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The mounting challenge of preserving the quality of life in an aging population directs the focus
of longevity science to the regulatory pathways controlling healthspan. To understand the nature
of the relationship between the healthspan and lifespan and uncover the genetic architecture of the
two phenotypes, we studied the incidence of major age-related diseases in the UK Biobank (UKB)
cohort. We observed that the incidence rates of major chronic diseases increase exponentially. The
risk of disease acquisition doubled approximately every eight years, i.e., at a rate compatible with
the doubling time of the Gompertz mortality law. Assuming that aging is the single underlying
factor behind the morbidity rates dynamics, we built a proportional hazards model to predict the
risks of the diseases and therefore the age corresponding to the end of healthspan of an individual
depending on their age, gender, and the genetic background. We suggested a computationally
efficient procedure for the determination of the effect size and statistical significance of individual
gene variants associations with healthspan in a form suitable for a Genome-Wide Association Studies
(GWAS). Using the UKB sub-population of 300, 447 genetically Caucasian, British individuals as a
discovery cohort, we identified 12 loci associated with healthspan and reaching the whole-genome
level of significance. We observed strong (|ρg| > 0.3) genetic correlations between healthspan and
the incidence of specific age-related disease present in our healthspan definition (with the notable
exception of dementia). Other examples included all-cause mortality (as derived from parental
survival, with ρg = −0.76), life-history traits (metrics of obesity, age at first birth), levels of different
metabolites (lipids, amino acids, glycemic traits), and psychological traits (smoking behaviour,
cognitive performance, depressive symptoms, insomnia). We conclude by noting that the healthspan
phenotype, suggested and characterized here, offers a promising new way to investigate human
longevity by exploiting the data from genetic and clinical data on living individuals.

I. INTRODUCTION

Age is the most important single risk factor for mul-
tiple diseases, see, e.g., [1]. Likewise, extreme longevity
in human cohorts is associated with a delayed incidence
of diseases: KaplanMeyer curves of disease-free survival,
stratified by age, demonstrate a consistent delay in the
onset of age-related diseases with increasing age of sur-
vival [2]. The emerging premise is, therefore, that aging
itself is the common driver of chronic diseases and con-
ditions that limit the functional and disease-free period,
the healthspan, and hence is a target for novel interven-
tions [3]. The increasing number of available genomes
of very old people [4–6], though representing a rather
specific and a relatively small sub-group of exception-
ally successfully aging individuals, can provide an in-
sight on the genetic architecture of exceptional life- and
health- spans by use Genome-Wide Association Studies
(GWAS). While such studies suggested a fair number of
loci, the APOE/TOMM40 locus is probably among the
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few consistently implicated in multiple studies. Further
gains can be naturally achieved by increasing the pop-
ulation size with the help of proxy phenotypes, such as
a search for genetic variants that predispose one to age-
related disease and hence are depleted in long-lived per-
sons compared to controls [5]. Another promising alter-
native involves GWAS of parental lifespans [7–9].

In this paper, we focused on aging and morbidity in
mid-life and introduce human healthspan as an alterna-
tive phenotype for genetics of longevity studies. More
specifically, we used clinical histories for over 300,000
people, the participants of the UK Biobank (UKB) co-
hort in the age range from 37 to 72 years old. We checked
the incidence of chronic diseases and identified the top
eight morbidities strongly associated with age after the
age of 40 and ranked by the number of occurrences in
the UKB cohort. We observed that the risk of the se-
lected diseases increases exponentially at approximately
the same rate. The corresponding doubling time is ap-
proximately eight years, close to the mortality risk dou-
bling time from Gompertz law of mortality [10]. The
close association between disease and mortality risk dy-
namics suggested the possibility of a single underlying
mechanism, that is aging.
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FIG. 1: The incidence of the most prevalent chronic
diseases (the solid lines) and the risk of death (the

mortality rate, the orange line) for UKB participants.
The disease incidence increases approximately

exponentially with age at approximately the same rates.

To reveal the genetic determinants of healthspan, we
built a proportional hazards model to predict the end
of the disease-free period of an individual depending on
their age, gender, and the genetic background. We used
the sub-population of 300, 447 genetically Caucasian in-
dividuals as a discovery cohort for a GWAS and iden-
tified 12 loci associated with healthspan at the whole-
genome level of significance. The genetic signature of
healthspan has high genetic correlations with GWAS of
obesity, type 2 diabetes, coronary heart disease, traits re-
lated to metabolic syndrome, and all-cause mortality (as
derived from parental survival). We conclude by noting
that the healthspan phenotype, proposed and character-
ized here, offers a promising new way to investigate hu-
man longevity by exploiting the data from large cohorts
of living individuals with rich clinical information.

II. RESULTS

A. Healthspan and longevity in UKB cohort

We studied the dynamics of disease incidence using the
clinical data available from UKB and selected the top
eight morbidities strongly associated with age after the
age of 40 and ranked by the number of occurrences. The
shortlist included Congestive Heart Failure (CHF), My-
ocardial Infarction (MI), Chronic Obstructive Pulmonary
Disease (COPD), stroke, dementia, diabetes, cancer, and

FIG. 2: Pie chart representing the first chronic disease
prevalence from UKB clinical information (the diseases

color codes are the same as in Figure 1).

death (Table S11). The risks of the selected conditions
were found to increase exponentially with age at approxi-
mately the same rates (Fig. 1; see Materials and Methods
section A 4 for details). The characteristic doubling time
is approximately seven to eight years. The risk of death
in the dataset also grows exponentially with age follow-
ing empirical Gompertz mortality law [10, 11]. The man-
ifested similarity between the diseases and the mortality
risk doubling time suggest that the most plausable sin-
gle unifying mechanism behind the risk acceleration with
age is aging itself.

We chose to define healthspan as the age of the on-
set of the first disease from our predefined list of age-
dependent diseases. As expected, the first morbidity in-
cidence rate also increases exponentially with age (see
the brown “healthspan” line in Fig. 1), the corresponding
doubling time matches the mortality, and the specific dis-
ease risk doubling times. In the UKB cohort, healthspan
is ended by cancer in more than half of the cases, followed
by diabetes and MI, see Figure 2. These three diseases
alone account for over 86% of the end of healthspan pe-
riod (although the cancer category itself includes a huge
variety of diseases). Death occurs later in life and follows
the end of the disease-free survival by approximately a
decade. The total number of the participants with one
or more chronic diseases, 84, 949, is dramatically larger
than that of death events, 8, 365, out of 300, 447 study
population (see below for the GWAS inclusion criteria).

B. Genome-wide association study design

Next, we identified gene-variants predisposing individ-
uals to a shorter healthspan. Since the incidence of the
first morbidity risk grows exponentially with age, we pro-
pose to employ the Cox-Gompertz proportional model

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 16, 2018. ; https://doi.org/10.1101/300889doi: bioRxiv preprint 

https://doi.org/10.1101/300889


3

TABLE I: Variants, tagging regions, significantly associated with the first morbidity hazard (end of healthspan) in
300, 447 genetically British individuals, and results of replication in 96,313 individuals.

EA: effective (coded, tested) allele, RA: reference (non-coded) allele, EAF: effect allele frequency, β: regression
coefficient estimate, p: p-value, βrep: regression coefficient estimate in replication sample, prep: p-value in

replication sample. In bold: replicated loci. In italics: loci demonstrating opposite effect in replication.

index Chr Position (bp) EA RA EAF beta P βrep Prep

rs12134662 1 17,724,767 G A 0.391 0.028 3.18e-08 0.02 2.16e-02

rs10197246 2 202,204,741 C T 0.734 -0.033 1.42e-09 -0.035 2.43e-04

rs12203592 6 396,321 T C 0.214 0.063 9.70e-27 0.043 2.10e-05

rs1049053 6 32,634,405 T C 0.671 0.037 4.06e-12 0.013 1.46e-01

rs10455872 6 161,010,118 G A 0.081 0.057 1.42e-10 0.027 1.19e-01

rs140570886 6 161,013,013 C T 0.016 0.116 9.23e-09 0.131 4.09e-04

rs7859727 9 22,102,165 T C 0.488 0.031 2.64e-10 0.041 1.52e-06

rs34872471 10 114,754,071 C T 0.292 0.061 3.53e-30 0.062 2.86e-11

rs2860197 10 123,351,302 A G 0.613 -0.029 5.04e-09 -0.007 4.47e-01

rs79820308 10 133,129,158 T A 0.057 0.059 3.08e-08 -0.006 7.46e-01

rs1126809 11 89,017,961 A G 0.304 0.04 5.49e-14 0.017 7.59e-02

rs4784227 16 52,599,188 T C 0.24 0.032 1.30e-08 0.018 7.75e-02

rs4268748 16 90,026,512 C T 0.311 0.038 3.99e-13 0.004 6.24e-01

rs159428 20 31,099,311 C T 0.527 0.028 1.00e-08 -0.005 5.84e-01

(see, e.g., [12]) to test statistical associations between
specific genes and disease risks. In Appendix A 5 we ex-
plain how to use a maximum likelihood version of Cox-
Gompertz model to predict the age corresponding to the
end of healthspan for each study participant.

We started by characterizing each of the 300, 447 indi-
viduals in the study cohort by sex and age, followed by
the technical (genotyping batch, assessment center), and
the ethnicity-related genetic variables (40 first genetic
principal components). Maximum likelihood optimiza-
tion produced the best fit proportional hazards model
parameters. The morbidity incidence growth rate was
found to be 0.098 per year, which corresponds to a dou-
bling time of seven years and is compatible with the mor-
tality rate doubling time of approximately eight years
from Gompertz mortality law. As expected, being male is
a significant risk factor (log-hazard ratio, log(HR) = 0.26
at the significance level of p < 10−10), with a correspond-
ing healthspan difference of approximately three years.
The genetic principal components PC4 and PC5, and
some of the assessment center labels are also highly sig-
nificantly associated with the healthspan. From these
numbers, we observed that human mortality and the first
morbidity incidence follow a version of Gompertz law.
The average healthspan can be readily estimated from
the Gompertz model parameters as 72 years, which is 14
years less than the Cox-Gompertz lifespan estimate for
the same cohort.

Since we did not expect a substantial effect on
healthspan by any of the individual gene-variants, the ef-
fect sizes and the significance testing could be performed
using a form of linear regression to the Martingale resid-
ual of the Cox-Gompertz model above, see Appendix A 6.

In this study, we limited the discovery association screen
to the study cohort (300, 447 individuals) with available
genetic information with 11, 309, 218 imputed autosomal
variants.

C. GWAS results

A total of 394 SNPs at 14 loci achieved a genome-wide
significance threshold of p < 5× 10−8 (Table S9). Using
median estimator, the genomic control inflation parame-
ter λ [13] was 1.18. The LD score regression [14] yielded
the healthspan heritability of 0.102 (se = 0.009), and
the LD score regression intercept was 1.053 (se = 0.008,
ratio = 0.24). After adjusting the results of the discovery
GWAS for genomic control of 1.053, a total of 328 SNPs
positioned in twelve loci remained statistically significant
at the genome-wide level (Fig. 3). The conditional and
joint analysis confirmed that all the regions were indepen-
dent except a locus on chromosome 6, at 161Mb (Table
SI). We detected two signals in this locus (rs14057088
and rs10455872) that were in very weak linkage disequi-
librium (R = −0.04). Interestingly, the distance between
these SNPs was only 3kbp, and they had relatively small
frequencies (0.08 and 0.016, respectively).

Using meta-analysis for the subsets of the UK Biobank
that we selected for replication (total N = 96, 313),
we performed replication of 12 genome-wide significant
SNPs (Table SI). Of the twelve SNPs, all but one demon-
strated a consistent sign of association in replication. Of
the eleven SNPs with consistent signs, five associations
were significant after correction for multiple testing with
p < (0.05/12). We subsequently refer to these SNPs as
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FIG. 3: Manhattan plot representing the discovery analysis of healthspan in genetically Caucasian individuals. The
trait is a form of Martingale residual of the Cox-Gompertz proportional hazards model of healthspan as described in
Section A 5. The loci are tagged by SNPs from Table I, labeled by the nearest gene symbol, replicated SNPs marked

in bold.

’replicated’.

D. Genetic correlation analysis

First we checked the genetic correlations between the
healthspan GWAS results and the genetic signatures of
the individual diseases used to build the healthspan phe-
notype. To do this, we produced a series of independent
GWAS of the age at onset of the individual conditions,
using the same Cox-Gompertz methodology (Fig. 4).
The healthspan GWAS exhibits strong correlations with
most of the disease traits, with the notable exception of
dementia (see the discussion below). What is more as-
suring, the mortality, stroke, CHF and MI traits yield
better correlations with healthspan than cancer, even
though cancer is the most frequently occurring first mor-
bidity leading to termination of the disease free period
in our study. We therefore conclude that most of the
selected diseases (perhaps, with the exception of the de-
mentia) and all-cause mortality share a significant num-
ber of common genetic determinants.

To obtain a broader insight into biological significance
of our findings we analyzed genetic correlations between
healthspan and 235 complex traits available from the
LD-hub [15]. Overall, we observed significant genetic
correlations (p < 4.3 × 10−5) between the frailty risk
and 46 traits (Table S2). The strongest positive correla-
tions (rg > 0.4) were found in association with coronary
artery disease (CAD) [16] (rg = 0.62), Type 2 Diabetes
[17] (rg = 0.58), glycated hemoglobin level (HbA1C) [18]
(rg = 0.42), cigarettes smoked per day [19] (rg = 0.44),
and insulin resistance index (HOMA-IR) [20] (rg = 0.41).
The strongest negative correlations (rg < −0.4) were for
the age of first birth [21] (rg = −0.43), father’s, mother’s,
parental age at death [22] (rg = −0.74, −0.66, −0.76 re-
spectively), former vs. current smoker [19] (rg = −0.48)
and HDL related traits [23] (cholesterol esters in large
HDL, total lipids in large HDL, total cholesterol in large
HDL, mean diameter for HDL particles, free cholesterol
in large HDL, with rg = −0.44, −0.41, −0.44, −0.42 and
−0.43, respectively).

Figure 5 summarizes the results of clustering anal-
ysis of the top genetic correlations selected by signif-
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FIG. 4: Genetic correlation between GWAS of the
healthspan and the diseases used to produce the

healthspan phenotype in the UKB discovery cohort.
The significant correlations marked in bold (p < 0.05

after Bonferroni correction). The numbers
corresponding to the COPD trait are not shown, since
the GWAS fails to produce summary statistics due to

mean Z score above 0.15.

icance. We found, that 35 traits with strong signif-
icant genetic correlation with healthspan (|rg| > 0.3
and p < 4.3 × 10−5) fall into four distinct clusters: 1)
the group of sociodemographic factors (including educa-
tion), lifespan traits, smoking, CAD and lung cancer; 2)
HDL-related traits; 3) the cluster of obesity-related traits
including BMI and 4) Type 2 diabetes-related traits.
The healthspan itself clusters together with CAD and
parental lifespan (a sub-cluster of cluster 1). We note,
however, the absence of any substantial genetic corre-
lation between the healthspan and Alzheimer disease
(rg = −0.03, Table S2).

E. Functional annotation in-silico

For the five replicated loci we selected SNPs that most
likely include the functional variant (99% credible set).
In total, we picked 83 SNPs (Table S5) for further vari-
ant effect predictor analysis. The results of variant ef-
fect predictor [24] annotation are presented in Table S6.
We observed that for a locus on chromosome 6 at 161Mb
rs3798220, the variant was missense for two transcripts of
the LPA gene; for both transcripts rs3798220 was classi-
fied as probably damaging by PolyPhen (although it was
classified as a tolerated variant by SIFT).

DEPICT [25, 26] analysis using first the 14 SNPs from
Supplementary Table 1, and then a larger set of 135 inde-
pendent SNPs with p ≤ 10−5 (Table S4) did not yield any
significant gene-sets or tissues/cells types enrichment, or
prioritized genes (FDR > 0.2, Tables S3 and S4).

Finally, we investigated the overlap between associa-
tions obtained here and elsewhere, using the phenoscaner
v1.1 database [27]. For the twelve most significant SNPs
(Table I) we looked up traits that have demonstrated
genome-wide significant (p < 5 × 10−8) associations at
the same or at strongly (r2 < 0.8) linked SNPs. The re-
sults are summarized in Table S8. For the five replicated
loci we observed co-associations with a number of com-
plex traits. The loci on chromosome 2 at 202 Mb (nearest
gene ALS2CR12 ) associated with melanoma skin can-
cer [28] and esophageal squamous cell carcinoma [29].
Next, loci on chromosome 6 at 0.4 Mb (IRF4 ) associ-
ated with different aspects of pigmentation, such as color
of skin, eye and hair, pigmentation, tanning and freck-
les [30, 31], but also with non-melanoma skin cancer [31]
and the mole count in cutaneous malignant melanoma
families [32]. Two loci (on chromosome 6 at 161 Mb and
on chromosome 9 at 22 Mb, LPA and CDKN2B-AS1 re-
spectively) were associated with coronary artery disease,
myocardial infarction, LDL and cholesterol levels [16, 33].
The remaining replicated locus on chromosome 10 at 114
Mb (TCF7L2 ) was associated with glucose levels, BMI
and type 2 diabetes [34, 35].

F. Effects of known lifespan-associated loci onto
healthspan

We have compared whether SNPs, previously reported
to be associated with lifespan and (extreme) longevity
are associated with healthspan (Table S13) in our data.
Interestingly, we observed a very strong enrichment in
low p-values (of the 16 tested SNPs, nine had p < 0.1),
although it should be noted that some SNPs we tested
fall into the same region and some were discovered using
the same resource (UKB). After correction for multiple
testing, we find that four variants (located in or near
CDKN2B, ABO, LPA, and HLA-DQA1 ), which have
been reported to be associated with (extreme) longevity
were also significantly associated with the healthspan;
two of these variants reached genome-wide significance
and were independently discovered as healthspan loci in
this study. For the four loci, the allele that was previously
reported as being associated with increased longevity,
was the one associated with increased healthspan in our
data.

III. DISCUSSION

Risks of death associated with specific age-related dis-
eases increase exponentially at similar rates irrespective
of the conditions. The prevalence of disease and there-
fore the frailty index are also exponential functions of
age with the doubling time matching approximately the
mortality rate doubling time, see, e.g., [36, 37]. In this
study, we observed that the incidence of the diseases of
age also growths exponentially with age at nearly the
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FIG. 5: Heatmap for 35 traits with strongest genetic correlations with healthspan (|rg| ≥ 0.3; p ≤ 4.3× 10−5).
PMID references are placed in square brackets. Note the absence of genetic correlation between the healthspan and

the Alzheimer disease traits (rg = −0.03).

same rates. The manifestly close relation between the
diseases and mortality suggests that the healthspan may
be a very relevant aging phenotype: the first morbidity
signifies the end of the functional or disease-free period,
the healthspan, and may signal a transition into a bio-
logically or clinically distinct and relatively short-lived
state, linked with the progressive accumulation of frailty,
multimorbidity, and death.

Since the first morbidity risk grows exponentially with
age, we proposed to employ the probabilistic language
of Cox-Gompertz proportional models to test for asso-
ciations between the demographic and genetic variables,
on the one hand, and healthspan, on the other. For ex-
ample, the Cox-Gompertz model hazard ratio associated
with male sex gives 2.5 years for the estimated healthspan
difference between the males and females. The Cox-
Gompertz lifespan difference of 3.2 years for the same
cohort. Although females in UK (the population rele-
vant to this study) live longer than males, the gap be-
tween the sexes has decreased over time and is now 3.6
years [38]. The number is very close to our healthspan
difference estimate. It is therefore intriguing to see if this
numerical coincidence is the model artifact, or if indeed
the observed difference in the lifespans could be entirely
attributed to the difference in healthspan.

Since gene variant contributions to health- and life-
span are usually small, we obtain the corresponding ef-
fect size and statistics estimates with the help of a simple
perturbative procedure first proposed in [39] and adopted
here. It resembles a regression of the independent vari-
able (the gene variant, in our case) against the Martingale
residual of the proportional hazard model, the difference
between the predicted and the observed morbidity, see,
e.g., [7]. We obtained explicit analytic expressions for the
regression coefficient and statistics for the specific case
of parametric Cox-Gompertz mortality model, see Eqs.
(A2) and (A3). We suggest using the proposed equa-
tions or the relevant generalizations for non-parametric
risk models for fast and accurate statistical analysis in-
volving small survival effects.

It is tempting to consider the results of our GWAS
as informing about potential anti-aging targets. The
healthspan, as well as lifespan, however, is an integrated
quantity and therefore may depend on the gene acti-
vation patterns during subsequent development stages
and/or associated with life-long exposure. Therefore, our
GWAS ’hits’ may not necessarily be good targets for an
intervention at advanced ages. The appearance of signif-
icant genetic correlations with such traits as the years of
schooling and the age of the first birth could be indicators
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of such possibilities. One possible way to deconvolute
the effects of human development, diseases and longevity
could thus involve using longitudinal clinical data to see
if there are gene variants responsible for the rate of aging
or biological aging acceleration separately in every age
group to negate the effects of accumulation in the course
of development.

The strongest genetic correlate of the healthspan is
parental longevity. More specifically, HLA-DQB1, LPA
and CDKN2B loci identified in relation to healthspan
in this study were recently associated with parental
longevity, a proxy for lifespan, in [8]. Such overall corre-
lation and specific overlap is indeed a desired property of
a longevity-associated or a longevity-proxy phenotype.
Other traits, belonging to the same cluster, are firstly
coronary artery disease, and then lung cancer, smok-
ing behaviour, age of first birth, and years of school-
ing (Fig.2). The remaining large clusters correspond to
traits associated with diabetes type 2, obesity and lipid
metabolism, most of which are known to relate to bio-
logical age acceleration, see, e.g., [40]. The findings thus
provide further evidence suggesting that healthspan and
the related diseases could be controlled by common and
highly evolutionary conserved mechanisms, such as nu-
trient sensing and insulin signalling, most robustly im-
plicated in longevity studies in model animals [1, 41].

The notable absence in our study of the gene variants
around the APOE/TOMM40 locus known for associa-
tion with early onset of Alzheimer disease [42] requires
special consideration. First, as shown in Fig. 1, demen-
tia occurs later in life and its incidence rate appears to
grow faster than that of the other diseases investigated
here in relation with healthspan. The estimated risk dou-
bling time is shorter and is closer to 5 years, in agreement
with, e.g., [43]. Next, we performed the dementia GWAS
in the same UKB cohorts and failed to produce strong
genetic correlations with the healthspan (Fig. 4; note,
however, the appreciable correlation between the demen-
tia and mortality traits). We also note the absence of
significant genetic correlations between our healthspan
and the LD-hub Alzheimer disease traits (Fig. 5). These
findings could be an artifact of the age composition of our
discovery cohort and possible under-representation of de-
mentia incidence and its influence on healthspan. It could
be, however, an indication of distinct underlying biology
between the late life neurodegenerative conditions and
the more prevalent diseases of aging, mostly occurring at
the earlier age, corresponding to the average lifespan in
the population.

Using healthspan as a longevity proxy as exemplified
here introduces a new way to investigate interactions
among gene variants and phenotypic variation due to
effects of lifestyles and living conditions. On a popu-
lation level, such life-history variables produce a very
significant contribution to longevity [44], are inherently
stochastic and may not be readily estimated for inclusion
in most forms of genetic studies. It would be rather diffi-
cult, for example, to extrapolate social status, sleep pat-

terns or food habits across generations for GWAS against
parental age at death. Modern large population stud-
ies involve prospective cohorts and produce a very rich
characterization of the participants, yet at the expense
of limited follow-up times and an insufficient number of
recorded death or morbidity events. The healthspan as
the target phenotype should help bring the best of the
two worlds and thus improve the statistical power of
longevity GWAS and eventually assist in the discovery
of many more genes implicated in the control of human
aging and diseases.

The burden of diseases increases with age, and the first
morbidity is usually quickly followed by the second and
more. Therefore it is worthwhile to understand if the
same or different genes than those regulating the onset
of the first morbidity (the end of healthspan, as defined
in this study) also control the dynamics of multiple mor-
bidities later down the road. The comparison and bet-
ter understanding of the results of such studies will help
to differentiate the biology of health- and life-span. Hu-
man development and aging is a multi-stage process, and
therefore longevity emerges as a genuinely complex trait.
The presented study highlights a need for further system-
atic advances in aging GWAS methodology to elucidate
the practical potential of genetics in diagnosis of aging
and, subsequently, help to shape the anti-aging thera-
peutic target space.
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Appendix A: Methods

1. UK Biobank

UK Biobank is a prospective cohort study of over
500,000 individuals from across the United Kingdom [45].
Participants, aged between 40 and 69, were invited to
one of 22 centres across the UK between 2006 and 2010.
Blood, urine and saliva samples were collected, physi-
cal measurements were taken, and each individual an-
swered an extensive questionnaire focused on questions
of health and lifestyle. All participants gave written in-
formed consent and the study was approved by the North
West Multicentre Research Ethics Committee. UKB has
Human Tissue Authority research tissue bank approval,
meaning separate ethical approvals are not required to
use the existing data. UKB provided genotyping infor-
mation for 488,377 individuals. Data access to UKB was
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granted under MAF 21988. Phenotypes and genotypes
were downloaded directly from UKB.

2. Genotyping and imputations

UKB participants were genotyped on two slightly dif-
ferent arrays and quality control was performed by UKB
[46]. 49,950 samples were genotyped as part of the
UK BiLEVE study using a newly designed array, with
438,427 remaining samples genotyped on an updated ver-
sion (UK Biobank Axiom array), both manufactured by
Affymetrix (96% of SNPs overlap between the arrays).
Samples were processed and genotyped in batches ap-
prox. 5000 samples each. In brief, SNPs or samples
with high missingness, multi-allelic SNPs and SNPs with
batchwise departures from HardyWeinberg equilibrium
were removed from the data set. After quality control,
genotypes were available for 488k subjects at 805k sites.
UKB provided 40 principal components of genetic relat-
edness (UKB field id 22009) and a binary assessment
of whether subjects were genetically Caucasian (UKB
field id 22006), based on principal components analysis
of their genetic data.

Imputed data were prepared by UKB. In summary,
autosomal phasing was carried out using a version of
SHAPEIT2 [47] modified to allow for very large sam-
ple sizes. Imputation was carried out using IMPUTE2
[48] using the merged UK10K and 1,000 Genomes Phase
3 reference panels to yield higher imputation accu-
racy of British haplotypes. The imputations resulted
in 92,693,895 SNPs, short indels and large structural
variants, imputed in 488,377 individuals (UK-Biobank.
Genotype Imputation and Genetic Association Studies
of UK Biobank.

3. Discovery and replication samples

For the discovery and replication we used only the
data from PCA cohort (QC passed, Data-Field 22020,
N = 407,208). For the discovery set we selected 300,447
British individuals of European ancestry (EA) according
to the genetic principal components provided by the UK
Biobank who were not included in UK BiLEVE study
(UKB Resource 531). For replication, we used a combi-
nation of the UK Biobank participants not included in
the discovery set that comprised rest of EA individuals
(self-reported white, data-field 21000, n = 81,099), indi-
viduals of African ancestry (self-reported Africans, n =
3,073), individuals of South Asian ancestry (Indian, Pak-
istani, and Bangladeshi; n = 6,921), Chinese individuals
(n = 1,422) and Caribbean individuals (n=3,799). Re-
maining self-declared ethnicities that were mixed, or were
ambiguous (Other ethnic group, Prefer not to answer,
Not available) were not analysed. To reduce the risk of
bias due to population stratification, all groups were an-
alyzed separately followed by a meta-analysis. Total re-

sulting sample size for replication was 96,313 individuals.
For more details see Supplementary Table 8.

The replication threshold was set as p < 0.05/12 =
0.004. For each SNP, statistical power (or probability) of
replication was estimated using the fact that under alter-
native hypothesis (H1 : β 6= 0) the test statistics T 2 from
replication sample is expected to follow the χ2

df=1,NCP
distribution, where NCP is the expected non-centrality
parameter computed as (T 2

disc − 1) × Nrep/Ndisc, where
T 2
disc = (βdisc/sedisc)

2/λLDSC is test statistic for par-
ticular SNP in discovery cohort, corrected for LD score
regression interecept λLDSC , Nrep is the sample size of
the replication cohort and Ndisc is the sample size of the
discovery cohort. The the power of replication is equal
to the probability that such distributed statistics would
exceed the threshold value k = 8.2 that corresponds to
right-hand integral of χ2

1 equal to 0.004.

4. Incidence of diseases calculation from UKB data

We used in-patient hospital admissions data (UKB
data category 2000) and self-reported diagnoses obtained
via verbal interview (UKB data category 100074) to ex-
tract information in relation to the disease history, the
nature of and the age at the available diagnosis. For
each of the condition, we follow the instructions simi-
lar to the ones given by the UK Biobank outcome ad-
judication group for algorithmic-defined stroke and MI
(UKB data category 42). For each selected condition,
except for cancer and death we compile a list of hospital
data codes (ICD-10, Supplementary Table 11) and self-
reported data codes (UKB data coding 6) that defines
these conditions in our study. We used National cancer
registries linkage to UKB (UKB data category 100092) in
addition to hospital data for cancer and National death
registries linkage to UKB (UKB data category 100093)
to define death event. First, for each condition we set the
age of first occurrence of any of corresponding hospital
data codes as age this condition was manifested. Next,
if there was missing hospital data (for hospital data it is
impossible to distinguish between missing data and ab-
sence of any disease) we added self-reported data if there
was any. Therefore we obtained age each condition was
occurred. The minimal age from this data set for every
individual from UKB was taken as age the healthspan
terminates.

By definition, the incidence rate of a disease is the
limit m(t) = ∆t−1Nd(t,∆t)/Nh(t) when ∆t is suffi-
ciently small. Here t is the age, Nh(t) is the number
of people healthy at the age t and Nd(t,∆t) is the num-
ber of people diagnosed between the ages t and t + ∆t
(both Nh and Nd are presumed to be large). This def-
inition does not rely on any specific underlying model.
In practice, datasets are of limited size and the inter-
val ∆t cannot be made arbitrarily small, and therefore
precautions should be taken to avoid possible artifacts
in the calculation. To compute the incidence rate at
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a given age t, one shall consider a set of participants
Υ(t,∆t) defined as those who are healthy at the age t
and whose health status is available in the whole age
range [t, t+ ∆t): Υ(t,∆t) = {u|((δu = 0)∨ (δu = 1∧ t ≤
tud)) ∧ (t + ∆t < tu2 )}. Here u is the participant’s id,
δu = 1 if the participant was diagnosed and δu = 0 other-
wise, tud is the age when diagnosed, and tu2 is the maximal
age at which the information about the diagnosis (if any)
would still be recorded. From this Nh(t) = |Υ(t,∆t)| and
Nd(t,∆t) = |{u ∈ Υ(t,∆t)|δu = 1 ∧ t ≤ tud < t + ∆t}|,
where |..| is the size of the set.

The maximum follow-up age tu2 does not coincide with
the age at the diagnosis tud and shall be inferred from
the study setup. Assuming tu2 = tud for diagnosed par-
ticipants would overestimate the risks. Also, the age is
often rounded and hence ∆t may be not large enough
to treat the rounding errors as negligible. We addressed
the issue by consistently using half-open intervals [..) def-
initions. Finally, our prescription relies on the implicit
assumption, that the diagnosis does not influence the en-
rolment. This is not always true. If someone is dead, this
would, naturally, prevent that person from being enrolled
at a greater age. This can be addressed by the following
modification: Υ′(t,∆t) = {u ∈ Υ(t,∆t)|tu1 < t}, where
tu1 is the age at enrollment. In this study, we assumed
that the enrolment in UKB was not biased by diagnoses
and thus we used the Υ for all diseases and conditions,
Υ′ participants set was only employed for the mortality
rate calculation.

5. Cox-Gompertz proportional hazards model and
healthspan

By design of the UKB study, every participant is ad-
mitted into the cohort at the age tn1 . According to the
medical history information, the participant may be diag-
nosed with any of the diseases relevant to determination
of lifespan at the age of the first tnd (if applicable). By
the end of the followup age, tn2 , we labeled every study
participant as frail, δn = 1, if the participant is already
diagnosed with any of the diseases, tnd ≤ tn2 , or δn = 0,
otherwise.

Under then Cox-Gompertz proportional hazards model
the risks of frailty acquisition or healthspan end at the
age t is h(t, xn) = h0 exp(Γt+βxn), where xn is a vector
of age-independent parameters, characterizing the par-
ticipant. Here h0, Γ, and β are the baseline morbidity
incidence, the Gompertz exponent and the log-odds-ratio
regression coefficients vector, the model parameters. The
(negative log of) likelihood of the data can be presented
in the following form:

L =
∑
n

h0 exp(βxn)

Γ
(exp(Γ min(tnd , t

n
2 ))− 1)−

− δn(log h0 + βxn + Γ min(tnd , t
n
2 )). (A1)

Given a necessary amount of data the model parame-

ters could be obtained by the likelihood maximization
or, equivalently, minimization of the cost function L.

We built the first version of the Cox-Gompertz
healthspan model by including UKB participants infor-
mation, including gender and the first genetic principal
components variables, assessment center codes and geno-
typing batch labels (see Supplementary Table 14 for the
summary of the model parameters). The morbidity in-
cidence growth rate is 0.098 per year, which corresponds
to a doubling time of seven years, compatible with the
mortality rate doubling time of approximately 8 from the
Gompertz mortality law. As expected, being male is a
risk factor (log-hazard ratio, log(HR) = 0.26 at the sig-
nificance level of p � 10−10) corresponding to an aver-
age healthspan difference of about five years. The ge-
netic principal components PC4 and PC5 are also highly
significant (log(HR) ≈ 3 × 10−2, p � 10−10). The av-
erage healthspan or lifespan can be estimated from Cox-
Gompertz model parameters as t̄ ≈ (ln(Γ/h0) − γ)/Γ,
where γ = 0.577 is the Euler-Mascheroni constant, see,
e.g., [49].

6. Gene variant-healthspan association testing

If the participants state vector xni is extended by the
genetic variants variables sn, in principle, the model has
to be re-evaluated, to obtain a new versions of all model
parameters. We do not expect, however, large effects
of any of the gene variants on lifespan. Therefore the
model parameters should not change much as well and
the variation of the Cox-Gompertz model with respect
to the genetic variables can be accurately obtained by
iterations, using the model from A 5 as the zeroth order
approximation (see a related example of a perturbation
theory application in a proportional hazards model in-
volving prediction of all-cause mortality in [39]).

We note, however, that the simultaneous determina-
tion of the weak effects of a gene on the baseline hazard
h0 and the rate of aging Γ is an ill-defined mathematical
problem [49]. Only the combination of the two parame-
ters, the change in the life expectancy can be determined
with accuracy. We therefore fix the Gompertz exponent
Γ to its most probable value in the zeroth order model
and allow for all other model parameters adjustment.
The perturbation theory expansion for the small effect
βs associated with the gene variants yields (the deriva-
tion is not shown):

βs =

∑
n s

n(Ndρ
n − δn)

Nd〈δs2〉ρ
, (A2)

where, for convenience, we introduced the weights

ρn =
exp(βxn)(exp(Γ min(tnd , t

n
2 ))− 1)∑

n exp(βxn)(exp(Γ min(tnd , t
n
2 ))− 1)

normalized in such a way that
∑
n ρn = 1. We used the

notation 〈δs2〉ρ for the corresponding weighted average.
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The effect determination error

σ2
s =

1

Nd〈δs2〉ρ
, (A3)

and hence the statistical power of the gene variant as-
sociation with the healthspan is explicitly dependent on
the number of people with diagnoses, Nd =

∑
n δ

n.
In our analyses, we used imputed variants with the ex-

pected effective minor allele count (defined as twice the
minor allele frequency multiplied by sample size and by
the imputation quality) more than 200 for discovery co-
hort genotypes and imputation info score (as IMPUTE
info, calculated by RegScan for discovery cohort with
--info2 option) more than 0.7.

7. Conditional and joint multi-SNP analysis

Conditional and joint analysis (COJO) as implemented
in the program GCTA [50] was used to find SNPs inde-
pendently associated with the phenotypes of interest. As
input, this method uses (meta-analysis) summary statis-
tics and a reference sample that is utilised for the LD
estimation. The method starts with the ”top SNP” (the
one with smallest p-value, conditional that p < p0, where
p0 is specific threshold defined by user) as provided by the
summary-level data and then the p-values for all the re-
maining SNPs are calculated conditional on the selected
SNP. The algorithm then selects the next top SNP in the
conditional analysis (provided p < p0) and proceeds to
fit all the selected SNPs in the model dropping all those
SNPs with p-values > p0. The iteration continues until
no SNP is added or dropped from the model thus find-
ing a subset of associated SNPs with a threshold for LD
(r2 < 0.9) among SNPs. Finally, a joint analysis of the
subset of associated SNPs is performed. We had per-
formed analyses with p0 = 5× 10−8 and p0 = 1× 10−5.

As the LD reference, we used a sub-sample of 10,000
people, randomly chosen from the total set of 120,286
people used for GWAS discovery phase. Additional to
our previous SNP filters described in the ”Association
testing” section, in selecting LD reference data, we fur-
ther filtered out the SNPs with imputation info scores less
than 0.7 and minor allele frequencies (MAF) less than
0.002.

8. Heritability and genetic correlation analyses

We used LD hub and ldsc [51] tools for estimation of
captured heritability and genetic correlations between HS
and different traits and common diseases [51]. A total of
231 traits were analyzed after removing duplicates via
using only the most recent study for each trait as indi-
cated by the largest PMID number. Genetic correlations
between HS and the traits with p-value 4.3e-5 (Bon-
ferroni corrected, 0.01/231) were considered statistically
significant. Pair-wise genetic correlations between all the

traits selected as described above were obtained from the
LD-hub. To focus on the largest magnitude genetic cor-
relations, we selected only the traits with absolute values
of genetic correlations with HS more than 0.3. This filter-
ing led to the total of 36 traits (including HS). Clustering
and visualization was carried out using corrplot package
for R and basic hclust function. For clustering, we esti-
mated squared Euclidean distances by subtracting abso-
lute values of genetic correlation from 1 and used Ward’s
clustering method.

For genetic correlation anasysis between each disease
comprising healthspan phenotype and healthspan itself
we used LDSC (LD Score) v1.0.0 software. Genotype
calls were filtered by MAF > 0.01 using LDSC ’munge-
sumstats’ script to produce total 659,079 variants valid
for downstream analysis. Genomic reference was con-
structing by randomly sampling 10,000 individuals from
the UKB population. Then, we ran LDSC genetics corre-
lation analysis with default parameters and input data as
described above. Cross-correlations can be seen at figure
4 and Table S15.

For analysis of heritability, genomic control inflation
factor λ [13] and genetics correlations we have used SNPs
defined by overlap between our set of SNPs and ’high
quality SNPs’ as suggested by the authors of the LD hub
(these represent common HapMap3 SNPs that usually
have high imputation quality; also, this set excludes HLA
region) [14], 1,162,742 SNPs in total).

9. In silico functional analysis

Variant effect prediction (VEP)

We used PAINTOR software to prepare the set of SNPs
for functional annotation. For this analysis, we provided
PAINTOR with clumping results, LD matrices and an-
notation files. Using PLINK [52] and 10,000 samples ref-
erence set described above (the same subset as used in
COJO and DEPICT analyses) we performed clumping
analysis with ’p1’ and ’p2’ p-value threshold parameters
set to 5 × 10−8, ’r2’ set to 0.1 and MAF¿0.002. Then,
using the same reference set we generated pair-wise cor-
relation matrix for all SNPs in each region in clumping
analysis results using plink --r option. When running
PAINTOR, we did not use annotations; we changed op-
tions controlling input and output files format only, and
otherwise we have used default parameters. In the next
step, all output results were aggregated into one file and
SNPs marked by PAINTOR as 99% credible set we cho-
sen for functional annotation by VEP with GRCH37 ge-
nomic reference.

Gene-set and tissue/cell enrichment analysis

For prioritising genes in associated regions, gene set
enrichment and tissue/cell type enrichment analyses, we
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have used the DEPICT software v. 1 rel. 194 [25]
with following parameters: flag loci = 1; flag genes =
1; flag genesets = 1; flag tissues = 1; param ncores =
10. Independent (as selected by COJO procedure) vari-
ants with p < 5 × 10−8 (14 SNPs) and p < 10−5 (135
SNPs) has resulted from these analyses. We have used
UKB subset of 10,000 individuals for computations of LD
(the same subset as used for COJO analysis).

Pleiotropy with complex traits

We investigated the overlap between associations ob-
tained here and elsewhere, using PhenoScaner v1.1
database. For five replicated SNPs (Table 1) we looked
up traits that have demonstrated genome-wide signifi-
cant (p < 5×108 ) association at the same or at strongly
(r2 < 0.8) linked SNPs.

Appendix B: Supplementary info

1. Supplementary information legend

• Supplementary Table 1: Supplementary Table 1.
Extended results for variants, tagging regions, sig-
nificantly associated with lifespan in the discov-
ery sample of 300,447 individuals; association be-
tween these variants and lifespan in the replication
sample of 55,276 self-reported British individuals
and 41,037 individuals of other ethnicities (total
N = 96, 313).

• Supplementary Table 2: Genetic correlations be-
tween frailty and different traits, as estimated by
LD score regression.

• Supplementary Table 3A: Gene set enrichment
analysis with DEPICT (input SNPs with p¡5e-8).

• Supplementary Table 3B: Gene prioritisation with
DEPICT (input SNPs with p¡5e-8).

• Supplementary Table 3C: Tissue enrichment anal-
ysis with DEPICT (input SNPs with p¡5e-8).

• Supplementary Table 4A: Gene set enrichment
analysis with DEPICT (input SNPs with p¡1e-5).

• Supplementary Table 4B: Gene prioritisation with
DEPICT (input SNPs with p¡1e-5).

• Supplementary Table 4C: Tissue enrichment anal-
ysis with DEPICT (input SNPs with p¡1e-5).

• Supplementary Table 5: 99% credible set for SNPs
implicated as genome-wide significant and indepen-
dent by COJO analysis.

• Supplementary Table 6: Summary from analysis of
variants from 99% credible set with variant effect
predictor (VEP).
• Supplementary Table 7: Replication cohort com-

position.

• Supplementary Table 8A: Other traits associated
to the regions showing significant association with
predicted frailty (GWAS).

• Supplementary Table 8B: Other traits associated
to the regions showing significant association with
predicted frailty (eQTL).

• Supplementary Table 8C: Other traits associated
to the regions showing significant association with
predicted frailty (Metabolites).

• Supplementary Table 9: All significant SNPs.

• Supplementary Table 10: Cox-Gomperz summary
statistics for single diseases

• Supplementary Table 11. Disease codes for
healthspan composition.

• Supplementary Table 12.

• Supplementary Table 13. Variants previously im-
plicated in studies of longevity and aging.

• Supplementary Table 14. Cox-Gompertz model pa-
rameters estimation.
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