org/10.1101/302331
http://creativecommons.org/licenses/by-nc-nd/4.0/


16

Likelihood framework415

As the observations xB and xA are conditionally independent given qB , the joint probability of the416

system may be written as a product of individual probabilities417

P (xB ,xA|qB , θ) = P (xB |qB)P (xA|qB , θ) (1)

where θ represents the remaining variables in the system upon which only xA depends.418

419

As an approximation to this likelihood, we split the inference into two calculations, first calculating420

a maximum likelihood for qB given xB , then inferring the transmission event from xA given qB . Noting421

the potential uncertainty in the inference of qB , we introduce a variance component so that qB may be422

regarded as a random variable rather than a fixed quantity. The process of breaking up the inference423

process greatly reduces the computational time required for our approach, without considerable cost to424

the accuracy of the results. Splitting the likelihood in this manner, and marginalising over unknown425

quantities, the likelihood can be written generically as426

L
(
NT , ST |xB ,xA, NG, SG

)
=

∫
P
(
xB |qB

)
P
(
qB
)

dqB︸ ︷︷ ︸
xB component

×

∫
P
(
xA|qA

) [∫
P
(
qA|NG, SG,qF

) [∫
P
(
qF |NT , ST , qB

)
P
(
qB
)

dqB
]

dqF
]

dqA︸ ︷︷ ︸
xA component

(2)

The first component of this likelihood, corresponding to the initial observation of the system, xB ,427

represents a straightforward sampling of the system, drawing from a collection of viral haplotypes. Such428

a process can be modelled using a multinomial distribution. However, as is well known [53], next-429

generation sequence data is error-prone, such that less information is contained within the sample than430

would be contained in a multinomial sample of equivalent depth to the sample. A Dirichlet multinomial431

distribution may be used to capture this reduction of information, such that432

P (xB |qB) =
Γ(NB + 1)∏

i(x
B
i + 1)

Γ
(∑

Cqbi
)

Γ
(∑

xBi + CqBi
) ∏

i

Γ(xbi + CqBi )

Γ(CqBi )
(3)

where C, which alters the variance of the distribution, characterises the extent of noise in the data. The433

parameter C can be estimated given independent observations of identical parameters, such as haplotype434

or single allele frequencies; in the application to experimental data, time-resolved variant frequencies435

derived from the sequence data were used for this purpose [51]436

437

Considering the second component of the likelihood, the expression P (xA|qA) may be calculated in438

the same manner as in Equation 3 dependent upon the haplotype frequencies qA. The remaining parts439

of this component can also be described as sampling events. A sample of the population in the donor440

animal transmits to the recipient, generating a founder population. The founder population multiplies441

within the host to generate the final population qA. The xA component thus represents a compound of442

multiple sampling events. We will go on to describe the calculation of both components of the likelihood443

function. However, we first need to consider how selection is incorporated into our model.444

445
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Excursus: Modelling selection446

Within our model, the functions describing selection are potentially complex, each having a number of447

parameters equal to the number of haplotypes in the system. In common with previous approaches to448

studying within-host influenza evolution [71] we adopt a hierarchical model of selection whereby the fit-449

ness of a haplotype is calculated from a set of one- or multi-locus components, describing the advantage450

or disadvantage of a specific nucleotide, or nucleotides, at a single locus or set of loci. Model selection is451

then used to identify the most parsimonious explanation of the data.452

453

Formally, we denote the jth component of the haplotype hi as hij , with hij ∈ {A,C,G, T}. In a454

fitness model, a parameter is defined as the pair of values (sk, gk), where sk is a real number, denoting455

the difference in fitnesses of individuals with and without the allele [72], and gk is a vector of components456

gkj ∈ {A,C,G, T,−} denoting the haplotypes to which this selection applies. We now define457

gk · hi =
∏
j

gkj × hij (4)

where458

gkj × hij =


1, if gkj = hij

1, if gkj = −
0, if gkj 6= −, gkj 6= hij

(5)

The fitness of a haplotype hi is then given as459

wi = exp

(∑
k

sk(gk · hi)

)
(6)

where the sum is calculated over all fitness parameters k. To give an example, a single-locus fitness460

parameter would have a single element of gk that was either A, C, G, or T. Supposing this element to461

be at position j, it would convey the fitness advantage sk to all haplotypes with the given nucleotide at462

position j in the genome.463

464

Selection in a transmission event465

Selection is incorporated into the transmission event from donor to recipient by representing this event as466

a biased sampling process. As we are not considering data here, noise is not an issue. We therefore model467

the population qF as arising via a multinomial sampling process of depth NT from a set of genotypes468

with frequencies ST (qB), where ST represents the role of selection in the transmission event. We write469

P (qF |qB , NT , ST ) =
NT !∏
i n

F
i !

∏
i

(ST (qB))
nF
i

i (7)

where470 (
ST (qB)

)
i

=
wT

i q
B
i∑

i′ w
T
i′ q

B
i′

(8)

defines a distorted population based on the haplotype fitnesses wT = {wT
i }, representing the relative471

propensity of each haplotype hi for transmission. We note here that qFi =
nF
i

NT , where nF is the compo-472

sition of haplotypes in the founder population.473

474
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Selection during within-host growth475

From the founding of an infection in the recipient, the viral population grows to the point at which data is476

collected for sequencing, under the influence of both genetic drift and selection. Selection for within-host477

growth is modelled by the function SG, identical in form to ST . We note that neglect of this term could478

distort the inferred value of ST ; given only data collected before and after transmission the two terms479

cannot be separated. However, where samples have been collected at distinct times from one or multiple480

hosts, it is possible to make an independent estimate of SG [51], such that the two forms of selection481

can be discriminated. We here incorporate within-host selection into our derivation; the absence of such482

selection is then represented as a special case of our model.483

484

Concerning drift, we note that the number of viruses in a host grows rapidly, with experiments485

suggesting that a single infected cell can produce between 103 and 104 viruses [73]. Each strand of RNA486

forming a new virus undergoes at least two rounds of replication within the cell; this replication has487

elsewhere been considered as a branching process with a mean 100-fold increase in the population size at488

each step [74]. In a population of variable size, the effective population size can be written as489

1

NG
=

1

g

(
g∑

k=1

1

N(tk)

)
(9)

where N(tk) is the population size after k generations [75]. Given the rapid growth in population size we490

approximate the sum to consider only the first generation, modelling drift as a single multinomial draw491

with depth NG = 100NT .492

493

Approximation of the likelihood function494

We now turn to calculating the likelihood function of Equation 2. On account of the discrete nature of the495

multinomial distribution, the integrals present in this equation may be written as sums over all possible496

outcomes of the multinomial sampling processes represented by the different potential values of qF and497

qA. However, in realistic cases, where there might be multiple haplotypes present, the number of possible498

outcomes grows combinatorially with NT , making this calculation intractable. Instead we consider a499

continuous approximation in which the random variables of the model (Figure 2A) are represented by500

multivariate normal distributions, each defined by a mean and covariance matrix. By ignoring higher or-501

der moments, we may then calculate the individual components of the system (Equation 2) by appealing502

to a moments based approach for the evaluation of integrals arising from marginalisation over unknown503

variables. This step follows multiple previous approaches to time-resolved data, in which moments-based504

approximations have been used to simplify the propagation of evolutionary models [35,76–78].505

506

The haplotype frequency vector qB is unknown and must be determined from the available data. We507

denote the mean of the distribution of qB as µB and its covariance matrix by ΣB . Given a sampling depth508

NB and a dispersion parameter C, we describe xB as a distribution with mean and variance derived from509

the Dirichlet multinomial [79]:510

E
[
xB |qB

]
= NBqB (10)

and511

var
[
xB |qB

]
=

(
NB + C

1 + C

)
NB

(
Diag(qB)− qB(qB)†

)
≡ βNBM(qB) (11)

where β =
(

NB+C
1+C

)
, M(q) = Diag(q)− qq† and † indicates the transpose function.512

513
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The founder population qF is sampled from qB . Its mean is given by the expression514

E[qF |qB ] = ST (qB) (12)

and its variance by515

var[qF |qB ] =
1

NT

(
Diag(ST (qB))− ST (qB)ST (qB)†

)
≡ 1

NT
M(ST (qB)) (13)

arising from a multinomial sample of depth NT and the selectively shifted frequencies ST
(
qB
)
.516

517

Similarly, the within-host growth process may be represented by a distribution with mean E[qA|qF ] =518

qF and variance var[qA|qF ] = 1
NGM(qF ). As for the pre-transmission case, a Dirichlet multinomial519

likelihood with sampling depth NA, selectively shifted frequencies SG(qA) and dispersion parameter C520

may be used to model the sequencing of the population post-transmission. The resulting distribution can521

be approximated as a multivariate normal with mean522

E[xA|qA] = NASG(qA) (14)

and variance523

var[xA|qA] =

(
NA + C

1 + C

)
NAM(SG(qA)) ≡ αNAM(SG(qA)) (15)

where α =
(

NA+C
1+C

)
is defined for notational convenience.524

525

Having established the above distributions, we are now equipped to carry out the relevant marginali-526

sations (Equation 2) using the law of total expectation and the law of total variance. Starting with the527

pre-transmission compound distribution, the marginalisation over qB yields a mean of528

E[xB ] = E[E[xB |qB ]] = E[NBqB ] = NBµB (16)

and a variance of529

var(xB) = E[var[xB |qB ]] + var[E[xB |qB ]]

= E
[
βNB

(
Diag(qB)− qB(qB)†

)]
+ var[NBqB ]

= βNB
(
Diag(E[qB ])− E[qB ]E[qB ]†

)
+NB

(
NB − β

)
var[qB ]

= βNBM
(
µB
)

+NB
(
NB − β

)
ΣB

(17)

These expressions characterise the xB component of the likelihood from Eq. 2 in terms of a normal dis-530

tribution. We identify values of µB and ΣB maximising this likelihood. As the covariance matrix ΣB
531

may contain a large number of elements, we make the approximation that its off-diagonal elements are532

zero.533

534

Moving on to the post-transmission process, the marginalisation over qB results in a mean of535

E[qF ] = E[E[qF |qB ]] = E[ST (qB)] ≈ ST (E[qB ]) = ST (µB) (18)

where in the penultimate step we used the first-order second-moment approximation to a vector function536
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acting on a random variable. The law of total variance yields537

var(qF ) = E[var[qF |qB ]] + var[E[qF |qB ]]

= E

[
1

NT
M(ST (qB))

]
+ var

[
ST (qB)

]
=

1

NT
M(E[ST (qB)]) +

(
1− 1

NT

)
var[ST (qB)]

≈ 1

NT
M(ST (E[qB ])) +

(
1− 1

NT

)(
DST

∣∣
E[qB ]

)
var[qB ]

(
DST

∣∣
E[qB ]

)†
=

1

NT
M(ST (µB)) +

(
1− 1

NT

)(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†
(19)

Note that (DS)
j
i = ∂Si

∂qj
is the Jacobian matrix arising from the first-order second-moment approximation.538

539

Marginalisation over qF yields a mean of540

E[qA] = E[E[qA|qF ]] = E[qF ] = ST (µB) (20)

and variance541

var(qA) = E[var[qA|qF ]] + var[E[qA|qF ]]

= E

[
1

NG

(
Diag(qF )− qF (qF )†

)]
+ var[qF ]

=
1

NG

(
Diag(E[qF ])− E[qF ]E[qF ]†

)
+

(
1− 1

NG

)
var[qF ]

=
1

NG
M
(
ST (µB)

)
+

(
1− 1

NG

)(
1

NT
M(ST (µB)) +

(
1− 1

NT

)(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†)
=
NT +NG − 1

NTNG
M
(
ST (µB)

)
+
NTNG −NT −NT + 1

NTNG

(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†
≡ γM

(
ST (µB)

)
+ δ

(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†
(21)

where in the last step we defined γ =
(

NT+NG−1
NTNG

)
and δ = NTNG−NT−NG+1

NTNG .542

543

Treating the integral over qA in a similar manner, we obtain by the law of total expectation544

E[xA] = E[E[xA|qA]] = E[NASG(qA)] ≈ NASG
(
E[qA]

)
= NASG

(
ST
(
µB
))

(22)

Analogously, the law of total variance yields545
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var(xA) = E[var[xA|qA]] + var[E[xA|qA]]

= E
[
αNAM

(
SG
(
qA
))]

+ var[NASG
(
qA
)
]

= αNA
(

Diag(E
[
SG
(
qA
)]
− E

[
SG
(
qA
)]

E
[
SG
(
qA
)]†)

+NA
(
NA − α

)
var[SG

(
qA
)
]

≈ αNA
(

Diag(SG
(
E
[
qA
])
− SG

(
E
[
qA
]) (

SG
(
E
[
qA
]))†)

+NA
(
NA − α

) (
DSG

∣∣
E[qA]

)
var
[
qA
] (
DSG

∣∣
E[qA]

)†
= αNAM(SG(ST (µB)))

+NA
(
NA − α

) (
DSG

∣∣
ST (µB)

)(
γM

(
ST (µB)

)
+ δ

(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†)(
DSG

∣∣
ST (µB)

)†

(23)

The above expressions represent mean and covariance matrices of multivariate normal distributions546

resulting from the evaluation of marginalisations in Equation 2. As such, the components of Equation 2547

may be represented in a tractable form as the probability density functions of two multivariate normal548

distributions; The xB component has mean and covariance matrix as specified in Equations 10 and 11,549

whilst the xA component has mean and covariance matrix as given in Equations 22 and 23. Taken as a550

whole, this defines a likelihood for the transmission event given the data. As such, given an independent551

estimate of SG, and our estimated values for µB and ΣB , the maximum likelihood values of NT and ST
552

may be inferred.553

Reversion to a discrete likelihood function554

Given a mean and covariance matrix for the likelihood function, we can approximate the likelihood by the555

probability density function of a multivariate normal distribution. However, where the variance of this556

distribution is very small in one dimension, as can occur under an inference of very strong selection, the557

density function evaluated at a point can become arbitrarily large. For this reason a Gaussian cubature558

approach was used to calculate the integral of the final likelihood over the unit cube described by each559

observation x, once optimisation had been completed. Approximate numerical integrals were calculated560

using the software package cubature [80].561

562

Extension to partial haplotype data563

In the calculations above we made the implicit assumption that the observations xB and xA consist of564

sets of complete viral haplotypes hi. However, short-read sequencing technologies generally result in sets565

of individual reads which only cover a subset of the genetic loci of interest; we refer to these reads as566

partial haplotypes. In this framework the data represents direct observations of partial haplotypes in the567

set hP = {hP
1 , . . . ,h

P
L}, where each of the sets hP

l is a vector of haplotypes spanning a common subset568

of the loci spanned by the full haplotypes in h. Population-wide observations of these partial haplotypes569

are then defined by xP = {xP
1 , . . . ,x

P
L} with xP

l = {xPli} where xPli is the number of reads with haplotype570

hP
li. As a result, the total number of observations must now be defined on the basis of each set of partial571

haplotypes, e.g. NB,P
l =

∑
i x

P
li is the total number observations of partial haplotypes in the set l. As572

each set of partial haplotype observations is independent of the others, we may reconstruct Equation 2573

in the following terms:574
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logL(NT , ST |xB ,xA, NG, SG) =
∑
l

logL(NT , ST |xB,P
l ,xA,P

l , NG, SG) (24)

Within this construction, bottleneck sizes and selection are conserved between partial haplotype sets,575

being evaluated at the full haplotype level. Each set of partial haplotype observations xP
l is considered576

as a sample drawn from a set of partial haplotypes with frequencies qPl , these frequencies being defined577

via a linear transformation of the full haplotype frequencies with matrix Tl. For example, given the full578

haplotypes {AG,AT,CG,CT} and a set of partial haplotypes {A-,C-}, we have579

qPl = Tlq (25)

or more explicitly,580

qPl1
qPl2

 =

1 1 0 0

0 0 1 1



q1

q2

q3

q4

 (26)

Thus, as described above, the calculation of transmission and within-host growth under selection can581

be performed at the level of full haplotypes, switching into partial haplotype space only to evaluate the582

likelihoods of the observations. Re-deriving the results of Equations 16 and 17 for short-read sequence583

data, we find that the compound distribution for the xB component has mean584

E[xB,P
l ] = NB,P

l Tl µ
B (27)

and variance585

var(xB,P
l ) = βNB,P

l M
(
Tlµ

B
)

+NB,P
l

(
NB,P

l − β
)
TlΣ

BT †l (28)

Similarly, for the xA component of the likelihood, we get a mean of586

E[xA,P
l ] = NA,P

l TlS
G
(
ST
(
µB
))

(29)

and variance587

var(xA,P
l ) =αNA,P

l M(TlS
G(ST (µB)))

+NA,P
l

(
NA,P

l − α
)
Tl

(
DSG

∣∣
ST (µB)

)(
γM

(
ST (µB)

)
+ δ

(
DST

∣∣
µB

)
ΣB
(
DST

∣∣
µB

)†)(
DSG

∣∣
ST (µB)

)†
T †l

(30)

Data from multiple genes588

The mathematical framework outlined above utilises the haplotype information inherent to the data, and589

accounts for the effect of noise in the sequencing process (Figure 1B,C). However, in order to discriminate590

between changes in viral diversity arising from bottlenecking and selection (Figure 1A) it is necessary591

to consider data from different regions of the genome at which genetic diversity is nominally statistially592

independent. At high doses of influenza virus reassortment occurs rapidly, as has been observed both593

in vitro and in small animal infections [81, 82]. In our analysis, distinct viral segments were therefore594

considered to be independent of one another in this manner, albeit sharing a common transmission595

bottleneck NT , each transmitted virus being assumed to contain one of each viral segment. As such the596

likelihood in Equation 24 becomes597

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/302331doi: bioRxiv preprint 

https://doi.org/10.1101/302331
http://creativecommons.org/licenses/by-nc-nd/4.0/


23

logL(NT , ST |xB ,xA, NG, SG) =
∑
m

∑
l

logL(NT , ST
m|x

B,PH
ml ,xA,PH

ml , NG, SG
m) (31)

where the subscript m denotes information particular to a specific genomic region.598

Data from multiple replicates599

Replicate data are highly valuable for evolutionary inference [83,84]. Within our calculation they provide600

an additional level of abstraction to the inference process. Under this framework we assumed that601

replicates share a common fitness landscape, ST , whilst exhibiting individual bottleneck values. As a602

result, the likelihood from Equation 31 becomes603

logL(NT , ST |xB ,xA, NG, SG) =
∑
r

∑
m

∑
l

logL(NT
r , S

T
m|x

B,PH
rml ,xA,PH

rml , NG
r , S

G
m) (32)

where the subscript r denotes information particular to a specific replicate.604

Application to data605

Our method was applied to both simulated sequence data, and data from an evolutionary experiment606

conducted in ferrets [24].607

Generation of simulated data608

Simulated data were generated in order to nominally reflect data from an influenza transmission event.609

As such, a single transmission event was modelled as the transmission of viruses each with eight indepen-610

dent segments, the lengths of each segment being equal to the eight segments of the A/H1N1 influenza611

virus, with five randomly located polymorphic loci in each segment creating a total of 25 potential full612

haplotypes. One fourth of these haplotypes were randomly chosen under the constraint that each of the613

five loci had to be polymorphic. Subsequently, full haplotype frequencies were generated at random, with614

the constraint of a minimum haplotype frequency of 5%.615

616

Transmission was modelled as a multinomial draw of depth equal to the bottleneck size. Selection for617

transmission was incorporated as a shift in haplotype frequencies as described in Equation 8. Within-host618

growth was included as two 12-hour rounds of replication, each round being modelled as two successive619

drift processes, each resulting in a 100-fold increase in population size. Within-host selection was mod-620

elled in a manner similar to that of selection for transmission.621

622

Partial haplotype observations were generated on the basis of short-read data simulated for each gene.623

Short-reads were modelled as randomly placed gapped reads with mean read and gap lengths derived624

from an example influenza dataset [23] (mean read length = 119.68, SD read length = 136.88, mean gap625

length = 61.96, SD gap length = 104.48, total read depth = 102825); these estimates are conservative626

relative to what can be achieved with the best contemporary sequencing technologies. Read depths were627

calculated for all possible sets of partial haplotypes by assigning individual reads to sets according to628

the loci they cover. Finally, partial haplotype observations were modelled as Dirichlet-multinomial draws629

employing a dispersion parameter C to account for noise.630

631

Replicate experiments were generated by considering replicate observations of transmission events632

with consistent viral populations; that is, for which the variant alleles were consistent between replicate633

transmission events.634
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Experimental sequence data635

Data were analysed from an evolutionary experiment in the transmission of a 1918-like influenza virus636

between ferrets [24]. The specific data examined here describes two sets of viral transmissions. In the637

first, denoted HA190D220D, a viral population was given to three ferrets, transmission to a recipient host638

being observed in one of three cases, giving time-resolved sequence data from four ferrets. In the second,639

denoted Mut, a viral population arising from the first experiment was given to three ferrets, transmission640

to two recipient hosts being observed, giving data from five ferrets.641

Processing of sequence data642

Genome sequence data was processed using the SAMFIRE software package, according to default set-643

tings [85], calling variant alleles that existed at a frequency of at least 1% at some point during the644

observed infections. For the calculation of a within-host fitness landscape, the effective depth of sequenc-645

ing was estimated in a conservative manner, filtering out variants which changed in frequency by more646

than 5% per day before using the frequencies of remaining variants from different time-points within the647

same host to estimate the parameter C. Following the approach of previous calculations [51, 69], poten-648

tially non-neutral variants were identified as those for which a model of frequency change under selection649

outperformed a neutral model by more than 10 units according to the Bayesian Information Criterion650

(BIC) [56]. Variants reaching a frequency of at least 5% in at least one sample were then identified651

before calling multi-locus variant observations from the data; data from all time-points were used in this652

inference. The 5% cutoff was chosen to reduce computational costs for this part of the calculation while653

still reconstructing the core aspects of the within-host fitness landscape.654

655

For the inference of transmission, a revised approach to estimating the effective depth of sequencing656

was taken, noting our result that estimates which overestimate noise may lead to errors in the inferred657

bottleneck size. Here, in common with previous calculations, we initially identified a conservative value658

of C from within-host data using the default settings in SAMFIRE. Next, variant frequencies were eval-659

uated, identifying potentially non-neutral changes in frequency using a single-locus analysis [51]. Finally,660

a more conservative estimate of C was calculated, using the set of trajectories which were identified as661

being consistent with a neutral model of frequency change.662

663

As in the original analysis of the data [24], variants were identified from data collected from the final664

observation before transmission and the first point of observation after transmission; these data were665

used to construct multi-locus observations across variants which reached a frequency of at least 2% in at666

least one sample.667

668

Subsequent processing was identical for simulated and experimental datasets: Partial haplotype ob-669

servations were removed if A) the partial haplotype did not have at least 10 observations either before or670

after transmission, B) the partial haplotype exhibited a frequency of < 1% before transmission, C) the671

partial haplotype had no observations before transmission (variant assumed to have arisen de novo), D)672

the partial haplotype was the only partial haplotype in its set and had no observations post-transmission.673

Additionally, to avoid potential dataset errors from drastically influencing the inference outcome, partial674

haplotypes were removed if found to have a single post-transmission observation despite the presence of675

a large (≥ 50) overall sampling depth. Finally, removal of partial haplotype observations may result in676

individual loci becoming monomorphic (all partial haplotypes covering these loci exhibit the same alleles).677

In this case, relevant partial haplotype sets were removed with the reads being redistributed unto variant678

sets with fewer loci.679

680
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Inference of parameters681

Hierarchical selection model682

In our model, the set of potential fitness parameters is large. To simplify the calculation, parameters683

modelling three- or higher-locus epistatic effects were neglected, while parameters modelling two-locus684

epistasis were only considered for addition to a model which already contained single-locus fitness pa-685

rameters for each of the two loci. In both the inferences of within-host selection and of transmissibility, a686

null assumption of neutrality was used as the starting point for an inference model, exploring successively687

more complex models of selection until an optimal model, defined according to a model selection process,688

was identified.689

Inference of within-host selection690

For the experimental dataset an inference of within-host selection was conducted according to a method691

previously described in earlier publications [51, 69]. Under the assumption of rapid reassortment in the692

system [81] different segments of the virus were treated independently. Our inference of selection aimed693

to characterise fitness so as to estimate SG for an inference of transmission; the HA190D225D and Mut694

datasets were considered independently, with data from all animals in each set being combined to infer695

within-host selection.696

Replicate calculations of transmission parameters697

Both our within-host and transmission calculations are performed in a model space of potential multi-698

locus haplotypes, identified by the SAMFIRE code [85]. In the first step of the transmission model,699

we calculate an estimate for the population qB given the data xB . Where there are greater numbers700

of potential haplotypes and short reads span smaller numbers of loci there is an increasing potential701

for the data to not fully specify the initial vector qB . For this reason statistical replicate calculations702

were run in each case, using different reconstructions of qB in each case; the median inferred parameters703

across replicates are presented above. To improve the speed of the inference, haplotypes in qB with704

inferred frequencies of less than 10−10 were removed from the calculation; subsequent to this, haplotypes705

were removed in increasing size of inferred frequency until no more than 100 haplotypes remained in706

qB at non-zero frequencies. We note that our inference of qB depends upon the initial identification707

of a plausible set of underlying viral haplotypes using SAMFIRE. Where this plausible set is large, as708

might occur where very short reads describe a large number of polymorphic loci, this inference becomes709

computationally challenging.710

711

Model selection712

Model selection was performed using the Bayesian Information Criterion:713

BIC = −2 logL+K log n (33)

where L is the maximum likelihood obtained for a model, K is the number of parameters in the fitness714

model, and n is the number of data points. A range of potential fitness models were explored, the optimal715

model being identified as that for which the addition of any single fitness parameter failed to bring a716

significant improvement in BIC.717

718
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Adaptive BIC719

Noting previous discussion of the complexity of using BIC in biological modelling [86], we here adopted720

a machine-learning approach to the interpretation of BIC statistics. Classically, a difference of 10 units721

of BIC has been held to represent strong evidence in favour of the additional parameter [56]. Consistent722

with previous approaches this heuristic was used in the inference of within-host selection; in this case the723

final model parameters make only small refinements to the inferred fitness landscape [51]. In the inference724

of transmission, errors in model selection have more severe consequences for the inferred bottleneck size725

and selection model. Using a fixed difference of 10 BIC units for model selection resulted in an overesti-726

mation of the extent of selection with a high false positive rate (Supplementary Figure S12). As such, we727

generated and analysed simulated data to identify the optimal interpretation of BIC differences. Given728

a real dataset for analysis, simulated data was generated describing systems with equivalent numbers of729

gene segments and polymorphic loci to the real dataset, being observed with an equal number of reads730

spanning each set of loci, and with reads containing an amount of information specified by the parameter731

C inferred for the real dataset.732

733

Next, inferences were conducted on data describing neutral transmission events with bottlenecks in734

the range [5, 100]. As shown in Figure 3, the ability to infer a correct neutral bottleneck is impaired by735

noise for transmission events involving a large number of viruses; linear regression was used to obtain a736

simple function describing the ratio between the median inferred and true bottleneck sizes under neutral-737

ity (Supplementary Figure S13A); this parameterises our expectation of the ‘correct’ inferred bottleneck738

size for any given real bottleneck, once noise is accounted for.739

740

Secondly, using this baseline to set our expectations, a parameterisation was carried out to find a BIC741

penalty function that gave the largest accuracy in bottleneck inference. To this end, three datasets were742

considered; a neutral dataset and two datasets with single selection coefficients of s = {1, 2} respectively.743

BIC penalty values in the range [10, 200] were examined, with smaller BIC penalty values leading to744

inferences with a larger number of selection coefficients and vice versa. For each BIC penalty value, the745

difference between the bottleneck inference of the optimal model (under BIC) and the baseline expectation746

was summed for the three datasets to give a statistic describing the accuracy of the inferred bottlenecks,747

this statistic being expressed as a function of the real transmission bottleneck NT and the BIC penalty748

(Supplementary Figure S13B). Finally, linear and decay exponential models were fitted to this data via749

regression, selecting the BIC penalty model which minimised the error in the inferred bottlenecks from750

the simulation data. We note that our penalty is a function of the inferred population bottleneck, higher751

penalties being inferred for tight bottlenecks and lower penalties being inferred for looser bottlenecks.752

753

Thirdly, the inferred data was reinterpreted to derive a BIC penalty optimal for the inference of754

selection. We note that, even with a BIC penalty function optimised for bottleneck inference, there755

may still remain cases where, through the stochastic process of transmission, the genetic composition756

of the population changes in a manner consistent with the action of selection, granting a false positive757

inference. A second BIC penalty was learned as above, this time maximising the accuracy of the inference758

or non-inference of selection parameters, defined as759

# true positives + # true negatives

# true positives + # false positives + # true negatives + # false negatives
(34)

This conservative BIC penalty function typically led to an underestimate for the inferred bottleneck;760

the two BIC penalty functions were used in concert to estimate NT and ST in separate calculations.761

762

As noted elsewhere, where a genomic variant fixes between two observations, this change in frequency763

can be explained by the fitting of an arbitrarily large selection coefficient; no upper bound on selection764

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/302331doi: bioRxiv preprint 

https://doi.org/10.1101/302331
http://creativecommons.org/licenses/by-nc-nd/4.0/


27

can be established [87]. Within our framework, if this is not accounted for, extremely strong selection may765

be falsely inferred to explain the loss of variants during a transmission bottleneck. To guard against this,766

models of transmission in which the inferred magnitude of selection was outside of the range (-10,10) were767

excluded from consideration. In the within-host analysis methods, haplotype fitness are not constrained;768

here, to avoid errors of machine precision, the magnitudes of extreme fitness inferences were reduced to769

be within the range (-10,10). For the same reason, elements of the mean and covariance matrix of qB770

were constrained to be greater in magnitude than 10−11.771
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Figure S1. Bottleneck inference under a neutral model applied to neutral data with simulation
dispersion parameters of C = {50, 106}. Inference was performed using a range of dispersion
parameters, C = {50, 100, 200, 500, 1000, 106}.
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86. Fischer A, Vázquez-Garćıa I, Illingworth CJR, Mustonen V (2014) High-Definition Reconstruction972

of Clonal Composition in Cancer. CellReports 7: 1740–1752.973

87. Illingworth CJR, Mustonen V (2012) A method to infer positive selection from marker dynamics974

in an asexual population. Bioinformatics 28: 831–837.975

Supplementary Material976

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 18, 2018. ; https://doi.org/10.1101/302331doi: bioRxiv preprint 

https://doi.org/10.1101/302331
http://creativecommons.org/licenses/by-nc-nd/4.0/


33

Table S1. Inferred fitness coefficients for the within-host evolution of the virus within each
experiment. Parameters were inferred across all index and contact ferrets within each experiment and
are reported to a single decimal place. Only polymorphisms at which within-host selection was identified
are listed. The parameter χ denotes an epistatic interaction between variant alleles. We note that our
method infers the approximate shape of a fitness landscape based upon a reconstruction of whole viral
segments; individual selection coefficients may be subject to variance between similar fitness landscapes.

Segment Variant Mut HA190D220D
PB2 A1199G -0.9
PB2 T1537C 0.5
PB2 G2193C -0.3
PB1 C65T -0.4
PB1 C90A -0.3 -0.3
PB1 C835A 0.3
PB1 G982T 0.4
PB1 T1151G 0.3
PB1 G2250T -1
PB1 χ90,982 1
PA A781G -0.2
PA G1500T 0.5
PA C1651T -0.7
PA G1880T -0.8
HA G14T -0.0 0.4
HA A400G 0.2 -0.3
HA A507C 0.5 0.4
HA C550A 0.3
HA T634C 0.4
HA A649G 0.3
HA A651C 0.6
HA T653G 0.5
HA G741A -0.1
HA G747A 0.2
HA A748G 0.3
HA A868T 0.2 0.3
HA T1036C -2.1
HA G1263A 0.5
HA C1762T -0.7
HA χ14,400 -0.3
HA χ14,507 0.2
HA χ400,507 -36.5
HA χ400,550 -32.2
HA χ400,1036 2.2
HA χ868,1263 -0.8
NP G600A 0.4
NA G440A 0.4
NA G649A 0.2
NS G289A 0.4
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Figure S2. Median inferred bottleneck size from data simulating neutral transmission and
transmission with a single locus under selection of magnitude σ ∈ {0, 0.5, 0.75, 1.0, 2.0}. Inferences were
made using either a neutral model, in which the effect of selection was assumed to be zero, or a
selection model, which allowed scenarios involving selection to be identified. Median inferences are
shown from 100 simulations, each involving three replicate transmission events, for each datapoint.
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Figure S3. Inferred bottleneck sizes NT for a range of true bottleneck sizes. Results were generated
by applying a neutral inference model to selected simulated data. Results are shown for 200 simulations
at each bottleneck size.
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Figure S4. Inferred bottleneck sizes NT for a range of true bottleneck sizes. Results were generated
by applying an inference model accounting for selection to selected simulated data. Results are shown
for 200 simulations at each bottleneck size.
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Figure S5. Inferred bottleneck sizes NT for a range of true bottleneck sizes. Results were generated
by applying a neutral inference model to selected simulated data. Results are shown for 200 simulations
at each bottleneck size, each simulation describing three replicate transmission events.
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Figure S6. Inferred bottleneck sizes NT for a range of true bottleneck sizes. Results were generated by
applying an inference model accounting for selection to selected simulated data. Results are shown for
200 simulations at each bottleneck size, each simulation describing three replicate transmission events.
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Figure S7. Probability distributions of inferred selection coefficients from 100 simulations each of
three transmission events with selective pressures σ ∈ {0.75, 1.0, 2.0}. Distributions were constructed for
bottleneck values where the inference of selection resulted in a true positive rate for identifying selected
variants of above 5 %. Smooth kernel distributions were computed as for Figure 7
.
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Figure S8. Inferred within-host fitness landscape for segments in the HA190D220D viral populations.
Haplotypes for which the inferred frequency rose to a frequency of at least 1% in at least one animal are
shown. Haplotypes which are separated by a single mutation are joined by lines.
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Figure S9. Inferred within-host fitness landscape for segments in the Mut viral populations.
Haplotypes for which the inferred frequency rose to a frequency of at least 1% in at least one animal are
shown. Haplotypes which are separated by a single mutation are joined by lines.
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Figure S10. Histograms of selection inferences for the Mut transmission pairs from 100 random seeds
using an allele frequency cut-off of 2%. A replicate inference method was employed such that a common
fitness landscape was imposed. Selection inferences that resulted in at least 10% non-zero inferences are
here reported by the nucleotide position of the variant site.
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Figure S11. Histograms of bottleneck inferences for HA190D225D and Mut transmission pairs from
100 random seeds using allele frequency cut-offs of qcut ∈ {0.03, 0.04}. A replicate inference method was
employed for the Mut transmission pairs such that a common fitness landscape was imposed. The Mut
transmission pairs may take different bottleneck values and have been plotted as an overlapping
histogram.
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Figure S12. True and false positive rates of selection inference from 200 simulations of transmission
events from single-replicate systems with selective pressures of σ ∈ {0, 0.5, 0.75.1.0}. A fixed BIC
difference of 10 units were employed in the model selection process, requiring a model with a single
additional parameter to generate an improvement of at least 10 units to BIC to be accepted. While
such a difference is accepted as showing strong evidence in favour of the more complex model, in our
case it generated a high rate of false positive inferences of selection.
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Figure S13. Determining BIC penalty function for bottleneck inference under simulated data. A) The
ratio of the median inferred bottleneck to the true bottleneck is plotted against the true bottleneck size.
As shown in Figure 3, as the bottleneck increases, our ability to infer it correctly decreases due to noise.
In order to account for this phenomenon, a straight line is fitted to the data aiming to capture the
general trend. B) Heat map of the bottleneck-specific statistic plotted against BIC penalty and
bottleneck size. The plot was generated for three datasets with selection coefficients s = {0, 1, 2} and a
simple statistic based on bottleneck differences was employed. More specifically, the median bottleneck
was computed across 200 seeds and the bottleneck-statistic was defined as the absolute value of the
difference between the median inferred bottleneck and the true bottleneck multiplied by the baseline
determined in A). By considering bottlenecks in the range [5, 100] and BIC penalty values in the range
[10, 200], a heat map was produced and linear and decay exponential regression were conducted seeking
to minimise the sum of the statistic across the values of NT that were considered.
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