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Abstract 24 

Tracking recent transmission is a vital part of controlling widespread pathogens such as 25 

Mycobacterium tuberculosis. Multiple approaches exist for detecting recent transmission 26 

chains, usually by clustering strains based on the similarity of their genotyping results. 27 

However, each method gives varying estimates of transmission cluster sizes and inferring 28 

when transmission events within these clusters occurred is almost impossible. This study 29 

combines whole genome sequence (WGS) data derived from a high endemic setting with 30 

phylodynamics to unveil the timing of transmission events posited by a variety of standard 31 

genotyping methods. Our results suggest that clusters based on spoligotyping could 32 

encompass transmission events that occurred hundreds of years prior to sampling while 24-33 

loci-MIRU-VNTR often represented decades of transmission. Instead, WGS based genotyping 34 

applying a low SNP thresholds allows for estimation of recent transmission events. These 35 

findings can guide the selection of appropriate clustering methods for uncovering relevant 36 

transmission chains within a given time-period.  37 

 38 

Introduction 39 

Despite the large global efforts at curbing the spread of Mycobacterium tuberculosis  40 

complex (Mtbc) strains, 10.4 million new patients develop tuberculosis (TB) every year1. In 41 

addition, the prevalence of multidrug resistant Mtbc strains (MDR-TB) is increasing1, 42 

predominantly through ongoing transmission within large populations2,3. The tracking and 43 

timing of recent transmission chains allows TB control programs to effectively pinpoint 44 

transmission hotspots and employ targeted intervention measures. This is especially 45 

important for the transmission of drug resistant strains as it appears that drug resistance 46 

may be transmitted more frequently than acquired2,4. Thus, interrupting transmission is key 47 
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for the control of MDR-TB3,5,6. For the development of the most effective control strategies, 48 

there is a strong need for (i) appropriate identification of relevant transmission chains, risk 49 

factors and hotspots and (ii) robust timing of when outbreaks first arose.  50 

 51 

Epidemiological TB studies often apply genotyping methods to Mtbc strains to determine 52 

whether two or more patients are linked within a transmission chain (molecular 53 

epidemiology)7. Contact tracing is a primary epidemiological method for investigating 54 

transmission networks of TB, mainly based on patient interviews8. Although this method is 55 

often seen as a gold standard of transmission linking, it does not always match the true 56 

transmission patterns, even in low incidence settings9–13 and misses many connections14,15. 57 

The implementation of molecular epidemiological approaches has overcome these 58 

limitations and is often used as the main approach for cluster analysis. Classical genotyping 59 

has involved IS6110 DNA fingerprinting16,17, spoligotyping18–20, and variable-number tandem 60 

repeats of mycobacterial interspersed repetitive units (MIRU-VNTR)21 which is the most 61 

common method at the moment7. The latter method is based on copy numbers of a 62 

sequence in tandem repeat patterns derived from 24 distinct loci within the genome22. If 63 

two patients have the same classical genotyping pattern such as a 24-loci MIRU-VNTR 64 

pattern (or up to one locus difference23,22) they are considered to be within a local 65 

transmission chain. The combination of spoligotyping and MIRU-VNTR-typing, where 66 

patterns must match in both methods to be considered a transmission link, is often 67 

considered the molecular gold standard for transmission linking and genotyping22. However, 68 

examples of unlinked patients with identical patterns have been observed, suggesting that 69 

this threshold covers too broad a genetic diversity and timespan between infections12,24. 70 

 71 
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The application of (whole genome) sequence-based approaches for similarity analysis of 72 

Mtbc isolates and cluster determination is known to have high discriminatory power when 73 

assessing transmission dynamics12,25–28. Single nucleotide polymorphisms (SNPs) in the pncA 74 

gene are associated with resistance to pyrazinamide (PZA) and can be used to improve the 75 

discriminatory power of spoligotyping in a method referred to as SpoNC29. However, this is 76 

limited by the low occurrence of PZA resistance, even in MDR-TB isolates30–33. The advent of 77 

widespread whole genome sequencing (WGS) capabilities has allowed for highly 78 

discriminatory analyses of Mtbc strains either using core genome multi-locus sequence 79 

typing (cgMLST)34 or SNP distances12,24,26,27,35. WGS-based approaches compare the genetic 80 

relatedness of the genomes of the clinical strains under consideration, albeit usually 81 

excluding large repetitive portions of the genome, with the assumption that highly similar 82 

strains are linked by a recent transmission event12,26. Although many SNP cut-offs for linking 83 

isolates have been proposed36, the most commonly employed is based on the finding that a 84 

5 SNP cut-off will cluster the genomes of  strains from the majority of epidemiologically 85 

linked TB patients, with an upper bound of 12 SNPs between any two linked isolates26. The 86 

widespread use of WGS has quickly pushed these cut-offs to be considered the new 87 

molecular gold standard of recent transmission linking, although SNP distances may vary for 88 

technical reasons (e.g. assembly pipelines or filter criteria37) and between study populations 89 

e.g. high and low incidence settings35.  90 

 91 

In addition to cluster detection, uncovering the timing of transmission events within a given 92 

cluster is highly useful information for TB control e.g. for assessing the impact of 93 

interventions on the spread of an outbreak. Accordingly, knowledge of the rate change 94 

associated with different genotyping methods is essential for correct timing. The whole 95 
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genome mutation rate of Mtbc strains has been estimated by several studies as between 10-96 

7 and 10-8 substitutions per site per year or ~0.3-0.5 SNPs per genome per year12,26,38–41 97 

while the rate of change in the MIRU-VNTR loci specifically is known to be quicker (~10-3) 98 

42,43. Since these mutation rates have been shown to also vary by lineage39,44 and over short 99 

periods of time38, such variation needs to be accounted for, e.g. in Bayesian phylogenetic 100 

dating techniques3,38,42. 101 

 102 

Considering the multiple genotyping methods currently available, many of them proposed 103 

as a “gold standard”, there is an urgent need to precisely define the individual capacity of 104 

each method to accurately detect recent transmission events and perform timing of 105 

outbreaks. To provide this essential information, this study harnesses the power of WGS-106 

based phylogenetic dating methods to assign timespans onto Mtbc transmission chains 107 

encompassed by the different genotypic clustering methods commonly used in TB 108 

transmission studies.  109 

 110 

Results 111 

In this study, we assessed 20 different approaches for generating putative M. tuberculosis 112 

transmission clusters (see methods for approaches and naming schemes) using a dataset of 113 

324 phenotypically rifampicin resistant isolates collected 2005-2010 from retreatment cases 114 

in Kinshasa, Democratic Republic of Congo (DRC). These 20 sets of clustering patterns were 115 

then characterised using whole genome sequence data and the propensity for convergence 116 

of clustering patterns was estimated (see methods). Bayesian phylodynamic approaches 117 

implemented in BEAST-245 were then utilised to assign timespans to the transmission events 118 

estimated by each genotyping method. 119 
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 120 

As expected, both the genome- and membrane-based spoligotyping approaches (named 121 

Gen-Spo and Mem-Spo respectively), clustered the most strains, with the lowest resolution 122 

(i.e. highest clustering rate) (Figure 1, Table 1). Convergent evolution (defined as the same 123 

pattern observed in unrelated strains; see methods) was found to affect 39% (12) of Mem-124 

Spo clusters and 25% (7) of Gen-Spo clusters. Additionally, some discrepancies between the 125 

Mem-Spo and Gen-Spo patterns of each isolate were observed, with 291 isolates (90%) 126 

having the same pattern in both Mem-Spo and Gen-Spo approaches with 1 mismatch 127 

allowed (Supplementary table 1). The remaining 33 isolates mismatched with 2 to 17 128 

spacers (average of 5 spacers). Although MIRU-VNTR performed far better than 129 

spoligotyping, 16% (6) of clustering patterns were influenced by convergence in this study 130 

(see methods) (Table 1, Figure 1). Mixed MIRU-VNTR patterns were observed in 18 isolates 131 

although this mixing was not observed in the WGS data.  132 

 133 

WGS-based methods had by far the highest discriminatory power and low SNP cut-offs 134 

grouped isolates into smaller clusters (e.g. 2-10 isolates per cluster for a 5 SNP cut-off) 135 

(Table 1, Figure 1). When the clusters were expanded to better represent transmission 136 

chains using the novel phylogenetic inclusion method implemented here (see methods), the 137 

resulting SNP clusters often did not increase dramatically in size (Table 1). Discriminatory 138 

power and cluster sizes based on cgMLST alleles were similar to the SNP-based clusters 139 

(Table 1, Figure 1). 140 

 141 

Statistical estimation of the timeframe associated with particular transmission chains 142 

showed large differences in estimated cluster ages between the genotyping approaches 143 
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used (Table 1, Figure 2), correlating well with the difference in discriminatory power. Cluster 144 

ages are defined here as the most ancient transmission event that links any two isolates 145 

within a specific cluster. Thus, in phylogenetic terms, the cluster age is the difference in time 146 

between when the most recent common ancestor (MCRA) of the entire cluster existed and 147 

the date of isolation of the furthest isolate from this ancestor. The aggregate mean ages of 148 

clusters derived from spoligotyping approaches were found to often be several hundreds of 149 

years old (Gen-Spo: 383 years ago (95% HPD: 1-1893); Mem-Spo: 141 years ago (95% HPD: 150 

1-823)) (Table 1b, Figure 2a). The addition of MIRU-VNTR or pncA mutation data to 151 

spoligotyping resulted in clusters that, on average, originated less than 100 years ago (Table 152 

1b, Figure 2a). MIRU-VNTR alone gave similar cluster ages as to when combined with 153 

spoligotyping (MIRU-VNTR: 38 (0-162); GenSpo-MIRU: 64 (0-279); MemSpo-MIRU: 49 (1-154 

216)) (Table 1b, Figure 2a).  155 

 156 

Clusters based on SNP cut-offs correlated to 4 years of transmission using a 0 SNP cut-off 157 

(95% HPD: 0-16), 6 years using a 1 SNP cut-off (95% HPD: 0-24), 13 years using a 5 SNP cut-158 

off (95% HPD: 0-47), and 29 years using a 12 SNP cut-off (95% HPD: 0-103) (Table 1c, Figure 159 

2b). Extension on the tree using the phylogenetic inclusion approach to form SNP clades did 160 

not greatly increase the lengths of transmissions encompassed by clusters (one year 161 

increase, on average) (Table 1c). Similar findings were obtained when clusters were based 162 

on allele differences in the cgMLST method: 4 years of transmission using a 0 cgMLST cut-off 163 

(95% HPD: 0-15), 6 years using a 1 cgMLST cut-off (95% HPD: 0-25), 18 years using a 5 164 

cgMLST cut-off (95% HPD: 0-68), and 30 years using a 12 cgMLST cut-off (95% HPD: 0-112) 165 

(Table 1c, Figure 2b) 166 

 167 
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Discussion 168 

The term ‘recent transmission’ is often applied to gain a better understanding of the current 169 

transmission dynamics of pathogens in a given population. However, little data is available 170 

on how recent a likely transmission event occurred when measured with different 171 

genotyping methods. To get a better understanding of the discriminatory power of different 172 

classical genotyping techniques and WGS-based approaches in relation to outbreak timing, 173 

this study has performed an in-depth comparison of clustering rates and dated phylogenies 174 

obtained in a collection of 324 Mtbc strains from a high incidence setting (Kinshasa, DRC). 175 

With a whole genome phylodynamic approach employed as a gold standard, our study 176 

demonstrates that each genotyping method was associated with a specific discriminatory 177 

power resulting in clusters representing vastly different time periods of transmission events 178 

(Table 1 and Figure 2). This has significant implications for data interpretations e.g. when 179 

selecting and utilising different genotyping methods/clustering approaches for 180 

epidemiological studies and assessing the effectiveness of public health intervention 181 

strategies.  182 

 183 

As the most extreme example, spoligotyping-derived clusters were associated with 184 

transmission events that can be hundreds of years old. This low discriminatory power 185 

coupled with the high rate of convergent evolution (the same spoligotype pattern found in 186 

phylogenetically distant isolates) in both Mem-Spo and Gen-Spo add weight to the previous 187 

suggestion that these techniques are not suitable for recent transmission studies46, 188 

although Mem-Spo may be of use as a low-cost method of sorting Mtbc strains into the 189 

seven primary lineages47,48. Differences between Mem-Spo and Gen-Spo patterns from the 190 

same isolate were observed for 10% of isolates in this study, even after rechecking of 191 
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patterns, requiring more investigation into which method is closer to the ‘true’ 192 

spoligotyping pattern within a genome49–52.  193 

 194 

In line with previous findings46,53, convergent evolution of 24-loci MIRU-VNTR patterns was 195 

rarer than observed for spoligotyping, but did occur in 16% of MIRU-VNTR-based clusters. 196 

Additionally, the transmission times encompassed by MIRU-VNTR clusters spanned several 197 

decades (Table 1b, Figure 2a), confirming previous studies showing over-estimation of 198 

recent transmission with this method12,25,35,54.  199 

 200 

The combination of MIRU-VNTR or spoligotyping with pncA mutations (MIRU-NC and Gen-201 

SpoNC/Mem-SpoNC) appeared to reflect true clusters of PZA resistance transmission based 202 

on the relatively young ages of such transmission clusters (Table 1b). Thus, as discussed 203 

before55,56, although transmission of pncA mutations seems to occur, further investigation is 204 

needed to find out whether pncA mutants are less transmissible than those with a wildtype 205 

gene.  206 

 207 

For defining transmission events that occurred in more recent time frames before sampling, 208 

WGS-based methods (SNP or cgMLST) were found to be better suited than classical 209 

genotyping methods (Table 1, Figure 2). The 12 SNP cut-off, currently the recommended 210 

upper bound for clustering isolates, likely defines transmission events that occurred on 211 

average three decades prior to sampling, similar in age to clusters estimated by MIRU-VNTR. 212 

This suggests that the 12 SNP cluster method may be a good replacement for MIRU-VNTR as 213 

it detects larger transmission networks spanning similar transmission time periods but is 214 

less affected by convergent evolution. Isolates clustered at identical (0 SNP) or nearly 215 
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identical (1 SNP) cut-offs were found to represent transmission events occurring four to six 216 

years previous. These findings correlate well with previous studies where confirmed contact 217 

tracing-based epidemiological links were found between patients that were two57, three12 218 

or five26 SNPs apart. Indeed, a recent study of a cross-country MDR-TB outbreak found only 219 

a maximum of two SNP differences between all 29 isolates involved in the origin of the 220 

outbreak27. Although this supports their use for detection or exclusion of very recent 221 

transmission, this low variability between isolates makes robust identification of 222 

transmission direction impossible, especially during short timespans. 223 

 224 

Comparisons between the SNP-based (using almost all genomic differences) and the 225 

cgMLST-based cluster detection (using a defined core set of genes) demonstrated that the 226 

latter approach gives similar estimations to full SNP approaches. However, as current SNP 227 

assembly pipelines for Illumina data exclude repetitive region such as PE/PPE genes, larger 228 

differences between cgMLST and full SNP estimation may be seen once all aspects of the 229 

genome can be utilised. 230 

 231 

Different clustering approaches can be applied when grouping isolates by SNP distance. Two 232 

partitional clustering methods are primarily utilised: either the creation of tight clusters 233 

(where the maximum pairwise distance between isolates in a cluster is less than the SNP 234 

cut-off; e.g.34) or loose clusters (where each isolate is less than the SNP cut-off distance 235 

from at least one other isolate in the cluster; e.g.57). Tight clusters ensure high connectivity 236 

within clusters, but may result in isolates belonging to multiple groups, making 237 

interpretation and delineation of transmission events difficult. Loose clusters (the definition 238 

used in this study), separate isolates into non-overlapping clusters, but may result in low 239 
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connectivity within clusters. Here we present an extension of the loose cluster, termed the 240 

phylogenetic inclusion method, which adds all other isolates with the same phylogenetically 241 

defined common ancestor to the cluster, potentially identifying larger circulating genotypes. 242 

Tight, loose and phylogenetic inclusion clusters each aim to define different levels of 243 

connectivity through time, an aspect that should be considered when selecting the 244 

appropriate clustering approach. 245 

 246 

The mutation rate of M. tuberculosis has been estimated to be between 10-7 and 10-8 247 

substitutions per site per year3,12,39. Within the Bayesian analysis employed here, the 248 

mutation rate was free to vary between these values but was found to strongly favour 249 

~3x10-8 (ESS > 1000 for all runs), translating to approximately 0.3 SNPs per genome per year. 250 

While the mutation rate used here is primarily applicable for lineage 4 (which most of this 251 

dataset is comprised of) and in line with previous estimates for this lineage39, it may be 252 

similar in other lineages, although this has only been shown for lineage 23,39. Thus, per-253 

lineage estimates are required for all seven lineages to ensure similar transmission times are 254 

linked to genotyping methods across the whole population diversity of the Mtbc.  255 

 256 

While this study has many advantages due to its five year population based design in an 257 

endemic setting coupled with the application of three different genotyping methods 258 

(membrane based spoligotyping analysis, 24-locus MIRU-VNTR and WGS), future 259 

confirmatory studies could address the following drawbacks that are inherent to genomic 260 

epidemiology28,37: 1) studies employing contact tracing and/or digital epidemiology58 in 261 

conjunction with these genotyping methods can help confirm transmission times associated 262 

with different clusters; 2) as outlined above, strains of other lineages of the Mtbc should be 263 
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analysed in a similar fashion to ensure transferability of findings across the entire complex; 264 

3) a broad range of drug resistance profiles should be included to fully assess the impact of 265 

such mutations on transmission estimates; 4) improved WGS methods, such as directly from 266 

clinical samples to help reduce culture biases59 and longer reads (e.g. PacBio SMRT or 267 

Nanopore MinION) to capture the entire genome, including repetitive regions such as 268 

PE/PPE genes known to impact genome remodelling60,61, will ensure that the maximum 269 

diversity between isolates is captured and 5) standardised SNP calling pipelines appropriate 270 

across all lineages, with high true positive/low false negative rates, will ensure that Mtbc 271 

molecular epidemiology can be uniformly implemented and comparable across studies. 272 

 273 

In conclusion, since each method was found to represent different timespans and clustering 274 

definitions, they can be used in a stratified manner in an integrated epidemiological and 275 

public health investigation addressing the transmission of Mtbc strains. For instance, 276 

although spoligotyping clusters represented potentially very old transmission events, the 277 

low associated cost and its ability to be applied directly on sputum helps reduce culture bias 278 

and thus robustly assign lineages. Thus, spoligotyping and/or MIRU-VNTR would serve well 279 

as first-line surveillance of potential transmission events in the population, guiding further 280 

investigations and resource allocations. 281 

 282 

These potential transmission hotspots could be further investigated with contact tracing 283 

and/or WGS. Employment of different cut-offs and clustering approaches to WGS data can 284 

then address several questions. The 12 SNP cluster/clade or 12 allele cgMLST approaches 285 

serve well for high level surveillance targeting larger (older) transmission networks, akin to 286 

what is currently often done using MIRU-VNTR (e.g.27,62). Recent transmission events can 287 
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then be detected through employment of low SNP or cgMLST-based cut-offs (e.g. 5 SNPs for 288 

transmission in the past 15 years or 0-1 SNPs for transmission in the past 5 years). These 289 

clusters can then be linked to historical isolates or other clusters through employment of 290 

the phylogenetic inclusion method to resolve the local circulating genotypes. This is 291 

especially useful if bursts of sampling are undertaken such as in drug resistance surveys63, 292 

which are increasingly employing WGS approaches32,64,65. Alternatively, in high 293 

incidence/low diversity settings where amalgamation of clusters may inadvertently obscure 294 

distinct hotspots of transmission at different time points, subdivision into distinct time-295 

dependant clusters can be undertaken using the algorithm presented in such a study in East 296 

Greenland35.  297 

 298 

Overall, phylodynamic approaches applied to whole genome sequences, as undertaken 299 

here, are recommended to fully investigate the specific transmission dynamics within a 300 

study population to account for setting-specific conditions, such as low/high TB incidence, 301 

low/high pathogen population diversity, sampling fractions and social factors influencing 302 

transmission. Thus, each genotyping method can be employed as part of an overall evidence 303 

gathering program for transmission, placing molecular epidemiological approaches as an 304 

integral part in tracking and stopping the spread of TB. 305 

 306 

Materials and Methods 307 

Dataset and sequencing 308 

A set of 324 isolates from Kinshasa, Democratic Republic of Congo were collected from 309 

consecutive retreatment TB patients between 2005 and 2010 at TB clinics, servicing an 310 

estimated 30% of the population of Kinshasa. All isolates were phenotypically resistant to 311 
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rifampicin (RR-TB) and the majority are also isoniazid resistant (i.e. MDR-TB). Use of the 312 

stored isolates without any linked personal information was approved by the health 313 

authorities of the DRC and the Institutional Review Board of the ITM in Antwerp (ref no 314 

945/14). Libraries for whole genome sequencing were prepared from extracted genomic 315 

DNA with the Illumina Nextera XT kit, and run on the Illumina NextSeq platform in a 316 

2x151bp run according to manufacturer’s instructions. Illumina read sets will be available at 317 

ReSeqTB (platform.reseqtb.org) upon publication. 318 

 319 

Genome reconstruction and maximum likelihood phylogeny estimation 320 

The MTBseq pipeline66 was used to detect the SNPs for each isolate using the H37Rv 321 

reference genome (NCBI accession number NC000962.3)67,68. Sites known to be involved in 322 

drug resistance (as outlined in the PhyResSE list of drug mutations v2769) were excluded 323 

from the alignment and additional filtering of sites with ambiguous calls in >5% of isolates 324 

and those SNPs within a 12bp window of each other was also applied. 325 

 326 

The SNP alignment of all isolates was used as the basis for creating a maximum likelihood 327 

(ML) phylogeny. RAxML-NG version 0.5.1b70 was used to reconstruct the phylogeny from 328 

this alignment using a GTR+GAMMA model of evolution, accounting for ascertainment 329 

bias71 with the Stamatakis reconstituted DNA approach72 and site repeat optimisation73 with 330 

20 different starting trees and 100 bootstraps. All subsequent topology visualisation was 331 

undertaken using FigTree version 1.4.374 and GraPhlAn75. 332 

 333 

Transmission cluster estimation methods 334 
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Several standard transmission clustering approaches were chosen for comparison and 335 

analysis. For each method, the total SNP distances were calculated to investigate the range 336 

of variability encompassed within each cluster. Maximum SNP distances were derived from 337 

pairwise comparisons of isolates within the SNP alignment using custom python scripts. A 338 

clustering rate was calculated for each method using the formula (nc- c)/n, where nc is the 339 

total number of isolates clustered by a given method, c is the number of clusters, and n is 340 

the total number of isolates in the dataset (n=324). 341 

 342 

Spoligotyping 343 

Spoligotype patterns were estimated by 2 methods: membrane-based and genome-based. 344 

Membrane-based patterns were obtained following the previously published protocol20. 345 

This method is referred to as Mem-Spo. Genome-based spoligotyping was derived from the 346 

Illumina reads of each isolate using SpoTyping v2.149. Reads (both forward and reverse) 347 

were input to SpoTyping with default parameters and the 43 spacer values were extracted 348 

from the output. This method is referred to as Gen-Spo. For both methods, isolates were 349 

said to be clustered if all 43 spacers matched. 350 

 351 

MIRU-VNTR  352 

Genotyping by MIRU-VNTR was undertaken as previously described22. 2 μl of DNA was 353 

extracted from cultures and amplified using the 24 loci MIRU-VNTR typing kit (Genoscreen, 354 

Lille, France). Analysis of patterns was undertaken using the ABI 3500 automatic sequencer 355 

(Applied Biosystems, California, USA) and Genemapper software (Applied Biosystems). 356 

Isolates were said to be clustered if all 24 loci matched. MIRU-VNTR patterns were also 357 

combined with spoligotyping patterns for additional refinement of clusters. Isolates were 358 
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clustered if both the spoligotyping pattern and the 24 loci MIRU-VNTR pattern matched. 359 

These clustering methods are referred to as MemSpo-MIRU and GenSpo-MIRU. 360 

SpoNC  361 

Transmission estimation using spoligotyping has been shown to be improved if combined 362 

with pncA mutations29. This method, referred to as SpoNC, was applied to both Mem-Spo 363 

(Mem-SpoNC) and Gen-Spo (Gen-SpoNC). Mutations in pncA were extracted from the 364 

MTBseq tabular output for each isolate. All mutations were selected, regardless of drug 365 

resistance association, as is done in the SpoNC approach. The upstream promoter region of 366 

pncA did not reveal any mutations in this dataset. Isolates were said to be clustered if all 43 367 

spacers matched and the pncA mutation was the same in both isolates. MIRU-VNTR 368 

patterns were combined with pncA mutations in a similar manner. This is referred to as 369 

MIRU-NC. 370 

 371 

SNP cut-off clustering 372 

The advent of whole genome reconstruction has allowed for genome-based comparisons 373 

for transmission clustering. Previous work has suggested that linked and recent transmission 374 

can be estimated by comparison of SNP differences between isolates. The cut-offs proposed 375 

by Walker et al.26 are the most widely used and have been employed in multiple studies76–376 

78. In this study, we employed both the 5 SNP (proposed by Walker et al. as the likely 377 

boundary for linked transmission) and 12 SNP cut-offs (proposed maximum boundary) for 378 

cluster definition. Additionally, we employed lower cut-offs of 0 and 1 SNPs to look for 379 

clusters of very highly related isolates. Pairwise SNP distances were calculated between all 380 
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isolates. A loose cluster definition was used, where every isolate in a cluster at most the SNP 381 

cut-off from at least 1 other isolate in the cluster.  382 

 383 

Phylogenetic information was used to extend these SNP-based clusters to include any other 384 

isolates that share the same most recent common ancestor (MRCA). These isolates may 385 

exceed the SNP cut-off but should be included as, through sharing an MRCA, they are 386 

intrinsically within the same putative transmission chain. The MRCA is defined here as the 387 

internal node in a phylogenetic tree that is shared by all the isolates within the putative 388 

SNP-based cluster. This extension was achieved by mapping each SNP cluster onto the ML 389 

phylogenetic tree and the MRCA (shared internal node) of all isolates was found using 390 

DendroPy v4.0.379. Any additional taxa with the same MRCA were then added to the 391 

transmission cluster (Supplemental Figure 2). In other words, all leaf nodes of the MRCA 392 

internal node were labelled as being part of the putative transmission cluster. We call this 393 

approach the phylogenetic inclusion method and extended clusters are hereafter referred 394 

to as extended SNP clades to distinguish them from SNP clusters as created by the standard 395 

non-phylogenetic method above. The python script that implements this method can be 396 

found at https://github.com/conmeehan/pathophy. 397 

 398 

cgMLST 399 

An alternative approach to clustering using WGS data is the concept of core genome MLST 400 

(cgMLST) patterns34. Since SNP detection can be variable between assembly pipelines, SNP 401 

clusters between studies may be difficult to compare. The cgMLST approach standardises 402 

comparisons by ensuring the same core genes are always compared. BAM files for all 403 

isolates are input into Ridom SeqSphere+ software (Ridom GmbH, Münster, Germany) to 404 
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compile an allelic distance matrix based on the cgMLST v2 scheme consisting of 2,891 core 405 

Mtbc genes. Loose clusters were then defined as above using allelic differences of 0, 1, 5 406 

and 12 as cut-offs. These methods are referred to as 0/1/5/12 cgMLST respectively. 407 

 408 

Detection of convergent evolution 409 

Convergent evolution towards identical patterns may occur for Spoligotyping, MIRU-VNTR 410 

and pncA mutations51,53,80,81. Convergence was detected and cross-checked with two 411 

methods. Firstly, Mtbc lineage and sub-lineage numbering82 was applied to all isolates based 412 

on the PhyResSE lineage-defining SNP list v2769. If the same clustering pattern was observed 413 

in two different sub-lineages, with other patterns seen in-between, this was flagged as 414 

potential convergence. Additional convergence confirmation was also undertaken using 415 

phylogenetic distances, as estimated by DendroPy. If the phylogenetic distance (combined 416 

branch lengths that separate 2 isolates) between two isolates with identical clustering 417 

patterns was greater than 0.0005, this was flagged as potential convergence. Any isolates 418 

flagged by both methods (lineage-based and distance-based) were marked as clustered by 419 

convergence. For example, if isolates with the same spoligotyping pattern appeared in 420 

lineage 4,1 and 4,6 with different patterns in-between and these isolates were distant on 421 

the tree (distance greater than 0.0005), this was confirmed as a convergent pattern. 422 

Convergence was checked for all approaches except the SNP cut-off clusters/clades, which, 423 

by definition, could not be convergent. Clustering methods that combined two other 424 

methods (e.g. Gen-SpoNC) were first checked separately for convergence and then 425 

combined to create the final clusters. 426 

 427 

Estimation of transmission times 428 
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To estimate the age and timespan of potential transmission clusters, SNP alignments were 429 

created from the convergence-free version of the five primary clustering types: Gen-Spo, 430 

Mem-Spo, MIRU-VNTR, extended 12 SNP clades and 12 allele cgMLST. All other methods are 431 

sub-clustering methods of at least one of these five methods (e.g. Mem-SpoNC clusters are 432 

inherently included in any Mem-Spo clusters, and all SNP-based clusters are sub-clusters of 433 

the 12 SNP clades).  434 

 435 

A Bayesian approach to transmission time estimation was then undertaken. The SNP 436 

alignments were created as above for the five high-level clustering types. Each cluster 437 

method alignment was separately input to BEAST-2 v2.4.745 to create a time tree for those 438 

isolates. These phylogenies were built using the following priors: GTR+GAMMA substitution 439 

model, a log-normal relaxed molecular clock model to account for variation in mutation 440 

rates83 and coalescent constant size demographic model84, both of which have been found 441 

to be suitable for lineage 4 isolates in a previous study35. The MCMC chain was run six times 442 

independently per alignment with a length of at least 400 million, sampled every 40,000th 443 

step (Gen-Spo: 400 million; extended 12 SNP & cgMLST: 500 million; MIRU & MemSpo: 600 444 

million). A log normal prior (mean 1.5x10-7; variance 1.0) was used for the clock model to 445 

reflect the previously estimated mutation rate of M. tuberculosis lineage 412,26,38–41, while 446 

allowing for variation as previously suggested38. A 1/X non-informative prior was selected 447 

for the population size parameter of the demographic model. Isolation dates were used as 448 

informative heterochronous tip dates and the SNP alignment was augmented with a count 449 

of invariant sites for each of the four nucleotide bases to avoid ascertainment bias72. Tracer 450 

v1.685 was used to determine adequate mixing and convergence of chains (ESS >150) after a 451 

25% burn-in. The chains were combined via LogCombiner v2.4.845 to obtain a single chain 452 
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for each clustering type with high (>1000) effective sample sizes. The tree samples were 453 

combined in the same manner and resampled at a lower frequency to create thinned 454 

samples of (minimum) 20,000 trees. 455 

 456 

The timespan of transmission events estimated by each method was then calculated as 457 

follows: for each cluster created by the given method, we defined the MRCA node as the 458 

internal node that connects all taxa in that cluster. The youngest node was then defined as 459 

the tip that is furthest from this MRCA within the clade (i.e. the tip descendant from that 460 

node that was sampled closest to the present time). For each retained tree in the MCMC 461 

process, the difference in age between the MRCA node and youngest node was calculated. 462 

This gave a distribution of likely maximum transmission event times within that cluster. For 463 

each method, these per-cluster aggregated ages were then combined across all clusters to 464 

give a per-method distribution of transmission event times represented by the clusters. The 465 

95% HPD interval of these distributions was calculated with the LaplacesDemon p.interval 466 

function86 in R v3.4.087 and the distribution within this interval for each method along with 467 

the mean based upon this interval were then visualized in violin plots per clustering method 468 

using ggplot288 in R. 469 

 470 
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Table legends 701 

Table 1: Clustering method overview. 702 

For each clustering method, the general features are outlined in the tables. a) All clusters for each method affected by convergence. b) Clusters 703 

derived only from non-convergent patterns. c) SNP- and cgMLST-based methods Mean ages and 95% HPD ranges are based upon the BEAST2 704 

estimates of clade mean heights. 705 

a) 
        

Method Strains in clusters 
Number of 

clusters 

Percent of strains 

in clusters 
Cluster sizes Maximum SNP distances Clustering rate 

  

Gen-Spo 293 29 90.43 2-42 1-653 0.8148
  

GenSpo-MIRU 190 39 58.64 2-27 0-48 0.466
  

Gen-SpoNC 76 23 23.46 2-10 0-195 0.1636
  

Mem-Spo 276 33 85.19 2-39 1-685 0.75
  

MemSpo-MIRU 174 36 53.7 2-25 0-611 0.4259
  

Mem-SpoNC 64 18 19.75 2-10 0-21 0.142
  

MIRU-VNTR 207 38 63.89 2-30 0-611 0.5216
  

MIRU-NC 59 17 18.21 2-9 0-21 0.1296 
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b) 
        

Method 
Strains in 

clusters 

Number of 

clusters 

Percent of 

strains in 

clusters 

Cluster 

sizes 

Maximum 

SNP 

distances 

Clustering 

rate 

Mean 

Timespan 

Timespan 95% 

HPD 

Gen-Spo 191 22 58.95 2-37 1-322 0.5216 382.8101 0.96 - 1893.15 

GenSpo-MIRU 77 22 23.77 2-10 0-48 0.1698 63.91188 0 - 278.77 

Gen-SpoNC 34 11 10.49 2-6 0-14 0.071 21.52556 0.16 - 94.95 

Mem-Spo 118 21 36.42 2-28 0-189 0.2994 141.1556 0.81 - 823.21 

MemSpo-MIRU 50 12 15.43 2-10 2-48 0.1173 48.80688 0.8 - 216.31 

Mem-SpoNC 15 5 4.63 2-4 0-14 0.0309 21.38239 1.03 - 97.91 

MIRU-VNTR 121 32 37.35 2-11 0-48 0.2747 37.97812 0 - 162.27 

MIRU-NC 25 9 7.72 2-3 1-11 0.0494 15.45935 0.77 - 58.38 

 

         

c) 
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Method 
Strains in 

clusters 

Number of 

clusters 

Percent of 

strains in 

clusters 

Cluster 

sizes 

Maximum 

SNP 

distances 

Clustering 

rate 

Mean 

Timespan 

Timespan 95% 

HPD 

0 SNP cluster 54 25 16.67 2-4 0 0.0895 4.309937 0 - 15.9 

1 SNP cluster 74 29 22.84 2-6 0-2 0.1389 5.698197 0 - 23.54 

5 SNP cluster 147 40 45.37 2-27 0-10 0.3302 13.4115 0 - 47.07 

12 SNP cluster 242 47 74.69 2-34 0-23 0.6019 28.95219 0 - 102.58 

0 SNP clade 66 21 20.37 2-9 0-9 0.1389 5.746077 0 - 23.96 

1 SNP clade 80 27 24.69 2-9 0-9 0.1636 6.104103 0 - 25.74 

5 SNP clade 149 40 45.99 2-28 0-11 0.3364 13.48716 0 - 47.41 

12 SNP clade 253 45 78.09 2-39 0-27 0.642 29.73941 0 - 104.64 

0 allele cgMLST 51 24 15.74 2-4 0-1 0.0833 4.231405 0.03 - 15.48 

1 allele cgMLST 80 31 24.69 2-6 0-4 0.1512 6.371668 0 - 24.65 

5 allele cgMLST 173 42 53.4 2-28 0-22 0.4043 17.54352 0 - 68.53 

12 allele cgMLST 254 45 78.4 2-39 0-51 0.6451 30.08732 0 - 112.25 
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Figure 1: Clustering of M. tuberculosis isolates. 707 

For a representative approach of each of the main methods (Mem-Spo, Gen-Spo, MIRU-708 

VNTR, 5 SNP cut-off, 5 SNP clade and 5 cgMLST) the inclusion of an isolate into a cluster is 709 

outlined in the surrounding circles using GraPhlAn75. If an isolate is in a cluster not affected 710 

by convergence, it is highlighted in black for the given method. If an isolate is in a cluster 711 

affected by convergence, it is shown in grey. The clustering based on all 20 approaches is 712 

shown in Supplementary Figure 1. 713 
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Figure 2: Timespans associated with transmission clusters 715 

For each clustering method, the timespan associated with a cluster was estimated using 716 

BEAST-2. The ages of each cluster (Y-axis) was aggregated per clustering method (X-axis). 717 

Violin plots show the mean (black dot) for timespans along with the proportion of clusters 718 

with a given age (coloured kernel plots). Methods are split as follows: A) Spoligotype-based 719 

(Gen-Spo-based (red), Mem-Spo-based (orange)) and MIRU-VNTR-based (yellow), B) SNP-720 

based (blue) and cgMLST-based (green). Note the y-axis is different for each and panel A) is 721 

cut at 400 years. 722 
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