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ABSTRACT 

Background 

Mutation rates vary across the genome. Whereas many trans factors that influence 

mutation rates have been identified, as have specific sequence motifs at the 1-7 bp scale, 

cis elements remain poorly characterized. The lack of understanding why different 

sequences have different mutation rates hampers our ability to identify positive selection 

in evolution and to identify driver mutations in tumorigenesis.  

Results 

Here we show, using a combination of synthetic genes and sequencing of thousands of 

isolated yeast colonies, that intrinsic DNA curvature is the major cis determinant of 

mutation rate. Mutation rate negatively correlates with DNA curvature within genes, and 

a 10% decrease in curvature results in a 70% increase in mutation rate. Consistently, both 

yeast cells and human tumors accumulate mutations in regions with small curvature. We 

further show that this effect is due to differences in the intrinsic mutation rate, likely due 

to differences in mutagen sensitivity, and not due to differences in the local activity of 

DNA repair.  

Conclusions 

Our study establishes a framework in understanding the cis properties of DNA sequence 

in modulating the local mutation rate and identifies a novel causal source of non-uniform 

mutation rates across the genome. 

 

 

Keywords: DNA shape; mutation rate; mutational landscape 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 16, 2018. ; https://doi.org/10.1101/302133doi: bioRxiv preprint 

https://doi.org/10.1101/302133
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

BACKGROUND 

Mutation is the ultimate source of genetic diversity. Therefore, the measurement of 

mutation rate and particularly, the identification of the trans factors and cis elements that 

influence mutation rate are a focus of intense interest in evolutionary biology. A large 

number of trans factors influencing mutation rate have been identified [1], such as 

chromatin remodelers, histone-modifying enzymes, and other DNA binding proteins [2-

4]. In addition, replication timing [5-9] and transcription rate [10-14] also affect mutation 

rate.  

Cis elements may play a more important role in determining the local mutation rate, yet 

remain poorly understood. Studies of cis elements that determine local mutation rate have 

been limited to the scale of a few neighboring nucleotides around a mutation site for the 

past few decades [15-18].   

There is comprehensive cis information in the shape of DNA. Although the double-helix 

structure of DNA is usually described as a twisted ladder, the steps of the ladder are not 

rigidly aligned. The local shape of DNA is affected by the interactions of neighboring 

bases [19, 20]. For example, the size of the minor and major grooves varies depending on 

the local sequence. Such variation in DNA shape affects the ability of proteins to bind to 

DNA and the accessibility of each nucleotide [20, 21]. Through its effect on DNA-

protein and/or DNA-solvent interactions, the shape of the double helix may influence the 

local mutation rate. However, the role of DNA shape in influencing local mutation rate 

has not been systematically studied. Here, we provided several lines of evidence that 

intrinsic DNA curvature affects the local mutation rate in a quantitative and predictable 

manner. Our study therefore expands our knowledge of cis elements that regulate 

mutation rate by integrating information regarding the physical shape of the double helix 

and develops a new framework to understand the evolution of local mutation rate.  
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RESULTS AND DISCUSSION 

Characterization of the mutational landscape of URA3 

To quantitatively determine how cis elements affect the local mutation rate we first 

characterized the mutational landscape of an endogenous gene, URA3, in Saccharomyces 

cerevisiae. URA3 encodes an enzyme required for uracil synthesis and converts the non-

toxic molecule 5-fluoroorotic acid (5-FOA) into the toxic 5-fluorouracil. Only cells 

bearing loss-of-function mutations in URA3 can survive on 5-FOA plates, making URA3 

a model gene to study mutation rate [5, 22]. Here, we cultured wild-type yeast in 

synthetic complete (SC) media for 24 hours to allow mutations to accumulate and spread 

these cells onto a 5-FOA plate (Fig. 1A). We then sequenced URA3 of each randomly 

picked visible colony and identified mutations. We performed 135 biological replicates in 

parallel and sequenced a total of ~1,000 URA3 variants from 135 plates (Table S1). 

Identical mutations (same type at the same position) identified on the same plate were 

counted only once because such mutations are most likely resulted from cell proliferation 

from a single mutation and not independent identical mutations.  

To measure bias in mutation rate, we need to determine the number of observed 

mutations and to compare it with the number expected if the mutation rate was uniform. 

As the missense mutations that would permit growth on 5-FOA is unknown, we focused 

our analysis on nonsense mutants. There are 104 potential nonsense mutation sites in 

URA3. For each of them, we counted the number of 5-FOA plates where each nonsense 

mutation was observed (Fig. 1B). This number varied between 0 and 8 (Fig. 1B). To 

determine if this variation in frequency could be fully explained by the inherently 

stochastic nature of mutation, we randomly assigned each of the observed 154 nonsense 

mutations to a potential nonsense mutation site. We then calculated the standard 

deviation of the observed numbers of nonsense mutations on these sites and that in the 

permutation. The observed standard deviation was significantly greater than the random 

expectation (P < 0.001, Fig. 1C), suggesting the presence of cis elements that affect the 

local mutation rate. 

A nonsense mutation may not always lead to a loss of function, especially when it occurs 

near the stop codon. This would also lead to a non-Poisson distribution of observed 

mutations. To exclude this confounding factor we repeated the permutation test using 

only the first two-thirds of the coding sequence. Again, the observed standard deviation 

was significantly greater than the random expectation (Fig. S1A). Similar results were 

also obtained when we performed the permutation test separately for the 54 nonsense 

transitions and the 100 nonsense transversions (Fig. S1B-C). Taken together, the 

variation in the frequency of nonsense mutations within URA3 suggests the presence of 

cis elements that modulate local mutation rate.  
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Mutations in URA3 tend to occur in DNA regions with a smaller intrinsic DNA 

curvature 

One possible explanation for the non-Poisson distribution of observed nonsense 

mutations is the difference in the mutation rate into a stop codon of each of the four 

bases. Nucleotides A and T had a lower mutation rate than G and C (Fig. S2), likely 

explained by the AT rich nature of the three stop codons. That is, G>A and C>T 

transitions often result in stop codons but A>G and T>C transitions do not. To explore 

the predictive power of the nucleotide at each position and to identify additional cis 

sequence features predictive of local mutation rates, we constructed a set of linear models 

that take into account various sequence features (Table 1). Including the nucleotide at the 

potential nonsense site in the linear model decreases the Akaike information criterion 

(AIC) of the model, indicating an increase in the model’s ability to predict mutation rates 

(Table 1, model 1 and model 2). Surprisingly, including the +1 and –1 bases into the 

model did not further improve the predictive power, nor did including the 

heptanucleotide sequence context (Table 1, models 3 and 4). 

To identify additional DNA sequence features predictive of local mutation rates we used 

a sliding window to divide the URA3 gene into overlapping regions of L nucleotides (L= 

10, 20 …, or 100 bp). We calculated the average mutation rate in each region as the total 

number of observed nonsense mutations in this region normalized by the number of 

potential nonsense mutation sites (Fig. S3A). For each region we then calculated 17 DNA 

properties such as GC content, thermodynamic characteristics, groove properties, and 

DNA shape features using well-established computational methods [19, 23] (Fig. S3B). 

Finally, for each window size, we calculated the correlation between mutation rate and 

each of the DNA properties.  

Over a large range of window sizes, mutation rate was most strongly correlated with 

intrinsic DNA curvature, defined as the sequence-dependent deflection of DNA axis due 

to the interaction between neighboring base pairs [24] (e.g., for a window size L of 100 

bp, ρ = -0.49, P = 2×10-5, Spearman’s correlation, Fig. 2A-B). Consistently, including 

intrinsic DNA curvature into the aforementioned linear model enhances its predictive 

power (Table 1, models 5 and 6). It is worth noting that tilt, the DNA property exhibiting 

the second strongest correlation with mutation rate, is a component of intrinsic DNA 

curvature [24]. 

The correlation between mutation rate and DNA curvature was not confounded by GC 

content [17, 25] which in our data was not correlated with mutation rate (Fig. 2A). We 

previously showed that nucleosome binding suppresses spontaneous mutations [26]. To 

quantitatively determine the relationship between mutation rate, nucleosome occupancy, 
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and DNA curvature, we performed high-throughput sequencing on nucleosome protected 

DNA fragments. Consistent with previous results, nucleosome occupancy was negatively 

correlated with the average mutation rate (rURA3= –0.35, P = 0.002). Nevertheless, the 

correlation between DNA curvature and mutation rate persisted after controlling for 

nucleosome occupancy (partial rURA3 = –0.6, P = 1×10-8), suggesting that the relationship 

between mutation rate and DNA curvature is not due to differences in nucleosome 

occupancy. 

As a form of experimental cross-validation to determine if our results from URA3 are 

generalizable to other genes, we used an independently generated set of mutations in the 

gene CAN1 [22], for which nonsense mutations were selected using the arginine analogue 

canavanine. Intrinsic DNA curvature is also predictive of mutation rate in CAN1 (Fig. 2C 

and Table S2). 

 

Mutations in yeast cells and in human tumors accumulate in DNA regions with 

smaller intrinsic DNA curvature 

To determine if DNA shape affects mutation rate at the genomic scale, we used a 

mutation accumulation assay in which spontaneous mutations accumulate at ~100× the 

normal rate due to a mutation in a gene related to DNA mismatch repair, MSH2 [27]. We 

retrieved all 882 mutations that were supported by an at least 20× coverage in the high-

throughput sequencing data. We calculated the intrinsic DNA curvature of a region from 

50 bp upstream to 50 bp downstream of each mutation. As a control we randomly chose 

882 sites with identical 3-nucleotide contexts (the mutation site, +1, and –1 sites) from 

the rest of the genome. We performed this random sampling procedure 1,000 times. We 

found that the observed mutations were located in regions with a smaller intrinsic DNA 

curvature (P = 0.04, permutation test, Fig. 2D). It suggests that in the genome as a whole, 

regions with smaller intrinsic DNA curvature have higher mutation rates.   

Mutations generate genetic variation among cells within multi-cellular individuals, and 

somatic mutations play a vital role in cancer development and progression. Mutations in 

tumors are distributed unevenly across the genome and within individual genes [2, 3, 9, 

16, 28]. We therefore performed the same genome-scale analysis as in yeast using 10,429 

cancer samples from 26 cancer types collected in The Cancer Genome Atlas (TCGA) 

database [29]. We calculated the average intrinsic curvature of the DNA regions from 50 

bp upstream to 50 bp downstream of each identified SNP for each cancer type. As a 

control, we randomly chose the same number of DNA sites from the genome. Consistent 

with the results in yeast, mutations were significantly enriched in regions with a smaller 

intrinsic DNA curvature in all cancer types (P < 0.001, permutation test, Fig. 3 and Fig. 

S4), suggesting that intrinsic DNA curvature reduces mutation rates in human tumor 
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cells. The large number of mutations in tumor cells permitted a more robust test of the 

effect for nucleotide context. We found that DNA curvature negatively correlates with 

mutation rate when controlling for the trinucleotide (Fig. S5) or heptanucleotide context 

(Fig. S6). Taken together, DNA curvature is a robust predictor of non-uniform mutation 

rates in both yeast cells and human tumors.  

 

Genetic manipulation of DNA curvature affects mutation rate 

To further examine the causal effect of intrinsic DNA curvature on mutation rate we 

designed four synonymous variants of URA3 (Table S3), two with increased curvature 

and two with decreased curvature (Fig. 4A). We kept features that may influence local 

mutation rate such as GC content, codon usage, and predicted local mRNA structure  

largely unchanged (Table S4) [13, 17, 25]. The expression levels of URA3 in these 

variants are also identical (Fig. S7). 

We used an electrophoretic mobility shift assay to confirm that the intrinsic DNA 

curvature was altered in these variants [30-32]. Variants with a greater predicted intrinsic 

DNA curvature [19, 23] migrated more slowly than those with a smaller curvature (Fig. 

S8), presumably due to the different friction force that they encountered in the process of 

migration.  

To determine if genetic manipulation of curvature alters mutation rate we cultured cells 

with each of the five URA3 variants in SC media to allow mutations to accumulate, 

spread cells onto 5-FOA plates, and counted the number of colonies on each plate (Fig. 

4B). We calculated the mutation rate of each variant from the fraction of plates without 

mutants [33] and found that variants with a 10% smaller intrinsic DNA curvature had a 

70% higher mutation rate (Fig. 4C). It suggests that experimental decreasing DNA 

curvature increases mutation rate.  

 

Intrinsic DNA curvature alters the mutation rate, not mismatch repair efficacy 

There are two non-mutually exclusive mechanisms by which intrinsic DNA curvature can 

modulate the net mutation rate [9]. First, intrinsic DNA curvature may reduce the supply 

of mutations. Second, intrinsically curved DNA may facilitate the recruitment of 

mismatch repair-related proteins, which can increase the DNA repair efficacy [3, 9]. To 

determine if intrinsic DNA curvature reduces the supply of mutations or affects repair 

efficiency, we knocked out MSH2 and repeated the mutation accumulation experiment 

(Fig. 4B). In the absence of Msh2, the effect of DNA curvature on mutation rate is even 

larger; a 10% decrease in curvature results in a 100% increase in mutation rate (Fig. 4D). 
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This observation suggests that the altered net mutation rate by DNA curvature is due to 

differences in the supply of mutations and not to differences in DNA repair efficacy. 

 

DNA curvature reduces mutagen sensitivity in cancer cells  

DNA curvature may reduce the mutation rate by making the DNA sequence less 

accessible to potential mutagens [26] or by affecting the fidelity of DNA polymerase 

itself, though this is unlikely, as DNA polymerase acts on single stranded DNA. To 

distinguish these two mechanisms we divided the SNPs in cancer cells into six categories 

based on mutation types and asked if the rate of mutation types that are sensitive to 

mutagens is more affected by DNA curvature. C>T transitions mainly result from the 

hydrolytic deamination on methylated cytosine [15, 34]. The rate of C>T transition 

reduced by 40% in DNA regions with greater curvature (Fig. 5A). In contrast, this 

reduction in mutation rate was not observed for other mutation types (Fig. 5A). 

Furthermore, C>A transversions in lung cancer cells are mainly caused by polycyclic 

aromatic hydrocarbons in tobacco smoke [35-37]. C>A mutations are more affected by 

DNA curvature in lung cancer than they are in other types of cancer (Fig. 5B). Both 

biased distributions of C>T and C>A mutations suggest that curvature protects DNA 

from mutagens. Given the well-established role of DNA curvature in regulating protein-

DNA interactions [20, 21], it is possible that DNA curvature promotes protein binding 

that makes DNA less accessible to mutagens.  

 

Implications in evolutionary genomics 

Understanding the variation in mutation rate is central to numerous questions in 

evolutionary genetics. Particularly, modeling the variability in mutation rate among sites 

of a genome is of key importance in studies of molecular evolution because it provides a 

null model that can be rejected when natural selection occurs. Sequence-intrinsic cis 

elements are more computationally tractable than trans factors in modeling mutation rate 

in molecular evolution studies, because with cis elements the expected mutation rate can 

be predicted directly from the surrounding sequences of a site [16]. For example, the 

evolutionary rates of genes have been extensively studied, and particularly, comparisons 

between those of essential and nonessential genes have been made [38-42]. Previous 

studies focused on the difference in the strength of negative selection and neglected the 

potential difference in mutation rate, presumably because the latter was hard to model. In 

this study, we discovered that a key DNA shape feature, intrinsic DNA curvature, 

modulated local mutation rate. Interestingly, we observed that essential genes exhibit a 

greater DNA curvature in both yeast (Fig. S9) and humans (Fig. S10), suggesting that 
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they have a lower mutation rate. This observation urges the need of considering the 

difference in mutation rate when compare evolutionary rate among genes.  

Furthermore, the high-density fitness landscapes of random mutations on a gene have 

been extensively characterized in previous studies [43, 44], aiming to understand the 

trajectory of biological evolution. However, evolutionary trajectories are determined by 

natural selection acting on mutations. Inherent biases in the generation of the random 

mutations must therefore be taken into account. Our study on mutational landscape 

complements these previous studies on fitness landscapes and will significantly 

contribute to the ultimate understanding of evolutionary trajectories [45]. 

 

CONCLUSIONS 

We found that the shape of the DNA double helix plays a major role in determining the 

local mutation rate. In particular, we identified a key feature, intrinsic DNA curvature, 

that determines the local mutation rate in both yeast and cancer cells. We genetically 

manipulated the intrinsic DNA curvature and observed an altered mutation rate consistent 

with the genome-wide data. We showed that this effect is due to increased mutation rate, 

likely due to increased exposure to mutagens, and not due to differential efficacy of 

repair machinery. Taken together, our study extensively expands our knowledge of 

elements that regulate mutation rate by integrating the valuable information of DNA 

shape, and develops a new framework to understand evolution and tumorigenesis at a 

nucleotide resolution. 
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METHODS 

Characterization of the mutational landscape of URA3 

A haploid S. cerevisiae strain derived from the W303 background, GIL104 (MATa 

URA3, leu2, trp1, CAN1, ade2, his3, bar1Δ::ADE2), was used to characterize the 

mutational landscape of URA3. Cells from a single colony were cultured in 5 ml SC 

media with uracil dropped-out (SC-uracil) at 30°C for 24 hours. Cells were then 

transferred into 5 ml fresh SC media (at an initial OD660 ~0.1) and grown for 24 hours to 

accumulate mutations. ~5.0×107 cells were spread onto SC-uracil plates containing 1 g/l 

5-FOA to select for loss-of-function mutants of URA3. A total of ~1,000 ura3 variants 

were isolated from 5-FOA plates and were Sanger sequenced separately. PCR and Sanger 

sequencing primers are listed in Table S5.  

Calculation of the mutation rate and the values of DNA properties in URA3 and 

CAN1 

We identified a total of 452 mutations in URA3 (Table S1), including 5 synonymous 

mutations, 293 missense mutations, and 154 nonsense mutations. We focused on these 

154 nonsense mutations in this study for the sake of accuracy in estimating mutation rate. 

To be specific, we need to count the number of potential loss-of-function mutation sites, 

which would be used to normalize the number of observed mutations and hence to 

calculate the mutation rate. The number of potential loss-of-function missense mutations 

was difficult to estimate because it remains elusive which missense mutations lead to a 

loss of function and which do not. Mutation rate was determined using overlapping 

windows with size equal to L nucleotides (L= 10, 20 …, or 100 bp, Fig. S3A). The 

window slid for 10 nucleotides each movement. The value of a DNA shape feature were 

calculated based on the frequencies of all 16 possible combinations of dinucleotide in a 

region, following previous studies [19, 23]. The value of each dinucleotide for each DNA 

shape feature was obtained from the DNA ‘PROPERTY’ database [46] and was shown in 

Fig. S3B. GC content was calculated with a Perl script. 

Estimation of nucleosome occupancy 

The wild-type S. cerevisiae strain (BY4741 URA3) was grown to log-phase in YPD (1% 

yeast extract, 2% peptone, and 2% dextrose) liquid medium. We performed nucleus 

isolation, micrococcal nuclease (MNase) digestion, and chromatin preparation as 

described previously [47], with the following modifications. We adjusted NP-S buffer to 

0.5 mM spermidine, 0.075% (v/v) NP-40, 50 mM NaCl, 50 mM Tris-HCl pH 7.5, 5 mM 

MgCl2, and 5 mM CaCl2, and used 100 units of MNase to digest the nuclei for 5 minutes. 

We performed Protease K digestion and exacted the core particle DNA. Paired-end 

libraries were constructed using Illumina-compatible DNA-Seq NGS library preparation 

kit from Gnomegen and were sequenced with Illumina HiSeq 2500 (PE125, paired-end 
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2×125 bp). ~10.6 million clean reads were aligned to the S. cerevisiae genome using 

bowtie2 with default parameters [48]. Nucleosome occupancy of a nucleotide was 

defined as the number of read pairs uniquely mapped to the genome region covering the 

nucleotide. The raw sequencing data of MNase-seq have been deposited to the Genome 

Sequence Archive [49] in BIG Data Center (http://bigd.big.ac.cn/gsa), Beijing Institute of 

Genomics, Chinese Academy of Sciences, under accession number CRA000570.  

Generation and analyses of the URA3 variants  

We designed four synonymous variants of URA3 with different intrinsic DNA curvature 

(Tables S3-4). We estimated the minimum free energy (MFE) for all 20 nucleotide 

windows in the coding sequence with RNAfold [50], and defined the average MFE of 

them as the strength of the RNA secondary structure of a variant. Codon adaptation index 

(CAI) was calculated following our previous study [51]. Four URA3 variants were 

synthesized by Wuxi Qinglan Biotech and the wild-type URA3 DNA sequence was 

amplified from S288C. Primers are listed in Table S5. Each of the five variants was 

introduced into the chromosomal location of URA3 in BY4741 (MATa his3Δ1 leu2Δ0 

met15Δ0 ura3Δ0) with homologous recombination.  

We used electrophoretic mobility shift assay to confirm the difference in intrinsic DNA 

curvature of the five synonymous variants. We loaded an equal amount of PCR products 

of five variants into a 12% native polyacrylamide gel. We performed the electrophoresis 

experiement in the TBE buffer (89 mM Tris, 89 mM boric acid, and 2.5 mM EDTA, pH 

8.0) for 12 hours at 120 V. 

Total RNA was extracted with hot acidic phenol (pH < 5.0) and was reverse transcribed 

with the GoScript™ reverse transcriptase. Quantitative PCR (qPCR) was carried out on 

the Mx3000P qPCR System (Agilent Technologies) using Maxima SYBR Green/ROX 

qPCR Master Mix. ACT1 was used as the internal control. Primers used are listed in 

Table S5.  

The variance-to-mean ratio of the numbers of colonies on the plates was much greater 

than 1 for each variant (Fig. S11), indicating that the number of colonies does not follow 

a Poisson distribution [33]. This suggests that the observed mutations most likely 

occurred in the liquid culture instead of on the plates. We used the non-parametric Mann-

Whitney U test to compare the number of colonies among these strains. We also 

estimated the relative mutation rates in these variants from p0, the proportion of cultures 

with no mutants, in the wild-type background with the following equation [33]. 

𝑚𝑢𝑡𝑎𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 = −ln (𝑝0) 

Estimation of mutation rate in yeast mutation accumulation (MA) lines 
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A previous study identified ~1,000 single nucleotide mutations by sequencing the 

genomes of five MA lines of a mismatch repair-deficient S. cerevisiae strain (BY4741 

msh2::kanMX4) [27]. The mutation data from this study was used because the efficacy of 

purifying selection in MA experiments [17, 22] was further reduced in mutators. We 

analyzed the mutations supported by ≥ 20× coverage and retrieved 882 single nucleotide 

mutations that were identified in at least one of the five replicates from this study. As a 

control, we chose 882 random sites in the rest of the yeast genome and defined them as 

the pseudo-mutation sites. We calculated the average intrinsic DNA curvature around 

these pseudo-mutation sites and repeated this procedure for 1,000 times. P values were 

calculated as the fraction of pseudo-mutation sets exhibiting a smaller average intrinsic 

DNA curvature than that of the observed mutation sites among 1,000 permutations. 

Estimation of mutation rate in human cancer cells 

The data of SNPs in cancer cells were retrieved from The Cancer Genome Atlas (TCGA) 

database [29]. Chromosomal sequences surrounding these SNPs were retrieved from 

Ensembl release 87 (www.ensembl.org). When multiple projects for a cancer type exist, 

we combined all SNPs in these projects. On average, ~100,000 SNPs were identified in a 

cancer type. For each cancer type, we calculated the average intrinsic DNA curvature of 

the flanking DNA sequences of all SNPs (from 50 bp upstream to 50 bp downstream of 

each SNP). We also randomly chose the same number of sites in the human genome and 

calculated the average intrinsic DNA curvature of their flanking sequences similarly. This 

procedure was repeated 1,000 times to obtain the distribution of the expected average 

intrinsic DNA curvature. P values were calculated as the fraction of sets of random sites 

exhibiting a smaller average intrinsic DNA curvature than that of the observed SNP sites, 

among 1,000 permutations. In TCGA, different methods were used to identify mutations 

(Mutect, Muse, Somaticsniper, and Varscan). Our conclusion held under each kind of 

method used in calling SNPs (Figs. S4-6). 

Data retrieval 

Protein-protein interaction (PPI) data in yeast were downloaded from Saccharomyces 

Genome Database [52].  Lists of essential genes and haploinsufficient genes were 

retrieved from a previous study [53].  Genes leading to significant growth reduction upon 

deletion were identified in a previous study with Bar-seq [54].  Duplicate genes in the 

yeast genome were defined in a previous study [55].  PPI data in humans were 

downloaded from Biogrid [56].  Human essential genes were retrieved from two previous 

studies [57, 58], respectively.  The list of haploinsufficient genes in humans were 

retrieved from a previous study [59].   
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TABLE 

Table 1. Models on predicting the mutation rate of a potential nonsense site in URA3 

 Model AIC 

1 Null model 484 

2 Mutation rate ~ “0” * 418 

3 Mutation rate ~ “0” + “+1” + “–1” 426 

4 Mutation rate ~ “0” + “+1” + “+2” +“+3” + “–1”+ “–2” +“–3” 432 

5 Mutation rate ~ curvature ** 433 

6 Mutation rate ~ “0” + curvature 414 
* “0” represents the nucleotide at the potential nonsense site. “+1” and “–1” represent the 

upstream and the downstream nucleotide of the potential nonsense site, respectively. 

** The intrinsic DNA curvature in a region from 50 bp upstream to 50 bp downstream of 

the potential nonsense site.  
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FIGURES 

 

Fig. 1. The mutational landscape of URA3.  

(A) A schematic description of the experimental design. Mutations were accumulated in 

SC liquid medium and ura3 mutants were selected on 5-FOA plates.  

(B) Mutational landscape of all potential nonsense mutation sites, which were defined as 

sites where a point mutation can result in a stop codon. Each bar represents a potential 

nonsense mutation site.  

(C) The observed (red arrow) and expected (histogram showing 1,000 permutations) 

standard deviation of the numbers of nonsense mutations on all potential nonsense 

mutation sites of URA3.   
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Fig.2. Intrinsic DNA curvature is negatively correlated with mutation rate.  

(A) Correlation between mutation rate and the value of each DNA feature in sliding 

windows (window length L). These features include GC content (orange), 

thermodynamic characteristics (purple), groove properties (green), intra- and inter-base 

pair DNA shape features (cyan), and integrated DNA shape features (blue). Intra- and 

inter-base pair DNA shape features are shown in cartoons, where a square represents a 

base and a rectangle represents a base pair. P values were calculated from the Spearman’s 

correlation. 

(B-C) Example scatter plots of URA3 (B) and of CAN1 (C). Each dot represents a region 

of length L (= 100 bp).  

(D) The average intrinsic DNA curvature of DNA regions surrounding the 882 observed 

mutation sites (red arrow) was significantly smaller than the random expectation 

(histogram showing 1,000 permutations) in the yeast genome. P value was calculated 

with a permutation test.  
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Fig. 3. Mutations in human cancer samples are enriched in DNA regions with a 

smaller intrinsic DNA curvature. 

(A) Mutations are enriched in regions with a significantly smaller curvature in all 26 

cancer types. Each dot represents a cancer type. P values were calculated based on the 

permutation test. P values were arbitrarily assigned to 0.001 when P < 0.001. 

(B-C) Examples in lung (B) and in kidney (C) showing that the average intrinsic DNA 

curvature of SNP-containing regions (red arrows) was significantly smaller than the 

random expectation (histogram showing 1,000 permutations).  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 16, 2018. ; https://doi.org/10.1101/302133doi: bioRxiv preprint 

https://doi.org/10.1101/302133
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

Fig. 4. Changing the intrinsic DNA 

curvature in URA3 leads to altered 

mutation rate.  

(A) The distribution of the average intrinsic 

DNA curvature of genes in the yeast genome. 

The intrinsic DNA curvatures of five 

synonymous variants of URA3 are indicated 

by arrows. S1 and S2 (G1 and G2) are 

variants with a smaller (greater) intrinsic 

DNA curvature. 

(B) The schematic description of the 

experimental procedure for measuring the 

relative mutation rate of URA3 variants.  

(C) Reduction of intrinsic DNA curvature 

leads to an increase in the mutation rate of 

URA3. Outliers are not shown. P values were 

calculated from the one-tailed Mann-Whitney 

U test. 

(D) Similar to (C), in a mismatch repair 

deficient msh2 strain. 
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Fig. 5. DNA curvature suppresses mutations that are induced by mutagens. 

(A) The mutation rate of each of the six mutation types in cancer cells. Mutation rate was 

defined as the number of SNPs per cancer sample per nucleotide. x axis shows ten 

equally sized bins of DNA regions in the human genome sorted by intrinsic DNA 

curvature.  

(B) Mutation rates in lung cancer (including lung adenocarcinoma and lung squamous 

cell carcinoma). 
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