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Abstract

Motivation: The topological landscape of gene interaction networks provides a rich source of information
for inferring functional patterns of genes or proteins. However, it is still a challenging task to aggregate
heterogeneous biological information such as gene expression and gene interactions to achieve more
accurate inference for prediction and discovery of new gene interactions. In particular, how to generate a
unified vector representation to integrate diverse input data is a key challenge addressed here.
Results: We propose a scalable and robust deep learning framework to learn embedded representations
to unify known gene interactions and gene expression for gene interaction predictions. These low-
dimensional embeddings derive deeper insights into the structure of rapidly accumulating and diverse
gene interaction networks and greatly simplify downstream modeling. We compare the predictive power of
our deep embeddings to the state-of-the-art machine learning methods. The results suggest that our deep
embeddings achieve significantly more accurate predictions. Moreover, a set of novel gene interaction
predictions are validated by up-to-date literature-based database entries.
Availability: Source code and preprocessed datasets are available at https://github.com/kckishan/GNE
under the GNU General Public License.
Contact: kk3671@rit.edu

1 Introduction
A comprehensive study of gene interactions (GIs) provides means to
identify the functional relationship between genes and their corresponding
products, as well as insights into underlying biological phenomena that are
critical to understanding phenotypes in health and disease conditions (Mani
et al., 2008; Boucher and Jenna, 2013; Lage, 2014). Since advancements in
measurement technologies have led to numerous high-throughput datasets,
there is a great value in developing efficient computational methods capable
of automatically extracting and aggregating meaningful information from
heterogeneous datasets to infer gene interactions.

Although a wide variety of machine learning models have been
developed to analyze high-throughput datasets for GI prediction
(Madhukar et al., 2015), there are still some major challenges, such
as efficient analysis of large heterogeneous datasets, integration of
biological information, and effective feature engineering. To address these

challenges, we propose a novel deep learning framework to integrate
diverse biological information for GI network inference.

Our proposed method frames GI network inference as a problem
of network embedding. In particular, we represent gene interactions as
a network of genes and their interactions and create a deep learning
framework to automatically learn an informative representation which
integrates both the topological property and the gene expression property.
A key insight behind our gene network embedding method is the "guilt by
association" assumption (Oliver, 2000), that is, genes that are co-localized
or have similar topological roles in the interaction network are likely to
be functionally correlated. This insight not only allows us to discover
similar genes and proteins but also to infer the properties of unknown
ones. Our network embedding generates a lower-dimensional vector
representation of the gene topological characteristics. The relationships
between genes including higher-order topological properties are captured
by the distances between genes in the embedding space. The new low-
dimensional representation of a GI network can be used for various
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downstream tasks, such as gene function prediction, gene interaction
prediction, and gene ontology reconstruction (Cho et al., 2016).

Furthermore, since the network embedding method can only preserve
the topological properties of a GI network, and fails to generalize for genes
with no interaction information, our scalable deep learning method also
integrates heterogeneous gene information, such as expression data from
high throughput technologies, into the GI network inference. Our method
projects genes with similar attributes closer to each other in the embedding
space, even if they may not have similar topological properties. The
results show that by integrating additional gene information in the network
embedding process, the prediction performance is improved significantly.

GI prediction is a long-standing problem. The proposed machine
learning methods include statistical correlation, mutual information
(Marbach et al., 2012), data imputation, matrix completion and network-
based methods (e.g. common neighborhood, network embedding)
(Madhukar et al., 2015; Cui et al., 2017). Among these methods,
some methods such as statistical correlation and mutual information
consider only gene expression whereas other methods use only topological
properties to predict GIs.

Data imputation techniques, such as weighted KNNImpute and Local
Least Squares (LLSImpute), are used for gene expression data for the
imputation of missing GIs (Liew et al., 2010). A more systematic matrix
approximation method for data imputation is proposed to improve the
imputation process on a relatively small GI dataset (26 * 26 matrix)
(Järvinen et al., 2008). These methods do not take GI network structure
into consideration.

Network-based methods have been proposed to leverage topological
properties of GI networks (Lei et al., 2012). Neighborhood-based methods
quantify the proximity between genes, based on common neighbors in
GI network (Alanis-Lobato et al., 2013). The proximity scores assigned
to a pair of genes rely on the number of neighbors that the pair
has in common. Adjacency matrix, representing interaction network,
or proximity matrix, obtained from neighborhood-based methods, are
processed with network embedding methods to learn embeddings that
preserve the structural properties of the network. Structure-preserving
network embedding methods such as Isomap (Tenenbaum et al., 2000)
are proposed as a dimensionality reduction technique. Since the goal of
these methods is solely for graph reconstruction, the embedding space
may not be suitable for GI network inference. In addition, these methods
construct the graphs from the data features where proximity between genes
is well defined in the original feature space (Cui et al., 2017). On the other
hand, in GI networks, gene proximities are not explicitly defined, and they
depend on the specific analytic tasks and application scenarios.

Our deep learning method allows incorporating gene expression data
with GI network topological structure information in order to preserve both
structural and attribute proximity in the low-dimensional representation
for GI predictions. Moreover, the scalable architecture will enable us to
incorporate additional attributes. Topological properties of GI network
and expression profiles are transformed into two separate embeddings:
ID embedding (which preserves the topological structure proximity) and
attribute embedding (which preserves the attribute proximity) respectively.
With a multilayer neural network, we then aggregate the complex statistical
relationships between topology and attribute information to improve GI
predictions.

In summary, our contributions are as follows:

• We propose a novel deep learning framework to learn lower
dimensional representations while preserving structural and attribute
proximity of GI networks.

• We evaluate the prediction performance on the datasets of two
organisms based on the embedded representation and achieve

significantly better predictions than the state-of-the-art competitor
approaches.

• Our method can predict new gene interactions which are validated on
an up-to-date GI database.

2 Preliminaries
We formally define the problem of gene network inference as a network
embedding problem using the concepts of structural and attribute proximity
as demonstrated in Figure 1.
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Fig. 1. An illustration of gene network embedding (GNE) to integrate gene interaction
network and gene expression data to learn a lower-dimensional representation. The nodes
represent genes, and the genes with the same color have similar expression profiles.
GNE groups genes with similar network topology, which are connected or have a similar
neighborhood in the graph, and attribute similarity (similar expression profiles) in the
embedded space.

DEFINITION 1: (Gene network) Gene network can be represented
as a network structure, which represents the interactions between genes
within an organism. The interaction between genes corresponds to either
a physical interaction through their gene products, e.g., proteins, or one
of the genes alters or affects the activity of other gene of interest. We
denote gene network as G = (V,E,A) where V = {vi} denotes genes
or proteins, E = {eij} denotes edges that correspond to interactions
between genes vi and vj , and A = {Ai} represents the attributes of
gene vi. Edge eij is associated with a weight wij ≥ 0 indicating the
strength of the connection between gene vi and vj . If gene vi and vj is
not linked by an edge, wij = 0. We name interactions with wij > 0 as
positive interactions and wij = 0 as negative interactions. In this paper,
we consider weightswij to be binary, indicating whether genes vi and vj
interact or not.

Genes directly connected with a gene vi in gene network denote the
local network structure of gene vi. We define local network structures as
the first-order proximity of a gene.

DEFINITION 2: (First-order proximity) The first-order proximity
in a gene network is the pairwise interactions between genes. Weight wij
indicates the first-order proximity between gene vi and vj . If there is no
interaction between gene vi and vj , their first-order proximity wij is 0.

Genes are likely to be involved in the same cellular functions if they
are connected in the gene network. On the other hand, even if two genes
are not connected, they may be still related in some cellular functions.
This indicates the need for an additional notion of proximity to preserve
the network structure. Studies suggest that genes that share a similar
neighborhood are also likely to be related (Cho et al., 2016). Thus, we
introduce second-order proximity that characterizes the global network
structure of the genes.

DEFINITION 3: (Second-order proximity) Second order proximity
denotes the similarity between the neighborhood of genes. Let Ni =
{si,1,…, si,i−1, si,i+1,…, si,M−1} denotes the first-order proximity
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Table 1. Terms and Notations

Symbol Definitions

M Total number of genes in gene network
E Number of expression values for each gene
Ni Set of the neighbor genes of gene vi

v(s)
i Structural representation of gene vi

v(a)
i Attribute representation of gene vi

ṽi Neighborhood representation of gene vi

vi Concatenated representation of topological properties and
expression data

k Number of hidden layers to transform concatenated
representation into embedding space

h(k) Output of kth hidden layer
Wk Weight matrix for kth hidden layer
Wid Weight matrix for topological structure embedding
Watt Weight matrix for attribute embedding
Wout Weight matrix for output layer

of gene vi, where si,j is wij if there is direct connection between gene
vi and gene vj , otherwise 0. Then, the second order proximity is the
similarity between Ni and Nj . If there is no path to reach gene vi from
gene vj , the second proximity between these genes is 0.

Integrating first-order and second-order proximities simultaneously
can help to preserve topological properties of the gene network. To
generate a more comprehensive representation of the genes, it is crucial to
integrate gene expression data as gene attributes with their topological
properties. Besides preserving topological properties, gene expression
provides additional information to predict the network structure.

DEFINITION 4: (Attribute proximity) Attribute proximity denotes
the similarity between the expression of genes.

We thus investigate both structural and attribute proximity for gene
network embedding, which is defined as follows:

DEFINITION 5: (Gene network embedding) Given a gene network
denoted as G = (V,E,A), gene network embedding aims to learn a
function f that maps gene network structure and their attribute information
to a d-dimensional space where a gene is represented by a vector yi ∈ Rd

where d�M . The low dimensional vectors yi and yj for genes vi and vj
preserve their relationships in terms of the network topological structure
and attribute proximity.

3 Gene Network Embedding (GNE)
Our deep learning framework as shown in Figure 2 jointly utilizes gene
network structure and gene expression data to learn a unified representation
for the genes. Embedding of a gene network projects genes into a lower
dimensional space, known as the embedding space, in which each gene is
represented by a vector. The embeddings preserve both the gene network
structure and statistical relationships of gene expression. We list the
variables to specify our framework in Table 1 .

3.1 Gene Network Structure Modeling

GNE framework preserves first-order and second-order proximity of genes
in the gene network. The key idea of network structure modeling is to
estimate the pairwise proximity of genes in terms of the network structure.
If two genes are connected to each other or share the similar neighborhood
genes, they tend to be related and should be placed closer to each other in

the embedding space. Inspired by the Skip-gram model (Mikolov et al.,
2013), we use one hot encoded representation to represent topological
information of a gene. Each gene vi in the network is represented as an
M -dimensional vector where only the ith component of the vector is 1.

To model topological similarity, we define the conditional probability
of gene vj on gene vi using a softmax function as:

p(vj |vi) =
exp(f(vi, vj))∑M

j′=1 exp(f(vi, vj′ ))
(1)

which measures the likelihood of gene vi being connected with vj . Let
function f represents the mapping of two genes vi and vj to their estimated
proximity score. Letp(N |v) be the likelihood of observing a neighborhood
N for a gene v. By assuming conditional independence, we can factorize
the likelihood so that the likelihood of observing a neighborhood gene is
independent of observing any other neighborhood gene, given a gene vi:

p(Ni|vi) =
∏

vj∈Ni

p(vj |vi) (2)

where Ni represents the neighborhood genes of the gene vi. Global
structure proximity for a gene vi can be preserved by maximizing the
conditional probability over all genes in the neighborhood. Hence, we can
define the likelihood function that preserve global structure proximity as:

L =

M∏
i=1

p(Ni|vi) =

M∏
i=1

∏
vj∈Ni

p(vj |vi) (3)

Let v(s)
i denotes the dense vector generated from one-hot gene ID

vector, which represents topological information of that gene. GNE follows
direct encoding methods (Mikolov et al., 2013; Grover and Leskovec,
2016) to map genes to vector embeddings, simply known as embedding
lookup:

v(s)
i = Widvi (4)

where Wid ∈ Rd×M is a matrix containing the embedding vectors for
all genes and vi ∈ IM is a one-hot indicator vector indicating the column
of Wid corresponding to gene vi.

3.2 Gene Expression Modeling

GNE encodes the expression data from microarray experiments to the
dense representation using a non-linear transformation. The amount
of mRNA produced during transcription measured over a number of
experiments helps to identify similarly expressed genes. Since expression
data have inherent noise (Tu et al., 2002), transforming expression data
using a non-linear transformation can be helpful to uncover the underlying
representation. Let xi be the vector of expression values of gene vi
measured over E experiments. Using non-linear transformation, we can
capture the non-linearities of expression data of gene vi as:

v(a)
i = δa(Watt · xi) (5)

where v(a)
i represents the lower dimensional attribute representation vector

for gene vi. Watt, and δa represents the weight matrix, and activation
function of attribute transformation layer respectively.

We use the deep model to approximate the attribute proximity
by capturing complex statistical relationships between attributes and
introducing non-linearities, similar to structural embedding.
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Fig. 2. Overview of Gene Network Embedding (GNE) Framework for gene interaction prediction. On the left,one-hot encoded representation of gene is encoded to dense vector v(s)
i

of

dimension d× 1 which captures topological properties and expression vector of gene is transformed to v(a)
i

of dimension d× 1 which aggregates the attribute information (Step 1). Next,
concatenation of two embedded vectors (creates vector with dimension 2d× 1) allows to combine strength of both network structure and attribute modeling. Then, nonlinear transformation
of concatenated vector enables GNE to capture complex statistical relationships between network structure and attribute information and learn better representations (Step 2). Finally, these
learned representation of dimension d× 1 is transformed into a probability vector of lengthM × 1 in output layer, which contains the predictive probability of gene vi to all the genes in
the network. Conditional probability p(vj |vi) on output layer indicates the likelihood that gene vj is connected with gene vi (Step 3).

3.3 GNE Integration

GNE models the integration of network structure and attribute information
to learn more comprehensive embeddings for gene networks. GNE takes
two inputs: one for structural information of a gene as one hot gene
ID vector and another for its expression as an attribute vector. Each
input is encoded to its respective embeddings. One hot representation
for a gene vi is projected to the dense vector v(s)

i which captures
the topological properties. Non-linear transformation of attribute vector
generates compact representation vector v(a)

i .
Previous work (Tang et al., 2015) combines heterogeneous information

using the late fusion approach. However, the late fusion approach is
the approach of learning separate models for heterogeneous information
and integrating the representations learned from separate models. On
the other hand, the early fusion combines heterogeneous information
and train the model on combined representations (Snoek et al., 2005).
We thus propose to use the early fusion approach to combine them
by concatenating. As a result, learning from structural and attribute
information can complement each other, allowing the model to learn their
complex statistical relationships as well. Embeddings from structural and
attribute information are concatenated into a vector as:

vi = [v(s)
i λv(a)

i ] (6)

where λ is the importance of gene expression information relative to
topological information.

The concatenated vectors are fed into a multilayer perceptron with k
hidden layers. The hidden representations from each hidden layer in GNE
are denoted as h(0)

i , h(1)
i , ....., h(k)

i , which can be defined as :

h(0)
i = δ(W0vi + b(0)),

h(k)
i = δk(Wkh(k−1)

i + b(k−1))
(7)

where δk represents the activation function of layer k. h(0)
i represents

initial representation and h(k)
i represents final representation of the input

gene vi. Transformation of input data using multiple non-linear layers
has shown to improve the representation of input data (He et al., 2016).
Moreover, stacking multiple layers of non-linear transformations can help
to learn high-order statistical relationships between topological properties
and attributes.

At last, final representation h(k)
i of a gene vi from the last hidden

layer is transformed to probability vector, which contains the conditional
probability of all other genes to vi:

oi = [p(v1|vi), p(v2|vi), . . . , p(vM |vi)] (8)

where p(vj |vi) represents the probability of gene vi being related to gene
vj and oi represents the output probability vector with the conditional
probability of gene vi being connected to all other genes.

Weight matrix Wout between the last hidden layer and the output layer
corresponds to the abstractive representation of neighborhood of genes. A
jth row from Wout refers to the compact representation of neighborhood
of gene vj , which can be denoted as ṽj . The proximity score between gene
vi and vj can be defined as:

f(vi, vj) = ṽj · h
(k)
i (9)

which can be replaced into Equation 1 to calculate the conditional
probability:

p(vj |vi) =
exp(ṽj · h

(k)
i )∑M

j′=1 exp(ṽj′ · h
(k)
i )

(10)

Our model learns two latent representations h(k)
i and ṽi for a gene

vi where h(k)
i is the representation of gene as a node and ṽi is the
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representation of the gene vi as a neighbor. These two representations
are added to get final representation for a gene as:

yi = h(k)
i + ṽi (11)

For an edge connecting gene vi and vj , we create feature vector by
combining embeddings of those genes using Hadamard product. Empirical
evaluation shows features created with Hadamard product gives better
performance over concatenation (Grover and Leskovec, 2016). Then, we
train a logistic classifier on these features to classify whether genes vi and
vj interact or not.

3.4 Parameter Optimization

To optimize GNE, the goal is to maximize objective function mentioned
in Equation 10 as a function of all parameters. Let Θ be the parameters
of GNE which includes {Wid,Watt,Wout,Θh} and Θh represents
weight matrices Wk of hidden layers. We train our model to maximize
the objective function with respect to all parameters Θ :

Θ∗ = argmax
Θ

[
log

M∏
i=1

∏
vj ∈ Ni

p(vj |vi)
]

= argmax
Θ

[
M∑
i=1

∑
vj ∈ Ni

log p(vj |vi)
]

= argmax
Θ

[
M∑
i=1

∑
vj ∈ Ni

log
exp(ṽj · h

(k)
i )∑M

j′=1 exp(ṽj′ · h
(k)
i )

]

= argmax
Θ

M∑
i=1

∑
vj ∈ Ni

[
(ṽj · h

(k)
i )− log Zi

]
(12)

where Zi =
∑M
j′=1 exp(ṽj′ · h

(k)
i ) is the per-gene partition function.

Using Equation 11, the objective function can be simplified as :

Θ∗ = argmax
Θ

M∑
i=1

∑
vj ∈ Ni

[
f(vi, vj)− log Zi

]
(13)

Maximizing this objective function with respect to parameters Θ is
computationally expensive, which requires the calculation of partition
function Zi for each gene. In order to calculate a single probability, we
need to aggregate all genes in the network. To address this problem, we
adopt the approach of negative sampling (Mikolov et al., 2013) which
samples the negative interactions, interactions with no evidence of their
existence, according to some noise distribution for each edge eij . This
approach allows us to sample small subset of genes from the network
as negative samples for a gene, considering that the genes on selected
subset don’t fall in the neighborhood Ni of the gene. Above objective
function enhances the similarity of a gene viwith its neighborhood genes
vj ∈ Ni and weakens the similarity with genes not in its neighborhood
genes vj /∈ Ni. It is inappropriate to assume that two genes in the network
are not related if they are not connected. It may be the case that there is
not enough experimental evidence to support that they are related yet.
Thus, forcing the dissimilarity of a gene with all other genes, not in its
neighborhood Ni seems to be inappropriate.

We adopt Adam optimization (Kingma and Ba, 2014), which is an
extension to stochastic gradient descent, for optimizing Equation 13. Adam
computes adaptive learning rate for each parameter. In each step, Adam
algorithm samples mini-batch of interactions and then updates GNE’s
parameters. To address the issue of overfitting, regularization like dropout
(Srivastava et al., 2014) and batch normalization (Ioffe and Szegedy, 2015)

is added to hidden layers. Proper optimization of GNE gives the final
representation for each gene.

4 Experimental setup
We evaluate our model using two real organism datasets. We take gene
interaction network data from BioGRID database1 (Stark et al., 2006)
and gene expression data from DREAM5 challenge (Marbach et al.,
2012). We use two interaction datasets from BioGRID database (2017
released version 3.4.153 and 2018 released version 3.4.158) to evaluate
the predictive performance of our model. Self-interactions and redundant
interactions are removed from interaction datasets. The statistics of the
datasets are shown in Table 2.

Table 2. Statistics of the datasets from BioGRID (Stark et al., 2006) and
DREAM5 challenge (Marbach et al., 2012).

#(Interactions)
Datasets #(Genes) 2017 version 2018 version #(Experiments)

Yeast 5,950 544,652 557,487 536
E. coli 4,511 148,340 159,523 805

We evaluate the learned embeddings to infer gene network structure.
We randomly hold out a fraction of interactions as the validation set
for hyper-parameter tuning. Then, we divide the remaining interactions
randomly into training and testing dataset with the equal number
of interactions. Since validation and test set contains only positive
interactions, we randomly sample an equal number of gene pairs from the
network, considering the missing edge between the gene pairs represents
the absence of interactions. Given the gene network G with a fraction of
missing interactions, the task is to predict these missing interactions.

We compare the GNE model with five competing methods. Correlation
directly predicts the interactions between genes based on the correlation
of expression profiles. Then, the following three baselines (Isomap,
LINE, and node2vec) are network embedding methods. Specifically,
node2vec is the state-of-the-art deep learning method for structural
network embedding. We evaluate the performance of GNE against the
following methods:

• Correlation (Butte and Kohane, 1999)
It computes Pearson’s correlation coefficient between all genes and
the interactions are ranked via correlation scores, i.e. highly correlated
gene pairs receive higher confidence.

• Isomap (Lei et al., 2012)
It computes all-pairs shortest-path distances to create a distance matrix
and performs singular-value decomposition of that matrix to learn a
lower-dimensional representation. Genes separated by the distance
less than threshold ε in embedding space are considered to have the
connection with each other and the reliability index, a likelihood
indicating the interaction between two genes, is computed using
FSWeight (Chua et al., 2006).

• LINE (Tang et al., 2015)
Two separate embeddings are learned by preserving first-order and
second-order proximity of the network structure respectively. Then,
these embeddings are concatenated to get final representations for each
node.

• node2vec (Grover and Leskovec, 2016)
It learns the embeddings of the node by applying Skip-gram model

1 Interaction dataset is downloaded from http://theBioGRID.
org/.
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to node sequences generated by biased random walk. We tuned two
hyper-parameters p and q that control the random walk.

Note that the competing methods such as Isomap, LINE, and node2vec
are designed to capture only the topological properties of the network. For
the fair comparison with GNE that additionally integrates expression data,
we concatenate attribute feature vector with learned gene representation to
extend baselines by including the gene expression. We name these variants
as Isomap+, LINE+, and node2vec+.

The parameter settings for GNE are determined by its performance on
the validation set. We randomly initialize GNE’s parameters, optimizing
with mini-batch Adam. We test the batch size of [8, 16, 32, 64, 128, 256]
and learning rate of [0.1, 0.01, 0.005, 0.002, 0.001, 0.0001]. We set the
number of negative samples to be 10. The embedding dimension d is set to
be 128 for all methods. Table 3 summarizes the optimal parameters tuned
on validation data sets.

Table 3. Optimal parameter settings

Dataset Learning rate Batch size Embedding
dimension (d)

Epoch

Yeast 0.005 256 128 20
E. coli 0.002 128 128 20

To capture the non-linearity of gene expression data, we choose ELU
(Clevert et al., 2015) activation function, which corresponds to δa in
Equation 5, based on empirical evaluation. We use single hidden layer (k
= 1) with hyperbolic tangent activation (tanh) to model complex statistical
relationships between topological properties and attributes of the gene.

We use the area under ROC curve (AUROC) and area under precision-
recall curve (AUPR) (Davis and Goadrich, 2006) to evaluate the rankings
generated by the model for interactions in the test set. These metrics are
widely used in evaluating the ranked list of predictions in gene interaction
(Madhukar et al., 2015).

5 Results and Discussion
We present empirical results of our proposed method against other
methods.

5.1 Analysis of gene embeddings

We visualize the embedding vectors of genes learned by GNE. We
take the learned embeddings, which specifically model the interactions
by preserving topological and attribute similarity. We embed these
embeddings into a 2D space using t-SNE package (Maaten and Hinton,
2008) and visualize them in Figure 3. For comparison, we also visualize
the embeddings learned by structure-preserving deep learning methods,
such as LINE, and node2vec.

For each pair of genes in interaction network of E.coli, we compute
the number of shared neighborhood genes and also the correlation of
their expression. From all gene pairs, we select the fully-connected
subnetwork with five genes (PHEM, YJJB, CSPI, YABI, and YFEA),
having the high number of shared neighborhood genes and also strongly
correlated expression. Because of their similarity in topological properties
and attributes, we expect them to be close to each other in the embedding
space. These five genes are marked in Figure 3.

Figure 3 demonstrates that GNE places these marked genes closer to
each other than other methods. Furthermore, this analysis indicates that
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Fig. 3. Visualization of learned embeddings for genes on E.coli using (a) GNE, (b) LINE,
and (c) node2vec. Genes are mapped to the 2D space using the t-SNE package (Maaten and
Hinton, 2008) with learned representations from each method as input. Each point in the
2D space represents a gene. Selected genes are PHEM, YJJB, CSPI, YABI and YFEA are
marked to point their position in embedding space. Visualization of embeddings learned by
GNE shows these genes as overlapping with each other in the 2D space.

GNE learns similar representations for genes having similar topological
properties and expression.

5.2 Gene Interaction Prediction

We randomly remove 50% of interactions from the network and compare
various methods to evaluate their predictions for 50% missing interactions.
Table 4 shows the performance of GNE and other methods on gene
interaction prediction across different datasets. As our method significantly
outperforms other competing methods, it indicates the informativeness of
gene expression in predicting missing interactions. Also, our model is
capable of integrating attributes with topological properties to learn better
representations.

Table 4. Area under ROC curve (AUROC) and Area under PR curve (AUPR)
for gene Interaction Prediction. + indicates the concatenation of expression data
with learned embeddings to create final representation. ** denotes that GNE
significantly outperforms node2vec at 0.01 level paired t-test.

Methods
Yeast E.coli

AUROC AUPR AUROC AUPR

Correlation 0.582 0.579 0.537 0.557

IsoMap 0.507 0.588 0.559 0.672
LINE 0.726 0.686 0.897 0.851
node2vec 0.739 0.708 0.912 0.862

IsoMap+ 0.653 0.652 0.644 0.649
LINE+ 0.745 0.713 0.899 0.856
node2vec+ 0.751 0.716 0.871 0.826

GNE (our model) 0.825** 0.821** 0.940** 0.939**

We compare our model with a correlation-based method, that
takes only expression data into account. Our model shows significant
improvement of 0.243 (AUROC), 0.242 (AUPR) on yeast and 0.403
(AUROC), 0.382 (AUPR) on E.coli over correlation-based methods. This
improvement suggests the significance of topological properties of the
gene network.

The network embedding method, Isomap, performs poorly in
comparison to correlation-based methods on yeast because of its limitation
on network inference. Deep learning based network embedding methods
such as LINE, and node2vec show the significant gain over Isomap
and correlation-based methods. node2vec outperforms LINE across two
datasets. GNE trained only with topological properties outperforms these
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structured-based deep learning methods. However, these methods don’t
consider the attributes of the gene that we suggest to contain useful
information for gene interaction prediction. By adding expression data
with topological properties, GNE outperforms structure-preserving deep
embedding methods across both datasets.

Focusing on the results corresponding to the integration of expression
data with topological properties, we find that the method of integrating the
expression data plays an important role in the performance. Performance
of node2vec+ (LINE+, Isomap+) shows little improvement with the
integration of expression data on yeast. However, node2vec+ (LINE+,
Isomap+) has no improvement or decline in performance on E.coli. The
decline in performance indicates that simply concatenating the expression
vector with learned representations for the gene is insufficient to capture the
rich information in expression data. The late fusion approach of combining
the embedding vector corresponding to the topological properties of gene
network and the feature vector representing expression data have no
significant improvement in the performance (except Isomap). In contrast,
our model incorporates gene expression data with topological properties
by the early fusion method and shows significant improvement over other
methods.

5.3 Impact of network sparsity

We investigate the robustness of our model with respect to network sparsity.
We hold out 10% interactions as the test set and change the sparsity of
the remaining network by randomly removing a portion of remaining
interactions. Then, we train GNE to predict interactions in the test set and
evaluate the change in performance with respect to network sparsity. We
evaluate two versions of our implementations: GNE with only topological
properties and GNE with topological properties and expression data. The
result is shown in Figure 4.
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Fig. 4. Comparison of our method’s performance with respect to network sparsity and
addition of expression information. (a) yeast (b) E.coli. Integration of expression data with
topological properties of the gene network improves the performance for both datasets.

Figure 4 shows that our method’s performance improves with an
increase in the number of training interactions across datasets. In addition,
our method’s performance improves when expression data is integrated
with topological structure. Specifically, GNE trained on 10% of total
interactions and attributes of yeast shows a significant gain of 0.172
AUROC (from 0.503 to 0.675) over GNE trained only with 10% of total
interactions as shown in Figure 4(a). Similarly, GNE improves the AUROC
from 0.497 to 0.816 for E.coli with the same setup as shown in Figure 4(b).
The integration of gene expression data results in less improvement when
we train GNE on a relatively large number of interactions.

Moreover, the performance of GNE trained with 50% of total
interactions and expression data is comparable to be trained with 80% of
total interactions without gene expression data as shown in Figure 4.The
integration of expression data with topological properties into GNE model
has more improvement on E.coli than yeast when we train with 10% of total
interactions for each dataset. The reason for this is likely the difference in

the number of available interactions for yeast and E.coli as shown in Table
2. This indicates the informativeness of gene expression when we have
few interactions and supports the idea that the integration of expression
data with topological properties improves gene interaction prediction.

5.4 Impact of λ

GNE involves the parameter λ that controls the importance of gene
expression information relative to topological properties of gene network
as shown in Equation 6. We examine how the choice of the parameter λ
affects our method’s performance. Figure 5 shows the comparison of our
method’s performance with different values of λ when GNE is trained on
varying percentage of total interactions.

We evaluate the impact of λ on range [0, 0.2, 0.4, 0.6, 0.8, 1]. When λ
becomes 0, the learned representations model only topological properties.
In contrast, setting the high value for λ makes GNE learn only from
attributes and degrades its performance. Therefore, our model performs
well when λ is within [0, 1].
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Fig. 5. Impact of λ on performance of our method trained with different percentages
of interactions for training GNE. (a) yeast (b) E.coli. Different lines indicate different
percentages of interactions.

Figure 5 shows that integration of expression data improves the
performance of GNE to predict gene interactions. Impact of λ depends
on the number of interactions used to train GNE. If GNE is trained with
few interactions, integration of expression data with topological properties
plays an important role in predicting missing interactions. As the number
of training interactions increases, integration of expression data has less
impact but still improves the performance over only topological properties.

Figure 4 and 5 demonstrate that the expression data contributes the
increase in AUROC by nearly 0.14 when interactions are less than 40% for
yeast and about 0.32 when interactions are less than 10% for E. coli. More
topological properties and attributes are required for yeast than E.coli. It
may be related to the fact that yeast is a more complex species than E.coli.
Moreover, we can speculate that more topological properties and attributes
are required for higher eukaryotes like humans. In humans, GNE that
integrates topological properties with attributes may be more successful
than the methods that only use either topological properties or attributes.

This demonstrates the sensitivity of GNE with respect to parameter
λ. This parameter λ has a huge impact on our method’s performance and
should be selected properly.

5.5 Investigation of GNE’s predictions

We investigate the predictive ability of our model in identifying new
gene interactions. For this aim, we consider two versions (2017 and
2018 version) of BioGRID interaction datasets. The 2018 version contains
12,835 new interactions for yeast and 11,185 new interactions for E.coli
than the 2017 version. Section 5.3 suggests that GNE’s performance
trained with 50% and 80% of total interactions are comparable for both
yeast and E.coli. We thus train our model with 50% of total interactions
from the 2017 version to learn the embeddings for genes and demonstrate
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Table 5. New gene interactions on 2018 version that are assigned high probability by GNE after integration of expression data. We provide probability predicted by
GNE (with/without expression data) for new interactions in the 2018 version and evidence supporting the existence of predicted interactions.

Organism
Probability

Gene i Gene j Experimental Evidence Code Evidence
Topology Topology +

expression

Yeast

0.287 0.677 TFC8 DHH1 Affinity Capture-RNA (Miller et al., 2018)
0.394 0.730 SYH1 DHH1 Affinity Capture-RNA (Miller et al., 2018)
0.413 0.746 CPR7 DHH1 Affinity Capture-RNA (Miller et al., 2018)
0.253 0.551 MRP10 DHH1 Affinity Capture-RNA (Miller et al., 2018)
0.542 0.835 RPS13 ULP2 Affinity Capture-MS (Liang et al., 2017)

E.coli

0.014 0.944 ATPB RFBC Affinity Capture-MS (Babu et al., 2018)
0.012 0.941 NARQ CYDB Affinity Capture-MS (Babu et al., 2018)
0.013 0.937 PCNB PAND Affinity Capture-MS (Babu et al., 2018)
0.015 0.939 FLIF CHEY Affinity Capture-MS (Babu et al., 2018)
0.017 0.938 YCHM PROB Affinity Capture-MS (Babu et al., 2018)

the impact of integrating expression data with topological properties. We
create the test set with new interactions from 2018 version of BioGRID
as positive interactions and the equal number of negative interactions
randomly sampled. We make predictions for these interactions using
learned embeddings and create a list of (Gene vi, Gene vj , probability),
ranked by the predicted probability. Our model assigns high probabilities
to positive interactions over negative interactions which are demonstrated
by Figure 6.
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Fig. 6. Precision-Recall curve demonstrating our method’s performance in predicting new
interactions. (a) yeast (b) E.coli

Table 5 shows top 5 interactions with the significant increase in
predicted probability for both yeast and E.coli after expression data
is integrated. We also provide literature evidence with experimental
evidence code2 obtained from the BioGRID database (Stark et al., 2006)
supporting these predictions. BioGRID compiles interaction data from
numerous publications through comprehensive curation efforts. Taking
new interactions added to BioGRID into consideration, we evaluate the
probability of these interactions predicted by GNE trained with and without
expression data. Specifically, integration of expression data increases the
probability of 8,331 (out of 11,185) interactions for E.coli (improving
AUROC from 0.606 to 0.662) and 6,010 (out of 12,835) interactions
for yeast (improving AUROC from 0.685 to 0.707). Table 5 shows that
integration of topology and expression data significantly increases the
probabilities of true interactions between genes.

This analysis demonstrates the potential of our method in the discovery
of gene interactions.

2 Experimental evidence codes supporting the interactions are
referenced on https://wiki.thebiogrid.org/doku.php/
experimental_systems.

5.6 Generalization to new genes

GNE uses gene expression data which allows it to learn embeddings
for genes that were not the part of network structure used in training.
To evaluate how our model generalizes to unseen genes, we randomly
remove 10%/25%/50% of genes from network structure and train GNE
to learn embeddings for rest of the genes. GNE learns weight matrix
Watt which transforms gene expression data to dense vector i.e. their
embeddings. Given the network structure with 10%/25%/50% missing
genes, our aim is to predict the interactions between these missing genes
using attribute embeddings. To evaluate the performance of the model, we
take interactions between these missing genes from BioGRID as positive
samples and randomly sample an equal number of missing gene pairs that
have no interactions.

Table 6. Area under ROC curve (AUROC) and Area under PR curve (AUPR)
for interaction prediction task with respect to varying number of missing genes.

Methods % unseen
Yeast E.coli

AUROC AUPR AUROC AUPR

Correlation
10% 0.568 0.568 0.537 0.558
25% 0.580 0.580 0.540 0.549
50% 0.578 0.580 0.535 0.553

GNE
10% 0.636 0.620 0.631 0.627
25% 0.646 0.630 0.583 0.599
50% 0.632 0.618 0.581 0.586

Table 6 shows that GNE outperforms correlation-based methods in
predicting gene interactions between unseen genes. The result is also true
when the half of the genes are missing from network structure. Structure
embedding methods such as LINE, node2vec and Isomap cannot be applied
to this scenario, since they require topological properties of unseen genes
to generate embeddings. Integration of attributes and flexibility of GNE
to learn embeddings only based on these attributes help to generalize to
unseen genes.

6 Conclusion
We developed a novel deep learning framework, namely GNE to perform
gene network embedding. Specifically, we design deep neural network
architecture to model the complex statistical relationships between gene
interaction network and expression data. GNE is flexible to the addition
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of different types and number of attributes. Experimental results show
that GNE can learn informative representations for the gene network and
achieve better performance in gene interaction prediction over other state-
of-the-art methods.

As future work, we aim to study the impact of integrating other
sources of information about gene such as transcription factor binding sites,
functional annotations (from gene ontology), gene sequences, metabolic
pathways etc. into GNE in predicting gene interaction.
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