
Wu et al.

RESEARCH

Connectivity Problems on Heterogeneous Graphs
Jimmy Wu1, Alex Khodaverdian2, Benjamin Weitz2 and Nir Yosef2*

Abstract

Background: Network connectivity problems are abundant in computational biology research, where graphs
are used to represent a range of phenomena: from physical interactions between molecules to more abstract
relationships such as gene co-expression. One common challenge in studying biological networks is the need to
extract meaningful, small subgraphs out of large databases of potential interactions. A useful abstraction for
this task turned out to be the Steiner network problems: given a reference “database” graph, find a
parsimonious subgraph that satisfies a given set of connectivity demands. While this formulation proved useful
in a number of instances, the next challenge is to account for the fact that the reference graph may not be
static. This can happen for instance, when studying protein measurements in single cells or at different time
points, whereby different subsets of conditions can have different protein milieu.

Results and Discussion: We introduce the condition Steiner network problem in which we concomitantly
consider a set of distinct biological conditions. Each condition is associated with a set of connectivity demands,
as well as a set of edges that are assumed to be present in that condition. The goal of this problem is to find a
minimal subgraph that satisfies all the demands through paths that are present in the respective condition. We
show that introducing multiple conditions as an additional factor makes this problem much harder to
approximate. Specifically, we prove that for C conditions, this new problem is NP-hard to approximate to a
factor of C − ε, for every C ≥ 2 and ε > 0, and that this bound is tight. Moving beyond the worst case, we
explore a special set of instances where the reference graph grows monotonically between conditions, and show
that this problem admits substantially improved approximation algorithms. We also developed an integer linear
programming solver for the general problem and demonstrate its ability to reach optimality with instances from
the human protein interaction network.

Conclusion: Our results demonstrate that in contrast to most connectivity problems studied in computational
biology, accounting for multiplicity of biological conditions adds considerable complexity, which we propose to
address with a new solver. Importantly, our results extend to several network connectivity problems that are
commonly used in computational biology, such as Prize-Collecting Steiner Tree, and provide insight into the
theoretical guarantees for their applications in a multiple condition setting.

Availability: Our solver for the general condition Steiner network problem is available at
https://github.com/YosefLab/condition_connectivity_problems

Keywords: Steiner Network; NP Hard; Approximation Algorithm; Protein Protein Interaction

Background
In molecular biology applications, networks are rou-
tinely defined over a wide range of basic entities such as
proteins, genes, metabolites, or drugs, which serve as
nodes. The edges in these networks can have different
meanings, depending on the particular context. For in-
stance, in protein-protein interaction (PPI) networks,
edges represent physical contact between proteins, ei-
ther within stable multi-subunit complexes or through

*Correspondence: niryosef@eecs.berkeley.edu
2Department of Electrical Engineering and Computer Science, UC Berkeley,

Berkeley, CA USA

Full list of author information is available at the end of the article

transient causal interactions (i.e., an edge (x, y) means
that protein x can cause a change to the molecular
structure of protein y and thereby alter its activity).
The body of knowledge encapsulated within the hu-
man PPI network (tens of thousands of nodes and
hundreds of thousands of edges in current databases,
curated from thousands of studies [1]) is routinely used
by computational biologists to generate hypotheses of
how various signals are transduced in eukaryotic cells
[2, 3, 4, 5, 6]. The basic premise is that a process that
starts with a change to the activity of protein u and
ends with the activity of protein v must be propagated

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 13, 2018. ; https://doi.org/10.1101/300012doi: bioRxiv preprint

https://github.com/YosefLab/condition_connectivity_problems
mailto:niryosef@eecs.berkeley.edu
https://doi.org/10.1101/300012
http://creativecommons.org/licenses/by-nc-nd/4.0/

Wu et al. Page 2 of 16

through a chain of interactions between u and v. The
natural extension regards a process with a certain col-
lection of protein pairs {(u1, v1), . . . , (uk, vk)}, where
we are looking for a chain of interactions between each
ui and vi. In another set of applications, the notion of
directionality is not directly assumed and instead, one
is looking for a parsimonious subgraph that connects
together a set S of proteins that are postulated to be
active [7, 8].

In most applications, the identity of the so called ter-
minal nodes (i.e., (ui, vi) pairs or the set S) is assumed
to be known (or inferred from experimental data such
as ChIP-seq [7, 8, 5]), while the identity of the inter-
mediate nodes and interactions is unknown. The goal
therefore becomes to complete the gap and find a prob-
able subgraph of the PPI network that simultaneously
satisfies all the connectivity demands, thereby explain-
ing the overall biological activity. Since the edges in the
PPI network can be assigned a probability value (re-
flecting the credibility of their experimental evidence),
by taking the negative log of these values as edge
weights, the task becomes minimizing the total edge
weight, leading to an instance of the Steiner Network
problem. We have previously used this approach to
study the propagation of a stabilizing signal in pro-
inflammatory T cells, leading to the identification of
a new molecular pathway (represented by a sub-graph
of the PPI network) that is critical for mounting an
auto-immune response, as validated experimentally by
perturbation assays and disease models in mice [5].
Tuncbag et al. [8] have utilized the undirected ap-
proach using the Prize-Collecting Steiner Tree model,
where the input is a network G along with a penalty
function, p(v) for each protein (node) in the network
(based on their importance; e.g., fold-change across
conditions). The goal in this case is to find a prob-
able subtree which contains the majority of the high
cost proteins in G, while accounting for penalties paid
by both edge usage and missing proteins, in order to
capture the biological activity represented in such a
network [7, 8].

While these studies contributed to our understand-
ing of signal transduction pathways in living cells, they
do not account for a critical aspect of the underly-
ing biological complexity. In reality, proteins (nodes)
can become activated or inactivated at different condi-
tions, thereby giving rise to a different set of potential
PPIs that might take place [9]. Here, the term condi-
tion can refer to different points in time [10], different
treatments [11], or, more recently, different cells [12].
Indeed, advances in experimental proteomics provide
a way to estimate these changes at high throughput,
e.g., measuring phosphorylation levels or overall pro-
tein abundance, proteome-wide for a limited number

of samples [11]. A complementary line work provides
a way to evaluate the abundance of smaller numbers
of proteins (typically dozens of them) in hundreds of
thousands of single cells [12].

The next challenge is therefore to study connectivity
problems that take into account not only the endpoints
of each demand, but also the condition in which these
demands should be satisfied. This added complication
was tackled by Mazza et al. [13], who introduced the
“Minimum k-Labeling (MKL)” problem. In this set-
ting, each connectivity demand comes with a label,
which represents a certain experimental condition or
time point. The task is to label edges in the PPI net-
work so as to satisfy each demand using its respective
label, while minimizing the number of edges in the re-
sulting sub-graph and the number of labels used to
annotate these edges. While MKL was an important
first step, namely introducing the notion of different
demands for each condition, the more difficult chal-
lenge still remains that of considering variability in the
reference graph, namely different sets of proteins that
may be active and available for use in each condition.

Summary of Main Contributions
To address this open challenge, here we introduce the

Condition Steiner Network (CSN) problem. In this set-
ting, we are given a weighted undirected graph G, a set
of C conditions and a set of k ≥ C demands, at least
one per condition (note that we also cover the case of
directed graphs, with similar results). The conditions
are specified over a sequence of graphs Gc defined over
each condition, where vertices remain the same, but
edges are allowed to change across conditions (notably,
our results also hold when Gc is defined with changing
vertices rather than edges). Furthermore, demands are
in the form of “connect node u to node v through a
path of nodes that are present in condition c”. The
goal is to find a minimum weight subgraph of G that
satisfied all the demands.

We first show that it is NP-hard to find a solution
that is better than the trivial one (obtained by solv-
ing the problem independently for each condition).
This result extends to several types of connectivity
problems and provides a theoretical lower bounds to
the best-possible approximation guarantee that can be
achieved in a multiple condition setting (Table 1). For
instance, we can conclude that concomitantly solving
the shortest path problem for a set of conditions is
hard to approximate, and that the trivial solution (i.e.,
solving the problem to optimality in each condition)
is, theoretically, the best that one can do. Another
example, commonly used in PPI analysis, is the Prize-
Collecting Steiner tree problem [7, 8]. Here, our results
indicate that given a fixed input for this problem (i.e.,

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 13, 2018. ; https://doi.org/10.1101/300012doi: bioRxiv preprint

https://doi.org/10.1101/300012
http://creativecommons.org/licenses/by-nc-nd/4.0/

Wu et al. Page 3 of 16

Figure 1 Examples of well studied network problems (a), and their corresponding extension with multiple conditions (b). The
problems shown are: Undirected Steiner Tree, Directed Steiner Network, and Shortest Path, respectively. Yellow nodes and red edges
correspond to nodes and edges used in the optimal solutions for the corresponding instances.

a penalty function p(v) for each vertice), it is NP hard
to solve it concomitantly in C conditions, such that
the weight of the obtained solution is less than C times
that of the optimal solution. Interestingly, a theoret-
ical guarantee of C · (2 − 2

|V |)
[1] can be obtained by

solving the problem independently for each time point
While these results provide a somewhat pessimistic

view, they rely on the assumption that the network
frames Gc are arbitrary. In the last part of this paper,
we show that for the specific case where the conditions
can be ordered such that each condition is a subset
of the next (namely, Gc ⊆ Gc′ for c ≤ c′) then the
CSN problem can be reduced and solved as a standard
connectivity problem with a single condition, leading
to substantially better theoretical guarantees. Finally,
we develop an Integer Linear Programming algorithm
for the general CSN problem, and show that provided
with real-world input (namely, the human PPI) it is
capable of reaching an optimal solution in a reasonable
amount of time.

Introduction to Steiner Problems
The Steiner Tree problem, along with its many vari-
ants and generalizations, form a core family of NP-
hard combinatorial optimization problems. Tradition-
ally, the input to one of these problems is a single (usu-
ally weighted) graph, along with requirements about
which nodes need to be connected in some way; the
goal is to pick a minimum-weight subgraph satisfying
the connectivity demands.

[1]V is the set of nodes in the reference graph G

In this paper, we offer a multi-condition perspective;
in our setting, multiple graphs over the same vertex set
(which one can think of as an initial graph changing
over a set of discrete conditions), are all given as input,
and the goal is to pick a subgraph satisfying condition-
sensitive connectivity requirements. Our study of this
problem draws motivation and techniques from several
lines of research, which we briefly summarize.

Classic Steiner problems
A basic problem in graph theory is finding the short-
est path between two nodes; this problem is efficiently
solved using, for example, Dijkstra’s algorithm.

A natural extension of this is the Steiner Tree prob-
lem: given a weighted undirected graph G = (V,E)
and a set of terminals T ⊆ V , find a minimum-weight
subtree that connects all the nodes in T . A further
generalization is Steiner Forest: given G = (V,E) and
a set of demand pairs D ⊆ V ×V , find a subgraph that
connects each pair in D. Currently the best known ap-
proximation algorithms give a ratio of 1.39 for Steiner
Tree [14] and 2 for Steiner Forest [15]. These problems
are known to be NP-hard to approximate to within
some small constant [16].

For directed graphs, we have the Directed Steiner
Network (DSN) problem, in which we are given a
weighted directed graph G = (V,E) and k de-
mands (a1, b1), . . . , (ak, bk) ∈ V × V , and must
find a minimum-weight sub-graph in which each ai
has a path to bi. When k is fixed, DSN admits a
polynomial-time exact algorithm [17]. For general k,

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 13, 2018. ; https://doi.org/10.1101/300012doi: bioRxiv preprint

https://doi.org/10.1101/300012
http://creativecommons.org/licenses/by-nc-nd/4.0/

Wu et al. Page 4 of 16

the best known approximation algorithms have ra-
tio O(k1/2+ε) for any fixed ε > 0 [18, 19]. On the
complexity side, Dodis and Khanna [20] ruled out a

polynomial-time O(2log
1−ε n)-approximation for unless

NP has quasipolynomial-time algorithms[2]. An im-
portant special case of DSN is Directed Steiner Tree,
in which all demands have the form (r, bi) for some
root node r. This problem has a O(kε)-approximation
scheme [21] and a lower bound of Ω(log2−ε n) [22].

Finally, a Steiner variant that has found extensive
use in computational biology is the Prize-Collecting
Steiner Tree problem, in which the input contains a
weighted undirected graph G = (V,E) and penalty
function p : V → R≥0; the goal is to find a sub-
tree which simultaneously minimizes the weights of the
edges in the tree and the penalties paid for nodes not
included within the tree, i.e. cost(T) :=

∑
e∈T w(e) +∑

v/∈T p(v). For this problem, an approximation algo-
rithm with ratio 1.967 is known [23].

Condition Steiner problems
In this paper, we generalize the Shortest Path, Steiner
Tree, Steiner Forest, Directed Steiner Network, and
Prize-Collecting Steiner Tree problems to the multi-
condition setting. In this setting, we have a set of con-
ditions [C] := {1, . . . , C}, and are given a graph for
each condition.

Our main object of study is the natural generaliza-
tion of Steiner Forest (in the undirected case) and Di-
rected Steiner Network (in the directed case), which
we call Condition Steiner Network:

Definition 1 (Condition Steiner Network (CSN))
We are given the following inputs:
1 A sequence of undirected graphs G1 = (V,E1), G2 =

(V,E2), . . . , GC = (V,EC), one for each condi-
tion c ∈ [C]. Each edge e in the underlying edge
set E :=

⋃
cEc has a weight w(e) ≥ 0.

2 A set of k connectivity demands D ⊆ V ×V × [C].
We assume that for every c ∈ C there exists at
least one demand and therefore that k ≥ |C|.

We call G = (V,E) the underlying graph. We say a
subgraph H ⊆ G satisfies demand (a, b, c) ∈ D iff H
contains an a-b path P along which all edges exist in
Gc. The goal is to output a minimum-weight subgraph
H ⊆ G that satisfies every demand in D.

Definition 2 (Directed Condition Steiner Network
(DCSN)) This is the same as CSN except that all
the edges are directed, and a demand (a, b, c) must be
satisfied by a directed path from a to b in Gc.

[2]Throughout this paper, n := |V | denotes the number
of nodes in the relevant graph.

We can also define the analogous generalizations of
Shortest Path, (undirected) Steiner Tree, and Prize-
Collecting Steiner Tree. We give hardness results and
algorithms for these problems by demonstrating reduc-
tions to and from CSN and DCSN.

Definition 3 (Condition Shortest Path (CSP), Di-
rected Condition Shortest Path (DCSP)) These are
the special cases of CSN and DCSN in which the de-
mands are precisely (a, b, 1), . . . , (a, b, C) where a, b ∈
V are common source and target nodes.

Definition 4 (Condition Steiner Tree (CST)) We
are given a sequence of undirected graphs G1 =
(V,E1), . . . , GC = (V,EC), weights w(·) ≥ 0 on the
edges, and sets of terminal nodes X1, . . . , XC ⊆ V .
We say a subgraph H ⊆ (V,

⋃
cEc) satisfies the termi-

nal set Xc iff the nodes in Xc are mutually reachable
using edges in H that exist at condition c. The goal
is to find a minimum-weight subgraph H that satisfies
Xc for every c ∈ [C].

Definition 5 (Condition Prize-Collecting Steiner Tree
(CPCST)) We are given a sequence of undirected
graph G1 = (V,E1), . . . , GC = (V,EC), a weight
w(e) ≥ 0 on each e ∈ E, and a penalty p(v, c) ≥ 0
for each v ∈ V, c ∈ [C]. The goal is to find a subtree T
that minimizes

∑
e∈T w(e) +

∑
v/∈T,c∈[C] p(v, c).

Finally, in molecular biology applications, it is often
the case that all the demands originate from a com-
mon root node. To capture this, we define the following
special case of DCSN:

Definition 6 (Single-Source DCSN) This is the spe-
cial case of DCSN in which the demands are precisely
(a, b1, c1), (a, b2, c2), . . . , (a, bk, ck), for some root a ∈
V . We can assume that c1 ≤ c2 ≤ · · · ≤ ck.

It is also natural to consider variants of these prob-
lems in which nodes (rather than edges) vary across
the conditions, or in which both nodes and edges vary.
In Problem variants, we show that all three variants
are in fact equivalent; thus we focus on the edge-based
formulations.

Our Results
In this work, we perform a systematic study of the
condition Steiner problems defined above, from the
standpoint of approximation algorithms—that is, al-
gorithms that return subgraphs whose total weights
are not too much greater than that of the opti-
mal subgraph—as well as integer linear programming
(ILP). Since all of the condition Steiner problems listed

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 13, 2018. ; https://doi.org/10.1101/300012doi: bioRxiv preprint

https://doi.org/10.1101/300012
http://creativecommons.org/licenses/by-nc-nd/4.0/

Wu et al. Page 5 of 16

Table 1 Approximation bounds for the various Steiner Network Problems in their classic setting and condition setting.For the classic
problems, we have indicated the papers in which the bounds are shown. For the condition problems, all the lower bounds are developed
in the present work; all the upper bounds are the naive bounds obtained from the “union of shortest paths” heuristic, or from applying
the best known approximation algorithm for the appropriate classic Steiner problem to each condition, then taking the union of those
solutions.

Classic Condition
Problems Lower Bound Upper Bound Lower Bound(s) Upper Bound(s)

Steiner Forest 1.01 [16] 2 [15] C − ε, k − ε 2C, k

Directed Steiner Network k1/4−o(1) [24] k1/2+ε [18, 19] C − ε, k − ε C · k1/2+ε, k
Undirected Shortest Path N/A 1 C − ε C

Directed Shortest Path N/A 1 C − ε C
Steiner Tree 1.01 [16] 1.39 [14] C − ε 1.39C

Prize-Collecting Steiner Tree 1.01 [16] 1.97 [23] C − ε 1.97C

in the previous section turn out to be NP-hard (and
in fact all of them except Shortest Path are hard even
in the classic single-condition setting) we cannot hope
for algorithms that are optimal and run in polynomial
time.

First, in Hardness of condition Steiner problems, we
show a series of strong negative results, starting with
(directed and undirected) Condition Steiner Network:

Theorem 1 (Main Theorem) CSN and DCSN are
NP-hard to approximate to a factor of C− ε as well as
k − ε for every fixed k ≥ 2 and every constant ε > 0.
For DCSN, this holds even when the underlying graph
is acyclic.

Thus the best approximation ratio one can hope for
is C or k; the latter upper bound is easily achieved
by the trivial “union of shortest paths” algorithm: for
each demand (a, b, c), compute the shortest a-b path at
condition c; then take the union of these k paths. This
contrasts with the classic Steiner network problems,
which have nontrivial approximation algorithms and
efficient fixed-parameter algorithms.

Next, we show similar hardness results for the other
three condition Steiner problems. This is achieved by
a series of simple reductions from CSN and DCSN.

Theorem 2 Condition Shortest Path, Directed Con-
dition Shortest Path, Condition Steiner Tree, and
Condition Prize-Collecting Steiner Tree are all NP-
hard to approximate to a factor of C−ε for every fixed
C ≥ 2 and ε > 0.

Note that each of these condition Steiner problems
can be naively approximated by applying the best
known algorithm for the classic version of that problem
in each graph in the input, then taking the union of all
those subgraphs. If the corresponding classic Steiner
problem can be approximated to a factor of α, then

this process gives an α · C-approximation for the con-
dition version. Thus using known constant-factor ap-
proximation algorithms, each of the condition prob-
lems in Theorem 2 has an O(C)-approximation algo-
rithm. Our result shows that in the worst case, one
cannot do much better.

While these results provide a somewhat pessimistic
view, the proofs rely on the assumption that the edge
sets in the input networks (that is, E1, . . . , EC) do not
necessarily bear any relationship to one another. In
Monotonic special cases, we move beyond this worst-
case assumption by studying a broad class of special
cases in which the conditions are monotonic: if an edge
e exists in some graph Gc, then it exists in all the
subsequent graphs Gc′ , c

′ ≥ c. In other words, each
graph in the input is a subgraph of the next. For these
problems, we prove the following two theorems:

Theorem 3 Monotonic CSN has a polynomial-
time O(log k)-approximation algorithm. It has no
Ω(log logn)-approximation algorithm unless NP ∈
DTIME(nlog log logn).

In the directed case, for monotonic DCSN with a sin-
gle source (that is, every demand is of the form (r, b, c)
for a common root node r), we show the following:

Theorem 4 Monotonic Single-Source DCSN has
a polynomial-time O(kε)-approximation algorithm for
every ε > 0. It has no Ω(log2−ε n)-approximation al-
gorithm unless NP ∈ ZPTIME(npolylog(n)).

These bounds are proved via approximation-preserving
reductions to and from classic Steiner problems,
namely Priority Steiner Tree and Directed Steiner
Tree. Conceptually, this demonstrates that imposing
the monotonicity requirement makes the condition
Steiner problems much closer to their classic coun-
terparts, allowing us to obtain algorithms with sub-
stantially better approximation guarantees.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 13, 2018. ; https://doi.org/10.1101/300012doi: bioRxiv preprint

https://doi.org/10.1101/300012
http://creativecommons.org/licenses/by-nc-nd/4.0/

Wu et al. Page 6 of 16

Finally in Application to protein-protein in-
teraction networks, we show how to model various
condition Steiner problems as integer linear programs
(ILPs). In experiments on real-world inputs derived
from the human PPI network, we find that these ILPs
are capable of reaching optimal solutions in a reason-
able amount of time.

Table 1 summarizes our results, emphasizing how
the known upper and lower bounds change when going
from the classic Steiner setting to the condition Steiner
setting.

Preliminaries
Note that the formulations of CSN and DCSN in the
Introduction involved a fixed vertex set; only the edges
change over the conditions. It is also natural to formu-
late the condition Steiner network problem with nodes
changing over condition, or both nodes and edges.
However by the following proposition, it is no loss of
generality to discuss only the edge-condition variant.

Proposition 1 The edge, node, and node-and-edge
variants of CSN are mutually polynomial-time re-
ducible via strict reductions (i.e. preserving the approx-
imation ratio exactly). Similarly all three variants of
DCSN are mutually strictly reducible.

We defer the precise definitions of the other two vari-
ants, as well as the proof of this proposition, to Prob-
lem variants.

Next we state the Label Cover problem, which is the
starting point of one of our reductions to CSN.

Definition 7 (Label Cover (LC)) An instance of this
problem consists of a bipartite graph G = (U, V,E)
and a set of possible labels Σ. The input also includes,

for each edge (u, v) ∈ E, projection functions π
(u,v)
u :

Σ → C and π
(u,v)
v : Σ → C, where C is a common

set of colors; Π = {πev : e ∈ E, v ∈ e} is the set of all
such functions. A labeling of G is a function φ : U ∪
V → Σ assigning each node a label. We say a labeling
φ satisfies an edge (u, v) ∈ E, or (u, v) is consistent

under φ, iff π
(u,v)
u (φ(u)) = π

(u,v)
v (φ(v)). The task is to

find a labeling that satisfies as many edges as possible.

This slightly generalizes the original definition in
[25]. It has the following gap hardness, which follows
by combining the PCP theorem [26] with Raz’s parallel
repetition theorem [27].

Theorem 5 For every ε > 0, there is a constant |Σ|
such that the following promise problem is NP-hard:
Given a Label Cover instance (G,Σ,Π), distinguish be-
tween the following cases:

• (YES instance) There exists a total labeling of G;
i.e. a labeling that satisfies every edge.

• (NO instance) There does not exist a labeling of
G that satisfies more than ε|E| edges.

In Hardness of condition Steiner problems, we use
Label Cover to show (2 − ε)-hardness for 2-CSN and
2-DCSN; that is, when there are only two demands. To
prove our main result however, we will actually need a
generalization of Label Cover to partite hypergraphs,
called k-Partite Hypergraph Label Cover. Out of space
considerations we defer the statement of this problem
and its gap hardness to Inapproximability for gen-
eral C and k , where the (2−ε)-hardness result is gen-
eralized to show (C− ε)-hardness and (k− ε)-hardness
for general number of conditions C and demands k.

Hardness of condition Steiner problems
Overview of the reduction
Here we outline our strategy for reducing Label Cover
to the condition Steiner problems. First, we reduce to
the CSN problem restricted to having only C = 2 con-
ditions and k = 2 demands; we call this problem 2-
CSN. The directed problem 2-DCSN is defined analo-
gously. Later, we obtain similar hardness for CSN with
more conditions or demands by using the same ideas,
but reducing from k-Partite Hypergraph Label Cover.

Consider the nodes u1, . . . , u|U | on the “left” side of
the LC instance. We build, for each ui, a gadget (which
is a small sub-graph in the Steiner instance) consisting
of multiple parallel directed paths from a source to a
sink—one path for each possible label for ui. We then
chain together these gadgets, so that the sink of u1’s
gadget is the source of u2’s gadget, and so forth. Fi-
nally we create a connectivity demand from the source
of u1’s gadget to the sink of u|U |’s gadget, so that a
solution to the Steiner instance must have a path from
u1’s gadget, through all the other gadgets, and finally
ending at u|U |’s gadget. This path, depending on which
of the parallel paths it takes through each gadget, in-
duces a labeling of the left side of the Label Cover
instance. We build an analogous chain of gadgets for
the nodes on the right side of the Label Cover instance.

The last piece of the construction is to ensure that
the Steiner instance has a low-cost solution if and only
if the Label Cover instance has a consistent labeling.
This is accomplished by setting all the ui gadgets to
exist only at condition 1 (i.e. in frame G1), setting
the vj gadgets to exist only in G2, and then merging
certain edges from the ui-gadgets with edges from the
vj-gadgets, replacing them with a single, shared edge
that exists in both frames. Intuitively, the edges we
merge are from paths that correspond to labels that
satisfy the Label Cover edge constraints. The result

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 13, 2018. ; https://doi.org/10.1101/300012doi: bioRxiv preprint

https://doi.org/10.1101/300012
http://creativecommons.org/licenses/by-nc-nd/4.0/

Wu et al. Page 7 of 16

Figure 2 (Left) A bundle whose upper strand is a chain of two bundles; the lower strand is a simple strand. Contact edges are
orange. (Right) Three bundles (blue, green, red indicate different conditions), with one strand from each merged together.

is that a YES instance of Label Cover (i.e. one with
a total labeling) will enable a high degree of overlap
between paths in the Steiner instance, so that there
is a very low-cost solution. On the other hand, a NO
instance of LC will not result in much overlap between
the Steiner gadgets, so every solution will be costly.

Let us define some of the building blocks of the re-
duction we just sketched:
• A bundle is a graph gadget consisting of a source

node b1, sink node b2, and parallel, disjoint strands
(defined shortly) from b1 to b2.
• A chain of bundles is a sequence of bundles, with

the sink of one bundle serving as the source of
another.
• A simple strand is a directed path of the form
b1 → c1 → c2 → b2.
• In a simple strand, we say that (c1, c2) is the con-

tact edge. Contact edges have weight 1; all other
edges in our construction have zero weight.
• More generally, a strand can be made more com-

plicated, by replacing a contact edge with another
bundle (or even a chain of them). In this way, bun-
dles can be nested, as shown in Figure 1.
• We can merge two or more simple strands from

different bundles by setting their contact edges to
be the same edge, and making that edge existent
at the union of all conditions when the original
edges existed (Figure 1).

Before formally giving the reduction, we illustrate a
simple example of its construction.

Example 1 Consider a toy Label Cover instance
whose bipartite graph is a single edge, label set is
Σ = {1, 2}, and projection functions are shown:

u

πe
u : 1 7→ 1

2 7→ 1

v

πe
v : 1 7→ 2

2 7→ 1

e

Our reduction outputs this corresponding 2-CSN in-
stance:

vS1 vS2

uS
1 uS

2

1-
str
an
d

(u, ∅, v, 1)-path

2-strand

(u, 1, v, 2)-path

(u, 2, v, 2)-path

1-s
tra

nd

2-strand

G1 comprises the set of blue edges; G2 is green. The
demands are (uS1 , u

S
2 , 1) and (vS1 , v

S
2 , 2). The gadget for

the Label Cover node u (the blue sub-graph) consists
of two strands, one for each possible label. In the v-
gadget (green sub-graph), the strand corresponding to a
labeling of ‘2’ branches further, with one simple strand
for each agreeing labeling of u. Finally, strands (more
precisely, their contact edges) whose labels map to the
same color are merged.

The input is a YES instance of Label Cover whose
optimal labelings (u gets either label 1 or 2, v gets label
2) correspond to 2-CSN solutions of cost 1 (both gad-
gets traverse the (u, 1, v, 2)-path, or both traverse the
(u, 2, v, 2)-path). If this were a NO instance and edge e
could not be satisfied, then the resulting 2-CSN gadgets
would have no overlap.

Inapproximability for two demands
We now formalize the reduction in the case of two con-
ditions and two demands; later, we extend this to gen-
eral C and k.

Theorem 6 2-CSN and 2-DCSN are NP-hard to ap-
proximate to within a factor of 2−ε for every constant
ε > 0. For 2-DCSN, this holds even when the underly-
ing graph is acyclic.

Proof We describe a reduction from Label Cover (LC)
to 2-DCSN with an acyclic graph. Given the LC in-
stance (G = (U, V,E),Σ,Π), construct a 2-DCSN in-
stance (G = (G1, G2), along with two connectivity
demands) as follows. Create nodes uS1 , . . . , u

S
|U |+1 and

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 13, 2018. ; https://doi.org/10.1101/300012doi: bioRxiv preprint

https://doi.org/10.1101/300012
http://creativecommons.org/licenses/by-nc-nd/4.0/

Wu et al. Page 8 of 16

vS1 , . . . , v
S
|V |+1. Let there be a bundle from each uSi to

uSi+1; we call this the ui-bundle, since a choice of path
from uSi to uSi+1 in G will indicate a labeling of ui in
G.

The ui-bundle has a strand for each possible label
` ∈ Σ. Each of these `-strands consists of a chain of
bundles—one for each edge (ui, v) ∈ E. Finally, each
such (ui, v)-bundle has a simple strand for each label

r ∈ Σ such that π
(ui,v)
ui (`) = π

(ui,v)
v (r); call this the

(ui, `, v, r)-path. In other words, there is ultimately a
simple strand for each possible labeling of ui’s neighbor
v such that the two nodes are in agreement under their
mutual edge constraint. If there are no such consistent
labels r, then the (ui, v)-bundle consists of just one
simple strand, which is not associated with any r. Note
that every minimal uS1 → uS|U |+1 path (that is, one that

proceeds from one bundle to the next) has total weight
exactly |E|.

Similarly, create a vj-bundle from each vSj to vSj+1,
whose r-strands (for r ∈ Σ) are each a chain of bun-
dles, one for each (u, vj) ∈ E. Each (u, vj)-bundle has
a (u, `, vj , r)-path for each agreeing labeling ` of the
neighbor u, or a simple strand if there are no such
labelings.

Set all the edges in the ui-bundles to exist in G1

only. Similarly the vj-bundles exist solely in G2. Now,
for each (u, `, v, r)-path in G1, merge it with the
(u, `, v, r)-path in G2, if it exists. The demands are

D =
{(
uS1 , u

S
|U |+1, 1

)
,
(
vS1 , v

S
|V |+1, 2

)}
.

We now analyze the reduction. The main idea is
that any uSi → uSi+1 path induces a labeling of ui;

thus the demand
(
uS1 , u

S
|U |+1, 1

)
ensures that any 2-

DCSN solution indicates a labeling of all of U . Simi-

larly,
(
vS1 , v

S
|V |+1, 2

)
forces an induced labeling of V .

In the case of a YES instance of Label Cover, these
two connectivity demands can be satisfied by taking
two paths with a large amount of overlap, resulting in
a low-cost 2-DCSN solution. In contrast when we start
with a NO instance of Label Cover, any two paths we
can choose to satisfy the 2-DCSN demands will be al-
most completely disjoint, resulting in a costly solution.
We now fill in the details.

Suppose the Label Cover instance is a YES instance,
so that there exists a labeling `∗u to each u ∈ U , and
r∗v to each v ∈ V , such that for all edges (u, v) ∈ E,

π
(u,v)
u (`∗u) = π

(u,v)
v (r∗v). The following is an optimal

solution H∗ to the constructed 2-DCSN instance:

• To satisfy the demand at condition 1, for each
u-bundle, take a path through the `∗u-strand. In
particular for each (u, v)-bundle in that strand,
traverse the (u, `∗u, v, r

∗
v)-path.

• To satisfy the demand at condition 2, for each
v-bundle, take a path through the r∗v-strand. In
particular for each (u, v)-bundle in that strand,
traverse the (u, `∗u, v, r

∗
v)-path.

In tallying the total edge cost, H∗ ∩ G1 (i.e. the sub-
graph at condition 1) incurs a cost of |E|, since one
contact edge in G is encountered for each edge in G.
H∗ ∩G2 accounts for no additional cost, since all con-
tact edges correspond to a label which agrees with
some neighbor’s label, and hence were merged with the
agreeing contact edge in H∗∩G1. Clearly a solution of
cost |E| is the best possible, since every uS1 → uS|U |+1

path in G1 (and every vS1 → vS|V |+1 path in G2) con-

tains at least |E| contact edges.

Conversely suppose we started with a NO instance
of Label Cover, so that for any labeling `∗u to u and
r∗v to v, for at least (1 − ε)|E| of the edges (u, v) ∈
E, we have π

(u,v)
u (`∗u) 6= π

(u,v)
v (r∗v). By definition, any

solution to the constructed 2-DCSN instance contains
a simple uS1 → uS|U |+1 path P1 ∈ G1 and a simple

vS1 → vS|V |+1 path P2 ∈ G2. P1 alone incurs a cost of

exactly |E|, since one contact edge in G is traversed for
each edge in G. However, P1 and P2 share at most ε|E|
contact edges (otherwise, by the merging process, this
implies that more than ε|E| edges could be consistently
labeled, which is a contradiction). Thus the solution
has a total cost of at least (2− ε)|E|.

The underlying directed graph we constructed is
acyclic, as every edge points “to the right” as in Ex-
ample 1. It follows from the gap between the YES and
NO cases that 2-DCSN is NP-hard to approximate to
within a factor of 2− ε for every ε > 0, even on acyclic
graphs. Finally, note that the same analysis holds for
2-CSN, by simply making every edge undirected; how-
ever in this case the graph is clearly not acyclic.

Inapproximability for general C and k
Theorem 1 (Main Theorem) CSN and DCSN are
NP-hard to approximate to a factor of C− ε as well as
k − ε for every fixed k ≥ 2 and every constant ε > 0.
For DCSN, this holds even when the underlying graph
is acyclic.

Proof We perform a reduction from k-Partite Hyper-
graph Label Cover, a generalization of Label Cover to
hypergraphs, to CSN, or DCSN with an acyclic graph.
Using the same ideas as in the C = k = 2 case, we
design k demands composed of parallel paths corre-
sponding to labelings, and merge edges so that a good
global labeling corresponds to lots of overlaps between
those paths. The full proof is left to Inapproxima-
bility for general C and k .

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 13, 2018. ; https://doi.org/10.1101/300012doi: bioRxiv preprint

https://doi.org/10.1101/300012
http://creativecommons.org/licenses/by-nc-nd/4.0/

Wu et al. Page 9 of 16

Note that a k-approximation algorithm is to simply
choose H =

⋃
c P̃c, where P̃c is the shortest ac → bc

path in Gc. Thus by Theorem 1, essentially no bet-
ter approximation is possible in terms of k alone. In
contrast, most classic Steiner problems have good ap-
proximation algorithms, or are even exactly solvable
for constant k.

Inapproximability for Steiner variants
We take advantage of our previous hardness of approx-
imation results in Theorem 1 and show, via a series of
reductions, that CSP, CSN, and CPCST are also hard
to approximate.

Theorem 2 Condition Shortest Path, Directed Con-
dition Shortest Path, Condition Steiner Tree, and
Condition Prize-Collecting Steiner Tree are all NP-
hard to approximate to a factor of C−ε for every fixed
C ≥ 2 and ε > 0.

Proof We first reduce from CSN to CSP (and DCSN
to DCSP). Suppose we are given an instance of
CSN with graph sequence G = (G1, . . . , GC), un-
derlying graph G = (V,E), and demands D =
{(ai, bi, ci) : i ∈ [k]}. We build a new instance
(G′ = (G′1, . . . , G

′
k), G′ = (V ′, E′),D′) as follows.

Initialize G′ to G. Add to G′ the new nodes a and b,
which exist at all conditions/in all frames G′i. For all
e ∈ E and i ∈ [k], if e ∈ Gci , then let e exist in G′i as
well. For each (ai, bi, ci) ∈ D,
1 Create new nodes xi, yi. Create zero-weight edges

(a, xi), (xi, ai), (bi, yi), and (yi, b).
2 Let (a, xi), (xi, ai), (bi, yi), and (yi, b) exist only

in frame G′i.
Lastly, the demands are D′ = {(a, b, i) : i ∈ [k]}.

Given a solution H ′ ⊆ G′ containing an a→ b path
at every condition i ∈ [k], we can simply exclude nodes
a, b, {xi}, and {yi} to obtain a solution H ⊆ G to the
original instance, which contains an ai → bi path in
Gci for all i ∈ [k], and has the same cost. The converse
is also true by including these nodes.

Observe that essentially the same procedure shows
that DCSN reduces to DCSP; simply ensure that the
edges added by the reduction are directed rather than
undirected.

Next, we reduce CSP to CST. Suppose we are
given an instance of CSP with graph sequence G =
(G1, . . . , GC), underlying graph G = (V,E), and de-
mands D = {(a, b, i) : i ∈ [C]}. We build a new in-
stance of CST as follows:
(G′ = (G′1, . . . , G

′
C), G′ = (V ′, E′),X = (X1, ..., XC)).

Set G′ to G, and G′ to G. Take the set of terminals
in each condition to be Xi = {a, b}. We note that
a solution H ′ ⊆ G′ to the CST instance is trivially

a solution the CSP instance with the same cost, and
vice-versa.

Finally, we reduce CST to CPCST. We do this
by making an appropriate assignment of the penal-
ties p(v, c). Suppose we are given an instance of
CST with graph sequence G = (G1, . . . , GC), un-
derlying graph G = (V,E), and terminal sets X =
(X1, ..., XC). We build a new instance of CPCST,
(G′ = (G′1, . . . , G

′
C), G′ = (V ′, E′), p(v, c)). In particu-

lar, set G′ to G, and G′ to G. Set p(v, c) as follows:

p(v, c) =

{
∞, v ∈ Xc

0, otherwise

Consider any solution H ⊆ G to the original CST in-
stance. Since H spans the terminals X1, . . . , Xc (thus
avoiding any infinite penalties), and since the non-
terminal vertices have zero cost, the overall cost of
H remains the same cost in the constructed CPCST
instance. Conversely, suppose we are given a solution
H ′ ⊆ G′ to the constructed CPCST instance. If the
cost of H ′ is ∞, then there exists no solution that can
span all the Xc’s simultaneously, and thus no solution
exists for the CST instance. On the other hand if H ′

has finite cost, then H ′ is also a solution for the CST
instance, with the same cost.

To summarize: in the first reduction from CSN to
CSP, the number of demands, k, in the CSN instance
is the same as the number of the conditions, C, in
the CSP instance; we conclude that CSP is NP-hard
to approximate to a factor of C − ε for every fixed
C ≥ 2 and ε > 0. Since C remains the same in the
two subsequent reductions, we also have that CST and
CPCST are NP-hard to approximate to a factor of
C − ε.

Monotonic special cases
In light of the strong lower bounds in the previous
theorems, in this section we consider more tractable
special cases of the condition Steiner problems. A nat-
ural restriction is that the changes over conditions are
monotonic:

Definition 8 (Monotonic {CSN, DCSN, CSP, DCSP,
CST, CPCST}) In this special case (of any of the
condition Steiner problems), we have that for each e ∈
E and c ∈ [C], if e ∈ Gc, then e ∈ Gc′ for all c′ ≥ c.

We now examine the effect of monotonicity on the
complexity of the condition Steiner problems.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 13, 2018. ; https://doi.org/10.1101/300012doi: bioRxiv preprint

https://doi.org/10.1101/300012
http://creativecommons.org/licenses/by-nc-nd/4.0/

Wu et al. Page 10 of 16

Monotonicity in the undirected case
In the undirected case, we show that monotonicity has
a simple effect: it makes CSN equivalent to the follow-
ing well-studied problem:

Definition 9 (Priority Steiner Tree [28]) The input
is a weighted undirected multigraph G = (V,E,w), a
priority level p(e) for each e ∈ E, and a set of k de-
mands (ai, bi), each with priority p(ai, bi). The output
is a minimum-weight forest F ⊆ G that contains, be-
tween each ai and bi, a path in which every edge e has
priority p(e) ≤ p(ai, bi).

Priority Steiner Tree was introduced by Charikar,
Naor, and Schieber [28], who gave a O(log k) approx-
imation algorithm. Moreover, it cannot be approxi-
mated to within a factor of Ω(log logn) assuming NP
/∈ DTIME(nlog log logn) [29]. We now show that the
same bounds apply to Monotonic CSN.

Lemma 1 Priority Steiner Tree and Monotonic
CSN have the same approximability.

Proof We transform an instance of Priority Steiner
Tree into an instance of Monotonic CSN as follows:
the set of priorities becomes the set of conditions; if an
edge e has priority p(e), it now exists at all conditions
t ≥ p(e); if a demand (ai, bi) has priority p(ai, bi), it
now becomes (ai, bi, p(ai, bi)). If there are parallel mul-
tiedges, break up each such edge into two edges of half
the original weight, joined by a new node. Given a so-
lution H ⊆ G to this CSN instance, contracting any
edges that were originally multiedges gives a Priority
Steiner Tree solution of the same cost. This reduction
also works in the opposite direction (in this case there
are no multiedges), which shows the equivalence.

Furthermore, the O(log k) upper bound applies to
CST (We note that Monotonic CSP admits a trivial
algorithm, namely take the subgraph induced by run-
ning Djikstra’s Algorithm on G1).

Lemma 2 If Monotonic CSN can be approximated to
a factor of f(k) for some function f , then Monotonic
CST can also be approximated to within f(k).

Proof We now show a reduction from CST to CSN.
Suppose we are given a CST instance on graphs G =
(G1, . . . , GC) and terminal sets X = (X1, ..., XC). Our
CSN instance has precisely the same graphs, and has
the following demands: for each terminal set Xc, pick
any terminal a ∈ Xc and create a demand (a, b, c) for
each b 6= a ∈ Xc. A solution to the original CST in-
stance is a solution to the constructed CSN instance

with the same cost, and vice-versa; moreover, if the
CST instance is monotonic, then so is the constructed
CSN instance. Observe that if the total number of CST
terminals is k, then the number of constructed de-
mands is k − C, and therefore an f(k)-approximation
for CSN implies an f(k−C) ≤ f(k)-approximation for
CST, as required.

Monotonicity in the directed case
In the directed case, we give an approximation-
preserving reduction from a single-source special case
of DCSN to the Directed Steiner Tree (DST) problem,
then apply a known algorithm for DST. Recall the
definition of Single-Source DCSN:

Definition 6 (Single-Source DCSN) This is the spe-
cial case of DCSN in which the demands are precisely
(a, b1, c1), (a, b2, c2), . . . , (a, bk, ck), for some root a ∈
V . We can assume that c1 ≤ c2 ≤ · · · ≤ ck.

Lemma 3 Monotonic Single-Source DCSN and Di-
rected Steiner Tree have the same approximability.

For the remainder of this section, we refer to Mono-
tonic Single-Source DCSN as simply DCSN. Towards
proving the theorem, we now describe a reduction
from DCSN to DST. Given a DCSN instance (G1 =
(V,E1), G2 = (V,E2), . . . , GC = (V,EC),D) with un-
derlying graph G = (V,E), we construct a DST in-
stance (G′ = (V ′, E′), D′) as follows:
• G′ contains a vertex vi for each v ∈ V and each i ∈

[k]. It contains an edge (ui, vi) with weight w(u, v)
for each (u, v) ∈ Ei. Additionally, it contains a
zero-weight edge (vi, vi+1) for each v ∈ V and
each i ∈ [k].
• D′ contains a demand (a1, bcii) for each (a, bi, ci) ∈
D.

Now consider the DST instance (G′, D′).

Lemma 4 If the DCSN instance (G1, . . . , GC ,D)
has a solution of cost C∗, then the constructed DST
instance (G′, D′) has a solution of cost at most C∗.

Proof Let H ⊆ G be a DCSN solution having cost
C∗. For any edge (u, v) ∈ E(H), define the earliest
necessary condition of (u, v) to be the minimum ci
such that removing (u, v) would cause H not to satisfy
demand (a, bi, ci).

Claim 1 There exists a solution C ⊆ H that is a
directed tree and has cost at most C∗. Moreover for
every path Pi in C from the root a to some target bi,
as we traverse Pi from a to bi, the earliest necessary
conditions of the edges are non-decreasing.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 13, 2018. ; https://doi.org/10.1101/300012doi: bioRxiv preprint

https://doi.org/10.1101/300012
http://creativecommons.org/licenses/by-nc-nd/4.0/

Wu et al. Page 11 of 16

Proof of Claim 1 Consider a partition of H into edge-
disjoint sub-graphs H1, . . . ,Hk, where Hi is the sub-
graph whose edges have earliest necessary condition ci.
Clearly each Hi is a single component.

If there is a directed cycle or parallel paths in the first
sub-graph H1, then there is an edge e ∈ E(H1) whose
removal does not cause H1 to satisfy fewer demands
at condition c1. Moreover by monotonicity, removing e
also does not cause H to satisfy fewer demands at any
future conditions. Hence there exists a directed tree
T1 ⊆ H1 such that T1 ∪

(⋃k
i=2Hi

)
has cost at most

C∗ and still satisfies T .
Now suppose by induction that for some j ∈ [k− 1],⋃j
i=1 Ti is a tree such that

(⋃j
i=1 Ti

)
∪
(⋃k

i=j+1Hi
)

has cost at most C∗ and satisfies D. Consider the
partial solution

(⋃j
i=1 Ti

)
∪ Hj+1; if this sub-graph

is not a directed tree, then there must be an edge
(u, v) ∈ E(Hj+1) such that v has another in-edge in
the sub-graph. However by monotonicity, (u, v) does
not help satisfy any new demands, as v is already
reached by some other path from the root. Hence by re-
moving all such redundant edges, we have Tj+1 ⊆ Hj+1

such that
(⋃j+1

i=1 Ti
)
∪
(⋃k

i=j+2Hi
)

has cost at most

C∗ and satisfies D, which completes the inductive step.
We conclude that T :=

⋃k
i=1 Ti ⊆ H is a tree of

cost at most C∗ satisfying D. Observe also that by
construction, T has the property that if we traverse
any a → bi path, the earliest necessary conditions of
the edges never decrease.

Now let T be the DCSN solution guaranteed to exist
by Claim 1. Consider the sub-graphH ′ ⊆ G′ formed by
adding, for each (u, v) ∈ E(T), the edge (uc, vc) ∈ E′
where c is the earliest necessary condition of (u, v) in
E(H). In addition, add all the free edges (vi, vi+1).
Since w(uc, vc) = w(u, v) by construction, cost(H ′) ≤
cost(T) ≤ C∗.

To see that H ′ is a valid solution, consider any de-
mand (a1, bcii). Recall that T has a unique a → bi
path Pi along which the earliest necessary conditions
are nondecreasing. We added to H ′ each of these
edges at the level corresponding to its earliest neces-
sary condition; moreover, whenever there are adjacent
edges (u, v), (v, x) ∈ Pi with earliest necessary condi-
tions c and c′ ≥ c respectively, there exist in H ′ free
edges (vt, vc+1), . . . , (vc

′−1, vc
′
). Thus H ′ contains an

a1 → bcii path, which completes the proof.

Lemma 5 If the constructed DST instance (G′, D′)
has a solution of cost C∗, then the original DCSN in-
stance (G1, . . . , GC ,D) has a solution of cost at most
C∗.

Proof First note that any DST solution ought to be a
tree; let T ′ ⊆ G′ be such a solution of cost C. For each
(u, v) ∈ G, T ′ might as well use at most one edge of the
form (ui, vi), since if it uses more, it can be improved
by using only the one with minimum i, then taking
the free edges (vi, vi+1) as needed. We create a DCSN
solution T ⊆ G as follows: for each (ui, vi) ∈ E(T ′),
add (u, v) to T . Since w(u, v) = w(ui, vi) by design,
we have cost(T) ≤ cost(T ′) ≤ C. Finally, since each
a1 → btii path in G′ has a corresponding path in G by
construction, T satisfies all the demands.

Lemma 3 follows from Lemma 4 and Lemma 5. Fi-
nally we can obtain the main result of this subsection:

Theorem 4 Monotonic Single-Source DCSN has
a polynomial-time O(kε)-approximation algorithm for
every ε > 0. It has no Ω(log2−ε n)-approximation al-
gorithm unless NP ∈ ZPTIME(npolylog(n)).

Proof The upper bound follows by composing the re-
duction (from Monotonic Single-Source DCSN to Di-
rected Steiner Tree) with the algorithm of Charikar et
al. [21] for Directed Steiner Tree, which achieves ra-
tio O(kε) for every ε > 0. More precisely they give
a i2(i − 1)k1/i-approximation for any integer i ≥ 1,
in time O(nik2i). The lower bound follows by com-
posing the reduction (in the opposite direction) with a
hardness result of Halperin and Krauthgamer [22], who
show the same bound for Directed Steiner Tree.

In Explicit algorithm for Monotonic Single-
Source DCSN, we show how to modify the algorithm
of Charikar et al. to arrive at a simple, explicit al-
gorithm for Monotonic Single-Source DCSN achieving
the same guarantee.

Application to protein-protein interaction
networks
Methods such as Directed Condition Steiner Network
can be key in identifying underlying structure in bi-
ological processes. As a result, it is important to as-
sess the runtime feasibility of solving for an optimal
solution. We show via simulation on human protein-
protein interaction networks, that our algorithm on
single-source instances is able to quickly and accu-
rately infer maximum likelihood subgraphs for a cer-
tain biological process.

Building the protein-protein interaction network
We represent the human PPI network as a weighted di-
rected graph, where proteins serve as nodes, and inter-
actions serve as edges. The network was formed by ag-
gregating information from four sources of interaction

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 13, 2018. ; https://doi.org/10.1101/300012doi: bioRxiv preprint

https://doi.org/10.1101/300012
http://creativecommons.org/licenses/by-nc-nd/4.0/

Wu et al. Page 12 of 16

data, including Netpath [30], Phosphosite [31], HPRD
[32], and InWeb [33], altogether, covering 16222 nodes
and 437888 edges. Edge directions are assigned where
these annotations were available (primarily in Phop-
shosite and NetPath). The remaining edges are repre-
sented by two directed edges between the proteins in-
volved. Edge weights were assigned by taking the nega-
tive logarithm of the associated confidence score, indi-
cating that finding the optimal Steiner Network would
be the same as finding the most confident solution (as-
suming independence between edges). Confidence data
was available for the largest of the data sets (InWeb).
For HPRD edges that are not in InWeb, we used the
minimum nonzero confidence value by default. For the
smaller and highly curated data-sets, Phopshosite and
NetPath, we used the maximal confidence level.

Solving DCSN to optimality
Definition 6 (Single-Source DCSN) This is the spe-
cial case of DCSN in which the demands are precisely
(a, b1, c1), (a, b2, c2), . . . , (a, bk, ck), for some root a ∈
V . We can assume that c1 ≤ c2 ≤ · · · ≤ ck.

We can derive a natural integer linear program for
the Single-Source Directed Condition Steiner Network
in terms of network flows, with each demand being met
by a flow from source to target:

minimize
∑

(u,v)∈E

duv · w(u, v)

subject to

k · duv ≥ duvc ∀c, (u, v) ∈ Ec∑

(v,w)∈Ec

dvwc =
∑

(u,v)∈Ec

duvc + δvc ∀c, v ∈ V

duvc ∈ {0, 1, . . . , k} ∀c, (u, v) ∈ Ec

duv ∈ {0, 1} ∀(u, v) ∈ E

Figure 3 Integer Linear Program for Single-Source Conditon
Steiner Network. δvc = number of demands at condition c in
which v is a source, minus the number in which v is a target.

Each variable duvc denotes the flow through edge
(u, v) at condition c, if it exists; each variable duv de-
notes whether (u, v) is ultimately in the chosen solu-
tion sub-graph. The first constraint ensures that if an
edge is used at any condition, it is chosen as part of
the solution. The second constraint enforces flow con-
servation, and hence that the demands are satisfied, at
all nodes and all conditions.

We note that DCSN easily reduces DCSP, as out-
lined in Theorem 2. However, DCSP is a special case

of Single-Source DCSN. Therefore, the Integer Lin-
ear Program defined above can be applied to any
DCSN instance with a transformation of the instance
to DCSP.

Performance Analysis of Integer Linear
Programming
Given the protein protein interaction network G, we
sample an instance of the node-variant Single-Source
DCSN as so[3]:
• Instantiate a source node a.
• Independently sample β nodes reachable from a,

for each of the γ conditions, giving us {b1,1, ..., bγ,β}.
• For each node v ∈ V , include v ∈ Vc if v lies on

the shortest path from a to one of {b1,c, .., bγ,c}
• For all other nodes v ∈ Vc for all c, include v ∈ Vc

with probability p.
Using a workstation running an Intel Xeon E5-2690

processor and 250GB of RAM, optimal solutions to
instances of modest size (generated using the proce-
dure just described) were within reach:

Table 2 ILP solve times for some random instances generated by
our random model.

β γ p Time to solve
10 1 .25 1m ± 10s

100 1 .25 1m ± 10s
10 1 .75 1m ± 10s

100 1 .75 1m ± 10s
10 10 .25 9m ± 30s
10 10 .75 11m ± 30s

100 10 .25 12m ± 30s
100 10 .75 17m ± 2m
10 100 .75 2h 30m ± 12m

100 100 .75 4h ± 40m

We notice that our primary runtime constraint
comes from γ, the number of conditions. In practice,
the number of conditions does not exceed 100. There-
fore, we present a model which can also easily translate
and find optimal solutions to real world biological
problems with practical runtime.

Conclusion and Discussion
In this paper we introduced the Condition Steiner
Network (CSN) problem and its directed variant, in
which the goal is to find a minimal subgraph satis-
fying a set of k condition-sensitive connectivity de-
mands. We show, in contrast to known results for tra-
ditional Steiner problems, that this problem is NP-
hard to approximate to a factor of C − ε, as well as
k − ε, for every C, k ≥ 2 and ε > 0. We then explored
a special case, in which the conditions/graphs satisfy

[3]As previously mentioned, this variant reduces to the
edge variant via reduction, and vice versa

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 13, 2018. ; https://doi.org/10.1101/300012doi: bioRxiv preprint

https://doi.org/10.1101/300012
http://creativecommons.org/licenses/by-nc-nd/4.0/

Wu et al. Page 13 of 16

a monotonicity property. For such instances we pro-
posed algorithms significantly beating the pessimistic
lower bound for the general problem; this was accom-
plished by reducing the problem to certain traditional
Steiner problems. Lastly, we developed and applied an
integer programming-based exact algorithm on sim-
ulated instances built over the human protein-protein
interaction network, and reported feasible runtimes for
real-world problem instances.

Importantly, along the way we showed implications
of these results for CSN on other network connectivity
problems that are commonly used in PPI analysis—
such as Shortest Path, Steiner Tree, Prize-Collecting
Steiner Tree—when conditions are added. We showed
that for each of these problems, we cannot guaran-
tee (in polynomial time) a solution with a value below
C− ε times the optimal value. These lower bounds are
quite strict, in the sense that naively approximating
the problem separately in every condition, and taking
the union of those solutions, already gives an approx-
imation ratio of O(C). At the same time, by relating
the various condition Steiner problems to one another,
we also obtained some positive results: the condition
versions of Shortest Path and Steiner Tree admit good
approximations when the conditions are monotonic.
Moreover, all of the condition problems (with the ex-
ception of Prize-Collecting Steiner Tree) can be solved
using a natural integer programming framework that
works well in practice.

Proofs of Main Theorems
Problem variants
There are several natural ways to formulate the condi-
tion Steiner network problem, depending on whether
the edges are changing over condition, or the nodes, or
both.

Definition 10 (Condition Steiner Network (edge vari-
ant)) This is the formulation described in the In-
troduction: the inputs are G1 = (V,E1), . . . , GC =
(V,EC), w(·), and D = {(ai, bi, ci)}. The task is to
find a minimum-weight sub-graph H ⊆ G that satisfies
all of the demands.

Definition 11 (Condition Steiner Network (node vari-
ant)) Let the underlying graph be G = (V,E). The
inputs are G1 = (V1, E(V1)), . . . , GC = (VC , E(VC)),
w(·), and D. Here, E(Vc) ⊆ E denotes the edges in-
duced by Vc ⊆ V . A path satisfies a demand at condi-
tion t iff all edges along that path exist in Gc.

Definition 12 (Condition Steiner Network (node
and edge variant)) The inputs are precisely G1 =
(V1, E1), . . . , GC = (VC , EC), w(·), and D. This is the
same as the node variant except that each Ec can be
any subset of E(Vc).

Similarly, define the corresponding directed problem
Directed Condition Steiner Network (DCSN) with the
same three variants. The only difference is that the
edges are directed, and a demand (a, b, c) must be sat-
isfied by a directed a→ b path in Gc.

The following observation enables all our results to
apply to all problem variants.

Proposition 2 The edge, node, and node-and-edge
variants of CSN are mutually polynomial-time re-
ducible via strict reductions (i.e. preserving the approx-
imation ratio exactly). Similarly all three variants of
DCSN are mutually strictly reducible.

Proof The following statements shall hold for both
undirected and directed versions. Clearly the node-
and-edge variant generalizes the other two. It suffices
to show two more directions:
• (Node-and-edge reduces to node) Let (u, v) be an

edge existent at a set of conditions τ(u, v), whose
endpoints exist at conditions τ(u) and τ(v). To
make this a node-condition instance, create an
intermediate node x(u,v) existent at conditions
τ(u, v), an edge (u, x(u,v)) with the original weight
w(u, v), and an edge (x(u,v), v) with zero weight. A
solution of cost W in the node-and-edge instance
corresponds to a node-condition solution of cost
W , and vice-versa.

• (Node reduces to edge) Let (u, v) be an edge
whose endpoints exist at conditions τ(u) and τ(v).
To make this an edge-condition instance, let (u, v)
exist at conditions τ(u, v) := τ(u) ∩ τ(v). Let ev-
ery node exist at all conditions; let the edges re-
tain their original weights. A solution of cost W
in the node-condition instance corresponds to an
edge-condition solution of cost W , and vice-versa.

Inapproximability for general C and k
Here we prove our main theorem, showing optimal
hardness for any number of demands. To do this, we
introduce a generalization of Label Cover to partite
hypergraphs:

Definition 13 (k-Partite Hypergraph Label Cover
(k-PHLC)) An instance of this problem consists of
a k-partite, k-regular hypergraph G = (V1, . . . , Vk, E)
(that is, each edge contains exactly one vertex from
each of the k parts) and a set of possible labels Σ. The
input also includes, for each hyperedge e ∈ E, a pro-
jection function πev : Σ → C for each v ∈ e; Π is the
set of all such functions. A labeling of G is a function
φ :
⋃k
i=1 Vi → Σ assigning each node a label. There are

two notions of edge satisfaction under a labeling φ:

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 13, 2018. ; https://doi.org/10.1101/300012doi: bioRxiv preprint

https://doi.org/10.1101/300012
http://creativecommons.org/licenses/by-nc-nd/4.0/

Wu et al. Page 14 of 16

• φ strongly satisfies a hyperedge e = (v1, . . . , vk) iff
the labels of all its vertices are mapped to the same
color, i.e. πevi(φ(vi)) = πevj (φ(vj)) for all i, j ∈ [k].
• φ weakly satisfies a hyperedge e = (v1, . . . , vk) iff

there exists some pair of vertices vi, vj whose la-
bels are mapped to the same color, i.e. πevi(φ(vi)) =
πevj (φ(vj)) for some i 6= j ∈ [k].

Theorem 7 For every ε > 0 and every fixed inte-
ger k ≥ 2, there is a constant |Σ| such that the fol-
lowing promise problem is NP-hard: Given a k-Partite
Hypergraph Label Cover instance (G,Σ,Π), distinguish
between the following cases:
• (YES instance) There exists a labeling of G that

strongly satisfies every edge.
• (NO instance) Every labeling of G weakly satisfies

at most ε|E| edges.

Theorem 7 follows from Feige’s k-prover system [34]
by taking the number of repetitions to be (a constant
depending on k and ε) large enough so that the error
probability drops below ε.

The proof of (C − ε)-hardness and (k − ε)-hardness
follows the same outline as the C = k = 2 case (The-
orem 6).

Theorem 8 (Main Theorem) CSN and DCSN are
NP-hard to approximate to a factor of C− ε as well as
k − ε for every fixed k ≥ 2 and every constant ε > 0.
For DCSN, this holds even when the underlying graph
is acyclic.

Proof Given the k-PHLC instance in the form (G =
(V1, . . . , Vk, E),Σ,Π), and letting vc,i denote the i-
th node in Vc, construct a DCSN instance (G =
(G1, . . . , Gk), along with k demands) as follows. For
every c ∈ [k], create nodes vSc,1, . . . , v

S
t,|Vc|+1. Create

a vc,i-bundle from each vSc,i to vSc,i+1, whose `-strands
(for ` ∈ Σ) are each a chain of bundles, one for each
incident hyperedge e = (v1,i1 , . . . , vc,i, . . . , vk,ik) ∈ E.
Each (v1,i1 , . . . , vc,i, . . . , vk,ik)-bundle has a
(v1,i1 , `1, . . . , vc,i, `c, . . . , vk,ik , `k)-path for each agree-
ing combination of labels—that is, every k-tuple
(`1, . . . , `c, . . . , `k) such that: πev1,i1 (`1) = · · · =

πevc,i(`c) = · · · = πevk,ik
(`k), where e is the shared edge.

If there are no such combinations, then the e-bundle
is a single simple strand.

For c ∈ [k], set all the edges in the vc,i-bundles to
exist in Gc only. Now, for each (v1,i1 , `1, . . . , vk,ik , `k),
merge together the (v1,i1 , `1, . . . , vk,ik , `k)-paths across
all Gc that have such a strand. Finally, the connectiv-

ity demands are D =
{(
vSc,1, v

S
c,|Vc|+1, c

)
: c ∈ [k]

}
.

The analysis follows the k = 2 case. Suppose we
have a YES instance of k-PHLC, with optimal label-
ing `∗v to each node v ∈ ⋃kt=1 Vc. Then an optimal
solution H∗ to the constructed DCSN instance is to
traverse, at each condition c and for each vc,i-bundle,
the path through the `∗vc,i -strand. In particular for
each (v1,i1 , . . . , vk,ik)-bundle in that strand, traverse
the (v1,i1 , `

∗
1, . . . , vk,ik , `

∗
k)-path.

In tallying the total edge cost, H∗ ∩ G1 (the sub-
graph at condition 1) incurs a cost of |E|, one for
each contact edge. The sub-graphs of H∗ at conditions
2, . . . , k account for no additional cost, since all con-
tact edges correspond to a label which agrees with all
its neighbors’ labels, and hence were merged with the
agreeing contact edges in the other sub-graphs.

Conversely suppose we have a NO instance of k-
PHLC, so that for any labeling `∗v, for at least (1−ε)|E|
hyperedges e, the projection functions of all nodes in e
disagree. By definition, any solution to the constructed
DCSN instance contains a simple vSt,1 → vSt,|Vc|+1 path
Pc at each condition c. As before, P1 alone incurs a cost
of exactly |E|. However, at least (1 − ε)|E| of the hy-
peredges in G cannot be weakly satisfied; for these hy-
peredges e, for every pair of neighbors vc,ic , vc′,ic′ ∈ e,
there is no path through the e-bundle in vt,ic ’s `

∗
vc,ic

-
strand that is merged with any of the paths through
the e-bundle in vc′,ic′ ’s `

∗
vc,i

c′
-strand (for otherwise, it

would indicate a labeling that weakly satisfies e in the
k-PHLC instance). Therefore paths P2, . . . , Pk each
contribute at least (1 − ε)|E| additional cost, so the
solution has total cost at least (1− ε)|E| · k.

It follows from the gap between the YES and NO
cases that DCSN is NP-hard to approximate to within
a factor of k − ε for every constant ε > 0; and since
C = k in our construction, it is also NP-hard for C−ε.
Moreover since The directed condition graph we con-
structed is acyclic, this result holds even on DAGs.
As before, the same analysis holds for the undirected
problem CSN by undirecting the edges.

Explicit algorithm for Monotonic Single-Source
DCSN
We provide a modified version of the approximation
algorithm presented in Charikar et al. [21] for Directed
Steiner Tree (DST), which achieves the same approxi-
mation ratio for our problem Monotonic Single-Source
DCSN.

We provide a similar explanation as of that presented
in Charikar et al. Consider a trivial approximation al-
gorithm, where we take the shortest path from the

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 13, 2018. ; https://doi.org/10.1101/300012doi: bioRxiv preprint

https://doi.org/10.1101/300012
http://creativecommons.org/licenses/by-nc-nd/4.0/

Wu et al. Page 15 of 16

source to each individual target. Consider the exam-
ple where there are edges of cost C − ε to each target,
and a vertex v with distance C from the source, and
with distance 0 to each target. In such a case, this
trivial approximation algorithm will achieve only an
Ω(k)-approximation. Consider instead an algorithm
which found, from the root, an intermediary vertex
v, which was connected to all the targets via shortest
path. In the case of the above example, this would find
us the optimal sub-graph. The algorithm below gen-
eralizes this process, by progressively finding optimal
substructures with good cost relative to the number of
targets connected. We show that this algorithm pro-
vides a good approximation ratio.

Definition 14 (Metric closure of a condition graph)
For a directed condition graph G = (G1 = (V,E1), G2 =
(V,E2), . . . , GC = (V,EC)), define its metric closure
to be G̃ = (V,E, w̃) where E =

⋃
cEc and w̃(u, v, c) is

the length of the shortest u→ v path in Gc (note that
in contrast with w, w̃ takes three arguments).

Definition 15 (V (T)) Let T be a tree with root r.
We say a demand of the form (r, b, c) is satisfied by T
if there is a path in T from r to b at condition c. V (T)
is then the set of demands satisfied by T .

Definition 16 (D(T)) The density of a tree T is

D(T) = cost(T)
|V (T)| , where cost(T) is the sum of edge

weights of T .

1: function Ai(transitive closure G = (V,E,w), r, c, k, D ⊆
V × [C])

2: if (r, bi, ci) does not exist for least k(bi, ci) ∈ D, ci ≥ c
then return no solution

3: T ← ∅
4: while k > 0 do
5: Tbest ← ∅
6: for all (v, t′) ∈ V × [C], c′ ≥ c and k′, 1 ≥ k′ ≥ k do
7: T ′ ← Ai−1(G, v, c

′, k′,D) ∪ (r, v, c′)
8: if d(TBEST) > d(T ′) then TBEST ← T ′ .

Demand i satisfied only if edge to bi at ci (ie (x, bi, ci) for
some x)

9: T ← T ∪ TBEST ; k ← k − |D ∩ V (TBEST)|; X ←
X − V (TBEST)

10: return T

The way we will prove the approximation ratio of
this algorithm is to show that it behaves precisely as
the algorithm of Charikar et al. does, when given as in-
put the DST instance produced by our reduction from
Monotonic Single Source DCSN (Lemma 3).

Proposition 3 The algorithm above is equivalent to
the algorithm of Charikar et al., when applied to the
DST instance output by the reduction of Lemma 3.

Proof To see this, note that in our reduced instance,
we see a collection of vertices, v1, ..., v|C|. Therefore,
the only equivalent modifications needed to the origi-
nal algorithm are:
• In the input, rather than keeping track of the cur-

rent root as some vertex vi, keep track of v at the
current condition instead, i.e. (v, i).

• The distance from some vi to xj , j ≥ i is sim-
ply the distance from v to x at condition j, i.e.
w̃(v, x, j).

• Instead of looping through all vertices in the form
v1, . . . , v|C|, we instead loop through all vertices,
and all conditions.

Therefore this algorithm guarantees the same approxi-
mation ratio for Monotonic Single Source DCSN as the
original algorithm achieved for DST. In particular for
all i > 1, Ai(G, a, 0, k,D) provides an i2(i− 1)k1/i ap-
proximation to DCSN, in time O(nik2i) [21, 35][4].

List of Abbreviations
• CPCST: Condition Prize-Collecting Steiner Tree

• CSN: Condition Steiner Network

• CST: Condition Steiner Tree

• CSP: Condition Shortest Path

• DSN: Directed Steiner Network

• DST: Directed Steiner Tree

• DCSN: Directed Condition Steiner Network

• DCSP: Directed Condition Shortest Path

• k-PHLC: k-Partite Hypergraph Label Cover

• MKL: Minimum k-Labeling

• PPI: Protein Protein Interaction

Declarations
Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Availability of data and material
Our simulation code can be found at the following URL:

https://github.com/YosefLab/condition_connectivity_problems

Author’s contributions
All authors conceived and designed the study. JW and BW derived the

main hardness results. AK derived the monotonic hardness results and

approximation algorithm. NY was the PI and oversaw the project.

Competing interests
The authors declare that they have no competing interests.

Funding and Acknowledgements
This work was partially supported by the National Science Foundation

Graduate Research Fellowship Program award DGE 1106400, NIH grants

U01HG007910 and U01MH105979, and the U.S.-Israel Binational Science

Foundation.

Author details
1Department of Computer Science, Stanford University, Stanford, CA USA.
2Department of Electrical Engineering and Computer Science, UC Berkeley,

Berkeley, CA USA.

[4]The first paper [21] incorrectly claims a bound of
i(i− 1)k1/i; this was corrected in [35].

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 13, 2018. ; https://doi.org/10.1101/300012doi: bioRxiv preprint

https://github.com/YosefLab/condition_connectivity_problems
https://doi.org/10.1101/300012
http://creativecommons.org/licenses/by-nc-nd/4.0/

Wu et al. Page 16 of 16

References
1. Chatr-aryamontri, A., Breitkreutz, B.-J., Oughtred, R., Boucher, L.,

Heinicke, S., Chen, D., Stark, C., Breitkreutz, A., Kolas, N.,

O’Donnell, L., Reguly, T., Nixon, J., Ramage, L., Winter, A., Sellam,

A., Chang, C., Hirschman, J., Theesfeld, C., Rust, J., Livstone, M.S.,

Dolinski, K., Tyers, M.: The biogrid interaction database: 2015 update.

Nucleic Acids Research 43(Database issue), 470–478 (2015).

doi:10.1093/nar/gku1204

2. Ben-Shitrit, T., Yosef, N., Shemesh, K., Sharan, R., Ruppin, E.,

Kupiec, M.: Systematic identification of gene annotation errors in the

widely used yeast mutation collections. Nat Meth 9(4), 373–378

(2012)

3. Huang, S.-s.C., Fraenkel, E.: Integration of proteomic, transcriptional,

and interactome data reveals hidden signaling components. Science

signaling 2(81), 40 (2009)

4. Scott, M.S., Perkins, T., Bunnell, S., Pepin, F., Thomas, D.Y.,

Hallett, M.: Identifying regulatory subnetworks for a set of genes.

Molecular & Cellular Proteomics 4(5), 683–692 (2005)

5. Wu, C., Yosef, N., Thalhamer, T., Zhu, C., Xiao, S., Kishi, Y., Regev,

A., Kuchroo, V.K.: Induction of pathogenic th17 cells by inducible

salt-sensing kinase sgk1. Nature 496(7446), 513–517 (2013)

6. Yosef, N., Ungar, L., Zalckvar, E., Kimchi, A., Kupiec, M., Ruppin, E.,

Sharan, R.: Toward accurate reconstruction of functional protein

networks. Molecular systems biology 5(1), 248 (2009)

7. Huang, S.-s.C., Fraenkel, E.: Integrating proteomic, transcriptional,

and interactome data reveals hidden components of signaling and

regulatory networks. Science Signaling 2(81), 40–40 (2009).

doi:10.1126/scisignal.2000350.

http://stke.sciencemag.org/content/2/81/ra40.full.pdf

8. Tuncbag, N., Gosline, S.J.C., Kedaigle, A., Soltis, A.R., Gitter, A.,

Fraenkel, E.: Network-based interpretation of diverse high-throughput

datasets through the omics integrator software package. PLOS

Computational Biology 12(4), 1–18 (2016).

doi:10.1371/journal.pcbi.1004879

9. Przytycka, T.M., Singh, M., Slonim, D.K.: Toward the dynamic

interactome: it’s about time. Briefings in Bioinformatics 11(1), 15–29

(2010). doi:10.1093/bib/bbp057

10. Mertins, P., Przybylski, D., Yosef, N., Qiao, J., Clauser, K.,

Raychowdhury, R., Eisenhaure, T.M., Maritzen, T., Haucke, V., Satoh,

T., Akira, S., Carr, S.A., Regev, A., Hacohen, N., Chevrier, N.: An

integrative framework reveals signaling-to-transcription events in

toll-like receptor signaling. Cell Reports 19(13), 2853–2866 (XXXX).

doi:10.1016/j.celrep.2017.06.016

11. Kanshin, E., Bergeron-Sandoval, L.-P., Isik, S.S., Thibault, P.,

Michnick, S.W.: A cell-signaling network temporally resolves specific

versus promiscuous phosphorylation. Cell Reports 10(7), 1202–1214

(2015). doi:10.1016/j.celrep.2015.01.052

12. Bendall, S.C., Simonds, E.F., Qiu, P., Amir, E.-a.D., Krutzik, P.O.,

Finck, R., Bruggner, R.V., Melamed, R., Trejo, A., Ornatsky, O.I.,

Balderas, R.S., Plevritis, S.K., Sachs, K., Pe’er, D., Tanner, S.D.,

Nolan, G.P.: Single-cell mass cytometry of differential immune and

drug responses across a human hematopoietic continuum. Science

332(6030), 687–696 (2011). doi:10.1126/science.1198704.

21551058[pmid]

13. Mazza, A., Gat-Viks, I., Farhan, H., Sharan, R.: A minimum-labeling

approach for reconstructing protein networks across multiple

conditions. Algorithms for Molecular Biology 9(1), 1 (2014)

14. Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: An improved lp-based

approximation for steiner tree. In: Proceedings of the Forty-second

ACM Symposium on Theory of Computing, pp. 583–592 (2010). ACM

15. Agrawal, A., Klein, P., Ravi, R.: When trees collide: An approximation

algorithm for the generalized steiner problem on networks. SIAM

Journal on Computing 24(3), 440–456 (1995)

16. Chleb́ık, M., Chleb́ıková, J.: The steiner tree problem on graphs:

Inapproximability results. Theoretical Computer Science 406(3),

207–214 (2008)

17. Feldman, J., Ruhl, M.: The directed steiner network problem is

tractable for a constant number of terminals. In: Foundations of

Computer Science, 1999. 40th Annual Symposium On, pp. 299–308

(1999). IEEE

18. Feldman, M., Kortsarz, G., Nutov, Z.: Improved approximating

algorithms for directed steiner forest. In: Proceedings of the Twentieth

Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 922–931

(2009). Society for Industrial and Applied Mathematics

19. Chekuri, C., Even, G., Gupta, A., Segev, D.: Set connectivity problems

in undirected graphs and the directed steiner network problem. ACM

Transactions on Algorithms (TALG) 7(2), 18 (2011)

20. Dodis, Y., Khanna, S.: Designing networks with bounded pairwise

distance. In: Proceedings of the Thirty-first Annual ACM Symposium

on Theory of Computing, pp. 750–759 (1999). ACM

21. Charikar, M., Chekuri, C., Cheung, T.-y., Dai, Z., Goel, A., Guha, S.,

Li, M.: Approximation algorithms for directed steiner problems. Journal

of Algorithms 33(1), 73–91 (1999)

22. Halperin, E., Krauthgamer, R.: Polylogarithmic inapproximability. In:

Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of

Computing, pp. 585–594 (2003). ACM

23. Archer, A., Bateni, M., Hajiaghayi, M., Karloff, H.: Improved

approximation algorithms for prize-collecting steiner tree and tsp.

SIAM journal on computing 40(2), 309–332 (2011)

24. Dinur, I., Manurangsi, P.: Eth-hardness of approximating 2-csps and

directed steiner network. In: LIPIcs-Leibniz International Proceedings

in Informatics, vol. 94 (2018). Schloss Dagstuhl-Leibniz-Zentrum fuer

Informatik

25. Arora, S., Babai, L., Stern, J., Sweedy, Z.: The hardness of

approximate optima in lattices, codes, and systems of linear equations.

In: Foundations of Computer Science, 1993. Proceedings., 34th Annual

Symposium On, pp. 724–733 (1993). IEEE

26. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof

verification and the hardness of approximation problems. Journal of

the ACM (JACM) 45(3), 501–555 (1998)

27. Raz, R.: A parallel repetition theorem. SIAM Journal on Computing

27(3), 763–803 (1998)

28. Charikar, M., Naor, J., Schieber, B.: Resource optimization in qos

multicast routing of real-time multimedia. IEEE/ACM Transactions on

Networking 12(2), 340–348 (2004)

29. Chuzhoy, J., Gupta, A., Naor, J.S., Sinha, A.: On the approximability

of some network design problems. ACM Transactions on Algorithms

(TALG) 4(2), 23 (2008)

30. Kandasamy, K., Mohan, S.S., Raju, R., Keerthikumar, S., Kumar,

G.S.S., Venugopal, A.K., Telikicherla, D., Navarro, J.D., Mathivanan,

S., Pecquet, C., Gollapudi, S.K., Tattikota, S.G., Mohan, S.,

Padhukasahasram, H., Subbannayya, Y., Goel, R., Jacob, H.K., Zhong,

J., Sekhar, R., Nanjappa, V., Balakrishnan, L., Subbaiah, R.,

Ramachandra, Y., Rahiman, B.A., Prasad, T.K., Lin, J.-X., Houtman,

J.C., Desiderio, S., Renauld, J.-C., Constantinescu, S.N., Ohara, O.,

Hirano, T., Kubo, M., Singh, S., Khatri, P., Draghici, S., Bader, G.D.,

Sander, C., Leonard, W.J., Pandey, A.: Netpath: a public resource of

curated signal transduction pathways. Genome Biology 11(1), 3

(2010). doi:10.1186/gb-2010-11-1-r3

31. Hornbeck, P.V., Zhang, B., Murray, B., Kornhauser, J.M., Latham, V.,

Skrzypek, E.: Phosphositeplus, 2014: mutations, ptms and

recalibrations. Nucleic Acids Res 43(Database issue), 512–520 (2015).

doi:10.1093/nar/gku1267

32. Keshava Prasad, T.S., Goel, R., Kandasamy, K., Keerthikumar, S.,

Kumar, S., Mathivanan, S., Telikicherla, D., Raju, R., Shafreen, B.,

Venugopal, A., Balakrishnan, L., Marimuthu, A., Banerjee, S.,

Somanathan, D.S., Sebastian, A., Rani, S., Ray, S., Harrys Kishore,

C.J., Kanth, S., Ahmed, M., Kashyap, M.K., Mohmood, R.,

Ramachandra, Y.L., Krishna, V., Rahiman, B.A., Mohan, S.,

Ranganathan, P., Ramabadran, S., Chaerkady, R., Pandey, A.: Human

protein reference database—2009 update. Nucleic Acids Research

37(suppl 1), 767–772 (2009). doi:10.1093/nar/gkn892

33. Li, T., Wernersson, R., B Hansen, R., Horn, H., Mercer, J., Slodkowicz,

G., T Workman, C., Rigina, O., Rapacki, K., Stærfeldt, H., Brunak, S.,

S Jensen, T., Lage, K.: A scored human protein–protein interaction

network to catalyze genomic interpretation 14 (2016)

34. Feige, U.: A threshold of ln n for approximating set cover. Journal of

the ACM (JACM) 45(4), 634–652 (1998)

35. Helvig, C.S., Robins, G., Zelikovsky, A.: An improved approximation

scheme for the group steiner problem. Networks 37(1), 8–20 (2001)

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted April 13, 2018. ; https://doi.org/10.1101/300012doi: bioRxiv preprint

http://dx.doi.org/10.1093/nar/gku1204
http://dx.doi.org/10.1126/scisignal.2000350
http://stke.sciencemag.org/content/2/81/ra40.full.pdf
http://dx.doi.org/10.1371/journal.pcbi.1004879
http://dx.doi.org/10.1093/bib/bbp057
http://dx.doi.org/10.1016/j.celrep.2017.06.016
http://dx.doi.org/10.1016/j.celrep.2015.01.052
http://dx.doi.org/10.1126/science.1198704
http://dx.doi.org/10.1186/gb-2010-11-1-r3
http://dx.doi.org/10.1093/nar/gku1267
http://dx.doi.org/10.1093/nar/gkn892
https://doi.org/10.1101/300012
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Abstract

