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Abstract

There is an increased need for integrative analyses of multi-omic data. Although
several algorithms for analysing multi-omic data exist, no study has yet
performed a detailed comparison of these methods in biologically relevant
contexts. Here we benchmark a novel tensorial independent component analysis
(tICA) algorithm against current state-of-the-art methods. Using simulated and
real multi-omic data, we find that tICA outperforms established methods in
identifying biological sources of data variation at a significantly reduced
computational cost. Using two independent multi cell-type EWAS, we further
demonstrate how tICA can identify, in the absence of genotype information,
mQTLs at a higher sensitivity than competing multi-way algorithms. We validate
mQTLs found with tICA in an independent set, and demonstrate that
approximately 75% of mQTLs are independent of blood cell subtype. In an
application to multi-omic cancer data, tICA identifies many gene modules whose
expression variation across tumors is driven by copy number or DNA methylation
changes, but whose deregulation relative to the normal state is independent such
alterations, an important finding that we confirm by direct analysis of individual
data types. In summary, tICA is a powerful novel algorithm for decomposing
multi-omic data, which will be of great value to the research community.

Keywords: Multi-omic; tensor; dimensional reduction; independent component
analysis; mQTL; epigenome-wide association study; cancer

Background
Omic data is now most often generated in a multi-dimensional context. For instance,

for the same individual and tissue-type one may measure different data-modalities

(e.g. genotype, mutations, DNA methylation or gene expression), which may help

pinpoint disease driver genes [1]. Alternatively, for the same individual, the same

data-type may be measured across different tissues or cell-types [2, 3], which may

help identify the most relevant cell-types or tissues for understanding disease aetiol-

ogy. We refer to all of these types of multi-dimensional data generally as “multi-way”

or “multi-omic” data, and when samples and molecular features are matched, the

data can brought into the form of a multi-dimensional array, formally known as a

tensor [4].

While several statistical algorithms for the analysis of multi-way or tensorial data

are available [5, 6, 4, 7], their application to real data has been challenging. There

are mainly three reasons for this. First, the associated multi-way datasets are often

very large and how well the algorithms perform on such large sets is currently still

unclear. Second, the algorithms can be computationally demanding, compromising
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their benefit-to-cost ratio [4]. Third, interpreting the output of these algorithms

requires an in-depth understanding of the underlying methods. Exacerbating this

problem, most available software packages are not user-friendly, requiring the user

to possess such in-depth understanding in order to extract the relevant biological

information. Beyond these technical challenges, there is also a lack of comparative

studies, making it difficult to choose the appropriate algorithm for the task in ques-

tion.

To help address some of these outstanding challenges, we here consider and evaluate

a novel data tensor decomposition algorithm [8, 9], which is based on the framework

of blind source separation (BSS), and specifically that of Independent Component

Analysis (ICA) [10]. Although common BSS techniques such as non-negative ma-

trix factorization (NMF) and ICA have been successfully applied to a wide range

of single omic data types, including e.g. gene expression [11, 12, 13, 14, 15, 16],

DNA methylation [17] and mutational data [18], their application to multi-way

data is largely unexplored [19]. In the case of single omic datasets, the improved

performance of ICA over non-BSS techniques like PCA owes primarily to the non-

Gaussian and often sparse nature of biological sources of variation, which means

that statistical deconvolution of biological samples benefits from non-linear decorre-

lation measures such as statistical independence (as used in ICA) [13]. It is therefore

natural to consider analogous ICA algorithms for multi-way data, as we do here,

since these may also lead to improved inference.

In order to assess this, we here benchmark our novel tensorial BSS algorithm against

some of the most popular and powerful algorithms for inferring sources of variation

from multi-omic data, including JIVE (Joint and Individual Variation Explained)

[5], PARAFAC (Parallel Factor Analysis) [6, 4], iCluster [7] and Canonical Correla-

tion Analysis (CCA) [20, 21, 22]. Each of these algorithms has particular strengths

and weaknesses, which render comparisons between them highly non-trivial. For

instance, a limitation of CCA is that it can only infer common sources of variation

between data-types or tissues, in contrast to JIVE or PARAFAC which can infer

both joint as well as individual sources of variation. On the other hand, JIVE and

CCA can be run on multiple data matrices with different numbers of molecular fea-

tures, while PARAFAC and iCluster require matched sets of features (and samples)

for each data-type. Model complexity also differs substantially between methods,

with PARAFAC exhibiting a much lower model complexity than an algorithm such

as iCluster. Thus, a comparison of all of these methods is of paramount interest,

and here we do so in a tensorial context, i.e. one where the multi-way data is defined

over a matched set of molecular features (e.g. genes or CpGs) and samples across all

data-types, allowing the data to be brought into the form of a tensor. Specifically,

we shall here consider order-3 data tensors, i.e. data which can be brought into the

form of an array with 3 dimensions (often called “modes”). In our evaluation and

comparison of all multi-way algorithms, we consider both simulated data as well

as data from real epigenome-wide association studies (EWAS). We further illus-

trate potential uses of our tensorial BSS algorithm for (i) the detection of cell-type

independent and cell-type specific methylation quantitative trait loci (mQTLs) in

multi cell-type or multi-tissue EWAS, and (ii) the detection of cancer gene modules

deregulated by copy-number and DNA methylation changes.
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Results
Tensorial ICA outperforms JIVE, PARAFAC, iCluster and CCA on simulated data

Tensorial ICA (tICA) aims to infer from a data-tensor, statistically independent

sources of data variation, which should better correspond to underlying biological

factors (Methods). Indeed, since biological sources of data variation are generally

non-Gaussian and often sparse, the statistical independence assumption implicit in

the ICA formalism can help improve the deconvolution of complex mixtures and

thus better identify the true sources of data variation (Fig.1). As with ordinary

ICA itself, there are different ways of implementing tICA, and we here consider

two different flavours, called tensorial fourth-order blind identification (tFOBI) and

tensorial joint approximate diagonalization of high-order eigenmatrices (tJADE)

(Methods). Specifically, we here consider two modified versions of these, whereby

tensorial PCA is applied as a noise reduction step (also called whitening) prior to

implementing tICA, resulting in two algorithms we call tWFOBI and tWJADE

(Methods).

First, we tested the two tICA algorithms, as well as tPCA, on simulated multi-way

data consisting of two different data matrices defined over the same 1000 features

(genes) and 100 samples (Methods). The data for the 2 matrices was generated

with a total of 4 sources of variation, 2 for each matrix, and with 1 source in each

data matrix describing joint variation, driven by a total of 100 genes. A total of

nine different noise levels were simulated, ranging from a high signal-to-noise ratio

(SNR) regime (SNR=3, NoiseLevel=1) to a low SNR regime (SNR=0.6, Noise-

Level=5). For each noise level, a total of 1000 Monte-Carlo runs were performed. In

each run, we compared the multi-way algorithms in terms of their sensitivity (SE)

and specificity (SP) to detect the 50 genes driving the joint variation. We did not

consider the corresponding performance measures for the individual variation (i.e.

the variation specific to one data-type), because not all algorithms infer sources of

individual variation (e.g. CCA), thus precluding direct comparison between them,

and because identifying sources of joint variation is always the main purpose of

multi-way algorithms. The number of components chosen for each method and the

number of genes selected within components to compute SE and SP is explained

in detail in Methods. SE and SP values for joint variation of each algorithm and

noise-level were averaged over the 1000 runs (Methods). Benchmarking tICA and

tPCA against PARAFAC, CCA, JIVE and iCluster, we observed that for low noise

levels all algorithms performed similarly, except PARAFAC which exhibited signif-

icantly worse SE and SP values (Fig.2A,2C). For larger noise levels, we observed

worse performance for JIVE, CCA and iCluster compared to the two different tICA

methods (tWFOBI & tWJADE) (Fig.2, Methods). Differences in SE and SP be-

tween the tICA methods and JIVE, CCA, iCluster and PARAFAC were statistically

significant (Fig.2B,2D). On this data, and since tICA uses tensorial PCA (tPCA)

as a preliminary step, we did not observe substantial difference between tPCA and

tICA (Fig.2). We note that in this evaluation on the simulated data we did not

consider sparse-CCA (SCCA), since the sparsity itself does not optimize sensitivity

and thus sCCA would perform substantially worse than CCA (data not shown).

Results were unchanged if we replaced Gaussian distributions (as the sources of

variation) with supergaussian Laplace distributions, indicating that results are not

dependent on the type of data distribution (fig.S1 in SI).

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2018. ; https://doi.org/10.1101/300277doi: bioRxiv preprint 

https://doi.org/10.1101/300277
http://creativecommons.org/licenses/by-nd/4.0/


Teschendorff et al. Page 4 of 22

Tensorial PCA/ICA reduces running time over JIVE, PARAFAC and iCluster

Using the same simulated data, we further compared the algorithms in terms of

their running times. A detailed comparison is cumbersome because the parameters

specifying the number of components to search for are not directly comparable

and differ substantially between methods. Nevertheless, using reasonable parameter

choices for the simulated model above, we found that tPCA and tICA substantially

speed up inference over methods such as JIVE or iCluster (Table 1). In fact,

even when specifying a larger number of components for tPCA/tICA, compared

to PARAFAC, JIVE or iCluster, the latter were substantially slower (Table 1),

whilst also exhibiting marginally worse SE and SP values (Fig.2). In general, we

observed tICA methods to be at least 50 times faster than PARAFAC, and at least

100 times faster than JIVE and iCluster (Table 1). For much larger datasets, we

found application of iCluster to be computationally demanding and not practical.

Thus, in subsequent analyses on real datasets we decided to benchmark tPCA/tICA

against PARAFAC, CCA, SCCA and JIVE.

Tensorial ICA exhibits improved power in a real multi-tissue smoking EWAS

Next, we asked if tPCA/tICA also leads to improved power on real data. Objec-

tive evaluation on real data is challenging due to the difficulty of defining a gold-

standard set of true positive associations. Fortunately however, a meta-analysis of

several smoking EWAS in blood has demonstrated that smoking-associated DMCs

(smkDMCs) are highly reproducible, defining a gold-standard set of 62 smkDMCs

(Methods) [23]. Recently, we also showed that effectively all 62 smkDMCs are as-

sociated with smoking exposure if DNAm is measured in buccal samples [2]. Thus,

one way to objectively compare algorithms is in terms of their sensitivity to iden-

tify these 62 smkDMCs in a matched blood-buccal EWAS consisting of Illumina

450k DNAm profiles for a total of 152 women (Methods, [2]). Because there are

two distinct samples (1 blood + 1 buccal) per individual, most of the variation is

genetic. Hence, to reduce this background genetic variation, we first computed the

SE-values on a reduced data matrix obtained by combining the 62 smkDMCs with

1000 randomly selected non-smoking associated CpGs (a total of 100 Monte-Carlo

randomizations). We considered both the maximum SE value attained by a com-

ponent, as well as the overall SE obtained by combining selected CpGs from com-

ponents significantly enriched for smkDMCs (Methods). This revealed that JIVE,

CCA/SCCA and PARAFAC were all superceded by tPCA and tICA (Fig.3A-B).

Differences between tPCA and tICA were generally not significant (Fig.3A), al-

though tWFOBI attained higher combined SE values than tPCA and tWJADE

(Fig.3B).

Next, we scaled up the data matrices by combining the 62 smkDMCs with a larger

set of 10000 non-smkDMCs, recomputing the SEs (again for 100 different Monte-

Carlo selections of 10000 non-smkDMCs). As expected, with an increase in the

number of CpGs, the SE of all algorithms dropped, likely driven by increased con-

founding due to genetic variation (Fig.3C-D). With the increase in probe num-

ber, tICA (tWFOBI & tWJADE) outperformed not only JIVE, PARAFAC and

CCA/SCCA, but also tPCA (Fig.3C-D), in line with the increased sparsity of the

smoking-associated source of variation.
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In order to illustrate how the output produced by tICA can be used for valu-

able inference, we focus on a particular Monte-Carlo run and a specific compo-

nent (estimated using tWJADE), which obtained a high sensitivity for smkDMCs

(component-12, Fig.4A). We note that the two ICs S1,12,i and S2,12,i exhibited

a less correlative structure than the corresponding components projected onto the

blood and buccal dimensions, demonstrating that tWJADE does indeed identify

components that are less statistically dependent (Fig.4A). Confirming the high sen-

sitivity of these ICs, the 62 smkDMCs were highly enriched among CpGs with the

largest absolute weights in any one of the two ICs (Fig.4A, Fisher-test P < 1e−36,

SE=41/62∼0.66). We further verified that the 41 enriched smkDMCs exhibited

strong Pearson correlations between their DNAm profiles in blood and buccal, as

required since smoking exposure is associated with similar DNAm patterns in these

two tissue types (Fig.4B, [2]). Further confirming that component-12 is associated

with smoking exposure, we correlated the weights of the corresponding column

of the estimated mixing matrix with two different measures of smoking exposure,

demonstrating in both cases a strong association (Fig.4C). Thus, application of

tICA on DNAm data results in components that are readily interpretable in terms

of their associations with known smoking exposures across features and samples.

tICA identifies mQTLs in a multi cell-type EWAS

Having established the better performance of tICA over other state-of-the-art meth-

ods, we next considered the application of tICA (specifically tWFOBI) in an EWAS

of 47 healthy individuals, for which 3 purified cell-types (B-cells, T-cells and Mono-

cytes) had been profiled with Illumina 450k DNA methylation (DNAm) beadarrays

[3] (Methods). We chose tWFOBI over tWJADE because of its computational effi-

ciency (Table 1). Given that 3 cell-types were measured for each individual, the ex-

pectation is that a significant amount of inter-individual variation in DNAm would

correlate with genetic variants (i.e. methylation quantitative trait loci-mQTLs) [24].

Thus, it is important to evaluate the ability of tICA to detect mQTLs and to deter-

mine whether these are blood cell-subtype specific or not. Applying tWFOBI to the

3 cell-type × 47 sample × 388618 probe data-tensor, we inferred a total of 11 ICs in

sample-mode space (yielding 33 ICs across sample and cell-type modes combined).

For each of these 11 ICs in each cell-type, we ranked probes according to their abso-

lute weights and tested enrichment of the top-500 probes against a high-quality list

of 22,245 mQTLs as derived in [25] (Methods). This high-confidence list of mQTLs

all passed a very stringent unadjusted P-value threshold of P=1e-14 in each of five

different human cohorts, encompassing five different age-groups [25]. We observed

strong statistical enrichment for mQTLs in many ICs (Fig.5A). We also tested

separately for enrichment of chromosomes. This revealed enrichment, notably of

chromosomes 6 and 21, but also of 1, 4, 7 and 8 (Fig.5B). For instance, IC-9 was

enriched for mQTLs and chromosome-1 in all 3 cell-types (Fig.5A-B). Support-

ing this, we found a clear example of a cell-type independent mQTL mapping to

the 1q32 locus of the PM20D1 gene (Fig.5C), a major GWAS locus associated

with Parkinson’s disease [26]. Focusing on chromosome-6, another cell-type inde-

pendent mQTL mapped to MDGA1 (fig.S2 in SI), a major susceptibility locus for

schizophrenia [27]. Other mQTLs driving ICs were cell-type specific, e.g. mQTLs
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mapping to ATXN1 and SYNJ2 were dominant in the independent components pro-

jected along B-cells, but not among T-cells or Monocytes (fig.S3 in SI). Although

assessing whether mQTLs are truly cell-type independent or cell-type specific is not

possible without genotype information, we nevertheless estimated, based on the IC

weight distribution of the mQTLs across cell-types, that approximately 75% of the

mQTLs enriched in ICs were cell-type independent (fig.S4 in SI). This estimate

of the non-specificity of blood cell subtype mQTLs is similar to the one obtained

by a previous study (≥ 79%) using neutrophils, monocytes and T-cells [28].

Next, we decided to validate the found mQTLs using an independent dataset. To

this end, we applied tWFOBI to the blood-buccal EWAS considered earlier. We in-

ferred a source-tensor of dimension 2×26×447259, i.e. a total of 52 ICs, defined over

2 tissue-types and 26 components in sample-mode space. As before, we observed

very strong enrichment, notably for the same chromosomes 6 and 21 (fig.S5 in

SI). The previously found mQTL at the PM20D1 locus, was also prominent in one

of the inferred ICs in this blood-buccal EWAS, confirming its validity and further

supporting that this mQTL is cell-type independent (Fig.5D). Overall, from the

pure blood cell subtype EWAS we detected a total of 1763 mQTLs, of which 547

were also observed in the blood-buccal EWAS (OR=12.8, Fisher-test P < 1e− 50,

Fig.5E). Thus, we can conclude that tWFOBI is able to identify components of

variation across cell-types and samples that capture a significant number of mQTLs,

without the need for matched genotype information.

tICA outperforms JIVE and PARAFAC in their sensitivity to detect mQTLs

Given the ability of tICA to detect mQTLs, we next benchmarked the performance

of all algorithms in terms of their sensitivity to detect mQTLs in the EWAS of

three purified blood cell subtypes considered earlier. Because of the presence of

three cell-types, for this analysis we excluded CCA and sCCA since these methods

are designed for the case of only two data-matrices. As before, we computed two

sensitivity measures to detect the 22245 mQTLs from the Aries database [25], de-

signed to assess the overall sensitivity across all inferred components, and another

designed to assess the maximum sensitivity attained by any single component. Vary-

ing the number of top ranked selected CpGs in components from 500 up to 22245,

we observed that over the whole range tFOBI and tJADE were optimal, clearly

outperforming both PARAFAC and JIVE (Fig.6A). The maximum sensitivity at-

tained by any individual component was also best for the tICA methods (Fig.6B).

To better evaluate the enrichment of these components for mQTLs, we also consid-

ered the ratio of the sensitivity to the maximum possible sensitivity, recording the

maximum value attained by any component. This demonstrated that for the case

of selecting the top-500 CpGs, that components inferred using tICA could capture

over 60% of the maximum possible number of mQTLs, i.e over 60% of the 500

CpGs mapped to mQTLs (Fig.6C). In contrast, JIVE components only contained

just over 40% of mQTLs (Fig.6C). We note that although the performance of JIVE

could be significantly improved by also including the components of individual vari-

ation, that approximately 80% of mQTLs have been estimated to be independent

of blood cell subtype [28], supporting the view that JIVE is less sensitive to capture

cell-type independent mQTLs. All these results were stable to repeated runs of the
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algorithms, as only PARAFAC exhibited variation between runs, yet this variation

was relatively small (fig.S6 in SI).

Next, we repeated the same sensitivity analysis to detect mQTLs in our buccal-

blood EWAS, now also including CCA and sCCA (as there are only 2 tissue/cell

types). Confirming the previous analysis, tICA methods outperformed JIVE and

PARAFAC by over 20% in terms of the overall sensitivity, whilst also attaining a

better sensitivity at the individual component level (fig.S7 in SI). Of note, the

sensitivity of both CCA and sCCA was substantially worse, due mainly to only the

top canonical vector being significant.

Application of tICA to multi-omic cancer data reveals dosage-independent effects of

differential expressed genes

To further demonstrate the ability of tICA to retrieve interesting patterns of vari-

ation in a multi-omic context, we applied it to the colon cancer TCGA dataset [1],

comprising a matched subset of copy-number variation (CNV), DNA methylation

and RNA-Seq data over 13971 genes and 272 samples (19 normals + 253 cancers)

[29]. We applied tWFOBI to the resulting 3× 272× 13971 data-tensor, inferring a

total of 3× 37 ICs, which were ranked in order of decreasing kurtosis (Methods).

Of the 37 ICs, 20 correlated with normal/cancer status (P < 0.05/37 ∼ 0.001),

with 4 of these capturing correlations between CNV and gene expression (table.S1

in SI). All 4 ICs were strongly enriched for specific chromosomal bands (table.S1

in SI), in line with those reported in the literature [1, 30], and one of these (IC-35)

also exhibited concomitant correlation between DNAm and gene expression (ta-

ble.S1 in SI). Plotting the weights of IC-35 along the CNV, DNAm and mRNA

axes confirmed the ability of tWFOBI to identify patterns of mRNA expression

variation which are driven by local CNV and which also associate with local varia-

tion in DNAm (Fig.7A). The corresponding weights along the sample-mode con-

firmed the association with normal-cancer status (Fig.7B), and scatterplots of the

z-score normalized CNV and DNAm patterns against gene expression for one of

the main driver genes (STX6) confirmed strong associations between CNV/DNAm

and mRNA expression (Fig.7C). Strikingly, we observed that while variations in

copy-number and DNAm of STX6 modulate expression differences between colon

cancers, that the deregulation of STX6 expression between normal and cancer is

clearly independent of copy-number and DNAm state (Fig.7C).

In order to validate this important finding and determine the extent of this phe-

nomenon, we analysed 5 additional TCGA datasets (Methods), but now using

a more direct approach: for each TCGA set, we first identified the subset of dif-

ferentially expressed genes (DEGs) between normal and cancer (adjusted P-value

threshold of 0.05), which also exhibit a positive correlation between expression and

copy-number as assessed over cancers only, i.e. we selected those DEGs with a

CNV-dosage effect across cancers. For those overexpressed in cancer, we then asked

if individual tumours exhibiting a neutral CNV state (the CNV-state of the normal

samples) or a CNV-loss, still exhibited overexpression relative to the normal sam-

ples. Remarkably, we observed that a very high fraction of these DEGs remained

overexpressed when restricting to the subset of cancer samples with low or neutral

CNV, thus indicating that their overexpression in cancer is not dependent on CNV-

state, despite their expression across individual cancer samples being modulated by
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CNV-state (Fig.8A). This pattern of differential expression being independent of

CNV-state was also seen in the case of DEGs with a CNV-dosage effect across

tumours and which were underexpressed in cancer. Indeed, restricting to cancers

with neutral or copy-number gain (Fig.8A), these genes were generally still un-

derexpressed in these cancer samples compared to normal tissue. Similar patterns

were observed when DEGs were selected for DNAm-expression dosage-effects across

tumours (Fig.8A). Specific examples in the case of lung squamous cell carcinoma

(LSCC) confirmed that DEGs in LSCC which exhibit a CNV or DNAm dosage

effect across tumors, exhibit differential expression in a manner which is not depen-

dent on CNV or DNAm state (Fig.8B-C). Thus, these data support the finding

obtained using tICA, demonstrating the value and power of tICA to extract bio-

logically important and novel patterns of data variation in a multi-omic context.

Discussion
Here we have assessed and benchmarked a novel suite of tensorial decomposition

algorithms (tPCA, tWFOBI, tWJADE) against a number of state-of-the-art alter-

natives. Specifically, while popular multi-way algorithms such as JIVE, iCluster or

CCA/SCCA are in principle applicable to non-tensorial multi-way data (e.g. if the

features across data-types are distinct or not matched), when assessed in a ten-

sorial context (i.e when all dimensions are matched), these established methods

are outperformed by the tensorial PCA and ICA methods considered here. This

was demonstrated not only on simulated data, but also in the context of two real

EWAS, where tICA methods were significantly more powerful to detect differen-

tially methylated CpGs associated with an epidemiological factor (smoking) and

SNPs (mQTLs). In the case of real EWAS, tICA also outperformed tPCA, in line

with the fact that biological sources of data variation are non-Gaussian and sparse,

and therefore more readily identified using statistical independence as a (non-linear)

deconvolution criterion (as opposed to the linear decorrelation criterion used in

tPCA). Thus, this extends the improvements seen for ICA over PCA on ordinary

omic data matrices [13, 16] to the tensorial context. In addition, tPCA and tICA

offer substantial (50-100 fold) speed advantages over methods like iCluster, JIVE

and PARAFAC which can become computationally demanding or even prohibitive.

Further application of tICA to a multi cell-type (B-cells, T-cells and monocytes)

EWAS revealed its ability to identify loci enriched for cis-mQTLs (as cis-mQTLs

make up over 90% of validated mQTLs in the ARIES database [25]). Indeed, tICA

achieved relatively high sensitivity values with top-ranked CpGs in components

containing over 60% mQTLs. Given that here we were limited by the fact that we

did not have access to matched genotype information, our results demonstrate the

potential of tICA to detect mQTLs in the absence of such genotype information.

For instance, it identified many cell-type independent mQTLs, of which a substan-

tial proportion validated in an independent blood-buccal EWAS study, and with

several mapping to key GWAS loci for important diseases like Parkinson’s and

schizophrenia. Although most of the identified mQTLs were blood cell-type inde-

pendent, tICA estimated that approximately 25% of mQTLs may be blood cell-type

specific, in line with the estimate of 20% obtained by Blueprint using a slightly dif-

ferent combination of blood cell subtypes (neutrophils, monocytes and T-cells) [28].
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We note that application of tICA to any multi cell-type or multi-tissue EWAS is

likely to have components strongly enriched for mQTLs, since for the same indi-

viduals DNAm is being measured in at least two different tissues or cell-types, and

therefore genetic effects that do not depend on cell-type are bound to explain most

of the inter-individual variation [31, 24]. Thus, we conclude that tICA could be an

extremely versatile tool to identify novel candidate mQTLs in multi-cell EWAS for

which matched genotype information may not be available. tICA may also help to

identify groups of widely separated mQTLs which are regulated by the same SNP,

and bound e.g. by a common transcription factor [32].

More generally, tICA can be applied to any multi-way data tensor to identify com-

plex patterns of variation correlating with phenotypes of interest and the underlying

features driving these variation patterns. This is accomplished by first correlating

inferred independent components of variation in sample-mode space with sample

phenotype information (e.g. age, smoking, normal/cancer status, genotype) and sub-

sequently selecting the features with the largest weights in these correlated com-

ponents. As an illustrative example, application of tICA to a multi-omic TCGA

dataset revealed a deep novel insight: namely, that most differentially expressed

genes in cancer which exhibit a CNV or DNAm dosage-dependent effect on expres-

sion across individual tumors, exhibit differential expression relative to the normal

tissue in a manner which does not in fact depend on CNV or promoter DNAm

state. In other words, although CNV and DNAm variation strongly modulates ex-

pression variation of these DEGs across individuals tumors, for most of the genes

exhibiting this CNV or DNAm dosage-dependent expression pattern, their dereg-

ulation relative to normal cells appears to be independent of the underlying CNV

or promoter DNAm state. Although it is clear that differential expression in cancer

can be the result of many mechanisms other than CNV or DNAm, our observation

is significant, because we did not just select cancer-DEGs, but the subset of these

which exhibit a CNV or DNAm dosage-dependent effect on expression across tu-

mours. The implications of our observation are important, given that many cancer

classifications have been derived from unsupervised (clustering) analyses that were

performed using only tumors, thus ignoring their patterns of variation relative to

the normal reference state. Other large cancer studies, such as METABRIC [33],

which did not profile normal tissue samples, identified candidate novel oncogenes

and tumor suppressors solely on the basis of CNV-dosage effects on gene expression

across cancers, yet our results indicate that this could identify many false positives

in the sense that their overexpression or underexpression in cancer is not dependent

on the underlying CNV-state. We point out that although this finding could have

been obtained without application of a multi-way algorithm, that this would have

required substantial prior insight. Therefore this subtle pattern of variation across

multiple data-types was only discovered thanks to applying an agnostic method like

tICA.

Although we have shown the value of tICA in identifying mQTLs and interesting

patterns of variation across different data-types in cancer-genome data, it is also

important to discuss some of the limitations, which however also apply to all other

multi-way algorithms considered here. In particular, identifying sources of DNAm

variation associated with epidemiological factors in a multi-tissue EWAS setting
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can be difficult due to confounding genetic variation. Indeed, in our application to

a buccal-blood Illumina 450k EWAS we found that the sensitivity of all algorithms

dropped very significantly if they are applied to all ∼ 480,000 CpGs. Thus, it will

be important in future to devise improvements to these tensorial methods. For in-

stance, one solution may be to first perform dimensional reduction using supervised

feature selection on separate data-types, and subsequently applying the tensorial

methods on a reduced feature space. Alternatively, supervised tensorial methods

such as tensorial Slice Inverse Regression [34] may help identify sources of variation

specifically associated with epidemiological variables.

Conclusions
In summary, the combined tPCA and tICA methods presented here will be an

extremely valuable tool for analysis and interpretation of complex multi-way data,

including multi-omic cancer data, as well as for the detection and clustering of

mQTLs in multi cell-type EWAS where genotype information may not be available.

Methods
Below we briefly describe the main tensorial BSS algorithms [8, 9, 35] as imple-

mented here. For more technical details see [8, 9, 35]. We also provide brief details of

our implementation of JIVE, PARAFAC, iCluster, CCA and sparse-CCA (SCCA).

All these implementations are available as R-functions within Additional File 2.

Tensorial PCA (tPCA)

We assume that we have i = 1, ..., p i.i.d realizations of a matrix Xi ∈ Rp1×p2 , which

can be structured as an order-3 data tensor X of dimension p1×p2×p. Then, tPCA

decomposes X as follows:

X = S �2
m=1 Ωm (1)

where S is also a 3-tensor of dimension p1 × p2 × p, Ωm (m = 1, 2) are orthogonal

pm × pm matrices, i.e. ΩT
mΩm = Ipm

, and where � denotes the tensor contraction

operator: for instance, for Z an r-tensor of dimension p1× . . .×pr and A a matrix of

dimension pm×pm, Z�mA describes the r-tensor with entries (Z�mA)i1...im...ir =

Zi1...jm...irAimjm where the Einstein summation convention is assumed (i.e. indices

appearing twice are summed over, e.g. MikMin =
∑

iMikMin = (MTM)kn). Thus,

S �2
m=1 Ωm is a 3-tensor with entries

(S �2
m=1 Ωm)i1i2i = Sk1k2i(Ω1)i1k1(Ω2)i2k2 (2)

In the above tPCA decomposition, the entries Sk1k2 are assumed to be linearly

uncorrelated. Introducing the operator �−m, which for general r is defined in entry

form by

(X �−m X)uv = Xi1...im−1uim+1...iriXi1...im−1vim+1...iri (3)
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uncorrelated components means that the covariance matrix S �−m S = Λm is

diagonal of dimension pm × pm and with entries the ranked eigenvalues of the m-

mode covariance matrix (X �−m X), which can be expressed as

(X �−m X) = ΩmΛmΩT
m (4)

These ranked eigenvalues are useful for performing dimensional reduction, i.e. pro-

jecting the data onto subspaces carrying significant variation. For instance, one

could use Random Matrix Theory (RMT) [36, 17] on each of the m-mode covari-

ance matrices above to estimate the appropriate dimensionalities d1, ..., dr. This

would lead to a tPCA decomposition of the form X = S �2
m=1 Ω

(R)
m , with S a

d1 × d2 × p tensor and each Ω
(R)
m a reduced matrix obtained from Ωm by selecting

the first dm columns. We note that for any of the original dimensions p1, ...pr that

are small, such dimensional reduction is not necessary.

In the applications considered here, our data tensor X is typically of dimension

nt × ns × nG, where nt denotes the number of data or tissue types, ns the number

of samples and nG the number of features (e.g. genes or CpGs). We note that the

tPCA decomposition is performed on the first two dimensions (typically data-type

and samples), so there are two relevant covariance matrices. In the special case of a

data matrix (a 2-tensor), standard PCA involves the diagonalization of one data co-

variance matrix, hence for a 3-tensor there are two data covariance matrices, and for

an (r+ 1)-tensor, there are r. Here we use tPCA as implemented in the tensorBSS

R-package [37].

Tensorial ICA (tICA): the tWFOBI and tWJADE algorithms

For a data tensor X ∈ Rp1×...×pr×p the tICA model is

X = S �r
m=1 Ωm (5)

but now with the p1...pr random variables Sk1...kr ∈ Rp (S ∈ Rp1×...×pr×p) mutu-

ally statistically independent and satisfying E[Sk1...kr
] = 0 and V ar[Sk1...kr

] = I.

We note that X could be a suitably dimensionally reduced version X(R) of X, such

as one obtained using tPCA. For instance, in our applications, X(R) would typically

be a 3-tensor of dimension nt×dS×nG where dS < nS . This dimensional reduction,

and optionally the scaling of variances, is known as whitening (W).

As with ordinary ICA, there are different algorithms for inferring mutually statis-

tical independent components Sk1...kr
. One algorithm is based on the concept of

simultaneously maximising the fourth order moments (kurtosis) of the independent

components (since by the Central Limit Theorem, linear mixtures of these are more

Gaussian and therefore have smaller kurtosis values). This approach is known as

fourth order blind identification (FOBI) [38]. Alternatively, one may attempt a joint

approximate diagonalization of higher order eigenmatrices (JADE) [39, 35]. We note

that although we use the tFOBI and tJADE functions in tensorBSS, that these do

not implement tPCA beforehand. Hence, in this work we implement modified ver-

sions of tFOBI and tJADE which include a prior whitening transformation with

tPCA. We call these modified versions tWFOBI & tWJADE.
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Benchmarking of tPCA and tICA against other tensor decomposition algorithms

JIVE (Joint and Individual Variation Explained) [5] is a powerful decomposition

algorithm that identifies both joint and individual sources of data variation, i.e

sources of variation that are common and specific to each data-type. For two data-

types (i.e two tissue types or two types of molecular features), there are 3 key

parameters that need to be specified or estimated in order to run JIVE: these are

the number of components of joint variation (dJ) and the number of components

of variation which are specific to each data-type (dI1, dI2). On simulated data,

these parameters are chosen to be equal to the true (known) values, i.e. for our

simulation model, dJ = 1, dI1=1 and dI2=1. In our real data applications, dJ is

estimated using RMT on the concatanated matrix obtaining by merging the two

data-type matrices together (after z-score normalising features in order to make

them comparable), whilst dIi are estimated using RMT [17]. We note that these

are likely upper bounds on the true number of individual sources of variation which

are not also joint. We implemented JIVE using the r.jive R-package available from

http://www.r-project.org.

PARAFAC (Parallel Factor Analysis) [6, 4] is a tensor decomposition algorithm

whereby a data-tensor is decomposed into the sum of R terms, where each term

is a factorised outer product of rank-1 tensors (i.e. vectors) over each mode. Thus,

the one key parameter is R which equals the number of terms or components in

the decomposition. In our simulation model, we chose R = 4. Although one of the

two sources of variation in each data-type is common to both (hence 3 independent

sources), we nevertheless ran PARAFAC with one additional component to more

fairly assess its ability to infer components of joint variation. In the real data appli-

cations, we estimated R as
∑nt

i dIi−dJ (with nt the number of tissue or cell-types),

since this should approximately equal the total number of independent sources of

variation. We implemented PARAFAC using the multiway R-package available from

http://www.r-project.org.

iCluster [7] is a joint clustering algorithm for multi-way data, which models joint

and individual sources of variation as latent Gaussian factors. The key parameter is

K, which is the total number of clusters to infer. Although for the simulated data

there were only 3 independent sources of variation, we chose K = 4 in order to more

fairly assess the ability of the algorithm to infer the joint variation (choosing K =

would “force” the algorithm to find the source of joint variation). We implemented

iCluster using the iCluster R-package available from http://www.r-project.org.

Canonical Correlation Analysis (CCA) [20] and its sparse version, sparse-CCA

(sCCA/SCCA) [21, 22], are methods to identify joint sources of variation (called

canonical vectors) between two data matrices, where at least one of the dimensions

is matched across data-types. Here we implement the version of CCA and sCCA of

the R-package PMA available from http://www.r-project.org. One key parameter is

K, the maximum number of canonical vectors to search for. Another parameter is

the number of permutations used to estimate the significance of the covariance of

each of the K canonical vectors. In each permutation, one of the data matrices is

randomized (say by permuting the features around) and CCA/sCCA is reapplied.

Since the data matrices are typically large, the distribution of covariances for the

permuted cases is very tight, thus even 25 permutations is sufficient to estimate the
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number of significant canonical vectors reasonably well. The number of significant

canonical vectors was defined as the number of components which exhibit observed

covariances larger than the maximum value obtained over all 25 permutations, and

is thus bounded above by K. In the non-sparse case, the two penalty parameters

were chosen to be equal to 1, which means no penalty term is used. In the case

of sCCA, we estimated best penalty parameters using an optimization procedure

as described in [21, 22] with the number of permutations set to 25 and number

of iterations equal to 15. On the simulated data, we ran CCA with K = 3, as K

only needs to specify the maximum number of components to search for (the actual

number of significant canonical vectors is 1 in our instance, as we have 1 source

of joint variation). In the real data applications, we chose K to be equal to dJ , as

estimated using the procedure for JIVE, and used a larger number of iterations (50)

per run.

Evaluation on simulated data

Here we describe the simulation model. The model first generates two data-matrices

of dimension 1000 × 100, representing two data-types (e.g. DNA methylation and

gene expression) where rows represent features and columns samples. We assume

that the column and row labels (i.e. samples and genes) of the two matrices are

identical and ordered in the same way. We assume one source of individual variation

(IV) for each data matrix, each driven by 50 genes and 10 samples with the 50 genes

and 10 samples unique to each data matrix. We also assume one source of common

variation driven by a common set of 20 samples. The genes driving this common

source of variation however, are assumed distinct for each data matrix. In total, there

are 100 genes (50 for each data matrix) associated with this joint variation (JV). For

the 50 genes driving the JV in one data-type and the 20 samples associated with this

JV we draw the values from a Gaussian distribution N (e, σ), whereas for the other

50 genes in the other data-type we draw them from N (−e, σ), all with e = 3 and

σ representing the noise level. Likewise for the IV we use Gaussians N (e, σ). The

rest of the data is modelled as noise N (0, σ). We consider a range of 9 noise levels,

with σ ranging from 1 to 5 in steps of 0.5. Thus, at σ = 3, the SNR = e/σ = 1. For

each noise level we perform 1000 Monte-Carlo runs, and for each run and algorithm

we estimate the sensitivity (SE) and specificity (SP) for correctly identifying the

100 genes driving the JV. In the case of tPCA, tWJADE and tWFOBI, SE and SP

were calculated as follows: we inferred a total of 12 components over the combined

data-type and sample modes (2 in data-type mode × 6 in sample-space). We then

projected the inferred components onto the original data-type dimensions, using

the inferred 2×2 mixing matrix. For each data-type and each of the 6 components,

we then selected the top-ranked 50 genes by absolute weight in the component.

This allowed us to compute a SE and SP value for each data-type and component.

For each component we then averaged the SE and SP values over the 2 data-types.

In the last step, we select the component with the largest SE and SP value and

record these values. We note that the resulting SE and SP values are not dependent

on choosing 12 components. As long as the number of estimated components is

larger than the total number of components of variation in the data (which for the

simulated data is 4), results are invariant to the number of inferred components.
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In the case of CCA, which can only infer sources of joint variation, we ran it to

infer a number of components (K=3) larger than the true one (only 1 source of

JV). Pairs of canonical vectors were then selected according to whether their joint

variance is larger than expected, as assessed using permutations. From hereon, the

procedure to compute SE and SP proceeds as for the other algorithms, selecting the

component with the best SE and SP value. As with the other methods, results do

not depend on how we choose K as long as K is larger or equal than 1. In the case

of PARAFAC, we ran it to infer R=4 components. Because for PARAFAC, there

is only one inferred projection across features per component, for each component

we rank the features according to their absolute weight, select the top-ranked 50,

and then compute two separate SE (or SP) values, one for each of the 2 sets of

50 true positive genes driving JV. We then select for each set of JV driver genes,

the component achieving the best SE (or SP). Finally, we average the SE and SP

values for the two sets of true positives. As with the other algorithms, results do

not depend on the choice of R, as long as R is larger or equal than 4 (since there 4

sources of variation: 2 of IV and 1 of JV which counts as 2 in the PARAFAC setting).

In the case of JIVE, we ran it to infer 1 source of JV and 2 sources of IV. Because

JIVE stacks the data matrices corresponding to the two data-types together, we

then select the 100 top ranked genes, ranked by absolute weight in the inferred JV-

matrix. SE and SP are then computed. Once again, results are stable to choosing

a larger number of inferred sources of JV, because for the simulated data there is

only 1 source of JV. Further details for all methods can be found in Additional File

2. Finally, for each algorithm and noise level, SE and SP are averaged over all the

1000 Monte-Carlo runs. Finally, statistical significance of SE and SP values between

algorithms was assessed using paired non-parametric Wilcoxon rank sum tests. The

whole analysis above was repeated for sources of variation drawn from a Laplace

distribution (with same mean and standard deviation as the Gaussians above), in

order to better capture the supergaussian nature of real biological data.

Illumina 450k DNA methylation and multi-way TCGA datasets

We analysed Illumina 450k datasets from three main sources. One dataset is a multi

blood cell subtype EWAS performed on 47 healthy individuals and 3 cell-types (B-

cells, T-cells and Monocytes) [3]. Specifically, we used the same normalized data as

used in [3], with the resulting data tensor being of dimension 3× 47× 388618, after

removal of poor quality probes and probes with SNPs [40].

Another dataset was generated in [2], consisting of two tissue types (whole blood

and buccal), 152 women and 447259 probes, resulting in a data tensor of dimension

2×152×447259. The 447259 probes is the number of probes obtained after quality

control, removal of probes on X & Y chromosomes, polymorphic CpGs and probes

with SNPs at the single-base extension site, and probes containing SNPs in their

body as determined by Chen et al [40].

Finally, we also analysed 6 datasets from The Cancer Genome Atlas (TCGA).

Specifically, we processed the RNA-Seq, Illumina 450k DNAm and copy-number

data for 6 different cancer types (colon adenoma carcinoma (COAD), lung adenoma

carcinoma (LUAD), lung squamous cell carinoma (LSCC), kidney renal cell carci-

noma (KIRC), kidney papillary carcinoma (KIPC), bladder adenoma carcinoma
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(BLCA)), all of which contained reasonable number of normal-adjacent samples.

The processing was carried out following the same procedure described by us in

[29], which resulted in data-tensors over 3 data-types (mRNA, DNAm and copy-

number), 14593 common genes and following sample numbers: 273 cancers and 8

normals for LSCC, 390 cancers and 20 normals for LUAD, 292 cancers and 24 nor-

mals for KIRC, 195 cancers and 21 normals for KIRP, 194 cancers and 13 normals

for BLCA, and 253 cancers and 19 normals for COAD. We note that although these

numbers of normal samples are small, that these are the normal samples with data

for all 3 data-types.

Identifying smoking-associated CpGs in the multi-tissue (whole blood + buccal) EWAS

In order to test the algorithms on real data we considered the matched multi-

tissue (whole blood and buccal) Illumina 450k DNAm dataset for 152 women [2].

Smoking has been shown to be reproducibly associated with DNAm changes at a

number of different loci [23]. We therefore used as a true positive set, a gold-standard

list of 62 smoking-associated differentially methylated CpGs (smkDMCs), which

have been shown to be correlated with smoking exposure in at least 3 independent

whole blood EWAS [23]. The 62 smkCpGs were combined with 1000 randomly

selected CpGs (non smoking-associated), resulting in a data-tensor of dimension

2× 152× 1062. Robustness was assessed by performing 1000 different Monte-Carlo

runs, each run with a different random selection of 1000 non-smoking associated

CpGs. The whole analysis was then repeated for 10000 randomly selected CpGs

(data tensor of dimension 2× 152× 10062 and for a total of 1000 different Monte-

Carlo runs. In the case of tPCA/tICA algorithms, the dimensionality parameters

were chosen based on RMT as applied on the 2 separate matrices. Specifically,

estimated unmixing matrices were of dimension 2×2 (for tissue-type mode) and d×d
(for sample mode) with d the maximum of the two RMT estimates obtained from

each tissue-type matrix. Sensitivity (SE) to capture the 62 smkCpGs was calculated

in two different ways: in one approach we used the maximum SE attained by any

IC, denoted SE(max), whilst in the other approach we allowed for the possibility

that different enriched ICs could capture different subsets of smkCpGs. Thus, in

the second approach, the SE was estimated by using the union of the selected

CpGs over all enriched ICs. We note that enrichment of ICs for the smkCpGs was

assessed using a simple binomial test and selecting those with a P-value less than the

Bonferroni corrected value (ie. less than 0.05/number of ICs). In both approaches,

the CpGs selected per component were the 62 with the largest absolute weights in

the component, i.e. the number of selected CpGs was matched to the number of

true positives.

In the case of JIVE, the number of components of joint variation was determined

by applying RMT to the data matrix obtained by concatanating the features of the

blood and buccal sets together with features standardised to unit variance to ensure

comparability between data-types. For the number of components of individual

variation we used the RMT estimates of each individual dataset, as this provides

a safe upper bound. For PARAFAC, the number of components was determined

by the sum of the RMT estimates for blood and buccal sets separately minus the

value estimated for the concatanated matrix, as we reasoned that this would best

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2018. ; https://doi.org/10.1101/300277doi: bioRxiv preprint 

https://doi.org/10.1101/300277
http://creativecommons.org/licenses/by-nd/4.0/


Teschendorff et al. Page 16 of 22

approximate the total number of components of variation across the two data-types

(joint or individual). For CCA and sCCA, the maximum number of canonical vectors

to search for was set to be equal to the RMT estimate of the concatanated matrix,

i.e. equal to the dimension of joint variation used in JIVE. For all methods, we

selected the top-ranked 62 CpGs with largest absolute weights in each component,

and estimated SE using the same two approaches described above for tPCA/tICA.

mQTL and chromosome enrichment analysis

We applied tWFOBI to the data-tensor of a multi cell-type EWAS (Illumina 450k)

performed on 47 healthy individuals and 3 cell-types (B-cells, T-cells and Mono-

cytes) [3]. Specifically, we used the same normalized data as used in [3], i.e a data

tensor of dimension 3×47×388618, after removal of poor quality probes and probes

with SNPs [40]. Using RMT [17], we estimated a total of 11 components in sample

mode-space, and so we inferred a source tensor of dimension 3 × 11, and mixing

matrices of dimension 3× 3 and 11× 11. We also applied tWFOBI to the previous

blood+buccal DNAm dataset, but for all 447259 probes that passed quality control.

Applying RMT we estimated 26 significant components in sample-space. Hence, we

applied tWFOBI on the 2 × 152 × 447259 data tensor to infer a source-tensor of

dimension 2× 26× 447259 and mixing matrices of dimension 2× 2 and 26× 26. For

both datasets, and for each inferred independent component, we selected the 500

probes with the largest absolute weights and tested enrichment of mQTLs against a

high-confidence mQTL list (22245 mQTLs) from [25]. This list was generated as the

overlap of mQTLs (passing a stringent P-value threshold of 1e-14) in blood derived

from five different cohorts representing five different age groups. Odds ratios and

P-values of enrichment were estimated using Fisher’s exact test. For chromosome

enrichment, we obtained P-values using a binomial test. Concerning the selection of

top-500 probes from each component, we note that this threshold is conservative,

as all inferred ICs exhibited positive kurtosis with kurtosis values that remained

significantly positive after removing the top-500 ranked probes.

To obtain estimates of cell-type independent and cell-type specific mQTLs, we used

the following approach. The first mode/dimension of the estimated source tensor

was rotated back to the original cell-types, using the estimated mixing matrix (of

dimension 3× 3, since there were 3 cell-types). For each of the previously enriched

mQTLs, we compared its weights in all 3 components, each component being asso-

ciated with a given cell type. For instance, if St,cp,∗ denotes the component cp for

cell-type t, thus defining a vector of weigths over all CpGs, we asked if the abso-

lute weight of the given mQTL CpG is large for all cell-types or not. If sufficiently

large (i.e. if within the top 10% quantile of the weight distribution) for all cell-types

it was declared to be cell-type independent. If the mQTL weight for one or two

cell-types fell within the lower 50% quantile of weights, we declared it a cell-type

specific mQTL.

We also performed a comparative analysis of all multi-way algorithms in terms of

their sensitivity to detect mQTLs, as given by the high-confidence list of 22245

mQTLs from the Aries database [25]. To assess the stability of the conclusions, we

computed SE as described earlier, but considered a range of top number of selected

CpGs per component, ranging from 500 up to 22245 in units of 500. As before, we
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estimated the overall SE taking into account the union of all selected CpGs from

each components, as well as the maximum SE attained by any single component.

Since the SE attained by any single component is bounded by the number of selected

CpGs, we also considered the SE normalized for the number of selected CpGs.

Application of tICA to multi-omic cancer data

We used the same normalized integrated copy-number state (segment values), Il-

lumina 450k DNAm and RNA-Seq datasets of 6 cancer-types from the TCGA [1]

and as used in our previous publication [29]. For the cancer-types considered see

earlier subsection. We initially applied tWFOBI to the colon adenomacarcinoma

TCGA dataset, estimating unmixing matrices of dimension 3 × 3 (for data-type)

and K×K (for sample mode) where K was the maximum RMT estimate over each

of the 3 data-type matrices. Features driving each IC in each data-type dimension

were selected using an iterative approach in which genes were ranked by absolute

weight, and recursively removed until the kurtosis of the IC was less than 1, or the

number of removed genes was larger than 500. Genes selected in common between

the CNV and mRNA modes, or between the DNAm and mRNA modes, were de-

clared “driver” genes between the respective data-types. To identify components

correlating with normal-cancer status, we obtained the mixing matrix of the sam-

ples and then correlating each component to normal-cancer status using Wilcoxon’s

rank sum test.
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Figure 1 Decomposing data tensors using Independent Component Analysis. Tensorial ICA
(tICA) works by decomposing a data-tensor, here depicted as an order-3 tensor with 3 dimensions
representing features (CpGs/genes), samples and tissue or data-type, into a source tensor S and
two mixing matrices defined over tissue/data-type and samples, respectively. The key property of
tICA is that the independent components in S are as statistically independent from each other as
possible. Statistical independence is a stronger criterion than linear decorrelation and allows
improved inference of sparse sources of data variation. Positive kurtosis can be used to rank
independent components to select the most sparse factors. The largest absolute weights within
each independent component can be used for feature selection, while the corresponding
component in the mixing matrices inform about the pattern of variation of this component across
tissue/data-types and samples, respectively. In the latter case, the weights can be correlated to
sample phenotypes such as normal/cancer status or genotype. For the first mixing matrix, the
weights inform us about the relation between data-types (e.g. if the copy-number change is
positively correlated with gene expression), or in the case of a multi-cell EWAS, whether mQTLs
are cell-type independent or not. Abbreviations: +ve=positive, -ve=negative.

Figure 2 Comparison of multi-way algorithms on simulated data. A) Sensitivity (SE) versus
noise level (x-axis) for 7 different methods as indicated, as evaluated on simulated data (data
points are averages over 1000 Monte-Carlo runs). In each case the data-tensor was of size
2× 100× 1000, i.e. 2 data-types, 100 samples and 1000 genes. B) Left panel: Boxplots of SE
values for the same 7 methods for the largest noise level(=5). Each box contains the SE-values
over the 1000 Monte-Carlo runs. Right panel: Corresponding heatmap of P-values of
significance for each pairwise comparison of methods. P-values computed from a one-tailed
Wilcoxon rank sum test. For each entry specified by a given row and column, the alternative
hypothesis is that the method specified in the row has a higher SE than the method specified in
the column. C-D As A-B), but for the specificity (SP).

Figure 3 Comparison of multi-way algorithms on a multi-tissue smoking EWAS A) Boxplot of
sensitivity (SE) values for each of the 7 methods as applied to the data tensors of dimension
2× 152× 1062 (2 tissues, 152 samples, 1000 randomly selected non-smkDMCs + 62 smkDMCs)
and for 100 different selections of non-smkDMCs. SE(Max) denotes that maximum sensitivity to
capture 62 smkDMCs among all inferred components. Right panel is a heatmap of the
corresponding one-tailed paired Wilcoxon rank sum test, benchmarking the SE values of each
method (y-axis) against each other method (x-axis). B) As A), but now for the combined
sensitivity (SE(All)) obtained from all enriched components. C-D) As A-B), but now for
data-tensors of dimension 2× 152× 10062 and for 100 randomly selected 10000 non-smkDMCs.

Figure 4 Validation of tensorial ICA on multi-tissue smoking EWAS A) Left panel: Scatterplot
of the weights of an estimated independent components S1,12,i and S2,12,i from the data tensor
of dimension 2× 152× 1062, with mode-1 representing tissue-type, mode-2 the different women
and mode-3 representing the CpGs. Red denotes the smkDMCs. Middle panel: As left panel, but
now for the rotated tensor, projecting the data onto the whole blood and buccal dimensions,
demonstrating the strong correlation between the DNAm variation in whole blood (WB) and
buccal (BUC) tissue. Right panel: As left panel, but now for the absolute weights, and with green
dashed lines representing the cutoff point selecting the 62 CpGs with the largest absolute weights.
There are in total 41 smkDMCs among the 3 larger quadrants, corresponding to a sensitivity of
41/62=0.66, with the enrichment P-value given above the plot. B) Pearson correlation heatmap
of the 41 smkDMCs between whole blood (WB) and buccal (BUC) tissue, with correlations
computed over the 152 samples. C) Plots of the 12th IC of the mixing matrix in sample-space
(y-axis) against smoking exposure for the 152 samples. Left panel is for smoking-pack-years, right
panel is for smoking status: never smokers, ex-smokers and smokers at sample draw. P-values are
from linear regressions.
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Figure 5 Tensorial ICA identifies components enriched for mQTLs in an EWAS of purified
cell-types A) Barplots of the odds ratio (OR) of enrichment of the top-ranked 500 CpGs for
mQTLs in each of the 11 ICs and cell-types, as indicated. Right panel shows a corresponding
heatmap indicating the P-values of enrichment as estimated using a one-tailed Fisher’s exact test.
B) Heatmaps of enrichment P-values of the top-ranked 500 CpGs from each IC for chromosomes.
Significance of P-values is indicated in different colors using same scheme as in A). C) An
example of a cell-type independent mQTL mapping to chromosome-1. Plots show the weights in
the corresponding components for B-cell, T-cell and Monocyte, respectively, with the selected
CpGs mapping to the mQTL indicated in red. D) Validation of the mQTL in C) in an
independent blood-buccal EWAS. F) Venn Diagram showing the overlap of mQTLs derived from
the ICs in the purified cell-type EWAS with those derived from the blood-buccal EWAS. Odds
ratio (OR) and one-tailed Fisher-test P-value of overlap are given.

Figure 6 tICA outperforms JIVE and PARAFAC in detecting mQTLs. A) Plot of the overall
sensitivity (SE(ALL),y-axis) against the number of top ranked CpGs selected in a component
(x-axis) for 5 different algorithms. B) As A) but now for the maximum sensitivity attained by any
single component (SE(MAX),y-axis). C) Barplot of the maximum sensitivity attained by any
single component expressed as a fraction of maximum possible value given the number of selected
top-ranked CpGs per component.

Figure 7 Validation of tensorial ICA on a multi-omic cancer set A) Manhattan-like plots of
IC-35 in gene-space, as inferred using tWFOBI on the colon TCGA set, projected along the CNV,
DNAm and mRNA axes. Red points highlight genes that had large weights in both CNV and
mRNA dimensions (CNV), in both DNAm and mRNA dimensions (DNAm), and the union of
these (mRNA). Chromosomes are arranged in increasing order and displayed in alternating colors.
B) Boxplots of the corresponding weights of IC-35 in sample-space, discriminating normal colon
(N) from colon cancer (C). P-value is from a Wilcoxon rank sum test. C) Scatterplots of a driver
gene (STX6) between z-score normalized segment level (CNV) and mRNA expression (top panel)
and between z-score normalized DNAm level and mRNA expression (lower panel). Colors indicate
normal (green) and cancer (red). Regression line, Pearson Correlation Coefficient and P-value are
shown.

Figure 8 Multi-dimensional patterns of differential expression in cancer A) Panels depict
boxplots of the fraction of differentially expressed genes in cancer, which remain differentially
expressed when specific cancer subsets are compared to normal-adjacent samples, for 6 different
TCGA cancer types (LSCC, LUAD, KIRC, KIRP, BLCA, COAD), and for 4 different scenarios:
genes overexpressed in cancer and considering cancers with neutral or copy-number loss of that
gene (1st panel), genes underexpressed in cancer and considering cancers with neutral or
copy-number gain (2nd panel), genes overexpressed in cancer and considering cancers with the
highest levels of gene promoter DNAm (3rd panel), and finally genes underexpressed in cancer
and considering cancers with the lowest levels of gene promoter DNAm (4th panel). In each panel,
blue denotes the fraction of over/under expressed genes that are differentially expressed when only
the specific cancer subset is compared to the normal samples, magenta denotes the fraction that
are overexpressed whereas green denostes the fraction that are underexpressed. B) Scatterplots of
mRNA expression against either copy-number variation level (CNV) or DNAm level for selected
genes in LSCC. The selected genes represent examples of genes from A). For instance, BIRC5 in
LSCC is overexpressed in cancer compared to normal, and this overexpression relative to normals
is independent of the CNV of the cancer. C) As B), but now 3D scatterplots which also display
the CNV or DNAm level. These plots illustrate that the difference in expression between cancer
and normal is also independent of the other variable (e.g. CNV or DNAm). For instance, the
underexpression of GPX3 in LSCC is neither driven by promoter DNAm, nor by CNV losses.
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Table 1 Comparison of running times of multi-way algorithms. Table compares 7
multi-way algorithms in terms of the running times to infer components of variation (RunTime) in the
simulation model considered in Fig.2. Estimates are medians and median absolute deviations over 100
Monte-Carlo runs for the case where the signal-to-noise ratio is 1 (i.e. NoiseLevel==3 in Fig.2).
Second column specifies the parameter values for the number of components used in each algorithm.
In the case of the first rows for each method: for CCA, 3 sets of canonical vector pairs (K=3), for
JIVE rank of joint variation (jV)=1, rank of individual variation (iV) for each data type=1, for
TPCA, TWFOBI and TWJADE we inferred 2 and 2 components in the data-type and sample
dimensions respectively, for PARAFAC the rank of decomposition was R=6 and for iCLUSTER the
maximum number of clusters K was set to 3. For the second rows, total number of components are
exactly matched (12) for all methods. Running times are reported for two scenarios differing in the
number of genes ng, as indicated, and were obtained on a Dell PowerEdge R830 with Intel Xeon
E5-4660 v4 2.2GHz processors.

Algorithm #Components Runtime (secs) Runtime (secs)
ng=1000 ng=2000

CCA K=3 0.57± 0.11 1.15± 0.12
K=12 0.58± 0.14 1.34± 0.13

JIVE jV=1, iV=(1,1) 28.44± 4.04 23.84± 4.18
jV=4, iV=(4,4) 137.77± 44.94 173.20± 60.35

tPCA (2,2) 0.57± 0.17 1.35± 0.24
(2,6) 0.61± 0.15 1.25± 0.23

tWFOBI (2,2) 0.65± 0.16 1.50± 0.21
(2,6) 0.76± 0.14 1.53± 0.25

tWJADE (2,2) 0.66± 0.19 1.44± 0.24
(2,6) 1.23± 0.21 2.71± 0.28

PARAFAC R=6 22.37± 2.53 37.32± 4.51
R=12 48.11± 2.98 100.83± 7.92

iCLUSTER K=3 79.28± 14.16 595.06± 70.67
K=12 114.28± 30.02 688.74± 166.85
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