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Abstract8

Evolutionary game theory has been successful in describing phenomena from bacterial pop-9

ulation dynamics to the evolution of social behavior. Interactions between individuals are10

usually captured by a single game. In reality, however, individuals take part in many in-11

teractions. Here, we include multiple games and analyze their individual and combined12

evolutionary dynamics. A typical assumption is that the evolutionary dynamics of individual13

behavior can be understood by constructing one big comprehensive interactions structure, a14

single big game. But if any one of the multiple games has more than two strategies, then15

the combined dynamics cannot be understood by looking only at individual games. Devising16

a method to study multiple games – where each game could have an arbitrary number of17

players and strategies – we provide a concise replicator equation, and analyze its resulting18

dynamics. Moreover, in the case of finite populations, we formulate and calculate a basic19

and useful property of stochasticity, fixation probability. Our results reveal that even when20

interactions become incredibly complex, their properties can be captured by relatively simple21

concepts of evolutionary game(s) theory.22
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Introduction23

Evolutionary Game Theory (EGT) [von Neumann and Morgenstern, 1944, Maynard Smith24

and Price, 1973, Nowak, 2006, Nowak and Sigmund, 2004] has been used to study phenom-25

ena ranging from the dynamics of bacterial populations to the evolution of social behavior.26

In EGT, individuals are cast as players that interact with each other in ‘games’. Games are27

metaphorical summaries of interactions. For example, in the classical Prisoners’ Dilemma28

game, individuals can either cooperate or defect, and each pair-wise interaction results in a29

payoff for the players involved [Nowak, 2006, Nowak and May, 1992]. Over time, players that30

adopt a certain strategy either perform better than the average population and increase in31

frequency, or perform worse than the average population and decrease in frequency. Tracking32

the change in their frequencies over time, EGT can provide insight into the eventual fate33

of the strategies in a game, e.g. whether they dominate, coexist or go extinct from the34

population.35

However, single games are too simplistic a model. Considerable effort has been done in36

making them more realistic (with interactions among multiple players and allowing players37

to adopt strategies from a large set [Ostrom, 1990, 2000]). However, single games fail to38

satisfactorily capture, for instance, humans interacting in public goods games such as climate39

change issues [Milinski et al., 2006]. When nations’ leaders discuss strategies to improve the40

status of global climate, they also need to take into account the interests of the people41

they are representing. Thus, political leaders are playing at least two games: one with other42

nations and another within their own nation.43

In lions, females defend their territory against invaders by forming a line. Some lionesses44

always stay at the forefront while others lag behind [Heinsohn and Parker, 1995]. Look-45

ing at this territory defense game in isolation, the laggards would be defined as cheaters.46

Interestingly, the leaders, knowing the identity of the laggards, do not employ any retalia-47

tory strategies (such as Tit for Tat or Pavlov) [Legge, 1995]. The co-existence of the two48

types would most likely not be evolutionary stable. However, we see stable prides! This49

puzzle is solved by realizing that territory defense is only one of many games played by the50

lionesses. In the complete picture, there is division of labor among them, and the laggards51

could be playing important roles in other games such as maternal care and hunting [Boza52

and Számadó, 2010, Legge, 1995].53

Lastly, a multiple games model in bacterial dynamics can been used to explain the coex-54

istence of avirulent ‘cheaters’ and virulent ‘cooperators’ in populations of the pathogen S.55

typhimurium[Diard et al., 2013]. Likewise, in Pseudomonas fluorescens communities, the56

seemingly destructive cheating cells can promote evolution of collectives [Hammerschmidt57

et al., 2014]. The dynamics between the microbes constituting the microbiome have been58

found to be non-linear lending themselves to multiplayer games [Li et al., 2015]. The com-59

plete interaction in the holobiont would then be a collection of multiple multiplayer games60

[?]. In summary, real world interactions cannot be described by single games [Tarnita et al.,61

2009] and as mentioned earlier, one particular use of multiple games is tackling the evolution62

of division of labor [Rueffler et al., 2012, Gazda et al., 2005, Wahl, 2002, Kerr et al., 2002].63

Previous studies on multi-game dynamics (MGD) (Fig. 1) have shown that a combination64

of games with more than two strategies cannot be separated into it’s constituent single65
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game dynamics (SGD) [Hashimoto, 2006]. However, these results are restricted to two-66

player games. When more players are involved, different dynamics emerge [Pacheco et al.,67

2009, Gokhale and Traulsen, 2010, Peña, 2012] A complete picture of MGD, where multiple68

players are involved, is lacking. If multiple players are involved, then can the MGD be69

decomposed back into its constituent SGDs? If yes – the conclusions drawn from individual70

games are valid. If not – it will be necessary to use MGD to obtain realistic results.71

To answer this question, we enhance the MGD to look at combinations of multiplayer72

games, and provide an analytical framework for analyzing an ensemble of games in a tractable73

manner. We present a complete and general method to study multiple games with many74

strategies and players, all at once (Fig. 1). When the games have more than two strategies,75

we find that they cannot be separated back to their SGDs, in line with previous findings.76

Interestingly, however, we find a dependency on the initial conditions (i.e., the initial fre-77

quencies of each strategy). For certain initial conditions, one may still be able to capture78

the SGDs from their MGD.79

Model and Results80

Single game dynamics (SGD)81

Two player games with two strategies have been studied extensively, both in infinite as well82

as finite populations. A game between two individuals can be represented by the following83

interaction matrix,84

( 1 2

1 a1,(1,0) a1,(0,1)
2 a2,(1,0) a2,(0,1)

)
(1)

The two individuals are represented by a row and a column respectively and each can adopt85

one of the two strategies 1 or 2. We write the elements of the matrix in the form ai,α,86

where i is the strategy of the focal player. The vector α is written as α = (α1, α2) where87

α1 (number of individuals of strategy 1 in the column) and α2 (number of individuals of88

strategy 2 in the column), together represent the group composition. In a 3-player game with89

two strategies, a payoff matrix entry, say a2,(1,1), where α1 = 1 and α2 = 1, will correspond90

to a focal player with strategy 2 interacting with two other players with strategies 1 and 2,91

respectively.92

The average payoff obtained from the game is the reproductive success of that strat-93

egy [Maynard Smith, 1982]. This analysis has been extended to interactions having multiple94

strategies [Wu et al., 2011] as well as multiple players [Broom et al., 1997, Broom, 2003].95

To make our notation clear, we illustrate a payoff matrix for a multiplayer (d player) game96

with two strategies as,97

No. of opposing
1 players d− 1 d− 2 . . . k . . . 0

1 a1,(d−1,0) a1,(d−2,1) . . . a1,(k,d−1−k) . . . a1,(0,d−1)
2 a2,(d−1,0) a2,(d−2,1) . . . a2,(k,d−1−k) . . . a2,(0,d−1)

(2)
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Even while extending the number of strategies, the dynamics of this complicated system
can still be analyzed by the replicator dynamics [Hofbauer and Sigmund, 1998, Schuster and
Sigmund, 1983]. For a d player game with m strategies, the replicator dynamics is given by
a set of m differential equations

ẋi = xi(fi − f̄) (3)

where xi is the frequency of strategy i, and fi is the fitness of the strategy i (see Supplemen-98

tary Information (SI) text). The average fitness of the population is given by f̄ =
∑m

j=1 xjfj .99

This simple evolutionary game framework has been used to describe a wide range of phe-100

nomena from chemical reactions of prebiotic elements to the evolution of social systems101

[Komarova, 2004].102

While this extension to multiple players and strategies is not trivially obtained [Gokhale103

and Traulsen, 2011], it still belongs to the domain of a single game. To make EGT models104

more realistic, interactions which have differential impacts on fitness need to be taken into105

account. Therefore, we now incorporate multiple games and measure their cumulative impact106

on individual fitness.107

Multi-game dynamics (MGD)108

Individuals may employ different strategies in various games (e.g., division of labor scenarios109

[Wahl, 2002]) and their (average) payoffs will depend on their performance on all such games.110

Switching between such socially driven games is realistic and not only a matter of theoretical111

interest but has been experimentally explored as well [Wedekind and Milinski, 1996].112

To contrast multi-game dynamics (MGD) with the previously discussed single game dy-113

namics (SGD), consider a simple example of two, 2× 2 games:114

A1 =




A1
1 A1

2

A1
1 a11,(1,0) a11,(0,1)

A1
2 a12,(1,0) a12,(0,1)


 A2 =




A2
1 A2

2

A2
1 a21,(1,0) a21,(0,1)

A2
2 a22,(1,0) a22,(0,1)




Combining the strategies from the above two games results in four categories of individuals115

(Fig. 2). The frequencies of the four categories are given by x11, x12, x21 and x22 where the116

first and second positions (in the subscript) denote the strategies adopted in games 1 and117

2, respectively (Fig. 2). For a combination of N games, in principle, each game j can be118

described by a payoff matrix Aj . Each game j could be a dj player game with mj number119

of strategies. The categorical frequencies would then be given by xi1i2...ij ...iN where ij is the120

strategy being played in game j.121

The frequencies of the individual strategies for all N games can be written down as,

pjij =

k=N∑

k=1,k 6=j

mk∑

ik=1

xi1i2...ij ...iN . (4)
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Figure 1: Scope of this study. Typical evolutionary game dynamics focuses on two player
games with two strategies. Extensions to multiplayer games (d) and multiple
strategies (m, solid blue rectangle) expands the domain of study to public goods
games and other social dilemmas. However this is still limited to a single game.
Hashimoto [2006] has extended two player-multi-strategy games in a novel direction
of multiple games (N , dotted red rectangle). Our work generalizes this approach
and develops a method for analyzing multiple games, where each involved game
could be a multiplayer (and multi-strategy) game. Thus, this approach enables
us to study the entire space of multiple games (N) with multiple strategies (m)
consisting of multiple players (d).
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Figure 2: From Single Game Dynamics to Multi-Game Dynamics. The population after
combination is divided into four types: playing strategy 1 in game A1 and game
A2, strategy 1 in A1 and 2 in A2, strategy 2 in A1 and 1 in A2. And finally,
strategy 2 in A1 and A2. Thus,we have four types of strategies, A1

1A
2
1, A1

1A
2
2,

A1
2A

2
1 and A1

2A
2
2. Their respective frequencies are x11, x12, x21 and x22. Since

there are four ‘categorical types’, we can project the dynamics on an S4 simplex.

Using this individual strategy frequency for a game j, the fitness of strategy ij is given by,

fjij =
∑

|α|=dj−1

(
dj − 1

α

)
pαajij ,α. (5)

As before, αmj is the number of strategy mj players. Using multi-index notation, we have
α = (α1, α2, ..., αmj ) which gives us the multinomial coefficient, with the absolute value

|α| = α1 + α2 + ...+ αmj and the power pα = pα1
j1 p

α2
j2 ...p

αdj−1

jmj
. The average fitness of the

population is given by, φj = (pf)j (see SI text). Putting all this information together, we
can write down the time evolution of all the categorical strategies as,

ẋi1i2...ij ...iN = xi1i2...ij ...iN




N∑

j=1

(fjij − φj)


 . (6)

This system of equations is reminiscent of the replicator equation for the SGD. The summa-122

tion in the MGD replicator equations is due to an assumption of additive fitness effects from123

all games [Hashimoto, 2006]. In the following sections we will explore the use of this formu-124

lation for multiple games where each game can have a different number of players. Through125

the examples of specific cases, we aim to highlight the general principles of multiple games.126
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Two player game(s) with multiple strategies127

In case of two player games with two strategies, Cressman et al. [2000] showed that the128

SGD can be separated from the MGD. The dynamics lies on the generalized invariant129

Wright manifold [Hofbauer and Sigmund, 1998] in the S4 simplex which is given by WK =130 {
x ∈ ∆4 | x11x22 = Kx12x21

}
for K > 0. All the trajectories in the simplex depicting the131

MGD fall onto an attractor given by a line (ES set) on WK . However, previous results132

[Hashimoto, 2006] show that for more than two strategies, the MGD cannot be separated133

even into a linear combination of the constituent SGDs unless they are on WK . We are134

clearly looking at higher dimensions and the space is dense with various manifolds. It is135

important to know on which manifold the initial conditions are, for only if they start from136

WK , will the system state end on WK .137

Multiplayer game(s) with multiple strategies138

In combinations containing multiplayer games, frequency feedback between strategies is pos-139

sible. Moreover, as discussed in the beginning, an individual can take part in different140

interactions. A lioness can be part of forming the defensive line (tragedy of the commons)141

and hunting (stag-hunt game). Strategies in game 1 would be Cooperator, Defector, Loner142

etc. Strategies in game 2 could be Wing, Centre and so on. Thus A1
1 need not be the same143

as A2
1. Using our framework, we can model the combined dynamics of several games that144

an individual plays where each game can have completely different strategy sets.145

A1 =

( 1 2

1 −1 1

2 0 0

)
A2 =

( 11 12 22

1 −2 3 −2

2 0 0 0

)
(7)

To illustrate games with two strategies, we shall use the payoff matrices shown in (7). Here,146

A1 is a two player coexistence game and A2 is a three player game. In Game A2, the values147

a1,(k,d−1−k)−a2,(k,d−1−k) and a1,(k+1,d−k)−a2,(k+1,d−k) have different signs for all k. Thus,148

we have two interior fixed point solutions: a stable and an unstable. The exact solutions for149

the two SGD’s in (7) are q∗1 = 0.5 and q∗21,2 = (0.7236, 0.2763). The result of combining150

these games i.e. their MGD, is shown in Fig. 3.151

Next, we shall look at an example where one game, say, A1, has three strategies. Let A1

to be a Rock-Paper-Scissor type game as shown in the first payoff matrix in 8.

A1 =




1 2 3

1 0 −1 2

2 2 0 −1

3 −1 2 0


 A2 =

( 11 12 22

1 10 1 5.5

2 4 10 3

)
(8)

Since the determinant of the matrix is positive, the trajectories starting from any initial152

condition will converge to a unique stable equilibrium. The other game, A2, as shown in (8)153

is a three player game similar to the one used before in (7). In the SGDs of these games,154
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1

p
2
1

time time

B

x11
x12

x21

x22

ic3

ic2

ic1

Figure 3: (A) This S4 simplex contains the Multi-Game Dynamics of the combination of the
3-player and 2-player games in (7). The vertices are made up of the four ‘categorical
strategies’. The asterisks depict the initial conditions (ic1, ic2 and ic3) of the three
trajectories thats are plotted here. (B) In the multi-game dynamics, p11 (playing
strategy 1 in game 1) converges to q1 = 0.5 which is the equilibrium solution
for strategy 1 in game 1. If we start above the unstable equilibrium solution for
game 2 i.e q22 = 0.2763932, then p21 (playing strategy 1 in game 2) converges
to q21 = 0.7236068 which is the stable equilibrium solution for game 2. For
trajectories that commence below the unstable equilibrium, strategy 1 goes to
extinction. Clearly, p12 = 1 − p11 and p22 = 1 − p21. The initials conditions
for {x11, x12, x21 and x22} used in these plots are : ic1 = {0.2, 0.1, 0.2, 0.5},
ic2 = {0.1, 0.1, 0.6, 0.2} and ic3 = {0.1, 0.6, 0.1, 0.2}.
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p11 p12

p13

p
2
1

time

Figure 4: When there are three strategies in one game and two strategies in the other, six
“categorical types” are possible in their multi-game dynamics. The MGD will be
on an S6 simplex. Avoiding a five dimensional figure, we retrieve the distribution
of frequencies of strategies in the SGDs from the MGD which is what we require to
compare the SGDs and MGDs. The asterisks in the triangular S3 simplex denote
the positions from where the trajectories begin (initial conditions). Retrieving the
distribution of frequencies of strategies in game A1, all trajectories converge to
the equilibrium solution q1 = (1/3, 1/3, 1/3) and in game A2, the trajectories
that begin from below the unstable equilibrium q22 = 0.740 converge to the
stable equilibrium solution q21 = 0.127. The initials conditions used for {x11,
x12, x21, x22, x31 and x32 } are : ic1 = {0.3, 0.1, 0.1, 0.05, 0.4, 0.05}, ic2 =
{0.4, 0.1, 0.2, 0.1, 0.1, 0.1} and ic3 = {0.2, 0.3, 0.1, 0.1, 0.2, 0.1}.

the interior solution for Game A1 is q1 = (1/3, 1/3, 1/3). For Game A2, the equilibrium155

solutions are q21 = 0.127 (stable) and q22 = 0.740 (unstable). The outcomes of their MGD156

will be on an S6 simplex. Since it is not possible to show this simplex, the importance of157

using pjij is clear as we use these now to compare the MGD with their SGDs. The projections158

are as shown in Fig. 4.159

A1 =




1 2 3

1 −1 10 −10
2 −6 −1 6
3 2 −2 −1


 (9)

160

A2 =




111 112 113 113 122 123 133 222 233 333

1 −9.30 3.83 3.86 −1.03 −1.00 −0.96 0.10 0.33 0.16 0.20
2 0.10 −1.03 0.13 3.83 −1.00 0.16 −9.30 4.06 −0.96 0.2
3 0 0 0 0 0 0 0 0.20 0 0




(10)
Finally, we shall illustrate a case of having three strategies in both games (shown in matrices161

9 and 10). A1 is a Rock-Paper-Scissor game like the one discussed in the previous example.162

A2 is a 4-player three strategy game used previously in Gokhale and Traulsen [2010]. In the163
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p23p13

p11 p12 p21 p22

Figure 5: When both games contain three strategies nine categorical types are possible.
The MGD would be in an S9 simplex. As discussed in Fig. 4, since we avoid an
eight dimensional figure, we retrieve the distribution of frequencies of strategies
in the SGDs from the MGD which is what we require to compare the SGDs
and MGDs. The asterisks in the triangular S3 simplex denote the initial con-
ditions. The triangular markers are the final position of the trajectories. The
black, grey and white solid circles are the stable, saddle and unstable interior
equilibrium solutions in the SGDs. While retrieving the distribution of frequencies
of strategies in the SGDs from the MGD, we see that not all trajectories
converge to the equilibrium solutions of the SGDs. When both games have
more than two strategies, initial conditions matter. For few initial conditions,
we can decompose the multi-game into its constituent games and for others, we
cannot. The initials conditions used for x11, x12,x13, x21, x22, x23,x31, x32 and
x33 are : ic1 = {0.01, 0.166, 0.038, 0.002, 0.176, 0.102, 0.3251, 0.111, 0.070},
ic2 = {0.2, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1} and ic3 =
{0.176, 0.066, 0.024, 0.002, 0.176, 0.002, 0.225, 0.111, 0.218}.

SGDs of the individual games, A1 has a stable equilibrium solution q1 = (1/3, 1/3, 1/3) and164

since A2 is a 4-player three strategy game, it has (d− 1)(n−1) = 32 = 9 interior equilibrium165

solutions : four stable, one unstable and four saddle points. The resulting Multi-Game166

Dynamics is shown in Fig. 5.167

For multiplayer games, we perform a similar study as in two player games. The MGDs can168

be separated into SGDs if both the games have only two strategies (Fig. 3). The expression169

for WK though, would have higher order terms. Thus, the attractor may no longer be a line,170

but instead a curve WK in a higher dimensional space. We performed an analysis where only171

one game has two strategies (Fig. 4) and here too the MGDs can be separated into their172

integral SGDs. However, while considering more than two strategies in both games (Fig. 5),173

the MGDs cannot always be trivially separated into their constituent SGDs. As in Hashimoto174

[2006], it becomes important to look at the initial conditions. Some trajectories converge175

to the fixed point solutions of the SGDs, while many others do not. Table 1 provided in the176
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appendix contains a condensed description of the effect of initial conditions.177

Finite population178

Evolutionary dynamics in finite populations has the potential of having qualitatively different179

dynamics than their deterministic analogues [Nowak et al., 2004]. In finite populations the180

size of the population controls the balance between selection and drift with small populations181

showing higher levels of stochasticity.182

We use a birth-death Moran process to model a finite population of size Z in our framework183

[Nowak et al., 2004, Traulsen and Hauert, 2009]. An individual is chosen (proportional to184

its fitness) to reproduce an identical offspring. Another individual is chosen randomly for185

death. Thus the total population size remains constant. Fitness, as measured before, is a186

function of the average payoffs. Besides the population size, we can control the effect of the187

game on the fitness via a payoff to fitness mapping. The mapping could be a linear function188

f = 1 − w + wπ where w is the selection intensity [Nowak, 2006]. If w = 0, selection is189

neutral whereas for w = 1 selection is strong and the payoff determines the fitness completely.190

However, since negative fitnesses in this framework are meaningless, there are restrictions191

on the range of w. Alternatively, to avoid this restriction, we can map the payoffs to fitness192

using an exponential function f = ewπ [Traulsen et al., 2008]. The fixation probability of193

strategy 1 in a SGD for a d-player game, under weak selection, is given by [Gokhale and194

Traulsen, 2010],195

ρ1 ≈
1

Z
+

w

Z2

Z−1∑

m=1

m∑

i=1

(π1 − π2). (11)

where πi is the average payoff of strategy i. We have extended this to multiple games. In196

order to do this, we define what we mean by fixation probability in multiple games. The197

strategies in a multiple game are the categorical ones. For instance, a two game system with198

each game containing two strategies, has four categorical strategies as shown in Fig. 2. In a199

population of size Z playing N multi-strategy d-player games, if γ is the number of individuals200

of the categorical type A1
i1
A2
i2
A3
i3
...ANiN on an edge, then the number of individuals of type201

A1
h1
A2
h2
A3
h3
...ANhN on the other vertex of that edge will be Z − γ. The average payoff is202

given by (see SI text),203

πjij =
∑

|k|=dj−1

(pjij−1
kij

)∏mj
n=1,n6=ij

(pjn
kn

)

(
Z−1
dj−1

) ajij ,k. (12)

The above expression is utilized to calculate the fitnesses of the categorical types Fi1i2i3...iN204

and Fh1h2h3...hN (see SI text) and using these expressions, the fixation probability of type205

A1
i1
A2
i2
A3
i3
...ANiN fixating in population of A1

h1
A2
h2
A3
h3
...ANhN becomes equal to,206

ρA1
i1
A2
i2
A3
i3
...ANiN

, A1
h1
A2
h2
A3
h3
...ANhN

=
1

1 +
∑Z−1

m=1

∏m
γ=1

Fh1h2h3...hN
Fi1i2i3...iN

. (13)
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Figure 6: Figure showing the direction of selection and strength according to fixation prob-
abilities between the vertices in a tetrahedron (which contains the MGD of games
shown in matrices 7) shown in Fig. 3. The width of the arrows correlate with the
magnitudes of the fixation probabilities. Here selection intensity w = 0.01 and
population size Z = 100. It has been assumed that both the games have the
same selection intensity and hence the average payoffs have been added first and
then the mapping has been performed. For different mappings for the two games,
see SI. (Result I). For the edges where one of the games does not change (e.g.
A1

1, A
2
1 � A1

1, A
2
2), only one of the game (here game 2) matters and hence the

fixation probabilities are the same as if only one game.

We make pairwise comparisons between all categorical types (all the edges of the S4 sim-207

plex in Fig. 2 containing the MGD). Using these comparative fixation probabilities we can208

determine the flow of the dynamics over pure strategies as shown in Fig. 6 (see SI text).209

Instead of merely looking at the fixating probabilities of certain types or strategies in a210

game, we have expanded the method for analyzing the ‘categorical types’ in the multi-game211

dynamics (see SI text). Therefore, one can determine the dynamics of entities playing a212

combination of different roles (strategies) in various interactions (games).213

Conclusion214

Nature is composed on many interactions (games). The games consist of different players215

and strategies. And one player in its time plays many parts (in various games).216

We devised a method to combine the various multiplayer multi-strategy games that in-217

dividuals play at a certain period to incorporate the observed complexity while modelling218

games that biological entities play; to advance further into creating more realistic models.219

Taking more than two strategies into account represents situations such as the three strategy220

rock-paper-scissor like games that E.coli play in addition to a public goods game [Wakano221

et al., 2009, Kerr et al., 2002].222

While biological and social analogies of multiplayer evolutionary games can be found223

aplenty, the case for considering multiple games is strong. The gut microbiota is a complex224
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system which is capable of showing a variety of stable states, often a dynamic stability225

[Li et al., 2015, Abedon, 2008]. The different microbes within the gut community definitely226

interact in a variety of ways within themselves but each also interacts with the host in a unique227

manner. Within species and between species interactions, together, have the potential to228

dictate the evolutionary course of all involved species [?]. These interactions can certainly be229

interpreted as multiple games, each with a number of strategies and (immensely) multiplayer230

games. On the population genetics level, as an extension to the work by Traulsen and Reed231

[2012], multiple games and multi-strategies can be seen as multiple loci with several alleles.232

The case for two loci and two strategy games has been investigated by Cressman et al.233

[2000] while the three strategy games by Hashimoto [2006]. Since we consider more than234

two players, our work can be extended to investigate polyploidy as well [Han et al., 2012].235

In a nutshell, from the analyses that we performed, the outcomes from multiplayer two236

strategy games are similar to Cressman et al. [2000]’s results where the MGD can be charac-237

terized by the separate analysis of the individual games. However, when the games have at238

least three pure strategies, different dynamics emerge. For such cases, a fully comprehensive239

study of the initial conditions is a potential future work. It would be interesting to see what240

fraction of them end up converging to the equilibrium solutions of the individual games.241

Even though complicated dynamics can still be captured by the relatively simple replicator242

like equations, vast domains in the multiple games space remain unexplored.243
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APPENDIX244

Games Initial conditions rounded up
to 10 decimal places

Initial conditions rounded up
to 100 decimal places

(2× 2) + (2× 2) All trajectories converged All trajectories converged

(3× 3) + (3× 3) All trajectories converged 0.46% of total trajectories
converged

(2× 2) + (2× 2× 2) All trajectories converged All trajectories converged

(3× 3) + (2× 2× 2) All trajectories converged All trajectories converged

(3× 3) + (3× 3× 3× 3) No trajectory converged No trajectory converged

Table 1: When all games involved consist of more than two strategies, initial conditions of
the trajectories matter. While retrieving the SGDs from the MGDs, only a fraction
of the trajectories converge to the fixed point solutions of the individual SGDs i.e.
p11 = q1 and p21 = q2 only for certain initial conditions. In other words, while
extracting the SGDs from the MGDs, they do not behave like the individual games
for all initial conditions and therefore, we cannot decompose the MGD into its
inherent games. To analyze the sensitivity of initial conditions, they were rounded
up to 10 decimal places, first. Later, we allowed up to 100 decimal places. The
two player games used in this table are from Cressman et al. [2000] and Hashimoto
[2006] and the multiplayer games are the ones discussed in the main article of this
paper. In all examples involving R-P-S games, the check for convergence to the
internal equilibrium 0.33 was done by rounding it up to four decimal places i.e.
0.3333.

SUPPORTING INFORMATION245

1 Infinite population246

1.1 Single Game Dynamics (SGD)247

A two player replicator approach248

Consider a 2 × 2 (two player two strategy) payoff matrix (14) : There are two players and249

each of them can adopt two strategies The two types of strategies they could employ are 1250

and 2 and their respective frequencies are x1 and x2.251

( 1 2

1 a1,(1,0) a1,(0,1)
2 a2,(1,0) a2,(0,1)

)
(14)

In matrix 14, we write the elements in the form ai,α, where i is the strategy of the focal252

player. α (using multiindices notation) is a vector written as α = (α1, α2). α1 and α2253

together represent the group composition. The average payoffs of the two strategies are254
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given by f1 = a1,(1,0)x1 + a1,(0,1)x2 and f2 = a2,(1,0)x1 + a2,(0,1)x2. The replicator equation255

Eq. (15) [Hofbauer and Sigmund, 1998, Nowak, 2006] describes the change in frequency xi256

of strategy i over time.257

ẋi = xi[(fi − φ)] (15)

where fi is the fitness of strategy i and φ is the average fitness. For an infinitely large258

population size we have x1 = x, x2 = 1− x Thus the replicator equation for the change in259

the frequency of stratey 1 is,260

ẋ = x(1− x)(f1 − f2)
= x(1− x)[(a1,(1,0) − a1,(0,1) − a2,(1,0) + a2,(0,1))x+ a2,(1,0) − a2,(0,1)].

(16)

Apart from the trivial fixed points (x = 0 and x = 1), there is an internal equilibrium given261

by,262

x? =
a2,(0,1) − a2,(1,0)

a1,(1,0) − a1,(0,1) − a2,(1,0) + a2,(0,1)
. (17)

Multiplayer games263

We now extend the dynamics to multiplayer games [Gokhale and Traulsen, 2014]. The payoff264

matrix (18), represents a three player (d = 3) two strategy (n = 2) game; a 2× 2× 2 game.265

266

( 11 12 22

1 a1,(2,0) a1,(1,1) a1,(0,2)
2 a2,(2,0) a2,(1,1) a2,(0,2)

)
(18)

The rows correspond to the focal player. Focal player interacting with two other players,267

both with strategy 1 will receive a payoff a1,(2,0). While interacting with one strategy 1268

player and another strategy 2 player, he will get a1,(1,1). Interacting with two other strategy269

2 individuals, the payoff is equal to a1,(0,2). Assuming that the order of players does not270

matter, the average payoffs (or in this case, the fitnesses) will be,271

f1 = x2a1,(2,0) + 2x(1− x)a1,(1,1) + (1− x)2a1,(0,2)

f2 = x2a2,(2,0) + 2x(1− x)a2,(1,1) + (1− x)2a2,(0,2).
(19)

The replicator equation in this case is given by,272

ẋ = x(1− x)((a1,(0,2) − 2a1,(1,1) + a1,(2,0) − a2,(0,2) + 2a2,(1,1) − a2,(2,0))x2

+(−a1,(0,2) + a1,(1,1) + a2,(0,2) − a2,(1,1))2x+ a1,(0,2) − a2,(0,2)).
(20)

The quadratic x2 term in Eq. (20) can give rise to a maximum of two interior fixed points. In273

general, for a d-player two strategy game, the replicator equation can result in d− 1 interior274

fixed points (maximum). For an n strategy d-player game, the maximum number of internal275

equilibria is (d− 1)(n−1) as shown in Gokhale and Traulsen [2010].276
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1.2 Multi Game Dynamics (MGD)277

Linear combination of two 2× 2 games278

To start looking into the dynamics of combinations of games i.e. Multi Game Dynamics279

(MGD) in contrast with the Single Game Dynamics (SGD), consider the example: two280

games with two strategies in each. Let the payoff matrix of Game 1 and Game 2 be,281

A1 =




A1
1 A1

2

A1
1 a11,(1,0) a11,(0,1)

A1
2 a12,(1,0) a12,(0,1)


 A2 =




A2
1 A2

2

A2
1 a21,(1,0) a21,(0,1)

A2
2 a22,(1,0) a22,(0,1)




The individuals can be partitioned into four classes. Individuals playing strategy 1 in game282

A1 and game A2, strategy 1 in A1 and 2 in A2, strategy 2 in A1 and 1 in A2, and strategy283

2 in A1 and A2. So, there are four types of strategies, A1
1A

2
1, A1

1A
2
2, A1

2A
2
1 and A1

2A
2
2. We284

refer to them as ”categorical types”. Their respective frequencies are written as x11, x12,285

x21 and x22. We shall now use a new notation, pijj or playing strategy ij in game j, which286

is just a variable transformation that can be written as (here, ij ∈ {1, 2} and j ∈ {1, 2}),287

p11 = x11 + x12

p12 = x21 + x22

p21 = x11 + x21

p22 = x12 + x22.

(21)

The fitnesses for playing strategy ij in game j can be written out as,288

f11 = x11 a
1
1,(1,0) + x12 a

1
1,(1,0) + x21 a

1
1,(0,1) + x22 a

1
1,(0,1)

f12 = x11 a
1
2,(1,0) + x12 a

1
2,(1,0) + x21 a

1
2,(0,1) + x22 a

1
2,(0,1)

f21 = x11 a
2
1,(1,0) + x12 a

2
1,(0,1) + x21 a

2
1,(1,0) + x22 a

2
1,(0,1)

f22 = x11 a
2
2,(1,0) + x12 a

2
2,(0,1) + x21 a

2
2,(1,0) + x22 a

2
2,(0,1).

(22)

A crucial assumption here is that the effective average payoff is a linear composite of the289

constituent games. The replicator dynamics will be given by the following set of coupled290

different differential equations291

˙x11 = x11[(f11 + f21)− φ]

˙x12 = x12[(f11 + f22)− φ]

˙x21 = x21[(f12 + f21)− φ]

˙x22 = x22[(f12 + f22)− φ].

(23)
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The average fitness φ is given by,292

φ = x11(f11 + f21) + x12(f11 + f22) + x21(f12 + f21) + x22(f12 + f22)

= f11(x11 + x12) + f12(x21 + x22) + f21(x11 + x21) + f22(x12 + x22)

= f11 p11 + f12 p12 + f21 p21 + f22 p22.

(24)

2 Finite population293

2.1 Single game dynamics294

In a population of size Z consisting of strategy 1 and 2 players, the probability that one of295

the strategies, say 1, fixes, is given by the fixation probability ρ1. An individual is chosen296

proportional to its fitness to reproduce an identical offspring. Another individual is chosen297

randomly and discarded from the group. Therefore, the group size is kept at a constant value298

Z. Fitness of a strategy s can be a linear function of its average payoff πs i.e fs = 1−w+wπs.299

In a population that has i strategy 1 players, the fitnesses can be used to calculate the300

transition probabilities T+
i and T−i for the number of type 1 players to increase and decrease301

by one, respectively.302

T+
i =

if1
if1 + (Z − 1)f2

Z − i
Z

T−i =
(Z − i)f2

if1 + (Z − 1)f2

i

Z
.

(25)

With probability 1−T+
i −T

−
i the system does not change. Using the transition probabilities,303

the fixation probability can be calculated [Nowak, 2006, Traulsen and Hauert, 2009] to be,304

ρ1 =
1

1 +
∑Z−1

m=1

∏m
i=1

T−
i

T+
i

. (26)

Since
T−
i

T+
i

= f2
f1

= 1−w+wπ2
1−w+wπ1 ≈ 1 − w(π1 − π2) for selection intensity w � 1 i.e. weak305

selection. Therefore,306

ρ1 ≈
1

1 +
∑Z−1

m=1

∏m
i=1 1− w(π1 − π2)

(27)

For a d-player game, the payoffs are obtained using a hypergeometric distribution given by,307

H(k, d; i, Z) =

(
i−1
k

)(
Z−i
d−1−k

)
(
Z−1
d−1
) . (28)

Thus,308

π1 =

d−1∑

k=0

(
i−1
k

)(
Z−i
d−1−k

)
(
Z−1
d−1
) a1,α

π2 =
d−1∑

k=0

(
i
k

)(
Z−i−1
d−1−k

)
(
Z−1
d−1
) a2,α.

(29)

17

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 16, 2018. ; https://doi.org/10.1101/302265doi: bioRxiv preprint 

https://doi.org/10.1101/302265
http://creativecommons.org/licenses/by-nc-nd/4.0/


Maintaining weak selection, then from [Gokhale and Traulsen, 2010] we have,309

ρ1 ≈
1

Z
+

w

Z2

Z−1∑

m=1

m∑

i=1

(π1 − π2). (30)

2.2 Multiple game dynamics310

We begin with the same example that was used to explain the combination of two 2-player311

games and use the same notations for a finite population of size Z. The population consists312

of individuals of four types : A1
1A

2
1, A1

1A
2
2, A1

2A
2
1 and A1

2A
2
2. The combined dynamics313

results in an S4 simplex. We perform pairwise comparisons for all the edges of the simplex.314

On a particular edge, only the two vertex strategies are present. Let us start with the edge315

containing x11 and x12 vertices. If there are γ11 individuals playing strategy A1
1A

2
1, then there316

are γ12 = Z− γ11 individuals of type A1
1A

2
2. The number of A1

2A
2
1 and A1

2A
2
2 individuals i.e.317

γ21 and γ22 is zero. In the individual games, the number of players adopting strategy ij in a318

game j is given by pjij . Since we are looking at the edge with A1
1A

2
1 and A1

1A
2
2 individuals,319

we have320

p11 = γ11 + γ12 = Z

p12 = γ21 + γ22 = 0

p21 = γ11 + γ21 = γ11

p22 = γ12 + γ22 = Z − γ11.

(31)

In contrast to the binomial distribution which is used for infinite populations where the321

draws can be considered independent, the hypergeometric distribution was used for sampling322

without replacement in the case of finite populations [Hauert et al., 2007, Gokhale and323

Traulsen, 2010]. For infinite population, we used the multinomial distribution to calculate324

the average payoffs for a combination of N multiplayer games in an infinite population size.325

Therefore, for finite populations, we shall use the multivariate hypergeometric distribution.326

For a population of size Z containing γ11 type A1
1A

2
1 and Z − γ11 type A1

1A
2
2 individuals,327

the average payoffs πjij for playing strategy ij in game j (in our example, ij ∈ {1, 2} and328

j ∈ {1, 2}) are329

π11 =
∑

|k|=d1−1

(
p11−1
k1

)(
p12
k2

)
(
Z−1
d1−1

) a11,k

π12 =
∑

|k|=d1−1

(
p11
k1

)(p12−1

k2

)
(
Z−1
d1−1

) a12,k

π21 =
∑

|k|=d2−1

(
p21−1
k1

)(
p22
k2

)
(
Z−1
d2−1

) a21,k

π22 =
∑

|k|=d2−1

(
p21
k1

)(
p22−1
k2

)
(
Z−1
d2−1

) a22,k.

(32)
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In general, for N multi-strategy d-player games,330

πjij =
∑

|k|=dj−1

(pjij−1
kij

)∏mj
n=1,n6=ij

(pjn
kn

)

(
Z−1
dj−1

) ajij ,k. (33)

We can calculate the fitnesses using linear or exponential mapping. If wj is the intensity331

of selection in game j, then332

fjij =

{
1− wj + wjpjij for linear mapping

ewjpjij for exponential mapping.
(34)

Thus, in the combined dynamics, the fitness (assuming it to be additive) of type A1
i1
A2
i2
A3
i3
...ANiN333

is334

Fi1i2i3....iN =
N∑

j=1

fjij . (35)

If we are looking at an edge with types A1
i1
A2
i2
A3
i3
...ANiN and A1

h1
A2
h2
A3
h3
...ANhN , the tran-335

sition probability T+
γ for type A1

i1
A2
i2
A3
i3
...ANiN to increase from γ to γ + 1 (and type336

A1
h1
A2
h2
A3
h3
...ANhN to be randomly selected for death) is337

T+
γ =

γFi1i2i3....iN
γFi1i2i3....iN + (Z − γ)Fh1h2h3....hN

Z − γ
Z

. (36)

Likewise, T−γ will be338

T−γ =
(Z − γ)Fh1h2h3....hN

γFi1i2i3....iN + (Z − γ)Fh1h2h3....hN

γ

Z
. (37)

So, for aA1
i1
A2
i2
A3
i3
...ANiN andA1

h1
A2
h2
A3
h3
...ANhN edge, the fixation probability ρA1

i1
A2
i2
A3
i3
...ANiN

339

of type A1
i1
A2
i2
A3
i3
...ANiN is340

ρA1
i1
A2
i2
A3
i3
...ANiN

, A1
h1
A2
h2
A3
h3
...ANhN

=
1

1 +
∑Z−1

m=1

∏m
γ=1

T−
γ

T+
γ

. (38)
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Result I341

As
T−
γ

T+
γ

=
Fh1h2h3....hN
Fi1i2i3....iN

, Eq. (38) can be written as342

ρA1
i1
A2
i2
A3
i3
...ANiN

, A1
h1
A2
h2
A3
h3
...ANhN

=
1

1 +
∑Z−1

m=1

∏m
γ=1

Fh1h2h3....hN
Fi1i2i3....iN

=
1

1 +
∑Z−1

m=1

∏m
γ=1

∑N
j=1 fjhj∑N
j=1 fjij

=
1

1 +
∑Z−1

m=1

∏m
γ=1

(
N+

∑N
j=1−wj+wjπjhj

N+
∑N
j=1−wj+wjπjij

) .

(39)

where the fitness is obtained using a linear mapping. In order to further simplify the model,343

we consider that all games have the same selection intensity. In this case,344

ρA1
i1
A2
i2
A3
i3
...ANiN

, A1
h1
A2
h2
A3
h3
...ANhN

=
1

1 +
∑Z−1

m=1

∏m
γ=1

(
N−w{N−(

∑N
j=1 πjhj )}

N−w{N−(
∑N
j=1 πjij )}

) . (40)

It is worth mentioning here that the assumption of having equal intensities for all games is345

strong. Many times, the selection on one game may be more intense than others. These346

have to be taken into account as it strengthens the precision of the model and Eq. (39) must347

be used in these scenarios. However for the sake of our analysis, we shall assume wj = w348

for all j ∈ [0, N ].349

For weak selection intensity,350

ρA1
i1
A2
i2
A3
i3
...ANiN

, A1
h1
A2
h2
A3
h3
...ANhN

≈ 1

1 +
∑Z−1

m=1

∏m
γ=1[N − w{N − (

∑N
j=1 πjhj )}]× [N + w{N − (

∑N
j=1 πjij )}]

=
1

1 +
∑Z−1

m=1

∏m
γ=1[N

2 −Nw(
∑N

j=1 πjij −
∑N

j=1 πjhj )]

=
1

1 +
∑Z−1

m=1

∏m
γ=1[N

2 −Nw(
∑N

j=1(πjij − πjhj ))]
.

(41)
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Eq. (41) can be written as351

ρA1
i1
A2
i2
A3
i3
...ANiN

, A1
h1
A2
h2
A3
h3
...ANhN

≈ 1

1 +N2
∑Z−1

m=1

∏m
γ=1[1−

w
N (
∑N

j=1(πjij − πjhj ))]

=
1

1 +N2[(Z − 1)− w
N

∑Z−1
m=1

∑m
γ=1(

∑N
j=1(πjij − πjhj ))]

=
1

1 + ZN2 −N2 − wN [
∑Z−1

m=1

∑m
γ=1(

∑N
j=1(πjij − πjhj ))]

(42)
Following Taylor expansion and since w � 1, we get352

ρA1
i1
A2
i2
A3
i3
...ANiN

, A1
h1
A2
h2
A3
h3
...ANhN

≈ 1

1 + ZN2 −N2︸ ︷︷ ︸
Under neutrality (w=0)

+
wN [

∑Z−1
m=1

∑m
γ=1(

∑N
j=1(πjij − πjhj ))]

(1 + ZN2 −N2)2
.

(43)
For N = 2 Eq. (41) becomes,353

ρA1
i1
A2
i2
, A1

h1
A2
h2
≈ 1

1 +
∑Z−1

m=1

∏m
γ=1 4− 2w[(π1i1 + π2i2)− (π1h1 + π2h2)]

. (44)

While looking at an edge for which, say, game 2 in both vertices has the same strategy and354

thus, we need to only look at differences in one game i.e. only game 1 matters (π2i2 = π2h2),355

ρA1
i1
A2
i2
, A1

h1
A2
h2

≈ 1

1 +
∑Z−1

m=1

∏m
γ=1 4− 2w[(π1i1 − π1h1)]

. (45)

For N = 1 in Eq. (43) , we can retrieve Eq. (30) for a single multiplayer game i.e.356

ρA1
i1
, A1

h1

≈ 1

Z︸︷︷︸
Under neutrality

+
w

Z2

Z−1∑

m=1

m∑

γ=1

(π1i1 − π1h1). (46)

Result II357

If all games have the same intensity, we could also add the payoffs first and then perform the358

fitness mappings, then Fi1i2i3....iN = 1 − w + w
(∑N

j=1 πjij

)
and Fh1h2h3....hN = 1 − w +359

w
(∑N

j=1 πjhj

)
. Thus, the combined fitness (of a vertex) is not just a sum of the fitnesses360

of strategies used in the inherent games (in that vertex). The combined fitness is obtained361

by summing the average payoffs of playing the respective strategies in the games involved in362

a particular vertex and using that to calculate the fitness of that vertex. This combination363

of games is not trivial as bringing all the smaller games into one larger game but we cannot364

always disintegrate the multi-game back to all the inherent single games.365
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The fixation probability Eq. (38), in this case will be,366

ρA1
i1
A2
i2
A3
i3
...ANiN

, A1
h1
A2
h2
A3
h3
...ANhN

=
1

1 +
∑Z−1

m=1

∏m
γ=1

(
1−w+w(

∑N
j=1 πjhj )

1−w+w(
∑N
j=1 πjij )

) . (47)

For weak selection intensities,367

ρA1
i1
A2
i2
A3
i3
...ANiN

, A1
h1
A2
h2
A3
h3
...ANhN

≈ 1

1 +
∑Z−1

m=1

∏m
γ=1

(
1− w[1− (

∑N
j=1 πjhj )] + w[1− (

∑N
j=1 πjij )]

)

=
1

1 +
∑Z−1

m=1

∏m
γ=1

(
1− w[(

∑N
j=1 πjij − (

∑N
j=1 πjhj )]

) .

(48)
If we consider two games, then Eq. (48) will be reduced to368

ρA1
i1
A2
i2
, A1

h1
A2
h2

≈ 1

1 +
∑Z−1

m=1

∏m
γ=1 (1− w[(π1i1 + π2i2)− (π1h1 + π2h2)])

. (49)

Here, if we look at an edge for which, say, game 2 in both vertices has the same strategy369

(π2i2 = π2h2), then looking at differences in game 1 is what matters. In this scenario,370

ρA1
i1
A2
i2
, A1

h1
A2
h2
≈ 1

1 +
∑Z−1

m=1

∏m
γ=1 (1− w(π1i1 − π1h1))

. (50)

This corresponds to equation Eq. (27) for a single game with two strategies i1 and h1.371
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